
 
 

 
 

Serviço Público Federal 

Ministério da Educação 

Fundação Universidade Federal de Mato Grosso do Sul 

Programa de Pós-Graduação em Recursos Naturais 
 

 
 

 
 
 
 
 
 
 
 
 

LUCIENE SALES DAGHER ARCE 
 
 
 
 
 
 
 
 
 
 
 

IDENTIFICATION OF A FOREST SPECIES OF 

SOCIO-ENVIRONMENTAL INTEREST BASED ON MACHINE 

LEARNING 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Campo Grande, MS  
Julho/2021



 
 

 
 

Serviço Público Federal 

Ministério da Educação 

Fundação Universidade Federal de Mato Grosso do Sul 

Programa de Pós-Graduação em Recursos Naturais 
 

ii 
 

 
 
 
 
 
 
 
 
 

LUCIENE SALES DAGHER ARCE 
 
 
 
 
 
 
 
 
 
 
 

IDENTIFICATION OF A FOREST SPECIES OF 

SOCIO-ENVIRONMENTAL INTEREST BASED ON MACHINE 

LEARNING 

 
Dissertação apresentada à Secretaria do 
Curso de Pós-Graduação em Recursos 
Naturais como pré-requisito para 
obtenção do título de mestre em 
Recursos Naturais. 

 
Orientadora: Prof. Drª. Camila Aoki 
Co-orientador: Prof. Dr. José Marcato 
Junior 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Campo Grande, MS  

Julho/2021 



 

3 
 

AGRADECIMENTOS 

 

Primeiramente gostaria de agradecer a Deus, único e soberano. 

Aos meus orientadores Camila Aoki e José Marcato Junior pelas valiosas 

contribuições dadas durante todo o processo, se dedicando, mesmo distante, 

durante esse difícil período que enfrentamos. 

Aos colegas do curso e do Laboratório de Geomática que compartilharam dos 

inúmeros desafios que enfrentamos, sempre com o espírito colaborativo. 

Também quero agradecer à Universidade Federal de Mato Grosso do Sul e o 

seu corpo docente que demonstrou estar comprometido com a qualidade e 

excelência do ensino. 

Por último, mas não menos importante à minha família e amigos pelo apoio que 

sempre me deram durante toda essa jornada. 

 

  



 

4 
 

SUMMARY 

 

 INTRODUCTION ......................................................................................... 9 

 Organization of the dissertation ........................................................... 12 

REFERENCES ................................................................................................. 12 

 MAPPING SINGLE-SPECIE PALM-TREES IN FOREST ENVIRONMENTS 
USING CONVOLUTIONAL NEURAL NETWORK .......................................... 15 

ABSTRACT ...................................................................................................... 15 

 INTRODUCTION ................................................................................. 16 

 MATERIALS AND METHOD ............................................................... 20 

2.2.1 General Description of our method .................................................. 20 

2.2.2 Study Area and Mapped Species ..................................................... 20 

2.2.3 Proposed Method ............................................................................. 22 

2.2.3.1 Feature Map Extraction ................................................................ 23 

2.2.3.2 Tree Localization (primeiro explique as prediçoes e depois o 
treinamento ................................................................................................ 24 

2.2.4 Experimental Setup .......................................................................... 25 

 RESULTS ............................................................................................ 28 

2.3.1 Validation of the parameters ............................................................ 28 

2.3.2 Comparative results between object detection methods .................. 29 

 DISCUSSION ...................................................................................... 33 

 CONCLUSION .................................................................................... 35 

Authors .......................................................................................................... 36 

REFERENCES ................................................................................................. 36 

 

  



 

5 
 

LIST OF FIGURES 
 

Figure 1. Summarized phases of the proposed approach. .............................. 20 

Figure 2. Location map of the study area in (a) South America and Brazil, (b) 
Mato Grosso do Sul, (c) Campo Grande, and (d) Study area........................... 21 

Figure 3. Examples of the labeled dataset. M. flexuosa palm-trees are 
represented with blue dots. .............................................................................. 22 

Figure 4. Proposed CNN. The feature map (b) is extracted from the input image 
(a) and improved by the PPM (c). The result is used as input at the MSM step 
(d), where T stages enhance the prediction positions (e). ................................ 23 

Figure 5. Tree localization example from a refined confidence map. ............... 25 

Figure 6. Training, validation, and testing datasets separated per region. ...... 27 

Figure 7. Qualitative results of the proposed method in three scenes: (a) an 
example of the detected nearby trees with overlapping, (b) detected trees with 
parts of the canopy occluded at the edge of the image, and (c) demons 
detected trees in areas of high vegetation. The orange circles highlight the 
detections. ........................................................................................................ 31 

Figure 8. Examples of the challenges faced by our method in the M. flexuosa 
palm-tree detection task. The orange circles indicate challenging detections. . 32 

Figure 9. Visual comparison of the analyzed methods. (a) shows the detections 
obtained by the proposed approach; (b) indicates the detections of the Faster 
R-CNN and; (c) demonstrates the detections of the RetinaNet. Blue and red 
points correspond to correct and incorrect detection positions, respectively, and 
the yellow circle to M. flexuosa palms-trees annotation. .................................. 33 

 

 

  



 

6 
 

LIST OF TABLES 
 

Table 1. Description of the training, validation, and testing sets of the M. 
flexuosa palms-trees dataset. ........................................................................... 26 

Table 2. Influence of the number of stages (T) in counting and detection of M. 
flexuosa palms-trees (𝜎𝑚𝑖𝑛 = 1 and  𝜎𝑚𝑎𝑥 = 4 were adopted). ....................... 28 

Table 3. Influence of the σmax in counting and detection of M. flexuosa palms-
trees (σmin = 1 and stages T = 4 were adopted). ............................................ 29 

Table 4. Influence of the σmin in counting and detection of M. flexuosa palms-
trees ( σmax = 4 and stages T = 4 were used). ................................................ 29 

Table 5. Comparative results between our method and Faster R-CNN and 
RetinaNet. ........................................................................................................ 30 

Table 6. Processing time evaluation of the analyzed approaches. .................. 31 
 



 

7 
 

RESUMO 
 

Um novo método de aprendizagem profunda capaz de mapear espécies única 

de palmeira Mauricia flexuosa, conhecida como Buriti em imagem aérea RGB foi 

proposto. Buriti é uma palmeira importante para comunidades e para fauna, além 

de ser um indicador de áreas de veredas, sendo importante seu mapeamento. A 

primeira sessão dessa dissertação apresenta um breve relato sobre a flora 

mundial e a legislação pertinente a espécie estudada. A segunda sessão 

apresenta um novo método baseado em Rede Neural Convulacional (CNN) que 

possibilita identificar e geolocalizar a espécie proposta além de comparar o 

desempenho com outras redes de detecção de objetos. Foram rotuladas 

manualmente um total de 5.334 palmeiras em um conjunto de 1.394 recortes de 

ortoimagens, retornando um erro absoluto médio (MAE) de 0,75 árvores e uma 

medida F de 86,9%. Os resultados apresentaram melhores que os métodos 

Faster-RCNN e RetinaNet. Conclui-se que o método proposto é eficiente para 

lidar em ambiente de alta densidade e complexidade florestal, podendo mapear 

e localizar as espécies de Mauricia flexuosa com alta acurácia. 

Palavras-chave: Mauricia flexuosa, detecção de objeto; rede neural 

convulacional; aprendizado de máquina, monitoramento ambiental. 
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ABSTRACT 

A new deep learning method capable of mapping unique Mauricia flexuosa palm 

species, known as Buriti in aerial RGB imagery was proposed. Buriti is an 

important palm tree for communities and fauna, in addition to being an indicator 

of path areas, and its mapping is important. The first session of this dissertation 

presents a brief report on the world flora and legislation pertaining to the studied 

species. A second session presents a new method based on the Convulational 

Neural Network (CNN) that makes it possible to identify and geolocate a species, 

in addition to comparing its performance with other object detection networks. 

They were manually labeled a total of 5.334 palm trees in a set of 1,394 ortoimage 

oatches, returning a mean absolute error (MAE) of 0.75 trees and F score of 

86.9%. The results are better than Faster-RCNN and RetinaNet methods. 

Concluding that the proposed method is efficient to deal with high density and 

forest complexity environment, being able to map and locate as species of 

Mauricia flexuosa with hight accuracy. 

Keywords: Mauricia flexuosa; object detection; convolutional neural network; 

deep learning; environmental monitoring. 
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 INTRODUCTION 
 
 The rational use of natural resources is essential for nature conservation. 

Its sustainable use, the conservation of ecosystems, and the regeneration of 

degraded environments are important for life on Earth. Forest conservation and 

regeneration are promising strategies for improving water, energy, and food 

security (MELO, 2020). Forests are important as they provide food and habitat 

sources for fauna (LORENZI, 2002). 

 In the world, the total forest area has about 4.06 billion hectares, which 

is 31% of the total land area (FAO, 2020). Despite intensive studies and laws to 

reduce environmental degradation, around 12.2 million hectares of tree cover in 

the tropics were lost in 2020, which is 12% higher than the previous year. From 

this total, 4.2 million hectares occurred in areas of tropical rainforests, which are 

important for carbon storage and biodiversity (WORLD RESOURCES 

INSTITUTE, 2021).  

 Based on data from 2001 to 2020 available on the Global Forest Watch 

map (2021), Brazil lost 26.7 million hectares of humid primary forest, representing 

45% of its total loss of tree cover (non-tropical and dry primary forests, secondary 

forests, and tree plantations, and rainforests) in the same period. The total area 

of primary rainforest in Brazil decreased by 7.7% in this period. 

 Although the changes in the legal frameworks governing Brazilian 

forests (Forest Code) are well documented, it has not yet been possible to 

reverse the short-term decline in deforestation (BRASIL, 2015).  

 With a wide variety of natural characteristics, Brazil has ecosystems with 

very distinct characteristics in terms of vegetation and fauna (MMA, 2020), called 

biomes: Amazon, Caatinga, Cerrado, Atlantic Forest, Pampa, and Pantanal. 

Amazon, Cerrado, Atlantic Forest, and Pantanal are present in the Brazilian 

Midwest. Cerrado and Atlantic Forest biomes are considered global hotspots in 

biodiversity (MYERS et al., 2000). 

 In Mato Grosso do Sul, there are three biomes: the Atlantic Forest, the 

Cerrado, and the Pantanal. The Cerrado, which comprises most of the state, is 

recognized as the richest and most diverse tropical savanna globally, home of 

around 11,627 cataloged plant species (MMA, 2019). 



 

10 
 

 The Cerrado, in recent decades, has been degraded by the expansion 

of the agricultural frontier, with growing pressure to increase the production of 

meat and grains, with progressive depletion of the natural resources (INPE, 

2021). Furthermore, there is large exploitation of woody material to produce 

charcoal in the Cerrado biome (MMA, 2019), thus reducing species of socio-

environmental interest. 

 The local population's sustainable use of native flora and the valorization 

of natural resources are alternatives for preserving over 200 species that have 

some economic value, whether food, wood, or medicinal (EMBRAPA, 2004 

BORTOLOTTO, et al. 2018). In addition to its environmental importance, the 

Cerrado provides a wide variety of fruits containing considerable amounts of 

protein, fiber, phenolic compounds, vitamins, calcium, phosphorus, and fatty 

acids (VIEIRA, et al., 2011); contributing to the sustainable development and 

quality of life of the population (AVIDOS and FERREIRA, 2000). 

 The fruits with the greatest potential for exploitation that are consumed 

by the local population (indigenous, riverside, settlers) and that are sold in urban 

centers are: Marolo (Annona crassifolia), Cagaita (Eugenia dysenterica), 

Cajuzinho do cerrado (Anacardium humile), Bacupari (Salacia crassifolia), seeds 

of Barú (Dipteryx alata), Buriti (Mauritia flexuosa), Jatobás (Hymenaea courbaril, 

Hymenaea stigonocarpa), Mangaba (Hancornia speciosa) and Pequi (Caryocar 

brasiliense) and others (BRASIL, 2015). 

 Mauritia flexuosa, known as Buriti, grows spontaneously in floodplains, 

veredas, gallery forests saturated with water near-permanent watercourses, 

igapós, iguarapés and springs, forming dense populations. It is a palm that 

defines the environments of veredas, both for its ecological importance and for 

its high density compared to the few tree species that occur there (RESENDE, 

2012). 

 According to the Brazilian Forest Code, the palm tree is one of the 

indicators of the vereda area. In article 3, item XII, the vereda is classified as 

savanna phytophysiognomy, found in hydromorphic soils, usually with the 

emerging arboreal palm M. flexuosa, without forming a canopy, amid clusters of 
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herbaceous and shrub species, protected by permanent preservation (BRASIL, 

2012). 

 Also, in the Forest Code, article 4, item XI, the delimitation of the 

permanent preservation area in a 50-meter strip from the swampy and 

waterlogged area (BRASIL, 2012) is fundamental for the preservation of this 

phytophysiognomy, the conservation of the local fauna and flora and the existing 

water resource.  

 The palm tree serves as a source of food and a place of shelter and 

reproduction for various elements of fauna (RESENDE, 2012). Besides, it has 

been consumed in cuisine, and Buriti nuts can also be used to produce beauty 

products and activated charcoal to remove heavy metals in a viable process to 

control water pollution (PINTO, 2013). 

 With the exploitation of forest species of great socio-environmental 

interest, multidisciplinary studies are essential, which is important for the 

management and conservation of vulnerable ecosystems. The use of technology, 

such as aerial vehicles, has shown great potential for classifying and mapping 

rural and urban areas. They can be used to identify forest species when equipped 

with sensors, such as RGB, multispectral, hyperspectral, LiDAR (Light Detection 

And Ranging), and radar (MORALES et al., 2018). Remote sensing enables the 

acquisition of images from areas that are often inaccessible, and when combined 

with machine learning, can contribute to the knowledge of the local flora 

(BREIMAN, 2001). 

 Our objective is to investigate machine learning methods to detect trees 

of environmental and social interest through RGB aerial images to identify and 

geolocate a species in a complex forest environment. Specifically, we focused on 

Buriti species in the urban area of Campo Grande, Mato Grosso do Sul, Brazil. 

We employed supervised learning methods, and for this, we generated a large 

dataset, with more than 5000 labeled trees. 
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 Organization of the dissertation 
 

 The dissertation is organized into two sections. Section 1 presents a 

general context about the importance of conservation and laws. We also present 

a general discussion on the identification/mapping of tree species based on 

remote sensing and machine learning. Section 2 presents an article where we 

automatically mapped multipurpose palm trees on aerial images using deep 

learning-based approaches. 
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 MAPPING SINGLE-SPECIE PALM-TREES IN FOREST 
ENVIRONMENTS USING CONVOLUTIONAL NEURAL NETWORK 

 
 
ABSTRACT 
 

Accurately mapping individual tree-species in densely forested environments, 
using only RGB images, is a challenging task. Remote sensing research has 
focused more on multispectral, hyperspectral, and LiDAR data to perform this 
despite the comparatively higher cost. The main reason for that is the spectral 
similarity between species in RGB scenes, which can be a hindrance for most 
automatic methods. State-of-the-art deep learning methods could be capable of 
identifying tree-species with an attractive cost, accuracy, and computational load 
in RGB images. This paper presents a deep learning approach to detect an 
important multi-use species of palm trees (Mauritia flexuosa; i.e., Buriti) in Brazil 
with aerial RGB imagery. In South-America, this palm-tree is essential for many 
indigenous and local communities because of its characteristics. The species is 
also a valuable indicator of water resources, which comes as a benefit for 
mapping its location. The method is based on a Convolutional Neural Network 
(CNN) to identify and geolocate singular tree-species in a high-complexity forest 
environment, and considers the likelihood of every pixel in the image to be 
recognized as a possible tree. This study also compares the performance of the 
proposed method against state-of-the-art object detection networks. For this, 
images from a dataset composed of 1,394 scenes, where 5,334 palm-trees were 
manually labeled, were used. The results returned a mean absolute error (MAE) 
of 0.75 trees and F-measure of 86.9%, respectively. These results are better than 
both Faster R-CNN (MAE of 0.984 trees and F-measure of 81.7%) and RetinaNet 
(MAE of 3.761 trees and F-measure of 69.8%) considering equal experiment 
conditions. The proposed method provided fast solutions to detect the palm-
trees, with a delivering image detection of 0.073 seconds and a standard 
deviation of 0.002 using the GPU. In conclusion, the method presented is efficient 
to deal with a high-density forest scenario, and can accurately map the location 
of single-species like the M flexuosa palm-tree. 

 
Keywords: object detection; convolutional neural network; deep learning; 
environmental monitoring. 
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 INTRODUCTION 
 
The unplanned development and land occupation in both urban and rural 

areas are the main reasons behind deforestation, contributing to environmental 

degradation in riparian zones and modify the natural landscape. Multidisciplinary 

research is necessary to ascertain the population of vegetative species, 

identifying their locations and distribution patterns. Such information is essential 

for the management and conservation of vulnerable ecosystems, and mapping 

these environments may help governmental entities to control or mitigate 

environmental damage properly. In the last decade, remote sensing data have 

been widely applied for monitoring vegetation health (Näsi et al., 2015), biomass 

(Navarro et al., 2020), forest management (Reis et al., 2019), biodiversity 

(Saarinen et al., 2018), among others (Feng et al., 2015; Ferentinos et al., 2018; 

Casapia et al., 2019; Li et al., 2020; Santos et al., 2020; Miyoshi et al., 2020). 

Thus, remote sensing approaches have been used to investigate areas with 

difficult terrain access, demonstrating great potential for the classification and 

detection of forest vegetation. 

Remote sensing platforms can be embedded with different sensors such 

as RGB (Red-Green-Blue), multispectral and hyperspectral, LiDAR (Light 

Detection and Ranging), and others (Morales and Kemper et al., 2018). The 

identification of arboreous vegetation with remote sensing data depends on the 

spatial and spectral resolutions (Voss and Sugumaran, 2008). LiDAR sensors 

can produce accurate data on the height of the trees, which is an excellent 

variable to be adopted by automatic extraction methods in forest environments 

(Andersen, Reutebuch, et al., 2006; Ganz et al., 2019). Multispectral and 

hyperspectral sensors have the advantage of recording the spectral divergence 

of the vegetation, which is important for enhancing differences between species 

configurations, health status, etc. (Ozdarici et al., 2015; Csillik et al. 2018; Mioshi 

et al., 2020). Still, in recent years, high spatial resolution images acquired by RGB 

sensors have been used in many studies for vegetation identification (Berveglieri 

et al., 2018; Cao et al., 2018; Lobo Torres et al., 2020; Santos et al., 2020; 

Weinstein et al., 2020). These sensors have a relatively low cost in comparison 

with others but offer limited information regarding the spectral range. 
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For single-tree species mapping, the literature already investigated 

different methods by evaluating multispectral and hyperspectral data (Clark et al., 

2005, Jones et al., 2010; Colgan et al., 2012; Liu et al., 2017; Maschler et al., 

2018; Hennessy et al., 2020;), airborne LiDAR point clouds (Dalponte, Ørka, et 

al., 2014), and multi-sensory data fusion (Dalponte, Bruzzone, et al., 2012; Cho 

et al., 2012; Apostol et al., 2020). Atzberger et al. (2012) were able to classify 

tree-species in a temperate forest using satellite multispectral imagery. Franklin 

and Ahmed (2018) evaluated UAV (Unmanned Aerial Vehicle)-based 

multispectral image to map deciduous vegetation. Dalponte, Ørka, et al. (2013) 

used hyperspectral data to detect boreal tree-species at pixel-level, achieving 

high accuracies forest mapping. Most of these studies were conducted with 

hyperspectral sensors and LiDAR sensors. However, both hyperspectral and 

LiDAR data cost and process-demand are non-attractive for rapid decision 

models. This is different from RGB sensors, which have a lower cost and are 

highly available. Guimarães et al. (2020) demonstrated that the majority of recent 

applications are implementing RGB imagery data in the vegetation detection 

scenario. 

The visual inspection of remote sensing imagery is a time-consuming, 

labor-intensive, and biased task. Therefore, various studies have developed 

multiple methods regarding the automated extraction of the vegetation features 

(Jones et al., 2010; Özcan, et al., 2017; Miyoshi et al., 2020). Accurately mapping 

individual tree-species in densely forested environments is still a challenging 

task, even for more robust methods. The increase in quality and quantity in 

remote sensing data, alongside the rapid improvement of technological 

resources, allowed for the development of intelligent methods in the 

computational vision community. By combining remote sensing data with artificial 

intelligence techniques, it is possible to properly map tree-species and improve 

accuracy in applications regarding vegetation monitoring. In recent years, 

multiple frameworks have been implemented to assess the performance of such 

algorithms to accomplish this task (Feng et al., 2015; Belgiu et al., 2016; Näsi et 

al., 2018; Özcan et al. 2017; Nezami et al., 2020; Navarro et al., 2020). 

During the past years, the detection and extraction of trees in high-

resolution imagery were performed with more traditional machine learning 
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algorithms, like support vector machine (SVM), random forest (RF), artificial 

neural networks (ANN), and others (Nevalainen et al., 2017; Tuominen et al., 

2018; Raczko, Zagajewski, 2017; Xie et al., 2019). They returned interesting 

outcomes in plenty of studies regarding vegetation analysis (Maxwell et al., 2018; 

Osco et al., 2019; Pham et al., 2019; Miyoshi et al., 2020; Marrs and Meister, 

2019; Imangholiloo et al., 2019). However, these learners (known as shallow 

learners) are limited due to data complexity and may return lower accuracies in 

comparison against deep learning methods. When considering adverse 

conditions in a given forest dataset, deeper methods are required. 

Identifying individual species in a scene can be a challenging task since 

(Colgan et al., 2012). However, state-of-the-art deep learning-based methods 

should be capable of identifying single tree-species with an attractive accuracy 

and computational load even in RGB images. Recently, deep learning-based 

methods have been implemented in multiple remote sensing, specifically for 

image segmentation, classification, and object detection approaches (Nezami et 

al., 2020; Safonova et al., 2019; Li et al., 2017; Ma et al., 2019). Deep learning 

techniques are among the most recent adopted approaches to process remote 

sensing data (Schmidhuber, 2015; Kemper et al., 2018; Kamilaris and Prenafeta-

Boldú, 2018). In a general sense, deep learning can return better performance 

than shallow learners, especially in the presence of large quantities of data or if 

the input data is highly complex (Sothe et al., 2020; Khamparia and Singh, 2019). 

In heavy-dense forested environments, the identification of single-tree 

species can become a challenge even for robust methods like current state-of-

the-art deep networks. This motivated several studies to investigate the 

performance of deep learning methods to evaluate their performance on this task. 

A recently published research tested the performance of object detection deep 

networks like YOLOv3 (Redmon and Farhadi, 2018), RetinaNet (Lin et al., 2017), 

and Faster-RCNN (Ren et al., 2015) to detect tree-canopy in RGB imagery 

covering an urban area (Santos et al., 2019). Another study modified the VGG16 

(Simonyan and Zisserman, 2015) to monitor the health conditions of vegetation 

(Sylvain et al., 2019). A combination of LiDAR and RGB images was also used 

with the RetinaNet to identify tree-crowns in UAV images (Weinstein et al., 2019). 
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The DenseNet (Hartling et al., 2019) was also implemented multispectral data to 

classify tree species. 

The spatial and spectral divergences between the tree and non-tree are 

essential for automatic methods (Özcan et al., 2017; Csillik et al., 2018). In highly-

dense scenarios like heavily forested areas, the individual detection of trees could 

be difficult. RGB sensors are not capable of providing the same amounts of 

spectral data as multispectral or hyperspectral sensors, which offers a potential 

hindrance for automatic extraction methods. Nonetheless, state-of-the-art deep 

learning methods based on confidence maps, instead of object detection 

approaches, could be capable of identifying single tree-species in highly dense 

areas using RGB images. Methods that could accurately identify a species, 

among others, may help optimize several applications in environmental planning 

and forest management. 

In the presented context, this paper presents a deep learning approach to 

detect individual fruit species of palm-trees (Mauritia flexuosa; L.f. Buriti) in aerial 

RGB orthoimage. As the contribution of this approach, a framework to identify 

and geolocate a single species in a high-complexity forested environment is 

discussed. The study also compares the performance of the proposed method 

with other state-of-the-art object detection deep neural networks to test its 

robustness. The palm-tree M. flexuosa is valuable as a source of food, remedy, 

fiber, and light wood for both indigenous communities and local populations 

(Almeida et al. 2008, Bortolotto et al. 2018, Gilmore et al. 2013; Hoek et al., 2019). 

It is also considered a native species of the Brazilian flora with high current and 

potential economic value (Martins, et al. 2016). Besides, this species has high 

ecological importance, constituting a food source, nest sites, and habitat to a wide 

variety of species and provides multiple ecosystem services (Delgado et al. 2007, 

Khorsand Rosa & Koptur 2013; Hoek et al. 2019; Goulding & Smith 2007, 

Resende et al. 2012). 

 
 
 
 
 
 



 

20 
 

 MATERIALS AND METHOD 
 

2.2.1 General Description of our method 
 

The approach proposed in this paper is composed of three main phases 

(see Figure 1): (1) The dataset was composed of aerial RGB orthoimages 

obtained from a riparian zone of a well-known populated region of M. flexuosa 

palm-trees. With specialist assistance, the palm-trees in the RGB images were 

visually identified and labeled in a Geographical Information System (GIS). The 

image and labeled data were split into groups of training, validation, and testing 

subsets; (2) The object detection method was applied in a computational 

environment; (3) The performance of the proposed method was compared with 

other networks.  

 

 

Figure 1. Summarized phases of the proposed approach. 

 
 

2.2.2 Study Area and Mapped Species 
 
The riparian zone of the upper-stream of the Imbiruçu brook, located near 

the city of Campo Grande, in the state of Mato Grosso do Sul, Brazil was selected 

for the study (Figure 2). This stream, formed by a dendritic drainage system, is 

inserted in the hydrographical basin of the Paraguay River and covered by the 
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Cerrado (Brazilian Savanna) biome. This area is composed of a highly complex 

forest patch containing a widespread of palm-tree species Mauritia flexuosa 

(popular name Buriti). The Arecaceae is a dioecious (Holm, Miller, et al., 2008) 

long-living species and grows naturally in flooded areas, providing water balance 

for rivers and other water bodies (Ramos, Curi, et al., 2006). In highly dense, 

monodominant stands in flooded areas, mature M. flexuosa palm-trees reach 20 

m high (Holm, Miller, et al., 2008). The evaluated site in our experiment, in 

specific, is one of the well-known locations where a large number of samples of 

this species is sufficient to train a deep neural network. 

 

Figure 2. Location map of the study area in (a) South America and Brazil, (b) 
Mato Grosso do Sul, (c) Campo Grande, and (d) Study area. 

  

The aerial RGB orthoimages were provided by the city of Campo Grande, 

State of Mato Grosso do Sul, Brazil. The ground sample distance (GSD) of the 

orthoimages is 10 cm. A total of 43 orthoimages with dimensions 5619 x 5946 

pixels were used in the study. This aerial image dataset was composed of 1,394 
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scenes, where 5,334 palm-trees were manually labeled and used as ground-truth 

(Figure 3). 

 

Figure 3. Examples of the labeled dataset. M. flexuosa palm-trees are 
represented with blue dots. 

 

 
2.2.3 Proposed Method 

This study proposes a CNN method that uses the RGB image as an input 

and, throughout a confidence map refinement, returns a prediction map with the 

tree locations (Figure 4). The objects’ position is calculated after a 2D confidence 

map estimation, based on previous works (Aich and Stavness, 2018; Osco et al., 

2020). The first step of the architecture extracts the feature map. In a sequential 

step, the feature map goes through the Pyramid Pooling Module (PPM) (Zhao et 

al., 2017). The last step of the architecture produces a confidence map in a Multi-

Stage Module (MSM) that enhances the position of the tree by adjusting the 

prediction to its center. 
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Figure 4. Proposed CNN. The feature map (b) is extracted from the input image 
(a) and improved by the PPM (c). The result is used as input at the MSM step (d), 
where T stages enhance the prediction positions (e). 

 

 

2.2.3.1 Feature Map Extraction 

For the feature map extraction (Figure 4(b)), the proposed CNN is based 

on the VGG19 (Simonyan and Zisserman, 2015). Here, the CNN is composed of 

8 convolutional layers with 64, 128, and 256 filters with a 3 x 3 size window, with 

Rectified Linear Units (ReLU) functions in all layers. The spatial volume size was 

reduced in half after the second and fourth layers by a max-pooling layer (2 x 2 
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window). The PPM (Zhao et al., 2017) was used (Figure 4(c)) to extract global 

and local information, which helps the CNN to be less sensitive to tree scale 

changes. The feature maps extracted by PPM are up sampled to sizes equivalent 

of the input feature map and concatenated with it to create an enhanced 

characterization of the image. 

 
2.2.3.2 Tree Localization 

The MSM step (Figure 4(d)) estimates the confidence map from the 

feature map extracted in the previous module. The MSM is composed of T 

refinement stages, where the first stage contains 3 layers of 128 filters with 3 x 3 

size, 1 layer with 512 filters of 1 x 1 size, and one final layer with 1 filter that 

generates the confidence map C1 from the first stage. The position of the trees 

predicted in the first stage is refined in the T - 1 stages. In each stage t ∈ [2, 3, 

...., T], the prediction C_{t-1} returned from a previous stage t-1 and the feature 

map from the PPM module are concatenated. The concatenation process allows 

for both global and local context information to be incorporated in it . The final 

layer in this step has a sigmoid activation function since the method considers 

the probability of occurrence of a tree to exist or not [0,1]. At the end of each 

stage, a loss function Equation 1 is adopted to avoid the vanishing gradient 

problem. The general loss function is calculated by the following Equation 2. 

 

ft = ∑ ∥ Ĉt(p) − Ct(p) ∥2′
2

p         

 (1) 

 

where Ĉt(p) is the ground-truth confidence map with location (p) in the stage (t). 

 

f = ∑ ft
T
t=1            

 (2) 

 

The confidence map is generated by a 2D Gaussian kernel at the center 

of the labeled tree. A standard deviation 𝜎𝑡 controls the spread of the peak for 

each Gaussian kernel (Figure 5). Different values of 𝜎𝑡 were used to refine the 

predictions. The value of 𝜎1 in the MSM is set to maximum (𝜎𝑚𝑎𝑥) while the 𝝈_T 
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in the final stage is set to minimum (𝜎𝑚𝑖𝑛). In the early phases of the experiment, 

different values for 𝝈 were adopted to improve its robustness. Finally, the tree 

location is estimated by the peaks of the confidence map (Figure 5). These peaks 

are considered the local maximum of the confidence map, representing a high 

probability of a tree occurrence . The p = (xp, yp) is considered as a local 

maximum if CT(p)>CT(v) for all the neighbors v. Here, v is given by (xp1, yp) or 

(xp, yp1). 

 

 

Figure 5. Tree localization example from a refined confidence map. 

 

A peak in the confidence map is defined as a tree if CT(p)> 𝜏. To prevent 

the network from confusing trees in a nearby range from each other, a distance 

of 𝛿 is defined. For this study, 𝛿 equal to 1 pixel and 𝜏 equal to 0.35 were defined 

as valid metrics. These values were defined during a previous experimental 

phase. 

 
2.2.4 Experimental Setup 
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For the experimental setup, the RGB ortohomosaics were separated into 

25 (60%), 9 (20%), and 9 (20%) for training, validation, and testing, respectively 

(Figure 6). Later, they were split into non-overlapping patches of 256 x 256 pixels 

(25.6 m x 25.6 m). The patches were then divided into training (42.3%), validation 

(34.5%), and testing (23.2%) sets. Table 1 lists the number of samples (trees) 

and image patches, and Figure 6 displays examples of the orthomosaics used to 

extract the datasets. For the training process, the CNN was initialized with pre-

trained weights from ImageNet (< http://www.image-net.org/ >) and a Stochastic 

Gradient Descent optimizer was applied with a moment equal to 0.9. For this, the 

validation set was used to adjust the learning rate and the number of epochs, 

which were set to 0.001 and 100, respectively.  

 

Table 1. Description of the training, validation, and testing sets of the M. 
flexuosa palms-trees dataset. 

Dataset 
Number of 

Patches 
Number of 
Samples 

Training 590 1,784 

Validation 481 2,296 

Testing 323 1,254 
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Figure 6. Training, validation, and testing datasets separated per region. 

 

The performance of the proposed network was assessed with the following 

metrics: mean absolute error (MAE); precision (P); recall (R), and; F-measure 

(F1). The results were compared with Faster R-CNN and RetinaNet methods. 

Since these methods are based on bounding-boxes, the plant-position (x, y) from 

the labeled ground-truth was used as a center of the box. The correct size of the 

box corresponds with the size occupied by the tree-canopy. To perform this 

comparison, the same conjunct of training, validation, and testing datasets were 

adopted for the three methods. Likely, an inverse process was applied during the 

test phase, where the position of the tree was obtained by the center of the point 

inside the predicted bounding-box of the RetinaNet and Faster R-CNN methods. 

This allowed applying the same metrics (MAE, P, R, and F1) for comparing the 

performances of each neural network. 
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 RESULTS 
 

2.3.1 Validation of the parameters 
 

The proposed approach parameters 𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 , and the number of stages 

T, are responsible for refining the prediction map. Initially, the influence of these 

parameters was evaluated on the M. flexuosa palms-trees validation set. Table 2 

shows the evaluation of the number of stages T used in the MSM refinement 

phase. In this experiment, the values of 𝜎𝑚𝑖𝑛 = 1, 𝜎𝑚𝑎𝑥 = 4 and ranged T from 1 

to 5 were set, and it was discovered that T = 4 achieved the best performance 

among the numbers of analyzed stages, reaching an MAE of 0.852 trees and an 

F-measure of 87.1%. 

 

Table 2. Influence of the number of stages (T) in counting and detection of M. 

flexuosa palms-trees (𝜎𝑚𝑖𝑛 = 1 and  𝜎𝑚𝑎𝑥 = 4 were adopted). 

Stages (T) MAE Precision (%) Recall (%) F-measure (%) 

1 0.933 85.1 86.4 83.8 

2 0.943 93.5 83.6 86.9 

4 0.852 91.5 85.5 87.1 

5 0.966 93.9 83.1 86.6 

 

The values of 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥 applied in the refinement stage were also 

evaluated. For this, the number of stages T = 4 was adopted in subsequent 

experiments since it obtained the best results (see Table 2). Since the 𝜎𝑚𝑖𝑛values 

represent the dispersion of the density maps around the center of the trees, it 

was found that smaller values do not correctly cover the trees and, therefore, can 

impair the detection. On the other hand, higher 𝜎𝑚𝑖𝑛 values are also harmful as 

they cover more than one tree per area. Thus, the best results were obtained with 

𝜎𝑚𝑎𝑥 = 4, indicating that it fits better with the M. flexuosa palms-trees 

characteristics, and generates a more accurate refinement map. 
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Table 3. Influence of the 𝜎𝑚𝑎𝑥 in counting and detection of M. flexuosa palms-

trees (𝜎𝑚𝑖𝑛 = 1 and stages T = 4 were adopted). 

𝜎𝑚𝑎𝑥 MAE Precision (%) Recall (%) F-measure (%) 

3 0.931 86.7 88.7 85.8 

4 0.852 91.5 85.5 87.1 

5 1.611 91.4 69.6 76.8 

 

Table 4 presents the evaluation of different values of 𝜎𝑚𝑖𝑛 responsible for 

the last stage of the MSM. For this, 𝜎𝑚𝑎𝑥 = 4 and T = 4 were adopted since they 

obtained better results in the previous experiments (Tables 2 and 3). When 𝜎𝑚𝑖𝑛= 

1, the proposed approach returned the best performances among the analyzed 

values. Therefore, the refinement step implemented with values of 𝜎𝑚𝑖𝑛 = 1, 𝜎𝑚𝑎𝑥 

= 4, and T = 4 generated a more accurate refinement on the validation set. 

 

Table 4. Influence of the 𝜎𝑚𝑖𝑛 in counting and detection of M. flexuosa palms-

trees ( 𝜎𝑚𝑎𝑥 = 4 and stages T = 4 were used). 

𝜎𝑚𝑖𝑛 MAE Precision (%) Recall (%) 
F-measure 

(%) 

0.75 1.879 90.7 64.9 73.3 

1 0.852 91.5 85.5 87.1 

1.5 1.012 83.9 88.9 84.3 

2 1.671 72.4 91.0 77.6 

 

2.3.2 Comparative results between object detection methods 
 

The proposed method returned better performances when compared 

against different object detection methods like Faster R-CNN and RetinaNet. The 

MAE, precision, recall, and F-measure metrics were calculated for each of them, 

and results are displayed in Table 5. The proposed approach achieved high 

precision and good F-measure values but returned a slight-lower recall value 
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when confronted against them. Nonetheless, it is essential to consider the 

tradeoff in recall difference (-6.58% from the Faster R-CNN and -12.35% from the 

RetinaNet) with the precision difference (+14.52 from the Faster R-CNN and 

+35.49% from the RetinaNet).  

Since the F-measure uses both the precision and the recall values to 

compute the test results, it can be assumed that the proposed approach performs 

better and returns a better balance between true-positive predicted and true-

positive rates concerning the identification of palm-trees. Nonetheless, the results 

are consistent with recent literature where object detection applications were 

applied for the identification of single tree-species (Li et al., 2019; Djerriri et al., 

2018; Osco et al., 2020; Scillik et al., 2018; Santos et al., 2019); but performed in 

the non-RGB image domain. The low precision values for the bounding-boxes 

methods may be explained by a high-density of objects (i.e., M. flexuosa palm-

trees). This condition is described as problematic for deep networks based on 

these characteristics, especially when the boxes have high-intersections with 

similar objects (Goldman et al., 2019; Hsieh et al., 2017). 

 
Table 5. Comparative results between our method and Faster R-CNN and 

RetinaNet. 

Method MAE Precision (%) Recall (%) F-measure (%) 

Faster R-CNN 0.984 79.0 90.8 81.7 

RetinaNet 3.761 58.0 96.6 69.8 

Proposed Method 0.758 93.5 84.2 86.9 

 

To verify the potential of the proposed approach in real-time processing, a 

comparison of its performance with the other state-of-the-art methods was 

conducted. Table 6 shows the average processing time and standard deviation 

for 100 images of the test set. The values of 𝜎𝑚𝑖𝑛 = 1, 𝜎𝑚𝑎𝑥 = 4 and T = 4 were 

used to obtain the best performance in previous experiments. The results show 

that the approach can achieve real-time processing, delivering image detection 

in 0.073 seconds with a standard deviation of 0.002 using a GPU. Similarly, 
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RetinaNet and Faster R-CNN methods obtained an average detection time and 

standard deviation of 0.057, 0.046, and 0.002, 0.001, respectively.  

 

Table 6. Processing time evaluation of the analyzed approaches. 

Method 

CPU GPU 

Average Time 
(sec) 

Standard 
deviation 

Average Time 
(sec) 

Standard 
deviation 

Faster R-CNN 1.57 0.031 0.05 0.001 

RetinaNet 1.93 0.028 0.06 0.002 

Proposed 
Method 

1.26 0.051 0.07 0.002 

 

Figure 7 presents the qualitative results of the proposed method where the 

annotations of M. flexuosa palm-trees are marked with yellow circles, and the 

blue dots indicate the correctly detected positions. This approach correctly 

detects the M. flexuosa palm-trees in different capture conditions, such as 

overlapping trees (Figure 7(a)), partial occlusion of the treetops (Figure 7(b)), and 

highly dense vegetation areas (Figure 7(c)), highlighted by orange circles. 

Moreover, the predicted positions have a satisfactory level of accuracy, 

generating detections (blue dots) close to the annotations (centers of the yellow 

circles). 

 

 
Figure 7. Qualitative results of the proposed method in three scenes: (a) an 
example of the detected nearby trees with overlapping, (b) detected trees with 
parts of the canopy occluded at the edge of the image, and (c) demons detected 
trees in areas of high vegetation. The orange circles highlight the detections. 
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Although the method obtained good results in the detection of M. flexuosa 

palm-trees, it faces some challenges. Figure 8 presents areas where the incorrect 

detections are shown by the red circles. The main challenge is the detection of 

trees with a high level of occlusion at the image boundary or by overlapping of 

trees (highlighted by the orange circles). However, even in these few cases, the 

proposed approach can correctly detect most of the palm-trees. 

 

 
Figure 8. Examples of the challenges faced by our method in the M. flexuosa 
palm-tree detection task. The orange circles indicate challenging detections. 

 

The visual comparison of the palm-tree detection approaches is shown in 

Figure 9. Column (a) displays the detections obtained by the proposed method, 

while Columns (b) and (c) are related to the compared methods: Faster R-CNN 

and RetinaNet, respectively. The approach that obtained the worst result was 

RetinaNet (Figure 9(c)), generating many false-positives (red dots) close to the 

M. flexuosa palm-trees detections. On the other hand, Faster R-CNN (Figure 

9(b)), despite having fewer false-positives, did not properly learn the 

characteristics of the palm-trees and incorrectly detected other tree species 

among them. Following the quantitative results shown in Table 5, the proposed 

approach has the greater precision in detecting M. flexuosa palm-trees (Figure 

9(a)), while having the least number of incorrect detections (false-positives). 
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Figure 9. Visual comparison of the analyzed methods. (a) shows the detections 
obtained by the proposed approach; (b) indicates the detections of the Faster R-
CNN and; (c) demonstrates the detections of the RetinaNet. Blue and red points 
correspond to correct and incorrect detection positions, respectively, and the 
yellow circle to M. flexuosa palms-trees annotation. 

 
 
 

 DISCUSSION 
 

This study demonstrated a feasible method to automatically map single 

palm-tree species of the M. flexuosa plant genera using an RGB imagery dataset. 

Mauritia flexuosa frequently occurs at low elevations, with high density on river 

banks and lake margins around water sources, and in inundated or humid areas 

(Martins et al. 2012a). This is one of the most widely distributed palm trees in 

South America, Brazil. This species occurs in the Amazon region, Caatinga, 

Cerrado, and Pantanal (Lorenzi et al. 2004), and is one of the palm trees mostly 

used by humans, being an important item in the diet of many indigenous groups 

and rural communities (Martins et al. 2012a, b).  
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Mapping the M. flexuosa palm-trees is an important practice for multiple 

regions of South America, like Brazil, where this plant is viewed as a valuable 

resource. This palm is widely used for several purposes, is considered a species 

of multiple-use (Santos and Coelho-Ferreira 2012, Bortolotto et al. 2018), occurs 

in areas of “Veredas”, considered protected by the Brazilian forest code, but there 

is still a great lack of characterization of the habitats of this species in this country. 

Mapping and identifying populations of the palm M.flexuosa is relevant because 

it is a reliable indicator of water resources, such as streams inside dense gallery 

forests, slow-flowing swamp surface water, and shallow groundwater in the 

Cerrado region, vital for humans and wildlife, besides being a valuable source of 

several non-timber forest products. The approach provides useful information for 

sustainable economic use and conservation.  

As described, single tree-species identification is a challenging task even 

for state-of-the-art deep neural networks when considering only RGB imagery. 

Mainly because forest environments are constituted by multiple spectral-spatial 

information, overlapping canopies, leaves and branches, sizes, growth-stages, 

and densities, among others. In this manner, studies considered different data to 

help solve this issue like density-points information, canopy high, digital terrain 

and surface models, spectral divergence, etc. (Özcan et al., 2017; Franklin et al., 

2018; Saarinen et al., 2018; Sothe et al., 2020; Tuominen et al., 2018). 

Regardless, in this paper, it is proposed a simplification of this process by 

adopting little input information (i.e., label feature as points and RGB imagery) 

and a robust method that once trained, can rapidly perform and resolve the said 

task even in a real-time context.  

The results of the present approach achieved satisfactory precision 

(93.5%), recall (84.2%), and F-measure (86.9%) values, respectively), and a 

small MAE (0.758 trees). Studies that applied deep neural networks for detecting 

other types of arboreal vegetation returned approximated metrics. For the 

identification of citrus-tree, a CNN method was able to provide 96.2% accuracy 

(Csillik et al., 2018), and in oil palm-tree detections, a deep neural network 

implementation returned an accuracy of 96.0% (Li et al., 2019). One different kind 

of palm-trees than the ones evaluated in our dataset was investigated with a 

modification of the AlexNet CNN architecture and returned high prediction values 
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(R² = 0.99, with the relative error between 2.6% to 9.2%) (Djerriri et al., 2018). A 

study (Santos et al., 2019) achieved accuracy higher than 90% to detect single 

tree-species using the RetinaNet and RGB images. However, in all 

aforementioned papers, the tree density patterns differentiate from ours, and the 

evaluated individual trees are more spaced from each other, which makes a 

simpler object detection problem. 

In the described manner, the proposed method may help in mapping the 

M. flexuosa palm-tree with little computational load and high accuracy. Since this 

approach can compute point features as labeled objects, it reduces the amount 

of label-work required from the human counterpart. Additionally, the method 

provided a fast solution to detect the palm-tree’s locations with a delivering image 

detection of 0.073 seconds and a standard deviation of 0.002 using a GPU. This 

information is essential for properly calculating the cost and effectiveness of the 

method. The presented approach may help new research while providing primary 

information for exploring environmental management practices in the experiment 

context (i.e., evaluating a keystone tree-species). The proposed method could 

also be incorporated into areas and regions to help detect the M. flexuosa palm-

tree and contribute to decision-making conservation measures of said species. 

 
 

 CONCLUSION 
 

This paper presents an approach based on deep networks to map single 

species of fruit palm-trees (Mauritia flexuosa) in aerial RGB imagery. According 

to the performance assessment, the method returned an MAE of 0.75 trees and 

F-measure of 86.9%. A comparative study also shows that the proposed method 

returned better accuracy than state-of-the-art methods like Faster R-CNN and 

RetinaNet under the same experimental conditions. Besides, this approach took 

a shorter time to detect the palm-trees with 0.073 seconds for delivering image 

detection and achieved a standard deviation of 0.002 using the GPU. In future 

implementations, it should be possible to add new strategies in this CNN 

architecture to overcome challenges regarding other tree patterns. Still, the 

identification of individual species can help to assist in both monitoring and 

mapping important singular species. As such, the proposed method may assist 
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in new research for the forest remote sensing community that includes data 

obtained with RGB sensors. 
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