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RESUMO 

 

Inundações em áreas urbanas devido a chuvas intensas tem causado perdas materiais, 

econômicas, ambientais e humanas em vários lugares do mundo. A combinação das mudanças 

climáticas com o aumento da urbanização traz grandes desafios para o planejamento e gestão 

das cidades, visto que são considerados os principais responsáveis pelo aumento do risco de 

inundações nas áreas urbanas. Portanto, é necessário melhorar a resiliência de áreas urbanas a 

eventos de inundação. Assim, o principal objetivo do estudo apresentado nesta tese de 

doutorado foi avaliar e desenvolver técnicas para melhorar a resiliências das áreas urbanas a 

eventos de inundação. Para isso, no capítulo 1, avaliou-se como a utilização de práticas de 

desenvolvimento urbano de baixo impacto (LIDs) afetam a resiliência do sistema de drenagem 

de águas pluviais considerando cenários de mudança climática. A resiliência do Sistema de 

drenagem foi quantificada por meio de um índice de resiliência. Os resultados indicam que o 

aumento pico de vazão do escoamento pode ser mitigado de forma satisfatória usando 

combinações de diferentes tipos de LIDs. Em geral, as combinações de LIDs apresentaram 

redução do pico de escoamento superior a 20%, e a melhor combinação apresentou redução de 

até 46%. Os dados de radar meteorológico são úteis em modelos chuva-vazão usados em 

estudos de inundações urbanas. Assim, no capítulo 2, desenvolvemos uma nova abordagem de 

correção de viés com base no método de correspondência utilizando funções de distribuição 

Acumulada (CDF) que se concentra em corrigir as estimativas de precipitação do radar 

considerando eventos diários, horários e sub horários. Os resultados mostraram que o índice de 

eficiência de Nash-Sutcliffe (NSE) aumentou de 0,11 para 0,63 e o erro médio absoluto (MAE) 

diminuiu de 11,66 para 6.97 mm após a aplicação do método. Esses resultados indicam que 

houve uma melhora significativa nas estimativas de precipitação do radar. Além disso, no 

capítulo 3, um Sistema de Suporte a Decisão acoplado a um aplicativo é usado para desenvolver 

um sistema de alerta de inundações. O aplicativo foi desenvolvido para permitir a visualização 

de manchas de inundação, o nível d’água em seções específicas e enviar mensagens de alerta à 

população. Os resultados encontrados nesta tese de doutorado são informações muito úteis para 

a tomada de decisão tanto do poder público quanto da população de forma a aumentar a 

resiliências de áreas urbanas a eventos de inundação.  

 

Palavras-chave: LIDs, correção de viés, CDF, inundações urbanas, alerta de Inundação, radar 

meteorológico 

 



 

 

ABSTRACT 
 

Flooding in urban areas due to extreme stormwater in short time has caused material, 

economic, environmental and human losses in several places worldwide. The combination of 

climate change and increasing urbanization brings great challenges to planning and managing 

cities, because are considered the main responsible for increasing the severe flooding risks in 

urban areas. Therefore, it is necessary improving the urban flood resilience. Then, the main 

objective of the study presented in this doctoral thesis was to evaluate and develop techniques 

to improving the urban flood resilience. To achieve that, in the chapter 1, it was evaluated how 

Low Impact Development (LID) practices affect the resilience of stormwater drainage system 

under climate change scenarios. The resilience of the drainage system was quantified by means 

of a resilience index. The results indicate that the increased runoff peak can be mitigated 

satisfactory by using combined LID practices. In general, LID combinations showed reduction 

in runoff peak higher than 20%, and the best LID combination presented reduction up to 46%. 

The Weather radar data is useful for rainfall-runoff models used in urban flooding studies. 

Then, In the chapter 2, we developed a new bias correction approach based on Cumulative 

Distribution Function (CDF) matching method that focuses to correct biased radar rainfall 

estimates on daily, hour and sub-hour basis. The results showed that Nash-Sutcliffe Efficiency 

(NSE) index increased from 0.11 to 0.63 and Mean Absolute Error (MAE) decreased from 11.66 

(biased data) to 6.97 mm (unbiased data) for all rainfall events. These results indicate that there 

was a significant improvement on the radar rainfall estimates. Additionally, in the chapter 3, a 

Decision Support System coupled with a mobile application is used to develop a flood alert 

system. The application based on Progressive Web Application was developed to support the 

visualization of flood status and to deliver early warning messages to population. The results 

found in this doctoral thesis is an essential information to decision making by the public 

authorities as well as to population for improving the urban flood resilience.  

 

Keywords: LIDs, Bias correction, CDF Matching, Quantile Mapping, Urban Flooding, Flood 

alert 
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GENERAL INTRODUCTION 

 

Floods are recognized among the most destructive natural hazards (WMO, 2011), and have 

created serious threats to human life and social and economic activities (Gain et al., 2015). The 

combination of climate change and increasing urbanization brings great challenges to planning 

and managing cities, because they are considered the main responsible for increasing the severe 

flooding risk over urban areas (Miller; Hutchins, 2017;  Zhang et al., 2018).  

The increasing in urbanization reduce the natural vegetation cover and increase the 

amount of impervious areas, reducing the rainfall infiltration capacity and causing increased 

surface runoff. These runoff amounts increase urban flood risks and lead to economic losses, 

and human deaths (Hammond et al., 2015;  AON, 2019). In the Brazil, some metropolises have 

experienced unprecedented heavy rainfall events, leading to deadly floods. The city of Sao 

Paulo (~12.3 million people) received about 114 mm of rainfall on 10 February 2020. It was 

the second-highest volume in 24 hours (on February) in the last 77 years of weather records. 

The city of Belo Horizonte (~2.5 million people) received the largest 24-hour rainfall (171.8 

mm) in 110 years of rainfall records on January 2020. Since floods represent a significant role 

in the number of natural disasters globally (Freer et al., 2011), a great effort has been made to 

assess and predict flood events and their negative impacts. 

Traditionally, designing flood control measures starting with hydrological studies, 

followed by the definition of a design storm, the assessment of its consequent river flow 

responses, the design and implementation of a hydraulic system cable to comport the design 

flow (Plate, 2002). However, there is always the residual risk of a hydraulic failure due an event 

greater than the considered storm (Bertilsson et al., 2019). In addition, current stormwater 

drainage systems have been designed based on stationary climate data, without considering the 

changes in the nature of rainfall over time (Milly et al., 2008;  Pour et al., 2020).  

This scenario indicates the need of improving the urban flood resilience. In general, 

resilience may be defined as “The ability of an individual, community, city or nation to resist, 

absorb or recover from a shock (such as an extreme flood), and/or successfully adapt to 

adversity or a change in conditions (such as climate change or an economic downturn) in a 

timely and efficient manner” (Sayers et al., 2013).  

Urban planners and engineers are now assessing practices which have a potential of 

mitigation of increased flood risk arising from climate change. Increasing focus has been given 

on increasing water infiltration using Low Impact Development (LID) practices. Thus, in the 
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first chapter we evaluate how LID practices affect the resilience of stormwater drainage 

system under climate change scenarios.  

One of the most valuable tools for planning on flood mitigation is rainfall-runoff 

models. The output of these models can be used to develop flood hazard maps and also flood 

warning systems for saving lives and property. Despite the many usefulness of hydrological 

models, accurate models demand for high resolution rainfall data as input for urban hydrology 

applications (Müller; Haberlandt, 2018). In this context, weather radar provides more accurate 

the spatial variability of rainfall than conventional rain gauges, and consequently can improve 

rainfall-runoff model outputs (Abon et al., 2016;  Gurung, 2017). 

Unfortunately, radar rainfall estimates are still prone to large uncertainties due to 

random and systematic errors, thereby limiting their hydrological application (Berne; 

Krajewski, 2013). The uncertainties can be reduced by use of radar bias adjustment based on 

rain gauge network. Thus, in the second chapter we propose a new method for correcting 

biased radar rainfall against ground-based rain gauge data in daily, hourly, and sub-hourly 

timescale. 

Climate change threats, increasing urbanization, and a poor stormwater drainage 

network increase the risk of flood disaster if no risk management is done. To prevent the death 

of people and/or property damage due to floods, it is important to warn people in advance as 

possible. Hence, in the third chapter a Decision Support System coupled with a mobile 

application is used to develop a flood alert system across the Prosa basin (Brazil) to send early 

flood warning messages to population.  
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OBJECTIVES 

 

General Objective 

 

The main objective of the study presented in this doctoral thesis was to evaluate and 

develop techniques to improving the urban flood resilience. 

 

Specific objectives 

 

 

i. To investigate the effect of LIDs as source control solutions at the catchment scale (a 

few tens of kilometers) to mitigate runoff by implementing a rainfall-runoff simulation 

for an urban catchment under future rainfall scenario; 

 

ii. To develop a method for correcting biased radar rainfall against ground-based rain 

gauge data in daily, hourly, and sub-hourly timescale; 

 

iii. To develop a flood alert system in the Prosa basin, and disseminate its warning 

messages by means of an application for mobile devices. 
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CHAPTER 1 

 

Improving urban flood resilience under climate change scenarios in a 

tropical watershed using low impact development practices 

 

Mattos, T. S., Oliveira, P. T. S., Bruno, L. S., Oliveira, N. D., Vasconcelos, J. G., Lucas, M. C. Improving urban 

flood resilience under climate change scenarios in a tropical watershed using low impact development practices. 

Journal of Hydrologic Engineering. Under Review. (Impact factor, 2020: 1.560; Qualis CAPES: A2) 

 

Abstract 

 

In this paper we present how Low Impact Development (LID) practices affect the resilience of 

stormwater drainage system under climate change scenarios. We calibrated and evaluated a 

rainfall-runoff model in a tropical watershed located in Midwestern Brazil. To achieve future 

climate change scenarios up to 2095, we used an ensemble of 17 General Circulation Models 

outputs forced by Representative Concentration Pathway (RCP 4.5 and RCP 8.5). Then we 

evaluated the LID efficiency on the runoff peak reduction and the resilience of stormwater 

drainage by means of a resilience index. Overall, LID combinations showed a reduction in 

runoff peak higher than 20%, and the best LID combination presented reduction up to 46%. 

This represent a significant improvement in the resilience to flooding in the study area. 

Therefore, our findings contribute to the increase in widespread adoption of LID and can 

encourage decisionmakers to provide such practices for urban flood management. 

 

Keywords: infiltration trench; permeable pavements; PCSWMM; rain water harvesting; 

rainfall-runoff modeling; sustainable drainage systems. 
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1 Introduction 

 

Unplanned populational growth and climate change are mainly responsible for 

increasing the severe flooding risks in urban areas (Miller; Hutchins, 2017;  Zhang et al., 2018). 

This occurs because impervious surfaces change the hydrological fluxes of (peri) urban 

watersheds, leading to a decline in evapotranspiration, infiltration and groundwater recharge, 

and consequently an increase in stormwater runoff (Braud et al., 2013;  Miller et al., 2014;  

Muñoz et al., 2018).  Further, in the last three decades the number of rainfall record-breaking 

events has significantly increased on average globally due to warming of air, and has generated 

unprecedented surface runoff amounts (Lehmann et al., 2015;  Huang et al., 2019). These 

extreme runoff amounts increase urban flood risks and lead to economic losses, and human 

deaths (Hammond et al., 2015;  AON, 2019). Globally, mainly in low-latitude regions, the 

future population at risk of flood will increase due to warmer climate (Hirabayashi et al., 2013). 

For instance, considering a future anthropogenic warming of air (1.5 ◦C), assuming the current 

vulnerability levels and in the absence of future adaptation, it is estimated that human deaths 

from flooding could rise by 70–83% and direct flood damage by 160–240% (Dottori et al., 

2018). 

Stormwater drainage systems have been based on the goal of conveying a runoff 

associated with a stormwater event of a predetermined return period to prevent urban flooding. 

Storm inlets allow for the runoff collection its quick discharge to streams through gutters and 

closed pipe networks. Stormwater drainage system design are often based on rainfall records. 

As a limitation, this procedure assumes the hypotheses of stationarity, which does not account 

for climate change (Milly et al., 2008). This scenario indicates the need of improving the urban 

flood resilience.  

The term resilience was at first introduced in the field of ecology by Holling (1973) 

and has since found popularity in the fields of social science, psychology and disaster 

management. In relation of flood risk, resilience may be defined as “The ability of an individual, 

community, city or nation to resist, absorb or recover from a shock (such as an extreme flood), 

and/or successfully adapt to adversity or a change in conditions (such as climate change or an 

economic downturn) in a timely and efficient manner” (Sayers et al., 2013). Several quantitative 

methods have been proposed to assessing resilience (see Owotoki et al. (2006), Mugume et al. 

(2015), Golz et al. (2015), Birgani and Yazdandoost (2016), Pregnolato et al. (2016), Miguez 

and Veról (2017), Bertilsson et al. (2019)).  
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To achieve increased urban resilience due to urbanization and climate change, it has 

become crucial to reduce the risk of urban flood (Sorensen; Emilsson, 2019). In this context, 

many solutions have been proposed in the last three decades, such as expanding the drainage 

system network and storage. Unfortunately, this approach is deemed unsustainable, high costly 

(Qiu et al., 2019), and increases runoff volume downstream (Abera et al., 2018). On the other 

hand, Low Impact Development (LID) practices has emerged as alternative sustainable 

drainage system to decrease runoff (i.e. volume attenuation and peak reduction) in urban 

environmental (Page et al., 2015;  Huang et al., 2016;  Zhu et al., 2019).  

The LID practices facilitate in-site infiltration, evapotranspiration, water storage, and 

therefore contributes to the increase in urban resiliency which cannot be fully achieved by 

traditional stormwater management systems (Sohn et al., 2019). The LID practices, which 

include permeable pavement, bio-retention, rain gardens, green roofs, swales, rain barrels, and 

infiltration trench (Rossman, 2015), can mimic natural ecological and hydrological functions 

in a watershed, as well as improve of stormwater quality (Liu et al., 2015;  Wang et al., 2018).  

Hydrological benefits of LID systems have been well-documented in previous studies 

(Dietz, 2007;  Ahiablame et al., 2013;  Palla; Gnecco, 2015;  Wu et al., 2018;  Qiu et al., 2019). 

Ahiablame et al. (2013) evaluated several application levels of barrel/cistern and permeable 

pavements, and confirm that resulted in 2–12% reduction in runoff and pollutant loads for two 

watersheds. According to Palla and Gnecco (2015), the combination of green roofs and 

permeable pavements decreased runoff and flow peak by 23% and 45%, respectively, at the 

urban catchment scale. Wu et al. (2018) reported that the maximum inundation depth was 

reduced by 3–29% under eight scenarios of LID combinations with green roofs and/or 

permeable pavement. Qiu et al. (2019) conducted a simulation and found that the combination 

of rain garden, green roof, and permeable pavement can reduce runoff volume up to 51% and 

peak discharge up to 53% in the entire catchment. Damodaram et al. (2010) reported peak flow 

reduction of about 20–40% using permeable pavement and rainwater harvesting. Khastagir and 

Jayasuriya (2010) found runoff reduction from 58 to 82% using rainwater harvesting, for tank 

size from 1 to 5 kL. Goncalves et al. (2018) conducted simulations with infiltration trench and 

found runoff volume and peak flow reduction of about 55.9% and 53.4%, respectively.  

The hydrological impact of climate change on urban environment has been carried out 

only recently (Hailegeorgis; Alfredsen, 2017;  Mishra et al., 2018;  Gesualdo et al., 2019;  

Vemula et al., 2019;  Xiong et al., 2019). However,  the effects of LID practices in response to 

the impacts of climate change at catchment scale are still poorly addressed (Sohn et al., 2019). 

Hence, there is still a need to investigate the effect of LID under future climate change on urban 
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runoff volume and peak. Here, our goals are to: 1) investigate the effect of LIDs as source 

control solutions at the catchment scale by implementing a rainfall-runoff simulation for an 

urban catchment under climate change scenarios (RCP 4.5 and RCP 8.5); 2) evaluate the impact 

of the rainfall intensity on the streamflow regime; and 3) quantifying stormwater drainage 

system resilience using a resilience index. 

 

2 Material and Methods 

2.1 Study area 

  

This study was conducted in the Prosa Basin (PB), located in the municipality of 

Campo Grande, MS, Brazil (Figure 1). This basin covers an area of ≃32 km2, with slope 

steepness of ranging from 3.8 to 8.0%. The main rivers in the basin are Prosa, Soter, 

Desbarrancado, Joaquim Portugues, Revellion and Vendas River (PDDU, 2008).  

The annual mean ± standard deviation rainfall (between 1992 and 2016) considering 

the hydrological year (from October to September), is 1,417 ± 203 mm. The monthly minimum 

and maximum rainfall events occur in winter (34 mm in July) and summer (217 mm in January), 

respectively. The daily mean air temperature is 24.2 ± 5.2 °C. According to the Köppen climate 

type, the climate in the PB is Aw type, tropical with dry winter and rainy summer (Alvares et 

al., 2013).  
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Figure 1 – Location and land cover of study area over the 2016 year. 

 

The PB is characterized by large fraction of impervious surface, mostly commercial 

and residential areas. The land use types in the region can be classified into five categories: 

grass (24%), forests (19%), bare soil (6%), asphalt pavement (10%), building area (i.e. 

residential and commercial areas, 41%). The predominant soil type in the basin has sandy clay 

loam texture, and constant infiltration rate changes from 10 to 50 mm h-1 (Planurb, 1991;  

Sobrinho, 2015).  

This basin has recurrence of flood events and the flow regime is influenced by dams, 

bridges, holding basins, power dissipation structures and channels with different wear layer. 

The PB was chosen because historical records of rainfall and flood damage indicate that the 

region has experienced an increase in flood frequency and magnitude due to urbanization 

(PDDU, 2008).  

 

2.2 Study delineation 
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The paper is organized as follows (Figure 2). First, we acquired hydrological data (streamflow 

and rainfall) and stormwater drainage network characteristics. Second, the rainfall-runoff 

simulation was performed using Personal Computer Storm Water Management Model 

(PCSWMM) developed by the Environmental Protection Agency (EPA). The model 

parameters were calibrated and validated using measured streamflow data in the basin outlet. 

Third, projected (or future) runoff was generated over the Near future (2020–2045), Middle 

future (2046–2070) and Far future (2071–2095), using an ensemble of 17 General Circulation 

Models (GCMs) forced by International Panel on Climate Change (IPCC) Representative 

Concentration Pathway (RCP 4.5 and RCP 8.5), and scenarios of LID practices. Fourth, we 

evaluated LID efficiency on the runoff peak reduction and the resilience of stormwater 

drainage system.  

 

 

Figure 2 – Study framework of future climate change and Low Impact Development (LID) scenarios for 

urban stormwater resilience. 

 

2.3 Hydrologic modeling 

 

PCSWMM, a GIS version of the EPA Storm Water Management Model (SWMM 5.1), 

was adopted for this study to evaluate the effect of LIDs on increased resilience of urban areas 
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under climate change. The SWMM is a dynamic hydraulic-hydrology model for single or 

continuous rainfall event for quantity and quality simulation. Several studies have used SWMM 

for evaluating the effectiveness of LIDs in reducing pollutant loading (Rezaei et al., 2019) or 

in the context of flood risk (Sorensen; Emilsson, 2019). In addition, the model has been widely 

used to simulate infiltration and interception of rainfall, as well as routing of surface runoff 

through LID practices under mitigation and adaptation scenarios (Wu et al., 2018;  Sohn et al., 

2019).  

The hydrological component of SWMM runs on subcatchment areas to generate runoff 

and requires inputs of rainfall and subcatchment properties such as drainage area, flow length 

or width, slope, and imperviousness. Each subcatchment surface is treated as a non-linear 

reservoir, where the inflow comes from rainfall or any upstream subcatchment, and there are 

several outflows, including infiltration, evaporation and surface runoff. Each “reservoir” has a 

maximum depression storage (Rossman, 2015). Infiltration can be estimated by Green-Ampt, 

Soil Conservation Service curve number (SCS-CN), or Horton methods.  

The hydraulic component transports this runoff through a system of pipes, channels, 

bridges, storages, pumps, and regulators. The flow-routing model include steady flow, 

kinematic, and dynamic wave methods, and both methods employs the Manning’s equation to 

relate flow depth to flow rate (Rossman, 2015).  

In this study, the PB was discretized in 16 subcatchments and the initial estimate of 

the catchments characteristic width was based on the width of the equivalent rectangle, which 

relates the perimeter and catchment area (Zanandrea; Silveira, 2018). The initial storage height 

in depressions and roughness coefficient were defined according to the values suggested by 

Rossman (2015). In addition, the SCS-CN method was used to estimate infiltration processes, 

runoff was calculated using the Manning’s equation, and dynamic wave theory was used for 

flow routing computation. 

 

2.4 Model calibration and evaluation 

 

The subcatchment model was calibrated and evaluated with rainfall and discharge data 

measured between May 2015 and February 2016 at the rainfall-gauging station (Figure 1). The 

permeable area was addressed according to the land cover study performed in the year 2016 

because rainfall and flow data monitoring period. The model was calibrated with the following 
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parameters: subcatchment width; Manning`s roughness coefficient (n); and infiltration 

parameters (CN), which presented greater sensitivity in SWMM (Rosa et al., 2015). 

The model was calibrated for two events and validated for four events, following 

previous works (Wu et al., 2013;  Palla; Gnecco, 2015;  Wu et al., 2018;  Zanandrea; Silveira, 

2018). To assess the performance of model calibration and validation, we applied two set of 

metrics against streamflow at the PB outlet. The first set comprises errors between the model 

and measured data: the Relative Percentage Difference (RPD) peak and the RMSE - 

Observations Standard Deviation Ratio (RSR). The second set corresponds to the agreement 

between the model and measured data: Nash-Sutcliffe Efficiency (NSE) index and the 

Coefficient of determination (R²)  (Nash; Sutcliffe, 1970;  Moriasi et al., 2007;  Palla; Gnecco, 

2015).  

 

2.5 Climate change scenarios 

 

Climate projections by ensembles of 17 stochastically downscaled GCM model 

outputs (BCC-CSM 1.1, BCC-CSM 1.1 m, CSIRO-Mk3.6.0, FIO-ESM, GFDL-CM3, GFDL-

ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadGEM2-ES, IPSLCM5A-LR, 

IPSLCM5A-MR, MIROC-ESM, MIROC-ESM-CHEM, MIROC5, MRI-CGCM3, and 

NorESM1-M), from the Coupled Model Intercomparison Project Phase 5 (CMIP5), were used 

in PCSWMM model to generate streamflow projections over the 2020–2095 period.  

We used downscaled daily (future) rainfall using the MarkSim weather generator 

which comprises 720 classes of weather worldwide to calculate the coefficients of a third order 

Markov rainfall generator. The MarkSim fits a Markov model to the GCM output and uses it to 

generate weather data at a daily time step, with a spatial resolution of 30 arc-min (Jones; 

Thornton, 2013).  

We chose an ensemble under two RCPs (RCP 4.5 and RCP 8.5). The RCP 4.5 is an 

intermediate stabilization pathway in which radiative forcing is stabilized at approximately 4.5 

W m-2 (~650 ppm CO2 eq) after 2100. In the other hand, the RCP 8.5 is a pessimistic scenario 

in which radiative forcing reaches greater than 8.5 W m-2 (~1370 ppm CO2 eq) by 2100 (van 

Vuuren et al., 2011). We chose an ensemble because it presents better performance than 

individual models (Dhakal et al., 2018). That is, the use of ensembles can reduce the GCMs 

inherent uncertainties and enhance the reliability of climate projection (Knutti et al., 2010;  
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Salman et al., 2018;  Ahmed et al., 2019). We focused on three 25–year time slices: Near future, 

2020_2045; Middle future, 2046–2070; and Far future, 2071–2095. Additionally, we used 33 

years (1995–2017) of daily rainfall time series as a baseline period to establish a benchmark for 

climate change scenarios assessment.  

The annual maximum rainfall time series were selected taking daily maximum values 

in each year. The annual maximum rainfall for several return periods was estimated using the 

Log-normal probability distribution for both baseline and future periods. The statistical 

Anderson–Darling test was performed to verify the adherence of Log-normal distribution to 

sample data. The Log-normal distribution was used for each time slices for 6 return periods: 2, 

5, 10, 25, 50, and 100 years because they are mostly used in stormwater drainage designs. 

Further, relationships between rainfall of different durations and alternating block method 

(Chin, 2013) were used for developing daily rainfall hyetographs with 1 hour duration for each 

return period at 10 min intervals (Back et al., 2012;  Ghazavi et al., 2016). The 1 hour duration 

was selected based on the time of concentration of the PB, following Chow et al. (2013).  

 

2.6 LID Scenarios 

 

Considering the feasibility of implementing LIDs in the study area, we chose three 

types of LID practices: Rain Water Harvesting (RWH), Permeable Pavement (PP), and 

Infiltration Trench (IT), to evaluate their effectiveness for urban flood mitigation under climate 

change. The surfaces that received PP structures were public areas which are non-main roads 

of neighborhoods. The quantity of RWH and IT structures was proposed according the rainfall 

volume to be collected in the impervious area of each block by sub-basin. The rainfall volume 

was estimated using the urban stormwater master plan of Campo Grande city (PDDU, 2008): 

 

𝑉 = (𝑄𝑢 − 𝑄𝑛 ). 𝑡. 𝑘                                                                                                                               (1)                                               

 

where V is the volume (m³), Qn is the pre-development flow (m3 s-1), Qu is the flow resulting 

from urban development (m3 s-1), and t is the rainfall duration (minutes) and k (-) is the unit 

conversion factor. Both Qn and Qu are estimated for a 10 years design storm of return period. 

The parameters for RWH, PP, and IT (Table 1) were designed based on PCSWMM 
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requirements, previous LID literature (Qin et al., 2013;  Wu et al., 2018;  Zanandrea; Silveira, 

2018), and in-situ data carried out in the PB (Sobrinho, 2015). To evaluate future runoff and 

investigate the effects of LID implementation on watershed runoff reduction, we set a series 

of proportions from 25% to 50% for different types of LID scenarios, a benchmark (no LID 

practices) and seven scenarios (Figure 3).                                  

 

Figure 3 – Seven different types of LID scenarios. PP, RWH and IT is permeable pavement, rain water 

harvesting and infiltration trench, respectively. 

 

The value of 25 (or 50%) PP is the percent of the roads that received PP, and 25 (or 

50%) of RWH (or IT) is the percent of the impervious area of each block in the PCSWMM 

subcatchment. One should note that we considered that LIDs storage layer was empty as initial 

condition during simulation scenarios. 

It is also important to note that the PB is the most urbanized basin within Campo 

Grande city. In addition, few non-urbanized areas in this basin are protected green areas (i.e. 

forest) that cannot be altered (Figure 1). Thus, we kept the current urbanization conditions 

(2016 year) in the basin for baseline and future scenarios. The current conditions include the 

existing stormwater management system. The average impervious area per lot is about 65%. 

 

 

 

 

 

 

 

Scenarios

S1 

50% PP

S2

50% RWH

S4

25% PP + 25% RWH + 25% IT

S5

50% PP + 25% RWH + 25% IT

S6

50% PP + 50% RWH + 25% IT

S7

50% PP + 25% RWH + 50% IT

S3

50% IT
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Table 1 – SWMM parameters for LID structures used for rainfall-runoff simulations. 

- means that the parameter is not applied to the LID practice. 

 

Structure Parameter 

Permeable 

pavement 

Infiltration 

trench 

Rain water  

harvesting 

Surface 

Berm height (mm) 2.0 100 - 

Vegetation volume fraction 0 0 - 

Surface roughness (Manning’s n) 0.015 0.02 - 

Surface slope (%) 1.0 1.0 - 

Pavement 

Thickness (mm) 100 - - 

Void ratio (voids / solids) 0.15 - - 

Impervious surface fraction 0 - - 

Permeability (mm h-1) 300 - - 

 

Clogging factor 0 - - 

Storage 

Thickness (mm) 150 1000 - 

Void ratio (voids / solids) 0.75 0.5 - 

Seepage rate (mm h-1) 20 5.0 - 

Clogging factor 0 0 - 

 Initial saturation (%) 0 0 0 

 

Height (mm) - - 1600 

 

Area (m²) - - 3.14 

Under drain 

  

 

 

Drain coefficient (mm h-1) 9.0 - - 

Drain exponent 0.5 - - 

Drain offset height (mm) 6.0 - - 
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2.7 Resilience index 

 

To quantify of the impact of LIDs on the entire stormwater drainage system, we 

applied an index of resilience for flood events. The Resilience index (Rh) (Mugume et al., 2015) 

was used here as:  

 

𝑅ℎ = 1 −
ℎ

𝐻
∙

𝑡𝑓

𝑡𝑛
                                                                                                                                        (2)                                                    

 

where h is the maximum depth (m) of water that ponded at the node (stream channel cross 

section) during the simulation, H is the maximum water depth (m) (i.e. distance from invert of 

the cross section to ground surface), tf is the mean duration (minutes) of nodal flooding and tn 

the total simulation time (minutes). For a given flood event, Rh quantifies the resilience as 

function of stream channel flood level and duration. Rh ranges from 0 to 1; with 0 indicating 

the lowest level of resilience and 1 the highest-level resilience for each scenario.  

  

3 Results and Discussion 

3.1 Model performance 

 

Calibrated model parameters (Table S1; Appendix – Chapter 1) were used to generate 

streamflow at the PB outlet for the calibration and evaluation periods. Figure 4 shows model 

performance results for two calibration and validation events. The model performance for all 

events is summarized in Table S2 (Appendix – Chapter 1).  
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Figure 4 - Comparison between simulated and observed streamflow at the Prosa Basin outlet for two 

calibration (04/17/2015 and 05/27/2015) and validation (01/08/2016 and 02/15/2016) events. RPD is the 

Relative Percentage Difference peak, R² is the coefficient of determination, RSR is the RMSE - Observations 

Standard Deviation Ratio, and NSE is the Nash-Sutcliffe Efficiency index. 

 

The model presents good goodness-of-fit for both calibration and validation periods 

with the mean values of R² and NSE higher than 0.80, even during different rainfall events. 

This indicates the ability of the model to represent the rainfall-runoff process in the PB basin. 

In general, the model performance can be judged as satisfactory for R² > 0.50, RSR ≤ 0.70, and 

NSE > 0.50 (Moriasi et al., 2007). Moreover, the mean value of RPD peak (< 7%) confirms the 

model reliability in predicting the peak flow during flooding events. These results are vital to 

establish the performance of LID practices in the PB basin under climate change. 

  

3.2 Projected rainfall assessment 

 

Before evaluating the effectiveness of LIDs to minimize the impacts of climate change on 

urban floods, we assessed the projected rainfall to determine the impacts of climate change 

without any adaptation. We found marked differences in rainfall intensity between the baseline 

period and projected RCPs scenarios for the near, middle and far future (Table 2). 

. 
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Table 2 - Projected changes in rainfall intensity (mm h-1) for rain events with return period ranging from 2 

to 100 years under the two RCPs. 

        

Return 

period 

(years) 

Baseline 

RCP 4.5 RCP 8.5 

Near 

future 

Middle 

future 

Far 

future 

Near 

future 

Middle 

future 

Far 

future 

2 32.48 33.88 43.24 40.95 35.73 34.99 41.12 

5 39.23 36.80 45.11 43.30 40.53 42.14 48.83 

10 43.30 38.42 46.12 44.59 43.29 46.43 53.42 

25 48.11 40.23 47.22 46.00 46.44 51.51 58.78 

50 51.50 41.45 47.95 46.94 48.60 55.07 62.54 

100 54.75 42.57 48.61 47.79 50.62 58.48 66.11 

        
 

In general, the mean ± standard deviation rainfall intensity gradually increases in the 

RCP 8.5 from 44.20 ± 5.51 to about 55.13 ± 9.25 mm h-1 in the Near and Far future, 

respectively. Contrary, the rainfall intensity in the RCP 4.5 increases until the Middle future 

(from 38.89 ± 3.21 to 46.38 ± 1.98 mm h-1) and decreases slightly until the end of the 21st 

century (44.93 ± 2.53 mm h-1). In comparison with the baseline period, the highest rainfall 

intensities were found under RCP 8.5. Thus, we noted a gradual increase in the rainfall intensity 

during 21st century. This result indicates a potential increase in flooding events over the study 

area. 

Figure 5a shows the runoff peak flow in the outlet of the PB under RCP 8.5, 

considering the current drainage system, i.e. without climate change adaptation with LIDs, it is 

characterized by an average increase of about 26% from Near to Far future, respectively. 

Contrary, the runoff peak under RCP 4.5 increases about 21%, from the Near future to Middle 

future and decreases ≃3% until Far future. We assign this behavior directly to the variation in 

rainfall intensity.  
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Figure 5 – (a) Projected runoff peak flow and (b) relative difference between projected and baseline runoff 

peak given the return period for climate change (RCP 4.5 and RCP 8.5). 

 
Overall, the relative difference in projected runoff peak increases from Near to Far 

future (Figure 5b). The runoff peak is expected to increase, on average, by 24% until Far future 

under RCP 8.5. The results corroborate the future increase in flooding risk due to increased 

extreme rainfall (Marengo et al., 2013;  Gesualdo et al., 2019). Thus, we warn that some 

adaptations are needed to manage future climate change.  

 

3.3 Performance of LID Practices Under Climate Change Scenarios 

 

We adopted LID practices in the PB to mitigate the effects of climate change on urban 

flood. Hence, we chose the projected runoff peak for each return period under RCP 8.5, which 

presented the highest positive differences in relation to the baseline period (Figure 5b).  
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The results show that the S2 (RWH) has larger impact than the S1 (PP) and the S3 (IT) 

(Figure 6). That is, the S2 is more effective regarding reduce runoff peak, on average, of 30% 

for all projected rainfall events. The S3 shows a moderate effectiveness with regard to reduce 

runoff peak from 10 to 18% on average. In contrast, the S1 show the less efficiency with an 

average reduction in the runoff peak of about 10%.  

  

 

 

Figure 6 - Comparison of future runoff peak reduction according to the return period for individual LID 

practices. Scenario 1 (S1) – 50% PP, Scenario 2 (S2) – 50% RWH, and Scenario 3 (S3) – 50% IT. PP, RWH 

and IT is permeable pavement, rain water harvesting and infiltration trench, respectively. 

 

The volume that flows into the RWH reservoirs and IT corresponds to the volume that 

precipitates over the percentage of the basin area treated by these LIDs (≃37% of the 

impervious area), which is larger than the area treated by the PP (≃14% of the impervious area). 

As consequence, the hydrological efficiency of the RWH reservoirs and trenches on reducing 

the runoff peak is greatest considering climate change.  
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Figure 7 - Comparison of future runoff peak reduction according to the return period for LIDs combination. 

Scenario 4 (S4) – 25% PP + 25% RWH + 25% IT, Scenario 5 (S5) – 50% PP + 25% RWH + 25% IT, 

Scenario 6 (S6) – 50% PP + 50% RWH + 25% IT, and Scenario 7 (S7) – 50% PP + 25% RWH + 50% IT. 

PP, RWH and IT is permeable pavement, rain water harvesting and infiltration trench, respectively. 

 

Figure 7 presents the reduction of runoff peak for scenarios of LIDs combination a 

under climate change (RCP 8.5). In general, all LIDs combination shows great reduction 

(>20%) in runoff peak. The most effective combined LID scenarios are those that combine 

higher percent of the basin treated by RWH. Thus, the S6 (50% PP + 50% RWH + 25% IT) 

presented the highest reduction in runoff peak, varying from 36 to 46%. It is important to note 

that for both individual and combined LID scenarios, the reduction in flow peak is higher for 

projected events with smaller rainfall intensity. For example, in Scenario 6 (S6) far future 

appears that, while the rainfall intensity varies from approximately 41 to 66 mm h-1 (Table 2), 

the reduction of runoff peak varies from 43% to 36% (Figure 7) from 2-year and 100-year 

period, respectively. Our results are in agreement with previous studies that observed more 
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effective reduction in runoff peak for low rainfall intensity (Damodaram et al., 2010;  Behroozi 

et al., 2018).  

 

3.4 Resilience analysis 

 

The Resilience index is the ratio between the resilience of stormwater drainage system 

and the magnitude and duration of runoff., which was simulated by cross section of the stream 

channel, and is represented by the minimum, average and maximum values (Figure 8). To 

summarize the comparison between the current drainage system (i.e. without LID practices) 

and LID scenarios, we chose to evaluate only the best LIDs combination (i.e. S6; Figure 7) for 

the future rainfall events under climate change (RCP 8.5). Further, we assumed an acceptable 

level of resilience threshold of 0.8. This threshold represents the minimum acceptable flood 

protection level to be achieved. 

 

 

Figure 8 – The Resilience index under climate change conditions (RCP 8.5) for: (a) baseline (i.e. without 

LID practices) and (b) LIDs combination scenario (S6). The horizontal line is the minimum resilience level 

threshold of 0.80. 
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For the baseline scenario (Figure 8a), the values of Rh reveal large variations (from 

0.31 to 0.99) according to the return period and a wide range from. When compared to the 

resilience threshold (0.8), the results indicate that the current drainage system crosses this 

threshold for all future rainfall events greater than 5 years of return period. This indicates that 

the current hydraulic capacity of the drainage system is insufficient and has low resilience to 

future extreme rainfall. Considering the LIDs combination (S6, Figure 8b), we found that the 

Rh ranges from 0.80 to 0.99. This is an important result and represent a significant improvement 

between 2 and 157% in the drainage system resilience.  

  

4 Conclusions 

 

In this study, we simulated future scenarios of urban stormwater runoff to evaluate the 

effect of LID practices in the resilience of stormwater drainage system under climate change. 

Hence, the resilience of the drainage system was quantified for several scenarios of LID 

practices and projected future rainfall under IPCC RCP 4.5 and RCP 8.5. To overcome the lack 

of LID modeling studies at catchment scale, we selected the Prosa Basin (32 km2), Campo 

Grande city, in Brazil as study case. Further, we attempted to calibrate and validate the rainfall-

runoff model using different rainfall events.  

Our findings show an increase in runoff peak in the study area due to increased rainfall 

intensity until the end of the 21st century under both RCP 4.5 and RCP 8.5, while the impact of 

RCP 8.5 has potential to be more adverse than the RCP 4.5. Overall, runoff peak is projected 

(RCP 8.5) to increase on average by 24% over 2071–2095 period. The resilience index indicates 

that the current stormwater drainage system has low resilience to future rainfall events under 

climate change. 

We demonstrate that the increased runoff peak can be mitigated satisfactory by using 

combined LID practices. In general, LID combinations showed reduction in runoff peak higher 

than 20%, and the best LID combination presented reduction up to 46%. As this represents a 

significant improvement in the resilience to flooding in the study area, LIDs can play a key role 

to increasing the city resilience.   

Therefore, our study makes a major advance towards the comprehensive investigation 

of future urban flood under climate change by providing insights into urban flood management 
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at catchment scale. Our approach rises a calibrated modeling tool that could be used to enhance 

the adoption of LID practices. 
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CHAPTER 2 

 

Towards an improved rainfall bias correction scheme using CDF Matching 

 
Mattos, T. S., Oliveira, P. T. S., Ossuna, R., Oliveira, N. D., Roy, T., Lucas, M. C. Towards an improve on Rainfall 

Bias Correction Using CDF Matching. Journal of Hydrometeorology. In preparation. (Impact factor, 2019: 3.891; 

Qualis CAPES: A1) 

 

Abstract 

 

Accurate rainfall estimates are crucial for studies related to urban flooding. Weather data from 

radars is particularly useful for rainfall-runoff simulations since it provides high-resolution 

spatiotemporal estimates of rainfall. Because there are errors and uncertainties prevalent in the 

radar-based rainfall estimates, various statistical postprocessing techniques come into play, 

one of which is the bias correction. Several methods have been proposed for the bias correction 

of rainfall; however, these schemes are more commonly applied on the daily data. Finer 

timescale (e.g., sub-hourly) implementation is rare and is still challenging. Here, we propose 

a new bias correction approach based on cumulative distribution function (CDF) matching that 

focuses on correcting the biases in radar-based rainfall estimates at daily, hourly and sub-

hourly levels. We considered in-situ rainfall measurements from on 34 rain gauges (at 1-minute 

timestep) as the ground truth. In total, 408 events were observed over the study period of two 

years (January_2016 to February_2018). The correction scheme resulted in an improvement 

of the Nash-Sutcliffe Efficiency (NSE) from 0.11 to 0.63 and Mean Absolute Error (MAE) 

from 11.66 mm to 6.97 mm for all rainfall events. Our findings are particularly useful in the 

case of rainfall-runoff modeling for urban flooding studies. Therefore, we highlight the 

effectiveness of our proposed bias correction scheme for improving radar-based rainfall 

estimates at fine timescales.    

 

 

Keywords: Bias Correction, Radar, CDF Matching, Quantile Mapping, Urban Flooding 
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1 Introduction 

 

There is an increasing trend of urbanization growth globally. For instance, 55% of the global 

population live in urban areas, which corresponds to an increase of 24% since 1950. Moreover, 

it is expected that 68% of global population will live in urban areas by 2050 (United Nations, 

2018). The rapid increase in urban population density suggests a more vulnerable society to 

extreme weather events (Jahn, 2015), including heavy rainfall-driven flooding, which cause 

damage to human life, urban infrastructure, and environment (Luo et al., 2018). Rainfall-driven 

floods are among the most common type of natural disasters and have the greatest potential 

for damage compared to all other natural disasters worldwide (WMO, 2013).  

One of the most valuable tools for flood mitigation planning is a hydrological (or 

rainfall-runoff) model, which can mathematically conceptualize the complex relations between 

the physical characteristics of a watershed and the input rainfall (Salvadore et al., 2015). The 

outputs from these models can be used to develop flood hazard maps and flood warning 

systems, which can potentially save lives and property. Flood warning systems facilitate 

evacuation in the riverfront buildings, lockdown of transportation infrastructures, and the 

application of emergency protocols in essential facilities services (WMO, 2011), such as 

hospitals and schools. 

In an urban setting, hydrological models demand for high-resolution rainfall data (e.g., 

hour or sub-hour timescale) as input (Müller; Haberlandt, 2018), both spatially and temporally.  

This is particularly applicable in urban watersheds where the hydrology is characterized by fast 

surface runoff and short rainfall duration (Ficchì et al., 2016). In this context, there is a need to 

acquire rainfall data at high spatiotemporal resolutions, whereas coarse-resolution rainfall data 

can undermine model prediction and forecasting, thereby affecting the decision-making process 

on flood mitigation (McMillan et al., 2011;  McKee; Binns, 2015). Radar rainfall estimates are 

suitable in this case, given the need for high-resolution input data in the rainfall-runoff models 

(Thorndahl et al., 2017).  

A weather radar represents the spatial variability of rainfall more accurately than 

conventional rain gauges, and consequently, can improve rainfall-runoff modeling (Abon et al., 

2016;  Gurung, 2017). It is a remote sensing instrument that measures the reflectivity of 

precipitation to estimate the rainfall at the ground level. The uncertainty in the estimation arises 

from electronic miscalibration, signal attenuation, increase in sample volume due to beam 

broadening, non-uniform vertical profile of reflectivity, and the conversion of radar reflectivity 
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into rain rates (Z-R relationship) (Krajewski; Smith, 2002;  Goudenhoofdt; Delobbe, 2009). 

Thus, radar-based rainfall estimates are still prone to large uncertainties due to random and 

systematic errors, which limit their hydrological applications (Berne; Krajewski, 2013) 

The uncertainties in the radar-based rainfall estimates can be reduced by using 

polarimetric signals or increasing the density of radar network (Thorndahl et al., 2017). 

However, both solutions require significant financial investments, which, in many situations, 

are not feasible. Hence, the radar bias adjustment based on rain gauge network becomes 

relevant.  

Several methods have been proposed for the bias correction of radar-based rainfall 

estimates using ground-based data, such as: mean field bias correction (Borga et al., 2002), 

Brandes spatial adjustment (Looper; Vieux, 2012), local bias correction with ordinary kriging 

(James et al., 1993), range-dependent bias correction (Michelson; Koistinen, 2000), Bayesian 

data combination (Todini, 2001), conditional merging (Sik Kim et al., 2008), and kriging with 

external drift (Schuurmans et al., 2007). For more details about these methods readers are 

referred to Wang et al. (2013) and McKee and Binns (2015). Although these methods have been 

successfully used in several applications, merging/adjustment methods need improvements at 

sub-hourly timescales to quantify flow in urban watersheds (McKee; Binns, 2015) covered by 

large impervious areas, and hence dominated by surface runoff (Thorndahl et al., 2014).  

Here, the objective is to propose a new method for correcting biased radar rainfall 

against ground-based rain gauge data in daily, hourly, and sub-hourly timescale.  

This article is organized as follows. First, we provided a description of the data sources 

used in the study area, which is followed by an explanation of our proposed method for bias 

correction. The statistical metrics used to evaluate the bias correction are then introduced. The 

results are discussed focusing on the advantages and limitations of the proposed method. 

Finally, we highlighted the major scientific contributions (implications and applications) of this 

paper.  

 

2 Material and Methods 

 

2.1 Study area and datasets  
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We used rainfall data from a dual-polarization S-band weather radar that is operated by The 

National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), an 

institution linked to the Ministry of Science and Technology. The radar is located in the 

Jaraguarí city (-20.278 S, -54.474 W), Mato Grosso do Sul State, at an elevation of 753 m 

above the mean sea level. The radar observations are commonly used for operational short-

term precipitation forecasts and detection of severe thunder storms in Brazil.  

 

Figure 1 – Location of the study area within the 250 km range. 

 

The radar data is sampled with a temporal resolution of 5 min and a 3 km altitude 

pseudo-CAPPI (Constant Altitude Plan Position Indicator) product is generated based on 12-

elevation (from 0.5 to 20⁰) with reflectivity measurements up to 250 km. The resolution of the 

radar polar data is 250 m in range and 1-degree in azimuth angle. The beam width is 

approximately 1 degree. The spatial resolution of the pseudo-CAPPI product is 750 m × 750 

m.  



48 

 

 

The rainfall rate is estimated by applying polarimetric variables according to the 

thresholds (Equations 1, 2, and 3), as proposed by Ryzhkov et al. (2005): 

 

𝑅 =
𝑅(𝑍)

0.4 + 5.0|𝑍𝑑𝑟 − 1|1.3
                  for R(Z) < 6 mm/h                                                           (1) 

 

𝑅 =
𝑅(𝐾𝑑𝑝)

0.4 + 3.5|𝑍𝑑𝑟 − 1|1.7
                  for 6 < R(Z) < 50 mm/h                                                (2) 

 

𝑅 = 𝑅(𝐾𝑑𝑝)                                            for R(Z) > 50 mm/h                                                        (3) 

 

where R(Z) is the Marshall-Palmer relation for Z=aRb with a = 200 and b = 1.6 (Marshall; 

Palmer, 1948), Z is reflectivity (dBZ), and Zdr and Kdp are the differential reflectivity (dB) and 

phase (⁰ / km), respectively. 

The Marshall-Palmer relation was calculated by: 

 

𝑅(𝑍) =
1

𝑎1 𝑏⁄
𝑍1 𝑏⁄ ↔ 𝑍 = 𝑎𝑅𝑏                                                                                                           (4) 

 

𝑅(𝐾𝑑𝑝) =  44|𝐾𝑑𝑝|
0.822

,                        for K𝑑𝑝 > 0                                                                        (5) 

 

Additionally, we used rainfall data (2016–2018) from a monitoring network that 

comprises 34 tipping bucket rain gauges across the urban perimeter of Campo Grande city 

(Mato Grosso do Sul State) (Figure 1). This corresponds to a density of 1 gauge per 10 km². 

Each rain gauge has a volumetric resolution of 0.2 mm and rainfall records were acquired at 1-

minute timescale.   

 

2.2 Bias correction method 

 

Cumulative Distribution Function (CDF) matching is a bias correction technique (Reichle; 

Koster, 2004) that has been widely applied in meteorological and hydrological applications. 

For instance, CDF matching has been used to develop reflectivity-rainfall relationships for 
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radar (or satellite) rainfall calibration (Atlas et al., 1990;  Anagnostou et al., 1999), long-range 

hydrological forecasting (Wood et al., 2002), bias reduction in satellite retrieved soil moisture 

(Reichle; Koster, 2004;  Brocca et al., 2011), and streamflow forecasts from satellite-based 

precipitation (Roy et al., 2017;  Roy et al., 2020) for bias correction of climate data (Li et al., 

2010;  Switanek et al., 2017;  Roy et al., 2018).  

A CDF matching technique (also known as quantile mapping, probability mapping or 

distribution mapping) Gupta et al. (2019), is based on adjusting the CDF of the simulated values 

to agree (or match) with the CDF of the observed ones in a given reference period (Wang; Chen, 

2014). This method focuses on eliminating the differences between all the statistical moments 

of simulated and observed values (Afshar et al., 2019). Figure 2 shows an illustrated scheme of 

the CDF matching method. It can be seen that the CDF of rainfall radar data has less variability 

than the CDF of rain gauge. The corrected rainfall estimate from radar is denoted by x’, x is the 

biased rainfall estimate from rain gauge, and the arrows indicate the CDF matching procedure 

(Figure 2). 

 

 

Figure 2 – Empirical CDF matching method applied to rainfall events from January of 2016 to February of 

2018 in Campo Grande city, Brazil. The arrows illustrate how the radar data are corrected into the adjusted 

data set. 

 

To eliminate the systematic bias, the two datasets need to be scaled in order to match 

each other. Thus, simulated and observed values must be ranked. Then, a polynomial equation 

can be used to fit the ranked simulated values and the corresponding differences between both 

datasets (Drusch et al., 2005). Figure 3 illustrates an example of the fitted polynomial equation.  
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Figure 3 – Example of polynomial equation fitting of the differences between the ranked and radar values 

for a given reference period. R² is the coefficient of determination based on the fitted equation.  

 

In general, CDF matching applied using polynomials will be dependent on the quality 

of the polynomial fit, and so perfect agreement might not exist (Drusch et al., 2005), especially 

while dealing with sub-daily rainfall events. This is because sub-daily rainfall presents greater 

variability between successive rainfall events throughout the day. Thus, an accurate CDF 

estimation would require a long time series (> 10 years).  

Here, we developed a modified version of the conventional CDF matching method, 

referred to as CDFmod, which is capable of bias correcting radar-based rainfall estimates using 

short data records (~ 2 years) at daily, hourly, and sub-hourly timescales. We used rainfall 

measurements from 34 tipping bucket rain gauges as the reference. The radar estimates and the 

rain gauge measurements were compared based on the point-pixel approach. The proposed 

CDFmod scheme is outlined below:  

 

1) We first identified the rainfall events from the radar and rain gauges. Following 

Oliveira et al. (2015), periods of rainfall were considered to be isolated events when 

they were separated by periods of precipitation between 0 (no rain) and 1.0 mm for at 

least 6 hours. We assumed that rainfall measurements from the rain gauges represent 

the ground truth;  

2) The radar rainfall events were ranked and selected, according to the total rainfall by 

five intervals: 10-20 mm, 20-30 mm, 30-40 mm, 40-50 mm, and 50-60 mm; 

3) We calculated the differences between the CDFs (i.e., radar and rain gauge) for each 

interval; 

4) A 5th order polynomial equation was fitted to the differences between the CDFs (i.e., 

radar and rain gauge) and radar rainfall for each interval (Figure3); 
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Radar rainfall bias was corrected using the relationship: 

 

 
𝑹𝒅𝒄𝒐𝒓 = 𝑹𝒅 + 𝒇(𝑹𝒅)      𝒊𝒇 𝒃𝒊𝒂𝒔 > 𝟎 

(6) 

𝑹𝒅𝒄𝒐𝒓 = 𝑹𝒅 − 𝒇(𝑹𝒅)      𝒊𝒇 𝒃𝒊𝒂𝒔 < 𝟎 

 
 

where 𝑅𝑑𝑐𝑜𝑟 is the radar rainfall after bias correction, bias = G – Rd; G is the rain gauge data; 

Rd is the radar data, and f(Rd) is the 5th order polynomial equation. We emphasize that the core 

of the CDFmod method is to improve the polynomial fit by grouping the rainfall events, and 

consequently reducing their intrinsic variability.  

 

2.2.1 Performance evaluation 

 

The performance was evaluated by comparing the adjusted rainfall radar estimates to the 

measurements from the rain gauges. Following Thorndahl et al. (2014), we used two 

performance metrics to evaluate the bias adjustment: the Nash-Sutcliffe-Efficiency (NSE) and 

Mean Absolute Error (MAE). The NSE is given by (Nash; Sutcliffe, 1970): 

 

𝑁𝑆𝐸 = 1 −
∑ (𝐺𝑖 − 𝑅𝑑𝑐𝑜𝑟𝑖

)
2𝑁

𝑖=1

∑ (𝐺𝑖 − �̅�)2𝑁
𝑖=1

                                                                                                       (7) 

 

where 𝑅𝑑𝑐𝑜𝑟𝑖
 is ith rainfall value from the radar after bias correction, 𝐺𝑖 is the ith rainfall value 

from rain gauge, �̅� is the mean rainfall value from rain gauge. NSE ranges from -∞ to 1.0, is 

equal to 1.0 in case of perfect agreement. NSE = 0 means that the radar accuracy corresponding 

to the mean of the rain gauges estimates. 

MAE was used to quantify the errors between radar and rain gauges estimates and is 

calculated by: 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝐺𝑖 − 𝑅𝑑𝑐𝑜𝑟𝑖

|

𝑁

𝑖=1

                                                                                                                 (8) 
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3 Results and discussion 

3.1 Comparison between uncorrected and corrected bias data 

 

Figure 4 shows the rainfall event bias fluctuation from January of 2016 to February of 2018, 

where the bias is a difference between gauge and radar rainfall. Overall, the bias ranged from 

-50 mm to ~74 mm with an arithmetic mean of -2.44 mm. In addition, the radar overestimates 

and underestimates the rainfall in about 259 and 149 events, respectively.  

 

 

Figure 4 – Variability of bias between radar and rain gauges for rainfall events of different duration from 

January 2016 to February 2018. Each value corresponds to an independent rainfall event.  

 

Thus, results evidence the presence of error between point rainfall measures (i.e., rain 

gauges) and areal radar estimates. This is in accordance with previous studies. For example, 

Bringi et al. (2011) compared point measurements from laser disdrometers with radar estimates. 

They found that the difference varied from 20 to 55 % for hourly rainfall accumulations larger 

1 mm and 6 mm, respectively. In contrast, Nielsen et al. (2014) showed significantly lower 

errors comparing disdrometer to radar observations. According to Schleiss et al. (2019), only 

part of the bias (13-30%) can be explained by differences in measurement between gauges and 

radar. 

Figure 5 shows the rainfall events obtained from the radar and rain gauge network. In 

total, 408 events were observed over the study period. As expected, the number of events 

decreases with the increase in rainfall height. In general, the frequency of events for the radar, 

considering an equivalent interval, was higher for the rain gauges, and consequently had a 
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smaller number of intervals. On the other hand, after correcting the bias or radar estimates 

(Figure 5c), we noted a remarkable change in the distribution of events that was similar to rain 

gauge (Figure 5a). Thus, the results demonstrate an improvement in the frequency distribution 

of rainfall events, mainly for the intervals of 0-10, 60-70 and 70-80 mm. 

 

 

Figure 5 – Absolute frequency of rainfall events for each interval of duration (from January/2016 to 

February/2018) based on: (a) rain gauge data, and (b) radar data. (c) Absolute frequency of rainfall events 

estimated by the radar after bias correction. 

 

Figure 6 shows the scatter plot between uncorrected and corrected bias in terms of 

rainfall event. We observed a poor linear correlation (0.002 ≤ r ≤ 0.02) between radar and rain 

gauge events for all rainfall intervals. The average value of coefficient of determination (R²) 

was approximately 0.01. This indicates the low performance of the Jaraguarí weather radar in 

estimating rainfall events without any bias correction. 
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Figure 6 – Comparison between uncorrected and corrected radar rainfall events, according to the rainfall 

height intervals: (a) 10-20 mm, (b) 20-30 mm, (c) 30-40 mm, (d) 40-50 mm, (e) 50-60 mm. 

 

Overall, there was a significant improvement in the R² ranging from 0.52 to 0.91 for 

the intervals 10-20 and 50-60 mm, respectively, with the average value of 0.66. This increasing 

in R² (from the 10-20 to 50-60 mm interval) can be explained by the less variability of the 
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rainfall events by intervals, which improves the polynomial fit and consequently the bias 

correction.   

Figure 7 shows the performance of the CDFmod method for adjusting rainfall radar 

estimated considering all rainfall events. We observed that there was a remarkable improvement 

after applying the bias correction scheme. The NSE increases from 0.11 to 0.63 and MAE 

decrease from 11.66 to 6.97 mm. As a result, the Figure 7c shows a CDF after bias corrected 

significantly improved, with the extreme values similar to those existing in the CDF of rain 

gauge data. 

  

 

 

Figure 7 – Comparison between rainfall events based on radar and rain gauge, considering all rainfall 

events, for: (a) uncorrected bias, and (b) corrected bias. (c) Cumulative Density Function (CDF) of either 

rain gauge or (corrected) radar data. 

 

From Figure 8, it can be seen the performance of bias adjustment in terms of rainfall 

duration: 0-1h, 1-3h, 3-6h, 6-9h, 9-24h. For all rainfall durations, we found that the radar data 

underestimated rainfall, and also presented a considerably low NSE values and high MAE 

values. This is in agreement with those reported in the literature (i.e., Thorndahl, Søren et al., 

2014). Thus, the NSE values varied from – 0.01 to 0.53 and the MAE values varied from 8.38 

to 14.53 mm for biased radar data. In contrast, after bias corrected, the events for all rainfall 

durations presented a great improvement in the NSE values ranging from 0.59 to 0.87 and MAE 
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values ranging from 4.53 to 7.73 mm. One should be note that the negative NSE value (6-9h 

event) was considerably improved, reaching a NSE value of 0.62. 

 

 

Figure 8 – Performance of bias adjustment on different rainfall events time scales. 

 

3.2 Advantages and limitations 

 

Our CDFmod method has some advantages and limitations. The main advantage is that 

the method can be easy applied for rainfall events with daily, hourly, and sub-hourly duration. 

In addition, the choice for grouping the rainfall in intervals makes it possible to fit polynomial 

equations for bias correction at different periods of the year. This is possible because the method 

focuses on the use of rainfall height event instead of the period in which the event occurred.  

Despite the advantages, the method presented here also has limitations, which can 

hinder its application. In general, the original CDF matching method (Reichle; Koster, 2004) 

might subject of overfitting in some cases (Lafon et al., 2013), which can give very precise 

results for a particular data set, but may not give similarly good results on new data, even over 

the same location. There is also the possibility of obtaining negative rainfall values for a few 

events, which is linked to an inappropriate fit of the polynomial equation. Furthermore, 



57 

 

 

although we have used only ~2 years of rainfall data, for some intervals a longer period may be 

necessary to fit a satisfactory polynomial equation. 

 

4 Conclusions 

 

We have developed a new modified version of the CDF matching approach (here 

called CDFmod) to correct biased radar rainfall estimates on daily, hourly and sub-hourly basis. 

Our approach focusses on removing systematic biases by adopting intervals of rainfall height. 

To achieve this, rainfall data at 1-minute timestep from 34 tipping bucket were used as ground 

truth. We adjusted approximately 2-year high resolution (January_2016 to February_2018) 

radar rainfall dataset in the Campo Grande city, Mato Grosso do Sul State, Brazil.  

We demonstrate the added value of the proposed bias correction scheme for radar-

based rainfall estimates. The results showed that Nash-Sutcliffe Efficiency (NSE) index 

increased from 0.11 to 0.63 and Mean Absolute Error (MAE) decreased from 11.66 (biased 

data) to 6.97 mm (unbiased data) for all rainfall events (408 events).  

 The method is easy to apply, but the users must be careful about the potential 

overfitting issue of the polynomial equation. It can be applied for rainfall events with daily, 

hourly, and sub-hourly durations. Our findings are particularly useful in the case of rainfall-

runoff models for urban flooding. Therefore, we highlight the opportunity of significant 

improvement on the radar rainfall estimates at sub-hour timescale.    
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CHAPTER 3 

 

Towards reducing flood disasters in the Prosa basin (Brazil) by the 

development of early alert mobile application 

 
Mattos, T. S., Oliveira, P. T. S., Bruno, L. S., Crivellaro, L. L., Roy, T., Carvalho, G. A., Pereira, R. B., Lucas, M. 

C. Towards Reducing Flood Disasters in the Prosa Basin (Brazil) by the Development of Early Alert Mobile 

Application. Environmental Modelling & Software. In preparation. (Impact factor, 2019: 4.807; Qualis CAPES: 

A1) 

 

Abstract 

 

Climate change threats, increasing urbanization, and a poor stormwater drainage network 

increase the risk of flood disaster if no effective risk management is done. To prevent the death 

of people and/or property damage due to floods, it is important to warn people in advance as 

possible. The Brazil often experiences floods that cause traumatic conditions in built 

environment followed by huge economic impact. Here, a Decision Support System coupled 

with a mobile application is used to develop a flood alert system across the Prosa basin (Brazil) 

to send early flood warning messages to population. Hydrologic Engineering Center’s 

Hydrologic Modeling System (HEC-HMS) and River Analysis System (HEC-RAS) was used 

as the core of flood alert system because they provide forecasting of flood inundation areas 

and water level in the main river channel. The quantitative precipitation forecast (QPF) of 

Weather Research and Forecasting (WRF) was used here. The application based on 

Progressive Web Application was used to support the visualization of flood status and to 

deliver early warning messages for mobile devices. The flood hazard maps developed here is 

an essential information to decision making by the public authorities as well as to population 

for reducing flood disasters in the study area. Therefore, the widespread adoption of this mobile 

technology supported by scientific study has great potential for saving financial costs and 

reducing loss of lives.  

 

Keywords: flood alert, flood prediction, runoff, stormwater  
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1 Introduction 

 

Flooding in urban areas due to extreme stormwater in short time has caused material, 

economic, environmental and human losses in several places worldwide. It is the most 

devastating, widespread and frequent natural disaster present in human society (Teng et al., 

2017;  Nkwunonwo et al., 2020). According to WMO (2013), floods are among the most 

common natural disaster and have the greatest potential for damage of all natural disasters 

globally. For example, in the Brazil, some metropolises have experienced unprecedented heavy 

rainfall events, leading to deadly floods. The city of Sao Paulo (~12.3 million people) received 

about 114 mm of rainfall on 10 February 2020. It was the second-highest volume in 24 hours 

(on February) in the last 77 years of weather records. The city of Belo Horizonte (~2.5 million 

people) received the largest 24-hour rainfall (171.8 mm) in 110 years of rainfall records on 

January 2020.  

Typically, urban flooding occurs when intense rainfall generates rapid runoff volumes 

from paved and built-up areas, exceeding the capacity of stormwater drainage systems. This 

condition can be exacerbated during flash floods (Norbiato et al., 2008), in which water level 

burden the crest of drainage network in shot time (minutes to a few hours) since the begin of 

rainfall event (Georgakakos, 1992). Further, debris in the drainage network due to lack of 

maintenance can aggravates urban flooding. Additionally, climate change threats, increasing 

urbanization, and poor drainage network, increases the risk of flooding if no risk management 

is performed (Henonin et al., 2013;  Muñoz et al., 2018).  

Since floods represent a significant role in the number of natural disasters globally 

(Freer et al., 2011), a great effort has been made to understand, assess and predict flood events 

and their negative impacts. Thus, computational models have been developed to address this 

purpose, for example in early alert system. The development and application of flood models 

usually comprises three steps during simulation: the conversion of rainfall to runoff (flood 

hydrograph), the propagation of flood wave across the river channel, and mapping of flood 

areas (Dimitriadis et al., 2016). Models are widely used to map flooding and flood exposure in 

urban areas (Ramirez et al., 2016), assessing the damage caused by extreme rainfall events 

(Silvestro et al., 2016), quantification of flood economic risk (Garrote et al., 2016), assessing 

the impact of urbanization (Campana; Tucci, 2001;  Miller; Hess, 2017) and climate change on 

urban flood volumes (Zhou et al., 2018), real time early flood forecasting (Nester et al., 2016;  

Neri et al., 2020). 
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Early alert system is a fundamental part of the whole flood risk management because can 

enhance people preparedness against floods disasters (Plate, 2002;  Neri et al., 2020). Establishing 

a flood warning system at risk requires the combination of data collection, forecasting 

computational models, warning and human resources (WMO, 2013). The major technological 

infrastructure required for the flood alert system is a data collection from gauging, an operating 

system and hardware (workstations), software (needed to process, analyze, and display 

observation data), an application program to dissemination of flood warning, and maintenance 

and backup program (to ensure the data availability over time) (UCAR, 2010). In general, the 

flood alert application programs have the following tasks (Azam et al., 2017): real time 

processing and storing of collected data, display streamflow forecasting and predicted water 

level information, checking the predicted water level for exceedance of threshold value, and 

determination of parameters using observed data. 

Flood alert systems can operate with Decision Support Systems (DSS) that has been 

developed by using models of flood management. For example, Todini (1999) developed an 

integrated tool for planning and management that allows location of areas at risk and estimation of 

expected damages to forecast floods and inundation. Koussis et al. (2003) proposed an operational 

system for forecasting flood risk using an integrated hydro-meteorological model. Ahmad and 

Simonovic (2006) created a DSS by integrating the database (topographic, hydrologic, and land use 

data), model base, and graphical tools to assist decision makers during different phases of food 

management. Qi and Altinakar (2011) presented a Geographical Information System (GIS)-based 

DSS for flood management using a framework based on a two-dimensional (2D) flood analysis 

model. Mure-Ravaud et al. (2016) developed an operational real-time flood forecasting system 

using data assimilation to provide hourly flood alerts. 

In a flood alert system, the warning lead time is critical because longer the lead time, 

earlier the people will be aware about flood. Hence, increasing this time improves the potential to 

limit possible loss of property and/or human lives. The developed Numerical Weather Prediction 

(NWP) models in the past decades is a good form to provide a longer lead time Quantitative 

Precipitation Forecast (QPF) (WMO, 2011;  Li et al., 2017). There are many weather prediction 

models into operational use, such as the European Centre Medium-Range Weather Forecasts 

(ECMWF) Ensemble Prediction System (EPS) (Molteni et al., 1996;  Ye et al., 2014), the numerical 

forecast model of the China Meteorological Agency (Xue; Liu, 2007), the NWP model of the Japan 

Meteorological Agency (Yamaguchi et al., 2009), and the Weather Research and Forecasting 

(WRF) model (Maussion et al., 2011;  Chu et al., 2018). 

In Brazil, the Center for Natural Disaster Monitoring and Alert (CEMADEN), led by 

the Ministry of Science and Technology (MCT), aims at developing, testing and implementing 
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monitoring and forecast systems for natural disasters. However, as it is a recently created center, 

operational flood forecast systems have not been developed yet (Fan et al., 2016).  

Most of the operational flood forecast systems in Brazil are led by the Geological 

Survey of Brazil (CPRM). It operates forecast systems in vulnerable areas at some rivers, such 

as Doce (MG), Caí (RS), Taquari (RS), Parnaíba (Piauí), Muriaé (RJ e MG); Negro (AM), Acre 

(AC), and Branco (RR). The forecasts are available at CPRM website 

(http://www.cprm.gov.br) in a system called Sistema de Alerta Contra Enchentes (Fan et al., 

2016). Despite this, alert systems is a challenge in Brazil because early flood forecasting is still 

deficient (Casagrande et al., 2017), despite the fact that floods are a recurring phenomenon in 

urban areas. For instance, the city of Campo Grande (~906,000 people), Mato Grosso do Sul 

State (Brazil), has been subject to flooding despite having get started a hydrometeorological 

monitoring system since 2014 and many structural measures against floods (e.g. dams and 

detention basins) have been implemented. The Prosa basin, located northwest of the 

municipality’s urban region, is among the most affected by floods. The development of a flood 

alert mobile application would be minimizing negative impacts due flooding. Thus, the main 

objective of this study is to develop a flood alert system in the Prosa basin, and disseminate its 

warning messages by means of an application for mobile devices. 

 

2 Material and methods 

2.1 Study Area 

 

The Prosa Basin (PB) has an area of ≃32 km², and it is located in the municipality of Campo 

Grande, Mato Grosso do Sul State, Brazil (Figure 1).  This basin is mainly flat, with slope 

steepness of ranging from 3.8 to 8.0%. The main rivers in the basin are Prosa, Sóter, 

Desbarrancado, Joaquim Portugues, Revellion and Vendas River (PDDU, 2008).  

The annual mean rainfall (between 1992 and 2016) considering the hydrological year, 

from October to September, is 1,417 ± 203 mm. The monthly minimum and maximum rainfall 

events occur in winter (34 mm in July) and summer (217 mm in January), respectively. The 

daily mean air temperature is 24.2 ± 5.2 °C. According to the Köppen climate type, the climate 

in the PB is Aw type, tropical with dry winter and rainy summer (Alvares et al., 2013).  

 

http://www.cprm.gov.br/
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Figure 1 – Location and land cover of study area over the 2016 year. 

 

The PB is characterized by large fraction of impervious surface, mostly commercial 

and residential areas. The land use types in the region can be classified into five categories: 

grass (24%), forests (19%), bare soil (6%), asphalt pavement (10%), building area (i.e. 

residential and commercial areas, 41%). The predominant soil type in the basin area has sandy 

clay loam texture, and stable infiltration rate changes approximately from 10 mm.h-1 to 50 

mm.h-1 (Planurb, 1991;  Sobrinho, 2015).  

This basin has recurrence of flood events and the flow regime is influenced by dams, 

bridges, holding basins, power dissipation structures and channels with different wear layer. 

Historical records of stormwater drainage and flood damage indicate that the region has 

experienced an increase in flood frequency and magnitude due to urbanization (PDDU, 2008).  

 

3 Decision support framework components 
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For develop the flood alert system, we used a Decision Support Framework (Figure 2) 

for flood management by an integrated computational modelling approach. Ad hoc, (1) QPF 

data acquisition fed by online network data transfer is utilized; (2) The streamflow is forecasted 

by a semi-distributed hydrological model; and (3) routed by a 1D-2D unsteady river flow to 

producing flood maps; and (4) the flood alert is sent to an application developed for mobile 

devices. 

 

 

Figure 2 – Flowchart of the Decision Support System (DSS). 

 

As shown in Figure 2, we used programs developed by the Hydrologic Engineering 

Center (HEC) of U.S. Army Corps of Engineers (USACE), which has been developing 

computer software for hydrological engineering and water resource management procedures 

since 1964 (available at http://www.hec.usace.army.mil/). Here, HEC programs was selected 

because they are peer reviewed, user friendly and free of change in the public domain. For the 

application of rainfall-runoff and river analysis, HEC-HMS (Hydrological Modeling System) 

and HEC-RAS (River Analysis System) programs were selected, respectively. The MFP was 

used to combine observed precipitation data and future precipitation (QPF) into a single 

precipitation dataset that is used by HEC-HMS. Moreover, the HEC-RTS (Real-Time 

Simulation) program was used to communicate between the data and programs. The framework 
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uses the HEC-Data Storage System (HEC-DSS) database file format to send data between 

models.  

HEC-RTS is a public version of CWMS (The U.S. Army Corps of Engineers Corps 

Water Management System), which provides support for operational decision making by 

forecast simulation modeling using HEC models, such as rainfall-runoff modeling with HEC-

HMS based on gaged or radar-based precipitation, and QPF or other future precipitation 

scenarios; The river hydraulics program HEC-RAS computes river stages and water surface 

profiles for these scenarios and an inundation boundary and depth map of water in the flood 

plain can be calculated (Charley, 2010).  

 

3.1 HEC-HMS hydrological model 

 

The HEC-HMS is a conceptual hydrological model designed to simulate the rainfall-

runoff process of dendritic watershed systems, and can be applied to analyze urban flooding, 

flood frequency, flood loss reduction, and flood warning system planning (USACE-HEC, 

2015). Several studies have used HEC-HMS as a part of DSS to flood forecasting events. 

Reichel et al. (2009) proposed a framework to assess real-time flood forecast integrating radar 

rainfall data, GIS, HEC-HMS, and a short-term precipitation nowcasting system. Fakhruddin 

(2015) presented a flood forecasting model by assimilating the satellite and hydrological gauge 

rainfall data into HEC-HMS. Şensoy et al. (2018) developed a DSS for real-time flood 

management using integrated models (i.e. HEC-HMS and HEC-RAS). 

The HEC-HMS contains four main components (USACE-HEC, 2016): a) An 

analytical model to calculate overland flow (runoff) as well as flow routing (flood wave 

propagation), b) a graphical user interface illustrating hydrologic system components, c) a 

system for storing and managing data, and d) a means for displaying and reporting model 

outputs. The model includes all necessary hydrological components of runoff such as loss, 

transform, baseflow, and channel routing.  

In this study, the PB was discretized into 16 subcatchments (Figure 1) and the HEC-

HMS event simulation approach was adopted. The model components include computing 

runoff depth (Soil Conservation Service Curve number (CN) method), overland flow and 

interflow transformation (the Clark’s unit hydrograph), baseflow (via Recession method) and 

channel routing scheme (Muskingum-Cunge method). The datasets used in catchment 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/overland-flow
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delineation, land cover classification, transformation method,  were obtained from remote 

sensing, whereas baseflow, routing and loss method parameters were derived from both, 

observed data and remote sensing data, and literature (USDA-NRCS, 1986).  

 

3.2 HEC RAS hydraulic model 

 

The downstream river channel capacity may be exceeded during a flood event, and the 

information on downstream water levels and flood inundation areas are fundamental for the 

flood alert system. Many studies have used the HEC-RAS to flood forecasting modeling 

(Mashriqui et al., 2014;  Merkuryeva et al., 2015;  Adams et al., 2018;  Şensoy et al., 2018), 

and it is shown that accuracy comparable to more sophisticated hydraulic models can be 

achieved (Hicks; Peacock, 2005). Here, the HEC-RAS model was utilized in the DSS to 

compute stages and potential flooding from the forecasted flood hydrographs. 

HEC-RAS is an integrated system of software, designed for interactive use in a multi-

tasking, multi-user network environment. The system is comprised of a graphical user interface 

(GUI), separate hydraulic analysis components, data storage and management capabilities, 

graphics and reporting facilities. The HEC-RAS system contains four one-dimensional river 

analysis components, and the current version of HEC-RAS supports: Steady and Unsteady flow 

water surface profile calculations, combined 1D and 2D hydrodynamics, spatial mapping of 

many computed parameters (Depth, water surface elevation, velocity, etc), water temperature 

analysis, water quality analyses and solves the 1D and 2D full Saint-Venant equations for an 

unsteady open channel flow (Brunner, 2016). Here, HEC-RAS simulations was performed by 

combining 1D and 2D within a single unsteady flow model, that is, 1D modeling in the river 

channel and 2D modeling on floodplain surrounding the main river channel. 

 

3.3 Flood model calibration and validation 

 

The models HEC-HMS and HEC-RAS was calibrated and validated using rainfall and 

discharge measured data between April 2015 and November 2017 at the rainfall-gauging station 

(Figure 1). The permeable area information was used according to the land cover study over 

the 2016 year. The HEC-HMS was calibrated using the Time of Concentration (Tc) of Prosa 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/remote-sensing
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/remote-sensing
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basin, Storage Coefficient (R), and Curve Number (CN), whereas HEC-RAS was calibrated by 

means of the Manning`s roughness coefficient (n).  

The initial values of parameters needed for the calibration are required to start an 

optimization process and were calculated mostly by using the mathematical methods available 

from hydrologic text books. The time of concentration was calculated by using Technical 

Report 55 (TR-55) method, which is computed by accumulating runoff travel times for 

consecutive components of the drainage conveyance system (sheet flow, shallow concentrated 

flow, and open channel flow) (USDA-NRCS, 1986). The initial values of the Storage 

Coefficient were estimate by Nash Model (Yoo et al., 2014), and the Curve Number was 

estimated as a function of land use, soil type, and watershed antecedent moisture according to 

TR-55 (USDA-NRCS, 1986). The initial value of the Manning`s roughness coefficient was 

selected by field campaigns, photographs, and literature values (Brunner, 2016).   

The flood model was calibrated using two rainfall events and validated against six 

other events. The calibrated hydrological and hydraulic parameters are presented in Table 1 and 

Table 2, respectively. To evaluate the performance of model calibration and validation, the 

Coefficient of determination (R²), the RMSE - Observations Standard Deviation Ratio (RSR), 

Nash–Sutcliffe Efficiency (NSE) index, and the Kling-Gupta efficiency (KGE) was used 

against measured discharge data in the PB outlet.  

 

Table 1. Calibrated parameters of the HEC-HMS hydrological model. 

Method Clark unit hydrograph    Loss model 

Sub-basin Time of concentration (h) Storage coefficient (h) Curve number1 (CN) 

S1 0.09 0.10  81  
S2 0.08 0.10  71  
S3 0.09 0.10  70  
S4 0.22 0.10  62  
S5 0.20 0.10  72  
S6 0.72 0.11  47  
S7 0.69 0.09  58  
S8 0.67 0.09  51  
S9 0.31 2.26  81  
S10 0.31 2.29  82  
S11 0.72 2.35  80  
S12 0.95 2.34  77  
S13 0.29 2.33  74  
S14 1.01 1.66  69  
S15 1.34 1.74  67  
S16 0.89 1.84   72   

                1CN for average runoff condition.           



72 

 

 

 

Table 2. Calibrated parameters of the HEC-RAS hydraulic model. 

River left overbank main channel right overbank 

Desbarrancado    0.1 0.06 0.1 

Joaquim          0.1 0.06 0.1 

Pindare          0.015 - 0.06 0.015 - 0.20 0.015 - 0.06 

Prosa1            0.015 - 0.10 0.015 - 0.20 0.015 - 0.10 

Reveillon        0.040 - 0.08 0.020 - 0.04 0.030 - 0.08 

Soter            0.015 - 0.09 0.015 - 0.10 0.015 - 0.06 

              1The main river channel. 

 

3.4 WRF model 

 

The quantitative precipitation forecast (QPF) of Weather Research and Forecasting 

(WRF) is provide by Weather Forecasting and Climate Research (CPTEC) in Brazil. The QPF 

is available at with five lead times, 24, 36, 48, 60 and 72h, temporal resolution of 1h and grid 

spatial resolution of 5 km x 5 km. The effort to develop WRF has begun in the latter 1990’s as 

a collaborative partnership of the National Center for Atmospheric Research (NCAR) with 

several institutions in the United States of America (Powers et al., 2017). Since August 1 2018, 

the data are available at the CPTEC website 

(http://ftp.cptec.inpe.br/modelos/tempo/WRF/ams_05km/).   

Several studies have evaluated WRF QPFs. Kumar et al. (2008) used the WRF model 

to study heavy rainfall in 2005, and showed that the WRF model could reproduce the rainfall 

event and its dynamical and thermodynamical characteristics. Givati et al. (2012) verified that 

the daily precipitation amount estimated by WRF showed good agreement against the 

measurements rain gauges. Jabbari et al. (2018) evaluated the forecasted precipitation and the 

observed precipitation, and concluded that the WRF model underestimated precipitation at the 

point and catchment scale; it performed better at the catchment scale. Rogelis and Werner 

(2018) assessed the potential of numerical weather prediction models for flood early warning, 

and verified that post-processed WRF precipitation adds value to the flood early warning 

system, although it showed little added value when compared to climatology.  
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3.5 Developing of the flood alert application  

 

The flood alert mobile application was developed to provide information for flood 

potential risk, so that early effective practices could be taken. The application was developed 

with Progressive Web Application (PWA) standards, a web application that can be executed by 

the most varied hardware and devices, it also can be installed as a mobile application (Biørn-

Hansen et al., 2017). The PWA was developed with the frameworks VueJS and Vuetify in 

javascript language, and is hosted by Google Firebase platform hosting services.  

For the data storage it was chosen a non-relational database that is hosted also by 

Google Firebase platform and given its practical API to maintenance. Moreover, the “real time 

database” was chosen for storage and sync attributes to obtain updated data in real time 

(Chatterjee et al., 2018). Google Maps API was used to display the city map and markers on 

pre-established places, and the information about the channels, such as water stage, channel 

design illustration and threshold water level are displayed through graphs created using Google 

Charts API. 

 

4 Results and Discussion 

4.1 Calibration and validation of model 

 

The calibrated model parameters (Table 1; Table 2) were used to generate hydrographs for 

Prosa Basin using the DSS (Figure 2). The assessment of the model performance is 

summarized in Table 3, according to rainfall events. In general, model simulation was 

satisfactory (R² > 0.50, RSR ≤ 0.70, and NSE > 0.50) (Moriasi et al., 2007). In addition, the 

performance can be classified based on the value of KGE (Thiemig et al., 2013): good (KGE 

≥ 0.75); intermediate (0.75 > KGE ≥ 0.5); poor (0.5 > KGE >0); very poor (KGE ≤ 0). Figure 

3 shows the flood hydrographs performance results of two calibration and validation events.  
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Table 3 - Performance index for calibration and validation events. 

Events NSE KGE  R² RSR 

Date 

(month/day/year) 
(-) (-) (-) (-) 

04/17/2015 0.63 0.12 0.87 0.61 

05/27/2015 * 0.91 0.55 0.94 0.30 

11/09/2015 * 0.88 0.50 0.92 0.35 

12/25/2015 0.84 0.68 0.87 0.41 

01/06/2016  0.83 0.59 0.85 0.42 

01/08/2016 0.94 0.70 0.96 0.25 

02/15/2016 0.85 0.82 0.86 0.38 

05/23/2017 0.90 0.74 0.94 0.32 

     
Mean 0.85 0.59 0.90 0.38 

Standard deviation 0.10 0.22 0.04 0.11 

                       * calibration events. 

 

 

Figure 3 - The flood hydrographs for two calibration and validation events. The discharge and rainfall were 

measured in the Prosa basin outlet. 

 

The results suggest that flood model has good performance for both calibration and 

validation periods. The mean RSR value of 0.38 and mean R² and NSE values both exceeding 

0.80 indicates that the model is able to simulate the rainfall-runoff process in the Prosa basin. 

Considering the aim of this study, the mean value of the KGE higher than 0.5 is suitable and 

reveal the model accuracy in predicting the streamflow rate.  
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4.2 Flood alert application structure 

 

After the model calibration and validation, the DSS output (water level and flood inundation 

maps) was used as input data into flood alert application to send warning to end users. Thus, it 

was created a python application to extract the flood inundation area and the water stage in 

pre-established cross sections of the main river channel. The specific river sections were 

chosen based on historical records of places with dangerous flood occurrences. Flow chart for 

the designing of flood alert application is shown in Figure 4. 

 

 

Figure 4 – Flowchart of the flood alert application. 

 

The water stage and flood inundation map data generated by the models are processed 

before of sent to the database. The python application processes the data formatting them, 

respectively, as a GEOJSON and JSON following its patterns (Figure 5). In these files there are 

coordinates of the polygon vertices and the water stage, with its occurrence. The formatted data 

are sent to the database through the ‘pyrebase’ library that facilitates communications.  
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In the meantime, it is checked if the water stage surpasses the threshold of any pre-

established section of the river. Threshold value is the maximum water level of each river 

section, after reaching it the communities living in prosa basin are vulnerable to flood hazard. 

If the condition occurs, a flood alert is generated and send to the users. The alert message is 

sent to users mobile devices through the Google Firebase’s tool called ‘Cloud Messaging’ 

capable of sending ‘push notifications’ (Li et al., 2013).  

The application collects data from the database and displays the flood surface and 

water level on the city map. If an alert was generated, it would be displayed as a notification 

even with the application closed.  

 

 

Figure 5 – Data structure for sending and storing it in the database. 

 

4.2.1 Interface and features of application 

 

To introduce the application`s interface and features, it was simulated the event of 18 

November 2020 using WRF data (Figure 6). Here, it was used QPF with 48h lead time. Overall, 

the flow simulated ranged from 0.41 to ~21 m3 s-1 for an event rainfall estimated of 25.8 mm. 

Unfortunately, due to the lack of observed data, we cannot assess the WRF rainfall and the 

Flow simulated. Nevertheless, we will use the data from this simulation to present the interface 

and the characteristics of the application.  
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Figure 6 – Flow simulated using WRF rainfall data of the 18 November 2020. 

 

After the water stage and flood inundation map data are processed and sent to the database, the 

Progressive Web Application (PWA) searches for the information and shows them to the user. 

The Figure 7a presents the home screen of the application which includes its main functions: 

 

• A map with the flood surface area highlighted in blue and colored markers represent 

the predicted state of the water level at that point. The green color means that the area 

is safe, the yellow color means it is in a warning state and the red color means it is a 

dangerous area. For the event of 18 November 2020 all markers were green, indicating 

that the predicted level is less than the threshold of the selected time (20:00). 

• On the top left corner of the screen, there is a date picker box. The initial selected date 

is the next available date forecasted. 

• On the top right corner of the screen, there is a floating button that expands and shows 

options like “information about the application” and “report bugs”. 
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Figure 7 – Flood risk are locations map in Prosa basin. 

 

When the user clicks on the markers, they show information about the selected river 

section. As shown in Figure 7b, the first tab shows an image of the area, its description, the 

water level and the state of the river on the date. Furthermore, there are two other tabs with 

more information about the chosen section. 

The second tab (Figure 8a), presents an illustration of the river cross section, in black, 

and the forecasted water level, in blue, where the horizontal axis represents its width and the 

vertical axis represents its depth in meters. In this option there is a slider picker on the bottom 

side of the screen in which the user can select the hour to be presented in the illustration, it 

changes the water level and the state of the river section accordingly to the chosen hour. 
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Figure 8 – Forecasted water level situation graph. 

 

The third tab (Figure 8b), it is possible to observe the forecasted water level according 

to the time of simulation. The water level is on the vertical axis and the time on the horizontal 

axis. There is a black dot that marks the hour and water level on the previously selected date in 

the homepage. 

 

5 Conclusions 

 

Flood alert systems are vital as risk management tool to mitigate flood disasters. This 

study focuses on the development of a flood alert application to send warning message via 

mobile devices to population. The Prosa Basin (32 km²), in Campo Grande city (Brazil) was 

selected as a case study.  
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Here, the core of flood alert system is the hydrological (HEC-HMS) and hydraulic 

model (HEC-RAS). As an important aspect, the hydrological-hydraulic model was calibrated 

and validated using different rainfall events. 

A flood alert software with Progressive Web Application (PWA) was developed for a 

variety of hardware and mobile devices. For the data storage it was chosen a non-relational 

database that is hosted by Google Firebase platform, which can provide updated data in real 

time. Further, Google Maps API was used to display the city map, markers on pre-established 

places, and information about the channels, such as water stage and channel design illustration 

are displayed through graphs created using Google Charts API. This flood alert application has 

potential to facilitate the widespread of the warning messages quickly among population. 

Ultimately, this software has potential to be used in other catchments. 

This flood alert system will be useful to policy-makers, as well as to local residents, 

for reducing flood risk in the study area. In future, flood alert application expected to 

incorporate new forecast data, particularly quantitative precipitation estimation (QPE) of 

weather radar.  
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GENERAL CONCLUSION 

 
The potential impacts of climate change on current urban drainage systems have 

received increasing attention during recent decades because of the devastating impacts of urban 

flooding on the economy. In this study, we try to evaluate and develop techniques to improving 

the urban flood resilience. The Prosa Basin (32 km²), in Campo Grande city (Brazil), was 

selected as a case study because historical records of rainfall and flood damage indicate that the 

region has experienced an increase in flood frequency and magnitude due to urbanization. Thus, 

in the first chapter, we evaluated how LID practices affect the resilience of stormwater 

drainage system under climate change scenarios. Our findings show an increase in runoff peak 

in the study area due to increased rainfall intensity until the end of the 21st century under both 

RCP 4.5 and RCP 8.5, while the impact of RCP 8.5 has potential to be more adverse than the 

RCP 4.5. Overall, runoff peak is projected (RCP 8.5) to increase on average by 24% over 2071–

2095 period.  

The resilience index used to quantitatively assess the degree of resilience to floods 

indicated that the current stormwater drainage system has low resilience to future rainfall events 

under climate change. In addition, we demonstrate that the increased runoff peak can be 

mitigated satisfactory by using combined LID practices. In general, LID combinations showed 

reduction in runoff peak higher than 20%, and the best LID combination presented reduction 

up to 46%. As this represents a significant improvement in the resilience to flooding in the 

study area, we conclude that LIDs can play a key role to increasing the city resilience. 

Despite the promising results, it is important to emphasize that these results depend 

directly on the considerations adopted in this work. In addition, new research opportunities have 

been identified during the development of this work, such as: a) evaluate future scenarios for 

sustainable measures based on changes in land use legislation; b) assess the impact of increased 

soil impermeability to verify if there will be a significant increase in peak runoff. 

In the second chapter, we propose a new method for correcting biased radar rainfall 

against ground-based rain gauge data in daily, hourly, and sub-hourly timescale. We 

demonstrate the added value of the proposed bias correction scheme for radar-based rainfall 

estimates. The results showed that Nash-Sutcliffe Efficiency (NSE) index increased from 0.11 

to 0.63 and Mean Absolute Error (MAE) decreased from 11.66 (biased data) to 6.97 mm 

(unbiased data) for all rainfall events (408 events). In addition, we noted that the method is easy 

to apply, but the users must be careful about the potential overfitting issue of the polynomial 

equation. It can be applied for rainfall events with daily, hourly, and sub-hourly durations. Our 
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findings are particularly useful in the case of rainfall-runoff models for urban flooding. 

Therefore, we highlight the opportunity of significant improvement on the radar rainfall 

estimates at sub-hour timescale. Despite the good results, it is important to note that the method 

still needs to be validated from its application at a different period from the used in its 

development. 

In the third chapter, a Decision Support System coupled with a mobile application is 

used to develop a flood alert system to send early flood warning messages to population. The 

core of flood alert system is the hydrological (HEC-HMS) and hydraulic model (HEC-RAS). 

As an important aspect, the hydrological-hydraulic model was calibrated and validated using 

different rainfall events.  

A flood alert software with Progressive Web Application (PWA) was developed for a 

variety of hardware and mobile devices. For the data storage it was chosen a non-relational 

database that is hosted by Google Firebase platform, which can provide updated data in real 

time. Further, Google Maps API was used to display the city map, markers on pre-established 

places, and information about the channels, such as water stage and channel design illustration 

are displayed through graphs created using Google Charts API. This flood alert application has 

potential to facilitate the widespread of the warning messages quickly among population. 

Ultimately, this software has potential to be used in other catchments. In future, flood alert 

application expected to incorporate new forecast data, particularly quantitative precipitation 

estimation (QPE) of weather radar. 

The chapters presented in this doctoral thesis were already under review in peer 

reviewed journals or are in preparation. The process of elaboration of these chapters provided 

great advances in the methodological delineation and discussion aspects, mainly with the 

valuable contributions and cooperation of co-authors, journals reviewers and editors.  
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APPENDIX 

 

Chapter 1 

 

Table S1. Parameters of the rainfall-runoff model to the baseline scenario 

                                    

Parameter Unit Subcatchment                               

    S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

Area ha 68.16 173.72 130.77 201.32 206.63 139.58 153.77 170.21 115.91 97.59 46.88 83.80 56.95 210.50 272.06 354.07 

Width m 1794.51 5128.66 8425.42 6853.58 9193.58 1261.31 1669.13 1539.47 2654.34 2308.39 507.19 848.72 2734.82 2467.46 3872.39 6067.65 

Slope % 10.37 7.65 7.01 6.87 5.07 5.35 2.67 4.92 7.18 7.14 7.59 4.45 7.02 5.32 3.50 4.05 

Flow Length m 379.83 338.73 155.21 293.75 224.76 1106.59 921.24 1105.65 436.67 422.74 924.34 987.38 208.25 853.09 702.56 583.54 

Impervious areas % 49.83 52.56 54.65 49.81 53.11 48.63 46.35 46.39 29.68 33.23 22.83 33.44 35.13 7.42 19.75 21.09 

Manning`s n for  

impervious areas  - 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Manning`s n for  

pervious areas  - 0.364 0.362 0.34 0.373 0.358 0.345 0.351 0.357 0.393 0.418 0.502 0.432 0.444 0.636 0.41 0.5 

Depression storage  

of impervious mm 2.5 2.5 2.5 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 

Depression storage  

of pervious  mm 3.433 3.378 3.125 3.525 3.319 3.305 3.384 3.467 4.16 4.239 5.083 4.344 4.418 6.54 4.184 5.128 

Curve Number  - 87 87 87 87 87 73 71 73 71 71 68 68 65 59 60 58 

Time of Concentration 

 (SCS Method) min 9.30 9.89 5.53 9.43 8.86 47.29 61.97 49.30 20.56 20.09 39.46 54.37 13.62 56.11 57.57 48.74 
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Table S2 - Performance index and RPD values for the calibration and validation events 

Events NSE R² RSR RPD Peak  

Date (dd/mm/yyyy) (-) (-) (-) (%) 

4/17/2015 0.67 0.92 0.58 9.41 

5/27/2015 0.92 0.92 0.28 -1.61 

12/25/2015 0.85 0.89 0.38 -28 

1/8/2016 0.94 0.96 0.24 -5.35 

2/15/2016 0.75 0.77 0.50 -13.47 

3/2/2016 0.74 0.77 0.51 2.61 

     
Mean 0.81 0.87 0.42 -6.07 

Standard deviation 0.11 0.08 0.14 13.20 

 

 

Chapter 2 

 

Rainfall observed, uncorrected and corrected radar data: 

      

Event Station duration Rainfall Uncorr. Bias Correc. Bias 

1/1/2016 10:00 MB_SEG1 0 days 06:00:00 35.00 13.32 20.03 

1/1/2016 10:10 MB_PRO1 0 days 06:00:00 23.25 12.90 19.56 

1/1/2016 10:20 MB_PRO2 0 days 06:00:00 25.25 17.96 25.47 

1/1/2016 16:10 MB_PRO1 0 days 05:30:00 18.75 15.25 22.07 

1/2/2016 18:10 MB_SEG1 0 days 03:00:00 7.25 16.32 9.32 

1/2/2016 18:30 MB_PRO2 0 days 02:30:00 11.00 12.27 5.73 

1/5/2016 10:20 MB_SEG1 0 days 01:40:00 35.00 17.42 24.76 

1/5/2016 11:30 MB_GAM1 0 days 01:30:00 28.75 16.94 24.12 

1/6/2016 5:40 MB_SEG1 0 days 06:00:00 17.50 10.39 16.53 

1/8/2016 10:50 MB_GAM1 0 days 06:00:00 11.50 14.41 7.64 

1/8/2016 15:10 MB_SEG1 0 days 02:20:00 24.25 24.44 14.81 

1/8/2016 15:20 MB_PRO2 0 days 01:00:00 19.50 12.72 19.35 

1/8/2016 15:50 MB_COQ2 0 days 03:00:00 65.00 31.34 41.42 

1/8/2016 16:00 MB_PRO1 0 days 02:00:00 14.75 15.64 8.78 

1/8/2016 16:50 MB_GAM1 0 days 07:20:00 7.75 11.40 5.10 

1/8/2016 22:40 MB_PRO1 0 days 06:00:00 10.00 16.43 9.41 

1/9/2016 0:10 MB_GAM1 0 days 06:00:00 9.50 10.38 4.25 

1/9/2016 0:30 MB_PRO2 0 days 05:30:00 16.75 16.29 23.28 

1/9/2016 4:00 MB_SEG1 0 days 02:00:00 32.75 31.85 43.28 

1/9/2016 4:40 MB_PRO1 0 days 01:40:00 22.00 32.15 19.95 

1/10/2016 7:20 MB_PRO2 0 days 06:00:00 10.00 12.74 6.11 

1/10/2016 7:40 MB_COQ2 0 days 06:00:00 9.50 12.17 5.66 

1/10/2016 12:50 MB_SEG1 0 days 05:50:00 19.75 21.20 12.66 

1/10/2016 13:10 MB_PRO1 0 days 05:20:00 17.00 17.70 10.26 

1/10/2016 13:20 MB_GAM1 0 days 06:00:00 17.25 12.19 18.70 
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1/10/2016 13:20 MB_PRO2 0 days 19:40:00 15.50 17.26 9.97 

1/10/2016 13:40 MB_COQ2 0 days 06:00:00 18.25 12.94 19.61 

1/11/2016 8:40 MB_SEG1 0 days 05:20:00 26.75 14.70 21.49 

1/11/2016 9:00 MB_GAM1 0 days 05:20:00 23.75 17.02 24.23 

1/11/2016 9:00 MB_PRO1 0 days 05:10:00 25.75 20.15 27.43 

1/13/2016 5:50 MB_COQ2 0 days 07:30:00 4.25 10.75 4.59 

1/13/2016 11:50 MB_SEG1 0 days 04:10:00 29.00 24.31 33.85 

1/13/2016 12:20 MB_GAM1 0 days 04:10:00 14.25 11.41 17.72 

1/13/2016 12:30 MB_PRO2 0 days 03:40:00 13.25 14.40 7.62 

1/13/2016 12:30 MB_PRO1 0 days 03:50:00 15.50 16.37 9.37 

1/14/2016 12:20 MB_PRO1 0 days 04:40:00 31.75 24.01 33.35 

1/14/2016 12:30 MB_PRO2 0 days 04:40:00 10.00 12.15 5.64 

1/14/2016 12:30 MB_GAM1 0 days 05:50:00 13.75 14.97 8.17 

1/27/2016 0:00 MB_PRO1 0 days 05:20:00 17.50 13.13 19.82 

1/27/2016 0:00 MB_PRO2 0 days 05:50:00 19.00 17.05 24.26 

2/2/2016 13:30 MB_PRO1 0 days 02:30:00 11.00 10.02 16.20 

2/5/2016 14:00 MB_GAM1 0 days 01:00:00 39.00 20.23 27.68 

2/6/2016 15:50 MB_PRO2 0 days 06:00:00 8.75 10.59 4.45 

2/6/2016 16:00 MB_GAM1 0 days 00:50:00 16.25 11.78 18.19 

2/15/2016 13:00 MB_COQ2 0 days 02:10:00 48.75 48.47 63.74 

2/15/2016 13:10 MB_SEG1 0 days 01:40:00 10.00 12.64 6.03 

2/15/2016 13:10 MB_PRO2 0 days 01:20:00 19.00 26.09 15.43 

2/15/2016 13:10 MB_PRO1 0 days 02:10:00 16.25 28.81 19.11 

2/21/2016 12:50 MB_SEG1 0 days 05:00:00 26.00 18.53 26.16 

2/21/2016 12:50 MB_ANHA7 0 days 04:50:00 8.06 19.02 11.44 

2/21/2016 12:50 MB_PRO1 0 days 05:10:00 22.50 22.57 13.80 

2/21/2016 14:00 MB_COQ2 0 days 03:20:00 15.50 11.04 17.25 

2/22/2016 14:00 MB_SEG1 0 days 05:40:00 22.75 18.93 26.53 

2/22/2016 14:00 MB_ANHA7 0 days 03:00:00 7.63 23.51 14.44 

2/26/2016 11:00 MB_PRO1 0 days 05:50:00 8.50 16.85 9.70 

2/28/2016 23:30 MB_PRO1 0 days 06:00:00 49.75 35.02 48.93 

2/28/2016 23:30 MB_ANHA7 0 days 06:00:00 9.13 36.44 22.88 

2/28/2016 23:30 MB_SEG1 0 days 06:00:00 35.25 37.48 22.98 

2/28/2016 23:40 MB_COQ2 0 days 06:00:00 37.75 34.96 48.91 

2/28/2016 23:40 MB_PRO2 0 days 06:00:00 50.00 48.83 64.49 

2/28/2016 23:50 MB_GAM1 0 days 06:00:00 47.50 39.07 53.55 

2/29/2016 0:10 MB_LAJ7 0 days 06:00:00 54.00 59.88 51.24 

2/29/2016 5:30 MB_ANHA7 0 days 08:00:00 4.06 17.28 9.99 

2/29/2016 5:40 MB_PRO2 0 days 08:00:00 16.50 16.28 23.26 

2/29/2016 5:50 MB_GAM1 0 days 02:20:00 12.00 10.38 16.51 

2/29/2016 13:10 MB_GAM1 0 days 03:20:00 28.25 24.45 34.08 

2/29/2016 13:20 MB_COQ2 0 days 01:50:00 9.25 12.67 6.05 

2/29/2016 13:40 MB_LAJ7 0 days 02:30:00 10.75 25.10 15.00 

3/2/2016 1:50 MB_ANHA7 0 days 05:20:00 15.56 47.21 33.01 

3/2/2016 2:00 MB_SEG1 0 days 04:30:00 38.75 42.82 26.72 

3/2/2016 2:10 MB_GAM1 0 days 11:30:00 79.25 54.04 69.55 

3/2/2016 2:50 MB_COQ2 0 days 04:00:00 55.00 41.99 56.79 

3/7/2016 13:20 MB_PRO1 0 days 01:20:00 39.50 24.58 34.32 
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3/7/2016 13:30 MB_ANHA7 0 days 01:00:00 2.81 12.29 5.74 

3/7/2016 13:40 MB_SEG1 0 days 00:50:00 12.00 12.59 5.98 

3/14/2016 15:20 MB_PRO1 0 days 03:20:00 39.25 17.13 24.37 

3/14/2016 15:20 MB_COQ2 0 days 01:10:00 29.75 18.87 26.48 

3/14/2016 15:20 MB_SEG1 0 days 01:20:00 55.50 35.54 49.15 

3/14/2016 15:30 MB_ANHA7 0 days 01:20:00 3.50 13.02 6.34 

3/18/2016 23:50 MB_COQ2 0 days 02:10:00 20.00 14.33 21.10 

3/24/2016 12:40 MB_SEG1 0 days 05:50:00 28.25 20.39 28.15 

3/24/2016 12:50 MB_COQ2 0 days 04:30:00 13.25 12.73 19.37 

3/24/2016 12:50 MB_PRO1 0 days 05:50:00 20.50 20.05 27.07 

3/24/2016 12:50 MB_ANHA7 0 days 06:00:00 6.63 28.19 18.01 

3/24/2016 13:10 MB_SEG6 0 days 06:00:00 17.75 16.01 22.93 

3/24/2016 13:20 MB_GAM1 0 days 06:00:00 19.00 14.36 21.13 

3/24/2016 13:40 MB_LAJ7 0 days 06:00:00 16.25 18.87 11.26 

3/24/2016 18:50 MB_ANHA7 0 days 06:00:00 9.56 30.72 21.69 

3/24/2016 18:50 MB_PRO1 0 days 06:00:00 38.50 30.88 40.09 

3/24/2016 18:50 MB_COQ2 0 days 06:00:00 39.50 31.33 41.40 

3/24/2016 18:50 MB_SEG1 0 days 06:00:00 37.75 38.62 23.35 

3/24/2016 19:00 MB_PRO2 0 days 06:00:00 32.50 32.21 44.55 

3/24/2016 19:10 MB_SEG6 0 days 06:00:00 33.00 29.79 39.22 

3/24/2016 19:20 MB_GAM1 0 days 06:00:00 45.50 29.01 38.59 

3/24/2016 19:40 MB_LAJ7 0 days 06:00:00 32.00 27.12 37.86 

3/29/2016 14:10 MB_ANHA7 0 days 01:50:00 8.19 23.75 14.56 

3/30/2016 19:40 MB_GAM1 0 days 04:40:00 29.50 20.03 27.01 

4/2/2016 16:00 MB_PRO1 0 days 00:50:00 10.00 22.49 13.73 

4/2/2016 22:20 MB_SEG1 0 days 00:40:00 12.50 10.29 16.43 

4/2/2016 22:20 MB_SEG6 0 days 00:50:00 11.00 13.19 6.49 

4/5/2016 15:30 MB_SEG6 0 days 00:50:00 4.50 10.42 4.29 

4/7/2016 19:30 MB_COQ2 0 days 02:40:00 20.00 17.69 25.13 

4/7/2016 19:40 MB_SEG6 0 days 01:30:00 29.25 13.06 19.74 

4/7/2016 20:00 MB_SEG1 0 days 01:00:00 8.50 13.62 6.88 

4/8/2016 15:00 MB_ANHA7 0 days 01:00:00 7.81 21.30 12.73 

4/8/2016 15:10 MB_PRO1 0 days 01:00:00 18.00 16.34 23.34 

4/15/2016 4:30 MB_COQ2 0 days 03:30:00 9.00 10.24 4.10 

4/25/2016 15:00 MB_PRO1 0 days 05:50:00 9.50 11.12 4.89 

4/25/2016 15:20 MB_GAM1 0 days 06:00:00 11.00 15.61 8.75 

4/25/2016 16:10 MB_COQ2 0 days 06:00:00 20.50 10.69 16.84 

4/25/2016 16:10 MB_LAJ7 0 days 06:00:00 9.25 11.81 5.39 

4/25/2016 20:50 MB_SEG1 0 days 05:50:00 21.50 23.16 14.24 

4/25/2016 21:00 MB_ANHA7 0 days 06:00:00 4.13 14.87 8.08 

4/25/2016 21:00 MB_PRO2 0 days 05:40:00 22.00 20.93 29.31 

4/25/2016 21:20 MB_GAM1 0 days 06:00:00 17.75 11.63 18.00 

4/25/2016 22:10 MB_LAJ7 0 days 05:30:00 25.75 14.65 21.43 

4/26/2016 9:00 MB_SEG6 0 days 05:50:00 7.00 11.35 5.06 

5/9/2016 11:40 MB_ANHA7 0 days 10:00:00 3.63 18.40 10.79 

5/9/2016 13:10 MB_PRO2 0 days 05:00:00 12.00 18.41 10.79 

5/9/2016 17:50 MB_GAM1 0 days 06:00:00 31.50 30.97 40.29 

5/9/2016 19:40 MB_PRO2 0 days 03:50:00 11.25 18.10 10.54 
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5/9/2016 20:40 MB_SEG1 0 days 05:10:00 14.75 17.62 10.21 

5/9/2016 20:40 MB_PRO1 0 days 02:50:00 11.25 22.01 13.31 

5/9/2016 21:40 MB_ANHA7 0 days 04:30:00 5.06 20.77 12.53 

5/10/2016 0:40 MB_GAM1 0 days 06:00:00 15.00 22.77 13.96 

5/10/2016 1:40 MB_SEG6 0 days 05:50:00 11.00 14.14 7.37 

5/10/2016 1:50 MB_LAJ7 0 days 06:00:00 13.25 15.48 8.64 

5/10/2016 2:10 MB_COQ2 0 days 06:00:00 15.50 15.83 8.94 

5/10/2016 4:20 MB_PRO2 0 days 05:50:00 13.00 14.13 7.37 

5/10/2016 4:40 MB_SEG1 0 days 05:30:00 14.50 13.57 20.31 

5/10/2016 4:40 MB_PRO1 0 days 05:30:00 13.75 18.59 10.96 

5/10/2016 4:40 MB_ANHA7 0 days 05:50:00 5.06 23.59 14.49 

5/10/2016 6:40 MB_GAM1 0 days 06:00:00 27.00 23.73 32.91 

5/10/2016 10:30 MB_PRO2 0 days 05:50:00 10.25 14.19 7.42 

5/10/2016 10:50 MB_PRO1 0 days 06:00:00 15.00 18.31 10.71 

5/10/2016 11:00 MB_ANHA7 0 days 06:00:00 2.94 13.50 6.77 

5/10/2016 11:10 MB_SEG1 0 days 06:00:00 17.50 19.46 12.12 

5/10/2016 13:50 MB_LAJ7 0 days 06:00:00 25.75 15.33 22.16 

5/10/2016 14:10 MB_SEG6 0 days 06:00:00 13.25 14.15 7.38 

5/10/2016 16:40 MB_PRO2 0 days 06:00:00 48.50 28.31 38.40 

5/10/2016 16:50 MB_PRO1 0 days 06:00:00 49.50 30.33 39.45 

5/10/2016 17:00 MB_ANHA7 0 days 06:00:00 12.25 31.89 20.36 

5/10/2016 17:10 MB_SEG1 0 days 06:00:00 47.25 26.05 36.69 

5/10/2016 19:50 MB_LAJ7 0 days 05:40:00 53.50 20.89 29.24 

5/10/2016 20:20 MB_COQ2 0 days 05:30:00 78.50 57.74 73.58 

5/10/2016 22:40 MB_PRO2 0 days 04:20:00 16.50 12.58 19.18 

5/10/2016 22:50 MB_PRO1 0 days 04:20:00 20.50 13.36 20.07 

5/10/2016 23:10 MB_ANHA7 0 days 03:50:00 4.69 10.56 4.42 

5/10/2016 23:10 MB_SEG1 0 days 03:50:00 22.75 21.44 30.05 

5/26/2016 23:30 MB_ANHA7 0 days 08:50:00 5.19 12.28 5.74 

5/28/2016 19:40 MB_SEG1 0 days 05:50:00 12.50 22.28 13.55 

5/28/2016 19:50 MB_GAM1 0 days 06:00:00 24.50 15.31 22.13 

5/28/2016 19:50 MB_LAJ7 0 days 06:00:00 13.75 21.02 12.58 

5/28/2016 19:50 MB_ANHA7 0 days 06:00:00 5.25 24.92 14.94 

5/28/2016 20:00 MB_PRO1 0 days 06:00:00 17.00 24.18 14.73 

5/28/2016 20:20 MB_COQ2 0 days 06:00:00 19.75 18.92 26.52 

5/29/2016 1:40 MB_SEG1 0 days 02:20:00 9.75 12.66 6.04 

5/29/2016 1:40 MB_SEG6 0 days 01:50:00 10.75 18.58 10.95 

5/29/2016 1:50 MB_LAJ7 0 days 02:10:00 11.75 11.51 17.84 

5/29/2016 1:50 MB_GAM1 0 days 03:20:00 15.00 11.64 18.01 

5/29/2016 1:50 MB_ANHA7 0 days 02:10:00 2.50 12.27 5.74 

6/2/2016 14:20 MB_SEG6 0 days 06:00:00 18.25 12.10 18.60 

6/6/2016 1:00 MB_ANHA7 0 days 05:20:00 2.44 12.09 5.59 

10/5/2016 6:10 MB_COQ3 0 days 05:50:00 52.25 31.67 42.63 

10/5/2016 7:30 MB_SEG6 0 days 04:40:00 34.75 28.73 38.49 

10/5/2016 7:40 MB_SEG3A 0 days 04:40:00 38.25 18.67 26.29 

10/5/2016 10:00 MB_PRO1 0 days 02:20:00 25.25 16.70 23.80 

10/5/2016 10:00 MB_ANHA7 0 days 02:10:00 5.56 18.94 11.35 

10/5/2016 10:00 MB_PRO2 0 days 02:30:00 21.00 21.22 12.68 
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10/5/2016 10:00 MB_LAJ7 0 days 03:00:00 20.50 21.29 12.72 

10/5/2016 10:00 MB_SEG1 0 days 02:20:00 27.50 29.68 20.28 

10/5/2016 10:00 MB_PRO4 0 days 02:30:00 7.88 42.59 26.81 

10/5/2016 10:10 MB_COQ2 0 days 02:30:00 41.75 38.53 53.84 

10/14/2016 8:10 MB_SEG3A 0 days 06:00:00 19.75 10.17 16.32 

10/14/2016 8:30 MB_PRO4 0 days 06:00:00 3.56 11.52 5.18 

10/20/2016 15:40 MB_PRO1 0 days 04:50:00 24.50 28.35 18.29 

10/23/2016 14:00 MB_SEG6 0 days 02:20:00 8.50 12.32 5.77 

10/26/2016 16:00 MB_PRO1 0 days 03:20:00 38.00 26.63 37.41 

10/26/2016 16:00 MB_SEG6 0 days 03:20:00 41.00 41.50 27.42 

10/26/2016 16:50 MB_LAG1 0 days 03:40:00 26.25 13.92 20.67 

10/31/2016 13:30 MB_SEG6 0 days 01:30:00 14.75 23.35 14.35 

10/31/2016 13:50 MB_SEG3A 0 days 02:10:00 21.00 11.34 17.63 

11/2/2016 10:20 MB_LAG1 0 days 06:00:00 26.25 12.19 18.71 

11/25/2016 12:00 MB_LAG1 0 days 05:40:00 39.00 13.81 20.56 

11/25/2016 14:30 MB_PRO1 0 days 02:30:00 26.25 19.52 26.80 

11/25/2016 14:40 MB_PRO4 0 days 02:40:00 10.31 15.06 8.26 

11/30/2016 13:30 MB_ANHA1 0 days 05:20:00 85.75 11.44 17.76 

11/30/2016 14:10 MB_ANHA4 0 days 04:20:00 22.25 46.33 31.89 

11/30/2016 14:20 MB_PRO1 0 days 03:10:00 54.75 30.46 39.46 

11/30/2016 15:40 MB_LAJ2 0 days 05:40:00 71.50 31.15 40.80 

11/30/2016 15:50 MB_GAM1 0 days 06:00:00 65.75 30.25 39.52 

12/8/2016 11:30 MB_SEG3A 0 days 04:50:00 67.75 29.63 39.02 

12/8/2016 11:50 MB_SEG1 0 days 04:50:00 74.75 51.71 65.77 

12/8/2016 12:00 MB_SEG6 0 days 03:30:00 69.75 56.45 71.76 

12/8/2016 12:50 MB_LAJ2 0 days 04:00:00 31.25 12.15 18.65 

12/8/2016 12:50 MB_BAL1 0 days 03:20:00 11.00 12.60 5.99 

12/8/2016 12:50 MB_BAND1A 0 days 04:00:00 59.00 25.88 36.46 

12/8/2016 12:50 MB_BAL2 0 days 03:50:00 51.75 31.17 40.88 

12/8/2016 13:00 MB_ANHA7 0 days 03:50:00 18.88 36.78 23.02 

12/8/2016 13:00 MB_ANHA8 0 days 03:50:00 21.06 49.87 34.62 

12/8/2016 13:30 MB_LAG4 0 days 04:20:00 12.00 13.32 6.60 

12/8/2016 13:30 MB_LAG2 0 days 04:00:00 7.69 21.32 12.74 

12/8/2016 13:30 MB_LAJ9 0 days 03:20:00 57.00 36.97 50.90 

12/8/2016 13:40 MB_PRO4 0 days 03:40:00 14.44 54.99 39.29 

12/8/2016 14:00 MB_COQ2 0 days 03:20:00 78.75 16.32 23.32 

12/8/2016 14:00 MB_LAJ7 0 days 03:20:00 61.25 37.84 52.77 

12/9/2016 10:10 MB_PRO4 0 days 04:10:00 4.75 11.29 5.01 

12/21/2016 10:20 MB_PRO1 0 days 05:40:00 25.00 14.70 21.48 

12/23/2016 10:10 MB_PRO1 0 days 04:30:00 33.00 47.12 32.94 

12/23/2016 12:20 MB_BAND1A 0 days 03:30:00 9.50 10.13 3.97 

12/30/2016 13:00 MB_PRO1 0 days 03:50:00 34.25 19.72 26.78 

12/30/2016 14:00 MB_SEG1 0 days 03:50:00 17.50 10.58 16.72 

12/30/2016 14:00 MB_LAJ9 0 days 03:40:00 62.50 25.36 35.64 

12/30/2016 14:20 MB_BAL2 0 days 03:30:00 40.75 14.35 21.12 

12/31/2016 13:40 MB_ANHA4 0 days 02:30:00 4.75 18.76 11.14 

1/4/2017 13:10 MB_PRO1 0 days 05:50:00 26.50 10.86 17.04 

1/18/2017 17:00 MB_PRO1 0 days 01:20:00 54.00 43.20 59.68 
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1/18/2017 17:20 MB_PRO3 0 days 02:40:00 6.06 10.09 3.92 

1/18/2017 17:40 MB_ANHA3 0 days 01:40:00 10.63 10.09 16.26 

1/19/2017 14:50 MB_PRO1 0 days 05:50:00 27.50 35.73 22.19 

1/19/2017 15:40 MB_IMB3 0 days 05:30:00 63.25 15.48 22.32 

1/20/2017 16:00 MB_ANHA3 0 days 03:40:00 3.44 11.75 5.35 

1/20/2017 16:00 MB_ANHA4 0 days 02:30:00 6.81 20.70 12.53 

1/20/2017 21:50 MB_SEG6 0 days 04:10:00 5.50 20.29 12.72 

1/20/2017 22:00 MB_SEG6A 0 days 02:20:00 21.75 28.52 18.60 

1/20/2017 22:20 MB_SEG3A 0 days 02:30:00 25.00 28.46 18.50 

1/25/2017 9:30 MB_BAL2 0 days 06:00:00 3.94 11.38 5.08 

1/25/2017 10:30 MB_PRO1 0 days 05:40:00 13.50 10.60 16.75 

1/25/2017 11:10 MB_IMB3 0 days 05:20:00 28.75 24.36 33.93 

1/25/2017 11:20 MB_ANHA3 0 days 10:20:00 6.50 11.96 5.50 

1/25/2017 11:20 MB_ANHA4 0 days 05:40:00 6.50 18.16 10.59 

1/25/2017 11:30 MB_SEG3 0 days 06:00:00 49.00 10.01 16.19 

1/25/2017 11:30 MB_LAJ3 0 days 05:20:00 26.75 11.20 17.45 

1/29/2017 16:30 MB_LAJ3 0 days 02:20:00 49.25 13.52 20.25 

2/1/2017 9:20 MB_PRO1 0 days 01:10:00 19.25 22.95 14.10 

2/6/2017 13:30 MB_SEG6A 0 days 01:10:00 41.50 21.87 30.56 

2/7/2017 13:30 MB_PRO1 0 days 01:50:00 39.00 23.75 32.93 

2/8/2017 13:10 MB_LAJ3 0 days 01:20:00 36.00 11.87 18.31 

2/14/2017 10:00 MB_PRO1 0 days 05:20:00 8.50 12.86 6.20 

2/24/2017 13:30 MB_LAJ9 0 days 05:50:00 35.00 25.23 35.43 

2/24/2017 15:10 MB_BAL2 0 days 04:10:00 6.50 16.14 9.19 

2/24/2017 15:40 MB_ANHA3 0 days 03:30:00 5.69 14.27 7.50 

2/24/2017 16:00 MB_ANHA1 0 days 06:00:00 8.25 26.33 15.59 

2/26/2017 15:00 MB_LAJ7 0 days 00:50:00 9.75 13.32 6.61 

2/26/2017 15:00 MB_PRO6 0 days 01:10:00 1.75 33.46 19.17 

2/26/2017 15:10 MB_PRO4 0 days 01:20:00 13.94 49.49 33.67 

2/26/2017 15:20 MB_PRO1 0 days 00:50:00 9.00 15.70 8.83 

2/26/2017 15:30 MB_SEG3 0 days 01:00:00 37.00 20.23 27.68 

3/1/2017 14:50 MB_ANHA1 0 days 00:40:00 2.38 15.65 8.78 

3/3/2017 21:10 MB_LAJ2 0 days 03:50:00 23.00 20.80 29.07 

3/5/2017 13:30 MB_BAL2 0 days 05:40:00 3.69 13.59 6.85 

3/5/2017 14:20 MB_IMB3 0 days 04:50:00 25.00 10.04 16.22 

3/5/2017 14:30 MB_LAJ3 0 days 04:20:00 44.00 24.83 34.74 

3/5/2017 14:40 MB_LAJ2 0 days 04:30:00 22.50 38.65 23.40 

3/5/2017 15:10 MB_PRO1 0 days 04:20:00 9.50 11.12 4.88 

3/10/2017 14:10 MB_LAJ9 0 days 04:30:00 60.25 24.46 34.10 

3/10/2017 14:10 MB_LAJ3 0 days 04:20:00 53.25 25.06 35.14 

3/10/2017 14:20 MB_ANHA3 0 days 04:30:00 11.81 26.62 15.84 

3/10/2017 14:20 MB_BAL2 0 days 04:30:00 8.13 29.17 19.68 

3/10/2017 14:30 MB_LAJ2 0 days 03:00:00 21.25 20.69 28.86 

3/10/2017 14:30 MB_LAJ7 0 days 04:30:00 78.25 53.68 68.86 

3/10/2017 14:40 MB_PRO1 0 days 04:20:00 20.75 13.62 20.36 

3/10/2017 14:50 MB_SEG3A 0 days 03:20:00 31.50 12.09 18.59 

3/10/2017 15:00 MB_LAG2 0 days 05:00:00 9.81 16.50 9.46 

3/10/2017 15:10 MB_SEG3 0 days 02:40:00 37.00 20.07 27.16 
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3/10/2017 15:30 MB_ANHA1 0 days 04:00:00 6.44 17.95 10.44 

3/12/2017 16:10 MB_BAL2 0 days 04:40:00 6.19 14.56 7.78 

3/12/2017 16:20 MB_ANHA3 0 days 01:00:00 6.00 11.04 4.82 

3/13/2017 18:40 MB_ANHA3 0 days 04:40:00 4.81 12.58 5.98 

3/13/2017 18:40 MB_PRO1 0 days 05:00:00 14.25 14.81 8.02 

3/13/2017 18:50 MB_BAL2 0 days 05:00:00 3.69 16.05 9.12 

3/13/2017 19:00 MB_LAJ2 0 days 04:40:00 17.75 25.64 15.19 

3/13/2017 19:10 MB_SEG3 0 days 05:10:00 13.50 12.70 19.33 

3/13/2017 19:10 MB_ANHA1 0 days 04:40:00 6.00 21.92 13.22 

3/13/2017 20:30 MB_LAJ3 0 days 02:50:00 17.50 22.87 14.04 

3/13/2017 20:40 MB_PRO6 0 days 03:10:00 1.81 11.31 5.03 

3/13/2017 20:40 MB_LAJ9 0 days 03:00:00 13.50 17.35 10.03 

3/14/2017 13:10 MB_ANHA3 0 days 03:00:00 7.25 21.33 12.75 

3/14/2017 13:30 MB_ANHA1 0 days 03:10:00 9.19 33.00 19.15 

3/14/2017 13:40 MB_LAG2 0 days 04:00:00 10.00 25.53 15.15 

3/16/2017 16:00 MB_LAJ2 0 days 06:00:00 9.75 11.63 5.26 

3/16/2017 19:30 MB_LAJ3 0 days 03:20:00 27.00 43.02 26.70 

3/16/2017 19:40 MB_ANHA3 0 days 07:10:00 3.25 25.19 15.03 

3/16/2017 19:40 MB_BAL2 0 days 03:20:00 10.63 42.62 26.80 

3/16/2017 20:10 MB_PRO1 0 days 02:40:00 26.50 14.74 21.52 

3/16/2017 20:30 MB_LAG2 0 days 04:30:00 7.75 11.68 5.30 

3/16/2017 20:30 MB_LAJ9 0 days 02:10:00 38.75 40.95 27.13 

3/18/2017 14:10 MB_PRO1 0 days 01:40:00 37.75 19.97 26.66 

3/18/2017 14:20 MB_LAJ9 0 days 00:50:00 31.75 13.53 20.27 

3/19/2017 12:20 MB_LAJ9 0 days 04:00:00 16.50 12.65 19.27 

3/19/2017 12:30 MB_PRO4 0 days 04:10:00 8.13 32.06 20.08 

3/19/2017 14:00 MB_PRO1 0 days 01:30:00 18.25 19.25 11.78 

3/19/2017 14:20 MB_COQ3 0 days 02:10:00 35.00 11.20 17.45 

3/19/2017 14:20 MB_PRO6 0 days 02:30:00 3.13 53.05 38.67 

3/22/2017 5:40 MB_PRO6 0 days 01:00:00 0.69 14.04 7.28 

3/23/2017 15:50 MB_LAJ2 0 days 00:40:00 19.75 11.40 17.71 

3/23/2017 16:20 MB_COQ1 0 days 00:20:00 3.00 10.42 4.29 

3/24/2017 12:00 MB_LAJ3 0 days 01:30:00 10.00 11.18 4.93 

3/24/2017 12:20 MB_LAJ9 0 days 01:40:00 25.00 27.08 16.32 

3/24/2017 12:20 MB_PRO1 0 days 02:00:00 60.00 55.05 70.73 

3/24/2017 12:30 MB_LAJ2 0 days 01:30:00 27.25 16.80 23.94 

3/24/2017 12:30 MB_BAL2 0 days 01:20:00 3.81 23.07 14.18 

3/24/2017 12:50 MB_IMB3 0 days 01:10:00 47.00 23.64 32.77 

3/25/2017 15:20 MB_PRO6 0 days 04:30:00 1.00 10.66 4.51 

3/26/2017 12:20 MB_LAJ3 0 days 05:50:00 19.75 16.55 23.60 

3/26/2017 13:00 MB_LAJ2 0 days 06:00:00 26.00 19.02 26.59 

3/26/2017 13:30 MB_COQ3 0 days 06:00:00 22.25 21.04 29.49 

3/26/2017 13:40 MB_PRO1 0 days 06:00:00 24.50 20.17 27.49 

3/26/2017 13:40 MB_LAJ9 0 days 05:50:00 18.25 20.17 12.85 

3/26/2017 13:40 MB_BAL2 0 days 06:00:00 4.31 20.65 12.53 

3/26/2017 13:50 MB_PRO6 0 days 05:50:00 2.94 20.24 12.77 

3/26/2017 14:10 MB_PRO4 0 days 06:00:00 5.06 11.98 5.51 

4/5/2017 9:00 MB_ANHA4 0 days 06:00:00 0.25 14.46 7.68 
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4/5/2017 10:50 MB_BAL2 0 days 04:20:00 2.63 14.87 8.08 

4/5/2017 11:50 MB_LAJ2 0 days 03:30:00 23.25 25.84 15.29 

4/8/2017 13:00 MB_PRO6 0 days 01:10:00 1.00 23.93 14.64 

4/8/2017 13:00 MB_PRO1 0 days 01:00:00 23.75 25.75 15.24 

4/8/2017 13:10 MB_BAL2 0 days 00:50:00 2.94 17.84 10.36 

4/26/2017 9:10 MB_SEG3 0 days 03:30:00 3.94 11.11 4.88 

5/15/2017 12:50 MB_ANHA5 0 days 04:30:00 0.94 11.25 4.98 

6/8/2017 22:10 MB_SEG6 0 days 05:20:00 5.38 15.43 8.60 

8/17/2017 1:10 MB_PRO5 0 days 05:00:00 2.19 11.54 5.19 

9/29/2017 5:00 MB_SEG6 0 days 06:00:00 2.50 15.02 8.22 

9/29/2017 6:50 MB_SEG3A 0 days 06:00:00 1.38 10.82 4.65 

9/29/2017 8:00 MB_PRO6 0 days 06:00:00 3.50 12.03 5.55 

9/29/2017 8:10 MB_PRO1 0 days 06:00:00 2.69 10.95 4.76 

9/29/2017 8:20 MB_SEG9 0 days 06:00:00 2.94 11.72 5.32 

9/29/2017 8:30 MB_COQ3 0 days 05:40:00 3.06 12.01 5.54 

9/29/2017 8:40 MB_SEG3 0 days 06:00:00 2.88 14.02 7.26 

9/29/2017 8:50 MB_PRO4 0 days 06:00:00 3.56 12.03 5.55 

9/29/2017 11:00 MB_SEG6 0 days 02:40:00 2.31 11.95 5.49 

10/1/2017 15:50 MB_IMB5 0 days 05:50:00 4.19 10.31 4.18 

10/1/2017 20:50 MB_ANHA5 0 days 11:20:00 4.38 30.10 20.44 

10/1/2017 22:20 MB_SEG6 0 days 05:50:00 8.44 28.02 17.73 

10/2/2017 0:20 MB_LAJ3 0 days 05:40:00 6.06 12.17 5.66 

10/2/2017 1:30 MB_PRO6 0 days 05:50:00 4.31 16.69 9.59 

10/2/2017 1:30 MB_PRO1 0 days 05:50:00 7.44 17.88 10.38 

10/2/2017 1:50 MB_SEG9 0 days 06:00:00 9.56 19.11 11.58 

10/2/2017 2:10 MB_PRO4 0 days 06:00:00 10.00 15.90 9.00 

10/2/2017 2:10 MB_SEG3 0 days 05:30:00 8.75 17.03 9.82 

10/2/2017 2:10 MB_COQ3 0 days 05:30:00 10.69 18.33 10.73 

10/2/2017 4:30 MB_SEG6 0 days 06:00:00 3.81 20.94 12.55 

10/22/2017 4:30 MB_ANHA5 0 days 03:40:00 0.88 35.21 21.42 

10/22/2017 5:30 MB_IMB5 0 days 04:10:00 1.63 37.66 22.94 

10/22/2017 5:40 MB_SEG6 0 days 06:00:00 7.94 55.16 39.51 

10/22/2017 7:00 MB_LAJ3 0 days 06:00:00 12.63 41.56 27.41 

10/22/2017 7:40 MB_SEG3A 0 days 06:00:00 3.88 48.00 33.25 

10/22/2017 8:10 MB_BAL2 0 days 06:00:00 12.00 24.98 14.96 

10/22/2017 8:50 MB_PRO6 0 days 06:00:00 5.69 30.71 21.69 

10/22/2017 9:00 MB_PRO1 0 days 06:00:00 11.19 24.21 14.74 

10/22/2017 9:10 MB_SEG9 0 days 06:00:00 8.00 17.40 10.07 

10/22/2017 9:40 MB_COQ3 0 days 06:00:00 6.88 11.73 5.33 

10/22/2017 9:40 MB_LAJ2 0 days 06:00:00 10.38 16.17 9.21 

10/22/2017 9:40 MB_SEG3 0 days 06:00:00 10.50 18.28 10.68 

10/22/2017 9:40 MB_PRO4 0 days 06:00:00 6.38 20.86 12.54 

10/27/2017 20:50 MB_SEG6 0 days 02:40:00 3.94 13.86 7.11 

10/30/2017 15:50 MB_SEG6 0 days 05:20:00 8.00 13.75 7.01 

11/4/2017 14:00 MB_SEG6 0 days 05:50:00 7.06 14.13 7.37 

11/4/2017 15:10 MB_IMB5 0 days 05:20:00 3.00 17.28 9.99 

11/4/2017 17:20 MB_PRO6 0 days 05:50:00 3.00 11.70 5.31 

11/4/2017 17:50 MB_SEG9 0 days 06:00:00 12.25 26.46 15.70 
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11/4/2017 18:10 MB_SEG3 0 days 05:50:00 9.38 29.28 19.83 

11/4/2017 18:10 MB_PRO4 0 days 05:40:00 7.25 31.44 21.09 

11/4/2017 18:10 MB_COQ3 0 days 05:30:00 7.38 40.80 26.85 

11/4/2017 22:10 MB_SEG3A 0 days 06:00:00 3.13 29.36 19.95 

11/4/2017 23:20 MB_SEG6 0 days 04:40:00 2.94 23.66 14.52 

11/6/2017 16:30 MB_BAL2 0 days 06:00:00 7.44 15.25 8.43 

11/6/2017 17:00 MB_LAJ3 0 days 06:00:00 14.69 34.88 20.88 

11/6/2017 19:30 MB_SEG3A 0 days 06:00:00 5.50 12.23 5.70 

11/6/2017 20:00 MB_LAJ2 0 days 06:00:00 15.56 16.95 9.77 

11/16/2017 15:00 MB_SEG6 0 days 06:00:00 6.13 20.88 12.54 

11/16/2017 17:10 MB_SEG3A 0 days 06:00:00 3.19 18.62 11.00 

11/18/2017 14:00 MB_SEG3A 0 days 06:00:00 2.06 29.25 19.79 

11/18/2017 15:20 MB_LAJ2 0 days 06:00:00 2.75 25.53 15.15 

11/18/2017 16:30 MB_LAJ3 0 days 06:00:00 13.88 15.61 8.75 

11/18/2017 17:10 MB_BAL2 0 days 06:00:00 14.25 22.99 14.12 

11/21/2017 13:50 MB_SEG3A 0 days 13:20:00 2.13 24.91 14.94 

11/21/2017 23:10 MB_SEG6 0 days 05:00:00 5.56 22.89 14.05 

11/25/2017 23:00 MB_SEG3A 0 days 06:00:00 1.31 11.16 4.92 

11/26/2017 11:10 MB_SEG3A 0 days 06:30:00 17.81 22.42 13.67 

11/26/2017 14:40 MB_SEG6 0 days 04:20:00 3.06 15.87 8.98 

11/26/2017 15:10 MB_SEG3 0 days 06:00:00 9.75 11.66 5.28 

11/30/2017 12:00 MB_SEG6 0 days 05:20:00 10.25 58.32 42.31 

11/30/2017 12:40 MB_LAJ3 0 days 05:10:00 10.13 24.04 14.68 

12/20/2017 18:00 MB_SEG3A 0 days 06:20:00 20.81 14.69 21.48 

1/2/2018 15:50 MB_SEG9 0 days 09:10:00 4.44 13.54 6.80 

1/7/2018 13:50 MB_SEG6 0 days 05:40:00 3.06 11.17 4.92 

1/26/2018 17:40 MB_SEG6 0 days 01:20:00 4.38 18.10 10.55 

2/8/2018 0:00 MB_SEG6 0 days 02:20:00 1.94 14.66 7.88 

2/13/2018 14:10 MB_SEG6 0 days 05:40:00 7.00 26.11 15.44 

2/18/2018 14:30 MB_SEG6 0 days 19:10:00 3.06 14.50 7.72 

2/19/2018 21:30 MB_IMB5 0 days 06:00:00 6.25 14.32 7.55 

2/20/2018 3:50 MB_IMB5 0 days 05:50:00 3.56 37.44 22.99 

2/20/2018 6:30 MB_LAJ2 0 days 06:00:00 15.13 44.41 27.95 

2/20/2018 6:50 MB_PRO3 0 days 06:00:00 14.25 33.13 19.12 

2/20/2018 7:10 MB_PRO6 0 days 05:50:00 5.31 29.69 20.29 

2/20/2018 7:10 MB_PRO1 0 days 05:50:00 13.75 33.12 19.12 

2/20/2018 7:20 MB_BAL2 0 days 05:50:00 12.31 35.35 21.65 

2/20/2018 7:30 MB_COQ3 0 days 06:00:00 14.44 12.90 19.56 

2/20/2018 7:40 MB_SEG9 0 days 06:00:00 14.00 32.94 19.17 

2/20/2018 8:00 MB_SEG3 0 days 05:50:00 14.50 17.58 10.18 

2/20/2018 8:10 MB_PRO4 0 days 05:50:00 9.63 12.18 5.66 

2/20/2018 9:20 MB_SEG6 0 days 05:50:00 3.56 26.78 15.99 

2/20/2018 12:50 MB_PRO3 0 days 06:00:00 4.31 11.32 5.04 

2/20/2018 13:10 MB_PRO1 0 days 06:00:00 5.06 11.46 5.13 

2/20/2018 13:10 MB_PRO6 0 days 06:00:00 3.88 15.25 8.43 

2/20/2018 13:40 MB_SEG9 0 days 06:00:00 3.63 14.59 7.81 

2/25/2018 18:50 MB_COQ3 0 days 06:00:00 14.81 18.49 10.87 
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Chapter 3 

 

All application files are stored on GitHub, and can be downloaded from the following 

addresses:  

https://github.com/leocrivels/flood_alert-DataManagement 

https://github.com/leocrivels/flood_alert 

 

The following is the main code of the progressive web application: 

 

Map.vue  

 

<template> 

  <GmapMap 

    :key="mapKey" 

    ref="map" 

    fullscreen 

    :center="center" 

    map-type-id="terrain" 

    style="height: 100%; width: 100%" 

    dark 

    :options="{ 

      streetViewControl: false, 

      zoomControl: false, 

      fullscreenControl: false, 

      mapTypeControl: false, 

    }" 

  > 

    <template v-for="(floodArea, j) in floodAreasArray"> 

      <template v-for="(area, i) in floodArea"> 

        <GmapPolygon 

          :key="'area-' + i + 'flood' + j" 

          :path="area" 

          :options="{ 

            fillColor: 'blue', 

            strokeOpacity: 0, 

          }" 

        /> 

      </template> 

    </template> 

 

    <GmapMarker :position="center" /> 

    <template 

      v-for="(marker, i) in Object.values(markers)" 

https://github.com/leocrivels/flood_alert-DataManagement
https://github.com/leocrivels/flood_alert
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      style="max-width: 300px" 

    > 

      <gmap-custom-marker 

        :marker="marker.coord" 

        :key="'marker' + i" 

        @click.native="markerClicked(marker)" 

      > 

        <img :src="getMarkerIcon(marker)" /> 

      </gmap-custom-marker> 

    </template> 

 

    <v-dialog 

      v-model="infoDialogBool" 

      style="max-width: 100%; overflow-x: hidden" 

      width="280" 

      height="300" 

      hide-overlay 

    > 

      <v-card> 

        <v-img 

          class="white--text align-end" 

          height="144" 

          width="260" 

          :src="actualMarker.image" 

        ></v-img> 

      </v-card> 

    </v-dialog> 

 

    <v-dialog 

      v-model="showGraphBool" 

      style="max-width: 100%; overflow-x: hidden" 

    > 

      <v-card style="max-width: 100%; overflow-x: hidden"> 

        <v-tabs v-model="tab" background-color="primary" dark> 

          <v-tab> About </v-tab> 

          <v-tab> R. Section </v-tab> 

          <v-tab> W. Level/Time </v-tab> 

        </v-tabs> 

        <v-tabs-items v-model="tab"> 

          <v-tab-item> 

            <v-card v-if="$vuetify.breakpoint.mdAndUp" class="pa-2"> 

              <div class="d-flex"> 

                <v-col cols="6"> 

                  <v-img class="white--text" :src="actualMarker.image"></v-img> 

                </v-col> 

                <v-col cols="6"> 

                  <div> 

                    <v-card-title 

                      class="headline" 
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                      v-text="actualMarker.description" 

                    ></v-card-title> 

 

                    <v-card-subtitle> 

                      <p> 

                        <strong>Description:</strong> 

                        {{ actualMarker.description }} 

                      </p></v-card-subtitle 

                    > 

                    <v-card-subtitle> 

                      <p> 

                        <strong>Threshold:</strong> {{ actualMarker.limit }} m 

                      </p></v-card-subtitle 

                    > 

                    <v-card-subtitle> 

                      <p> 

                        <strong>Water Level:</strong> 

                        {{ parseFloat(actualMarkerState.height).toFixed(2) }}m 

                      </p></v-card-subtitle 

                    > 

                    <v-card-subtitle> 

                      <p> 

                        <strong>Situation:</strong> 

                        {{ actualMarkerState.label }} 

                      </p></v-card-subtitle 

                    > 

                  </div> 

                </v-col> 

              </div> 

            </v-card> 

            <v-card v-if="$vuetify.breakpoint.smAndDown"> 

              <div class="d-flex"> 

                <v-col cols="12"> 

                  <v-img class="white--text" :src="actualMarker.image"></v-img> 

                  <div class="mt-3"> 

                    <v-card-subtitle> 

                      <p> 

                        <strong>Description:</strong> 

                        {{ actualMarker.description }} 

                      </p></v-card-subtitle 

                    > 

                    <v-card-subtitle> 

                      <p> 

                        <strong>Threshold:</strong> {{ actualMarker.limit }} m 

                      </p></v-card-subtitle 

                    > 

                    <v-card-subtitle> 

                      <p> 

                        <strong>Water Level:</strong> 
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                        {{ parseFloat(actualMarkerState.height).toFixed(2) }} m 

                      </p></v-card-subtitle 

                    > 

                    <v-card-subtitle> 

                      <p> 

                        <strong>Situation:</strong> 

                        {{ actualMarkerState.label }} 

                      </p></v-card-subtitle 

                    > 

                  </div> 

                </v-col> 

              </div> 

            </v-card> 

          </v-tab-item> 

          <v-tab-item> 

            <v-card flat> 

              <v-row 

                :justify="$vuetify.breakpoint.mdAndUp ? 'center' : 'left'" 

                :class="$vuetify.breakpoint.mdAndUp ? '' : 'pl-2'" 

              > 

                <GChart 

                  class="align-center" 

                  type="AreaChart" 

                  :data="channelChartData" 

                  :options="channelChartOptions" 

                /> 

              </v-row> 

 

              <v-row justify="center" align="center"> 

                <v-chip class="ma-2" :color="clockChipColor" text-color="black"> 

                  <v-icon left>{{ clockChipIcon }}</v-icon> 

                  {{ sliderLabels[slider] }} 

                </v-chip> 

                <v-chip outlined>{{ clockChipLabel }} </v-chip> 

              </v-row> 

              <v-slider 

                v-model="slider" 

                class="align-center mx-4 pb-4" 

                :max="sliderMax" 

                min="0" 

                hide-details 

                @input="updateGraph()" 

              > 

              </v-slider> 

            </v-card> 

          </v-tab-item> 

          <v-tab-item> 

            <v-card flat> 

              <v-container wrap> 
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                <v-layout wrap> 

                  <v-row 

                    :justify="$vuetify.breakpoint.mdAndUp ? 'center' : 'left'" 

                    :class="$vuetify.breakpoint.mdAndUp ? '' : 'pl-0'" 

                  > 

                    <GChart 

                      class="align-left mx-0" 

                      type="LineChart" 

                      :data="timeChartData" 

                      :options="timeChartOptions" 

                    /> 

                  </v-row> 

                  <v-row> 

                    <v-col cols="3" sm="3" class="pa-1"> 

                      <v-chip color="green" small> Safe </v-chip> 

                    </v-col> 

                    <v-col cols="9" sm="8" class="pa-1"> 

                      <p style="font-size: 13px"> 

                        <strong 

                          >The limit where the water is at a safe level</strong 

                        > 

                      </p> 

                    </v-col> 

                  </v-row> 

                  <v-row> 

                    <v-col cols="3" sm="3" class="pa-1" center> 

                      <v-chip small color="red"> warning </v-chip> 

                    </v-col> 

                    <v-col cols="9" sm="8" class="pa-1"> 

                      <p style="font-size: 13px"> 

                        <strong 

                          >When the water level is higher then the 

                          Threshold</strong 

                        > 

                      </p> 

                    </v-col> 

                  </v-row> 

                </v-layout> 

              </v-container> 

            </v-card> 

          </v-tab-item> 

        </v-tabs-items> 

      </v-card> 

    </v-dialog> 

 

    <v-dialog 

      v-model="aboutDialog" 

      fullscreen 

      style="max-width: 100%; overflow-x: hidden; backgroud: #ffffff" 
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    > 

      <v-card :height="screenHeight - 100"> 

        <v-layout 

          style="max-width: 100%; overflow-x: hidden; backgroud: #ffffff" 

          fluid 

          fullscreen 

          row 

          align-end 

          justify-center 

          fill-height 

        > 

          <v-toolbar dark color="primary"> 

            <v-btn icon dark @click="aboutDialog = false"> 

              <v-icon>mdi-close</v-icon> 

            </v-btn> 

            <v-toolbar-title>About the app</v-toolbar-title> 

            <v-spacer></v-spacer> 

          </v-toolbar> 

          <v-layout row align-end justify-center fill-height> 

            <v-flex xs12 sm12 md12 lg12 xg12> 

              <v-img :src="logo_app"></v-img> 

            </v-flex> 

            <v-flex class="about-text about-center py-4 px-4"> 

              <div 

                v-if="$vuetify.breakpoint.xsOnly" 

                class="text-xs-center subheading" 

              > 

                <p> 

                  This app was developed by the joined efforts of Federal 

                  University of Mato Grosso do Sul (UFMS) and Hydrology and 

                  Water Security Research Group (HWS). 

                </p> 

                <p> 

                  The study was supported by grants from the Ministry of 

                  Science, Technology, Innovation and Communication – MCTIC and 

                  National Council for Scientific and Technological Development 

                  – CNPq (grants 441289/2017-7 and 306830/2017-5) and 

                  Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - 

                  Brasil – CAPES (Finance Code 001 and Capes PrInt). 

                </p> 

              </div> 

              <div 

                v-if="$vuetify.breakpoint.smAndUp" 

                class="text-xs-center headline" 

              > 

                <p> 

                  This app was developed by the joined efforts of Federal 

                  University of Mato Grosso do Sul (UFMS) and Hydrology and 

                  Water Security Research Group (HWS). 
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                </p> 

                <p> 

                  The study was supported by grants from the Ministry of 

                  Science, Technology, Innovation and Communication – MCTIC and 

                  National Council for Scientific and Technological Development 

                  – CNPq (grants 441289/2017-7 and 306830/2017-5) and 

                  Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - 

                  Brasil – CAPES (Finance Code 001 and Capes PrInt). 

                </p> 

              </div> 

 

              <p 

                v-if="$vuetify.breakpoint.xsOnly" 

                class="body-2 text-xs-center mt-4 white--text" 

                style="text-decoration: underline" 

              > 

                Version: Alpha-0.1 

              </p> 

              <p 

                v-if="$vuetify.breakpoint.smAndUp" 

                class="body-1 text-xs-center mt-4 white--text" 

                style="text-decoration: underline" 

              > 

                Version: Alpha-0.1 

              </p> 

            </v-flex> 

            <v-flex xs6 sm6 md6 lg6 xg6 class="pl-6 pr-1 pb-12 mb-10"> 

              <v-img :src="logo_ufms"></v-img> 

            </v-flex> 

            <v-flex xs6 sm6 md6 lg6 xg6 class="pl-1 pr-6 pb-12 mb-10"> 

              <v-img :src="logo_hws"></v-img> 

            </v-flex> 

          </v-layout> 

        </v-layout> 

      </v-card> 

    </v-dialog> 

 

    <template v-if="loadButton"> 

      <v-row> 

        <v-col cols="9"> 

          <v-select 

            v-model="selectedDate" 

            :items="simulationDatesAvailable" 

            label="Data" 

            dense 

            solo 

            background-color="white" 

            height="4" 

            class="ma-2" 
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            @change="changeSelectedDate()" 

          ></v-select> 

        </v-col> 

        <v-speed-dial 

          style="position: absolute" 

          v-model="fab" 

          large 

          top 

          right 

          direction="bottom" 

          transition="slide-y-reverse-transition" 

        > 

          <template v-slot:activator> 

            <v-btn v-model="fab" color="blue darken-2" dark fab> 

              <v-icon v-if="fab">mdi-close</v-icon> 

              <v-icon v-else>menu</v-icon> 

            </v-btn> 

          </template> 

          <v-btn fab dark small color="green" @click="aboutDialog = true"> 

            <v-icon>info</v-icon> 

          </v-btn> 

        </v-speed-dial> 

      </v-row> 

    </template> 

  </GmapMap> 

</template> 

 

<style> 

.vue-map-hidden { 

  display: contents; 

  height: 100%; 

  width: 100%; 

  position: absolute; 

  top: 0px; 

  left: 0px; 

} 

 

.bg-image { 

  display: flex; 

  flex-direction: column; 

  justify-content: center; 

} 

 

.gm-style .gm-style-iw-c { 

  width: 300px; 

  max-width: 300px; 

} 

.gm-style .gm-style-iw { 

  min-width: 300px; 
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} 

.about-center { 

  width: 90%; 

  margin: auto; 

  position: absolute; 

  top: 50%; 

  left: 50%; 

  -webkit-transform: translate(-50%, -50%); 

  -ms-transform: translate(-50%, -50%); 

  transform: translate(-50%, -50%); 

} 

 

.wrapper { 

  height: 100%; 

} 

 

.about-text { 

  background-color: rgba(0, 0, 0, 0.3); 

  color: #fff; 

} 

</style> 

 

<script> 

import { gmapApi } from "vue2-google-maps"; 

import { db } from "../utils/db"; 

import { GChart } from "vue-google-charts"; 

import GmapCustomMarker from "vue2-gmap-custom-marker"; 

import logo_ufms from "../assets/logo_ufms.jpg"; 

import logo_hws from "../assets/hws-ufms.png"; 

import logo_app from "../assets/logo_app.png"; 

import BackgroundImage from "../assets/bg_screen.png"; 

const polygons_table = "polygons_table_name"; 

const markers_table = "markers_tables_name"; 

export default { 

  components: { 

    GChart, 

    "gmap-custom-marker": GmapCustomMarker, 

  }, 

  computed: { 

    google: gmapApi, 

  }, 

  firebase: { 

    polygons: db.ref(polygons_table), 

  }, 

  mounted() { 

    if (localStorage.getItem("floodSurfaces")) 

      this.floodSurfaces = JSON.parse(localStorage.getItem("floodSurfaces")); 

    if (localStorage.getItem("lastUpdate")) 

      this.lastUpdate = JSON.parse(localStorage.getItem("lastUpdate")); 
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    if (localStorage.getItem("markers")) 

      this.markers = JSON.parse(localStorage.getItem("markers")); 

 

    db.ref(polygons_table).once("value", (snapshot) => { 

      const documents = snapshot.val(); 

      for (const itemID in documents) { 

        db.ref(polygons_table+'/' + itemID).once("value", (snapshot) => { 

          const document = snapshot.val(); 

          if (document.properties.created > this.lastUpdate) { 

            const surface = { id: itemID, properties: document.properties }; 

            this.floodSurfaces.push(surface); 

            this.lastUpdate = document.properties.created; 

          } 

        }); 

      } 

    }); 

 

    db.ref(markers_table).once("value", (snapshot) => { 

      const documents = snapshot.val(); 

      this.markers = documents; 

    }); 

 

    var min = 0; 

    var max = 99999999; 

    var selected = 0; 

    var selectedSurfaces = []; 

 

    for (const surface of this.floodSurfaces) { 

      var ts = new Date(surface.properties.timestamp); 

      if (ts >= min && ts < Date.now() && selected == 0) { 

        if (ts == min) { 

          selectedSurfaces.push(surface); 

        } else { 

          selectedSurfaces = []; 

          selectedSurfaces.push(surface); 

        } 

        min = ts; 

      } else if (ts >= Date.now() && ts <= max) { 

        if (ts == max || selected == 0) { 

          selectedSurfaces.push(surface); 

        } else { 

          selectedSurfaces = []; 

          selectedSurfaces.push(surface); 

        } 

        max = ts; 

        selected = ts; 

      } 

      this.simulationDatesAvailable.push(ts.toLocaleString()); 

    } 
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    if (selected == 0) { 

      this.selectedDate = min.toLocaleString(); 

    } else { 

      this.selectedDate = selected.toLocaleString(); 

    } 

    this.changeSelectedDate(this.selectedDate); 

 

    for (const surface of selectedSurfaces) { 

      this.getPolyCoordinates(surface); 

    } 

 

    this.geolocate(); 

    this.loadButton = true; 

  }, 

  updated() { 

    setInterval(this.geolocate(), 1800000); 

  }, 

  data: () => ({ 

    backgroundImage: BackgroundImage, 

    screenHeight: window.innerHeight, 

    logo_hws: logo_hws, 

    logo_ufms: logo_ufms, 

    logo_app: logo_app, 

    selectedDate: "", 

    selectedTimestamp: 0, 

    dateObjSelected: {}, 

    sliderMax: 0, 

    sliderLabels: [], 

    actualMarker: {}, 

    lastUpdate: 0, 

    actualMarkerState: {}, 

    slider: 0, 

    clockChipColor: "green", 

    clockChipIcon: "done_outline", 

    clockChipLabel: "Safe", 

    tab: null, 

    zoom: 15, 

    showGraphBool: 0, 

    infoDialogBool: 0, 

    aboutDialog: false, 

    timeChartData: [], 

    channelChartData: [], 

    channelChartOptions: { 

      vAxis: { 

        title: "Water Level (m)", 

        titleTextStyle: { bold: true, fontSize: "14" }, 

      }, 

      hAxis: { 
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        title: "Width (m)", 

        titleTextStyle: { bold: true, fontSize: "14" }, 

      }, 

      legend: { position: "top", textStyle: { bold: true, fontSize: "12" } }, 

      height: 350, 

      width: 350, 

      isStacked: true, 

      forceIFrame: true, 

      series: [ 

        { color: "black", lineWidth: 1 }, 

        { color: "blue", lineWidth: 0 }, 

      ], 

    }, 

    timeChartOptions: { 

      chart: { 

        title: "Time x Water Level", 

      }, 

      curveType: "function", 

      crosshair: { 

        color: "#000", 

        trigger: "selection", 

      }, 

      forceIFrame: true, 

      vAxis: { 

        title: "Water Level (m)", 

        titleTextStyle: { bold: true, fontSize: "14" }, 

      }, 

      hAxis: { 

        title: "Hour (h)", 

        titleTextStyle: { bold: true, fontSize: "14" }, 

      }, 

      legend: { 

        position: "top", 

        textStyle: { bold: true, fontSize: "12" }, 

        maxLines: "2", 

      }, 

      series: { 

        0: { 

          visibleInLegend: false, 

          // Set any applicable options on the first series 

        }, 

        1: { 

          // Set the options on the second series 

          color: "black", 

          lineWidth: 1, 

          lineDashStyle: [4, 2, 4], 

          pointSize: 3, 

          visibleInLegend: true, 

        }, 
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        2: { 

          // Set the options on the second series 

          color: "green", 

          lineWidth: 2, 

          pointSize: 0, 

          visibleInLegend: true, 

        }, 

        3: { 

          // Set the options on the second series 

          color: "red", 

          lineWidth: 2, 

          pointSize: 0, 

          visibleInLegend: true, 

        }, 

      }, 

    }, 

    mapKey: 0, 

    polygons: [], 

    simulationDatesAvailable: [], 

    floodSurfaces: [], 

    loadButton: false, 

    fab: false, 

    center: { lat: -20.50327, lng: -54.609691 }, 

    marker: { lat: -20.45495, lng: -54.582083 }, 

    markers: {}, 

    floodAreasArray: [], 

    floodAreas: [], 

  }), 

  watch: { 

    floodSurfaces: { 

      handler() { 

        localStorage.setItem( 

          "floodSurfaces", 

          JSON.stringify(this.floodSurfaces) 

        ); 

      }, 

      deep: true, 

    }, 

    markers: { 

      handler() { 

        localStorage.setItem("markers", JSON.stringify(this.markers)); 

      }, 

      deep: true, 

    }, 

    lastUpdate: { 

      handler() { 

        localStorage.setItem("lastUpdate", JSON.stringify(this.lastUpdate)); 

      }, 

      deep: true, 
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    }, 

  }, 

  methods: { 

    // Set the chosen simulation date on the picker and get it from firebase 

    changeSelectedDate: function () { 

      this.floodAreasArray = []; 

      var dateAndTime = this.selectedDate.split(" "); 

      var date = dateAndTime[0].split("/"); 

      var time = dateAndTime[1].split(":"); 

 

      this.dateObjSelected = { 

        year: date[2], 

        month: parseInt(date[1]) - 1, 

        day: date[0], 

        hour: time[0], 

        minutes: time[1], 

        seconds: time[2], 

      }; 

      this.selectedTimestamp = new Date( 

        date[2], 

        parseInt(date[1]) - 1, 

        date[0], 

        time[0], 

        time[1], 

        time[2] 

      ).getTime(); 

 

      var selectedSurfaces = []; 

      for (const surface of this.floodSurfaces) { 

        var ts = surface.properties.timestamp; 

 

        if (parseInt(ts) == parseInt(this.selectedTimestamp)) { 

          selectedSurfaces.push(surface); 

        } 

      } 

 

      for (const surface of selectedSurfaces) { 

        db.ref(polygons_table+'/' + surface.id).once("value", (snapshot) => { 

          const document = snapshot.val(); 

          this.getPolyCoordinates(document); 

        }); 

      } 

    }, 

    // Convert date string to object 

    getDateObj: function (dateString) { 

      var dateAndTime = dateString.split(" "); 

      var date = dateAndTime[0].split("/"); 

      var time = dateAndTime[1].split(":"); 

      return { 
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        year: date[2], 

        month: parseInt(date[1]) - 1, 

        day: date[0], 

        hour: time[0], 

        minutes: time[1], 

        seconds: time[2], 

      }; 

    }, 

 

    findTimestampIndex: function (array, value) { 

      const position = array.findIndex(function (object) { 

        return object.timestamp === value; 

      }); 

      return position; 

    }, 

    // Creates graphs of the marker info 

    showGraphs: function () { 

      var dateObjSelected = this.dateObjSelected; 

      this.sliderLabels = []; 

 

      var hourselected = parseFloat(dateObjSelected.hour); 

      var daySelectedTimestamp = new Date( 

        dateObjSelected.year, 

        dateObjSelected.month, 

        dateObjSelected.day, 

        0, 

        0, 

        0 

      ).getTime(); 

 

      this.slider = hourselected; 

      var marker = this.actualMarker; 

      var timeChartData = [["Hour", "Depth", "S. Time", "Safe", "Warning"]]; 

 

      var channelChartData = [["Calha X", "Channel", "Water"]]; 

 

      for (const depth of marker.depths) { 

        if ( 

          depth.timestamp >= daySelectedTimestamp && 

          depth.timestamp < daySelectedTimestamp + 86400000 

        ) { 

          var ts = new Date(parseInt(depth.timestamp)); 

          var time = this.getDateObj(ts.toLocaleString()); 

          var newData; 

          if (depth.timestamp == this.selectedTimestamp) { 

            timeChartData.push([ 

              parseInt(time.hour) + time.minutes / 60, 

              parseFloat(depth.height), 

              0, 
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              marker.limit - 0.5, 

              marker.limit, 

            ]); 

            newData = [ 

              parseInt(time.hour) + time.minutes / 60, 

              parseFloat(depth.height), 

              parseFloat(depth.height), 

              marker.limit - 0.5, 

              marker.limit, 

            ]; 

          } else { 

            newData = [ 

              parseInt(time.hour) + time.minutes / 60, 

              parseFloat(depth.height), 

              null, 

              marker.limit - 0.5, 

              marker.limit, 

            ]; 

          } 

          timeChartData.push(newData); 

          if (time.hour == hourselected) this.slider = this.sliderLabels.length; 

          this.sliderLabels.push(time.hour + ":" + time.minutes); 

        } 

      } 

      this.sliderMax = this.sliderLabels.length - 1; 

 

      for (const arrayXY of marker.graphArray) { 

        var timeSelectedSlider = this.sliderLabels[this.slider].split(":"); 

        var timestampSliderSelected = new Date( 

          dateObjSelected.year, 

          dateObjSelected.month, 

          dateObjSelected.day, 

          timeSelectedSlider[0], 

          timeSelectedSlider[1], 

          0 

        ).getTime(); 

        var xy = arrayXY.slice(); 

 

        var depth = marker.depths.find((obj) => { 

          return parseInt(obj.timestamp) === parseInt(timestampSliderSelected); 

        }); 

        parseFloat(depth.height) - xy[1] > 0 

          ? xy.push(parseFloat(depth.height) - xy[1]) 

          : xy.push(0); 

        channelChartData.push(xy); 

      } 

      this.changeClockChipColor(timestampSliderSelected); 

 

      this.timeChartData = timeChartData; 
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      if (this.$vuetify.breakpoint.lgAndUp) { 

        this.timeChartOptions.height = 700; 

        this.timeChartOptions.width = 850; 

        this.channelChartOptions.height = 700; 

        this.channelChartOptions.width = 800; 

      } else if (this.$vuetify.breakpoint.mdOnly) { 

        this.timeChartOptions.height = 500; 

        this.timeChartOptions.width = 650; 

        this.channelChartOptions.height = 500; 

        this.channelChartOptions.width = 600; 

      } else if (this.$vuetify.breakpoint.smAndDown) { 

        this.timeChartOptions.height = 300; 

        this.timeChartOptions.width = 400; 

        this.channelChartOptions.height = 300; 

        this.channelChartOptions.width = 350; 

      } 

 

      this.channelChartData = channelChartData; 

      this.showGraphBool = 1; 

    }, 

    // updates the channel form graph with new water level when using the slider 

    updateGraph: function () { 

      var channelChartData = [["Calha X", "Channel", "Water"]]; 

      var marker = this.actualMarker; 

      var dateObjSelected = this.dateObjSelected; 

      for (const arrayXY of marker.graphArray) { 

        var timeSelectedSlider = this.sliderLabels[this.slider].split(":"); 

        var timestampSliderSelected = new Date( 

          dateObjSelected.year, 

          dateObjSelected.month, 

          dateObjSelected.day, 

          timeSelectedSlider[0], 

          timeSelectedSlider[1], 

          0 

        ).getTime(); 

        var xy = arrayXY.slice(); 

 

        var depth = marker.depths.find((obj) => { 

          return parseInt(obj.timestamp) === parseInt(timestampSliderSelected); 

        }); 

 

        parseFloat(depth.height) - xy[1] > 0 

          ? xy.push(parseFloat(depth.height) - xy[1]) 

          : xy.push(0); 

        channelChartData.push(xy); 

      } 

      this.changeClockChipColor(timestampSliderSelected); 

 

      this.channelChartData = channelChartData; 
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    }, 

    // Change the color, icon and label of the chip in the slider 

    // according to the level state 

    changeClockChipColor: function (timestamp) { 

      var state = this.checkLevelState(this.actualMarker, timestamp); 

      this.clockChipColor = state.color; 

      this.clockChipIcon = state.icon; 

      this.clockChipLabel = state.label; 

    }, 

    // Check the level state in a marker 

    checkLevelState: function (marker, timestamp) { 

      var state = { 

        label: "", 

        icon: "", 

        color: "", 

        height: 0, 

      }; 

      var depth = marker.depths.find((obj) => { 

        return parseInt(obj.timestamp) === parseInt(timestamp); 

      }); 

      if (!depth) { 

        state.color = "blue"; 

        state.icon = "warning"; 

        state.label = "No Information"; 

        state.height = 0; 

        return state; 

      } 

      if (depth.height > marker.limit) { 

        state.color = "red"; 

        state.icon = "warning"; 

        state.label = "Danger"; 

        state.height = depth.height; 

      } else if ( 

        depth.height <= marker.limit && 

        depth.height >= marker.limit - 0.5 

      ) { 

        state.color = "yellow"; 

        state.icon = "error_outline"; 

        state.label = "Warning"; 

        state.height = depth.height; 

      } else if (depth.height < marker.limit - 0.5) { 

        state.color = "green"; 

        state.icon = "done_outline"; 

        state.label = "Safe"; 

        state.height = depth.height; 

      } 

      return state; 

    }, 

    // Get the marker icon url according to its level state 
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    getMarkerIcon: function (marker) { 

      var state = this.checkLevelState(marker, this.selectedTimestamp); 

      var color = state.color; 

      return "http://maps.google.com/mapfiles/ms/icons/" + color + "-dot.png"; 

    }, 

    // Updates the user location 

    geolocate: function () { 

      navigator.geolocation.getCurrentPosition((position) => { 

        this.center = { 

          lat: position.coords.latitude, 

          lng: position.coords.longitude, 

        }; 

      }); 

    }, 

    // Get the polygon vertices coordinates 

    getPolyCoordinates(floodSurfaces) { 

      var coordsArray; 

      var item; 

      var item2; 

      var floodAreas = []; 

 

      for (coordsArray in floodSurfaces.geometries) { 

        for (item in floodSurfaces.geometries[coordsArray].coordinates) { 

          var geometries = []; 

          for (item2 in floodSurfaces.geometries[coordsArray].coordinates[ 

            item 

          ]) { 

            geometries.push({ 

              lng: 

                floodSurfaces.geometries[coordsArray].coordinates[item][ 

                  item2 

                ][0], 

              lat: 

                floodSurfaces.geometries[coordsArray].coordinates[item][ 

                  item2 

                ][1], 

            }); 

          } 

          floodAreas.push(geometries); 

        } 

      } 

      this.floodAreasArray.push(floodAreas); 

    }, 

    // Changes the selected marker 

    markerClicked: function (marker) { 

      this.actualMarker = marker; 

      this.actualMarkerState = this.checkLevelState( 

        marker, 

        this.selectedTimestamp 
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      ); 

      this.showGraphs(); 

    }, 

  }, 

}; 

</script> 

 

 

Send_to_db_app.py (Pytho application for sending data to firebase) 

from tkinter import * 

from tkinter import filedialog 

from tkinter import messagebox 

from tkinter import ttk 

import pyrebase 

import json 

import rasterio 

from rasterio.mask import mask 

from rasterio import features 

import pprint 

import numpy as np 

import sys 

from rasterio.enums import Resampling 

import gdal, ogr, os, osr, errno 

import csv 

import time 

import datetime 

from functools import partial 

import json 

import csv 

from datetime import datetime, timedelta 

import requests 

import requests_ftp 

from google.cloud import storage 

 

now = datetime.now() 

backup_foldername = 'YOUR:/BACKUP/DIRECTORY/' + now.strftime("%Y-%m-%d") 

 

def clickSelectFolder(folderEntry): 

    direc = filedialog.askdirectory() 

    folderEntry.set(direc) 

 

#Get the forecast from cptec and creates a CSV 

def createForecastCSV(folderEntry): 

    if folderEntry.get() != '' and os.path.exists(os.path.dirname(folderEntry.get())): 

        dateTimeObj = datetime.now() 

        dateTimeObj = dateTimeObj - timedelta(hours=int(dateTimeObj.strftime("%H"))) 

        dayString = dateTimeObj.strftime("%d") 
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        monthString = dateTimeObj.strftime("%m") 

        yearString = dateTimeObj.strftime("%Y") 

        url = 'http://ftp1.cptec.inpe.br/modelos/tempo/WRF/ams_05km/recortes/grh/json/' + year

String + '/' + monthString + '/' + dayString + '/00/225.json' 

        requests_ftp.monkeypatch_session() 

        response = requests.get(url) 

        print(response) 

        data = response.text 

        print(data) 

        weather = json.loads(data) 

 

        hora = int(dateTimeObj.strftime("%H")) 

        print(str(hora)) 

        print(str(dateTimeObj)) 

        timestampStr = dateTimeObj.strftime("%d%b%Y %H") 

         

        print('Current Timestamp : ', timestampStr) 

 

        fileOutput = folderEntry.get()+'/forecast.csv' 

        outputFile = open(fileOutput, 'w') #load csv file 

        with open(fileOutput, 'w', newline='') as outputFile: 

            output = csv.writer(outputFile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MIN

IMAL) 

            datasets = weather["datasets"][0] 

            data = datasets["data"] #load json content 

            outputFile.write("B,,PROSA\n") 

            outputFile.write("C,UTC,PRECIP-INC\n") 

            outputFile.write("E,,1HOUR\n") 

            outputFile.write("F,,OBS\n") 

            outputFile.write("Units,,MM\n") 

            outputFile.write("Type,,PER-CUM\n") 

 

            for i,row in enumerate(data): 

                print(str(hora + i)) 

                outputFile.write(str(i+1) + "," + timestampStr + "00" +', '+ str(row["prec"])) 

                outputFile.write('\n') 

                dateTimeObj = dateTimeObj + timedelta(hours=1) 

                timestampStr = dateTimeObj.strftime("%d%b%Y %H") 

 

    elif folderEntry.get() == '': 

        messagebox.showinfo('Error', 'Please Select the Destination Folder!') 

    elif not os.path.exists(os.path.dirname(folderEntry.get())): 

        messagebox.showinfo('Error', 'Destination Folder Doesn\'t Exist!') 

 

#Downsample the raster 

def downsampling( g, hires_data, factor ): 

    """This function downsamples, using the **mode**, the 2D array 

    `hires_data`. The datatype is assumed byte in this case, and 

    you might want to change that. The output files are given by 
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    `fname_out`, and we downsample by a factor of 100 and 300. The 

    initial GDAL dataset is `g` (this is where the data are coming 

    from, and we use that to fish out the resolution, geotransform, 

    etc.). 

 

    NOTE that this is fairly specialised a function, and you might 

    want to have more flexiblity by adding options to deal with 

    the aggregation procedure in `gdal.RegenerateOverviews`, the 

    resolutions of the aggregations you want, the datatypes, etc. 

    """ 

    # Create an in-memory GDAL dataset to store the full resolution 

    # dataset... 

 

    total_obs = g.RasterCount 

    drv = gdal.GetDriverByName( "MEM" ) 

    dst_ds = drv.Create("", g.RasterXSize, g.RasterYSize, 1, gdal.GDT_UInt16 ) 

    dst_ds.SetGeoTransform( g.GetGeoTransform()) 

 

    srs = osr.SpatialReference() 

    srs.ImportFromEPSG(32721) 

 

    dst_ds.SetProjection ( srs.ExportToWkt() ) 

    proj = osr.SpatialReference(wkt=g.GetProjection()) 

 

    dst_ds.GetRasterBand(1).WriteArray( hires_data.astype(float)*100 ) 

 

    geoT = g.GetGeoTransform() 

    drv1 = gdal.GetDriverByName( "GTiff" ) 

 

    resampled_dir = backup_foldername + "/raster/" 

 

    if not os.path.exists(os.path.dirname(resampled_dir)): 

        try: 

            os.makedirs(os.path.dirname(resampled_dir)) 

        except OSError as exc: # Guard against race condition 

            if exc.errno != errno.EEXIST: 

                raise 

 

    resampled_filename =  resampled_dir + now.strftime("%Y-%m-%d_%H%M%S") + ".tif" 

 

    resampled = drv1.Create( resampled_filename , int(g.RasterXSize/factor), int(g.RasterYSiz

e/factor), 1, gdal.GDT_UInt16 ) 

 

    this_geoT = ( geoT[0], geoT[1]*factor, geoT[2], geoT[3], geoT[4], geoT[5]*factor ) 

    resampled.SetGeoTransform( this_geoT ) 

    resampled.SetProjection (srs.ExportToWkt()) 

 

    gdal.RegenerateOverviews ( dst_ds.GetRasterBand(1), [resampled.GetRasterBand(1)],'aver

age' ) 
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    resampled.GetRasterBand(1).SetNoDataValue ( 0 ) 

 

    return resampled_filename 

 

#Makes the geojson of the raster's shape polygon 

def makePolyGeojson(filename) : 

    now = datetime.now() 

    geoteste = '' 

    orig_stdout = sys.stdout 

    dateString = filename[filename.find('(')+1 : filename.find(')')] 

 

    jsonBackUpName = backup_foldername + '/json/' + now.strftime("%Y-%m-

%d_%H%M%S")+'.json' 

    if not os.path.exists(os.path.dirname(jsonBackUpName)): 

        try: 

            os.makedirs(os.path.dirname(jsonBackUpName)) 

        except OSError as exc: # Guard against race condition 

            if exc.errno != errno.EEXIST: 

                raise 

 

    f = open(jsonBackUpName, 'w') 

    print(filename) 

    with rasterio.open(filename) as src: 

        print( 

            """{   "type": "GeometryCollection", 

    "geometries": [""" 

        ) 

        geoteste = geoteste +"""{   "type": "GeometryCollection", 

    "geometries": [""" 

         

 

        mask = src.dataset_mask() 

 

        for geom, val in rasterio.features.shapes( 

                mask, transform=src.transform): 

 

            # Transform shapes from the dataset's own coordinate 

            # reference system to CRS84 (EPSG:4326). 

            geom = rasterio.warp.transform_geom( 

                src.crs, 'EPSG:4326', geom, precision=5) 

 

            # Print GeoJSON shapes to stdout. 

            if val > 0 : 

                pprint.pprint(geom) 

                geoteste = geoteste + json.dumps(geom) 

                geoteste = geoteste + "\n," 

                lastline = f.tell() 

                print(',') 
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        f.seek(lastline) 

        """], 

        "period": { 

            "begin": + str(time.time()*1000) + , 

            "end": + str((time.time()+3*3600)*1000) +} 

            }""" 

        print("""], 

        "properties": {timestamp": """ + str(time.mktime(datetime.datetime.strptime(dateString, 

"%d%b%Y %H %M %S").timetuple())) + """} 

            }""" 

        ) 

 

        geoteste = geoteste[:-1] 

        geoteste = geoteste + """], 

        "properties": {timestamp": """ + str(time.mktime(datetime.datetime.strptime(dateString, 

"%d%b%Y %H %M %S").timetuple())) + "}" 

        geoteste = geoteste +""" 

                 

            }""" 

 

    sys.stdout = orig_stdout 

    f.close() 

    return geoteste 

 

config = { 

  "apiKey": "YOR_API_KEY", 

  "authDomain": "YOUR_AUTHDOMAIN", 

  "databaseURL": "YOUR_DATABASE_URL", 

  "storageBucket": "YOUR_STORAGEBUCKET", 

  "serviceAccount": "YOUR_SERVICEACCOUNT_JSON" 

} 

firebase = pyrebase.initialize_app(config) 

  

window = Tk() 

  

window.title('Flood Alert Data') 

 

window.geometry('720x200') 

style = ttk.Style() 

 

tab_control = ttk.Notebook(window) 

 

tab_areas = ttk.Frame(tab_control) 

 

tab_markers = ttk.Frame(tab_control) 

 

tab_forecast = ttk.Frame(tab_control) 
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tab_control.add(tab_areas, text='Areas') 

 

tab_control.add(tab_markers, text='Markers') 

 

tab_control.add(tab_forecast, text='Forecast') 

 

lbl = Label(tab_areas, text="Select the flood surface raster:", justify=LEFT,font=("Arial Bold

", 24)) 

  

lbl.grid(column=0, row=0) 

 

fileEntry = StringVar() 

 

downsampling_factor = StringVar() 

downsampling_factor.set('3') 

 

#send the raster shape to firebase 

def sendClicked(raster): 

    if downsampling_factor.get() != '' and os.path.exists(os.path.dirname(raster.get())): 

        db = firebase.database() 

         

        resampled_filename = '' 

        with rasterio.open(raster.get()) as src: 

            print(src.crs) 

            resampled_filename = downsampling( gdal.Open(raster.get()), np.array(src.read(1)), i

nt(downsampling_factor.get()) ) 

 

        geoteste = makePolyGeojson(resampled_filename) 

 

        db.child("polygons").push(json.loads(geoteste)) 

 

        messagebox.showinfo('Success', 'Data sent to server!') 

    elif downsampling_factor.get() == '': 

        messagebox.showinfo('Error', 'Missing Downsampling Factor!') 

    elif not os.path.exists(os.path.dirname(raster.get())): 

        messagebox.showinfo('Error', 'Missing flood surface raster!') 

 

fileDir = Entry(tab_areas,width=40, font=("Arial", 18), textvariable=fileEntry) 

fileDir.grid(column=0, row=1) 

 

lbl2 = Label(tab_areas, text="Downsampling Factor:", justify=LEFT,font=("Arial Bold", 24)) 

lbl2.grid(column=0, row=2) 

factorBlock = Entry(tab_areas,width=10, font=("Arial", 18), textvariable=downsampling_fact

or) 

factorBlock.grid(column=0, row=3) 

 

def clickSelectFile(entry): 

    direc = filedialog.askopenfilename(filetypes = [('Image Files', ['.tiff', '.tif'])]) 

    entry.set(direc) 
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def clickSelectImage(entry): 

    direc = filedialog.askopenfilename(filetypes = [('Image Files', ['.png', '.jpg'])]) 

    entry.set(direc) 

 

def clickSelectCSV(entry): 

    direc = filedialog.askopenfilename(filetypes = [('Image Files', ['.csv'])]) 

    entry.set(direc) 

 

lbl3 = Label(tab_markers, text="Create Marker", justify=CENTER,font=("Arial Bold", 24)) 

lbl3.grid(column=1, row=0) 

 

#Upload the marker image to firebasestorage 

def uploadToCloudStorage (path) : 

    os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="YOUR_APPLICATION_C

REDENTIALS" 

    client = storage.Client() 

    bucket = client.get_bucket('YOUR_FIREBASE_BUCKET') 

    # posting to firebase storage 

    imageBlob = bucket.blob("/") 

    separatePath = path.split('/') 

    name = separatePath[-1] 

    imagePath = path 

    imageBlob = bucket.blob(name) 

    imageBlob.upload_from_filename(imagePath) 

 

    return 'https://firebasestorage.googleapis.com/v0/b/'+'YOUR_APPLICATIONSTORAGE_

URL'+'/o/'+name+'?alt=media' 

 

#Get a channel form and its limit from a CSV 

def setArrayGraphFromCSV(path,marker): 

    maioresElev = [0,0] 

    menorElev = 9999 

    i = 0 

    array = [] 

    with open(path, mode='r') as infile: 

        reader = csv.reader(infile) 

        next(reader) 

        for row in reader: 

            array.append(row) 

            if(float(row[1]) > maioresElev[i%2]): 

                i+=1 

                maioresElev[i%2] = float(row[1]) 

             

            if(float(row[1]) < menorElev): 

                menorElev = float(row[1]) 

             

    if (maioresElev[0] > maioresElev[1]): 

        marker["limit"] = maioresElev[0] 
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    else: 

        marker["limit"] = maioresElev[1] 

    marker["graphArray"] = array 

 

#Send a marker info to firebase 

def sendMarker (markerStrings): 

    marker = { 

        "coord" : { 

            "lat": markerStrings["lat"].get(), 

            "long": markerStrings["long"].get() 

        }, 

        "description": markerStrings["description"].get(), 

        "image": "", 

        "limit": 0, 

        "interval": 60, 

        "graphArray": [], 

        "depths": [] 

    } 

     

    if marker["coord"]["lat"] != '' and marker["coord"]["long"] != ''\ 

    and marker["description"]!= '' and os.path.exists(os.path.dirname(markerStrings["csvDir"].

get()))\ 

    and os.path.exists(os.path.dirname(markerStrings["imgDir"].get())): 

 

        marker['image'] = uploadToCloudStorage(markerStrings["imgDir"].get()) 

        print(marker['image']) 

        setArrayGraphFromCSV(markerStrings["csvDir"].get(),marker) 

 

        db = firebase.database() 

        db.child("markers").push(marker) 

 

        messagebox.showinfo('Success', 'Data sent to server!') 

    else: 

        messagebox.showinfo('Error', 'Please Fill All Variables') 

 

for i in range(1) : 

    marker = { 

        "lat": StringVar(), 

        "long": StringVar(), 

        "csvDir": StringVar(), 

        "description": StringVar(), 

        "imgDir": StringVar() 

    } 

    lbl4 = Label(tab_markers, text="Lat:", justify=LEFT,font=("Arial Bold", 24)) 

    lbl4.grid(column=0, row=(i*2)+1) 

 

    markerLatBlock = Entry(tab_markers,width=40, font=("Arial", 18), textvariable=marker["l

at"]) 
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    markerLatBlock.grid(column=1, row=(i*2)+1) 

 

    lbl5 = Label(tab_markers, text="Lng:", justify=LEFT,font=("Arial Bold", 24)) 

    lbl5.grid(column=0, row=(i*2)+2) 

 

    markerLngBlock = Entry(tab_markers,width=40, font=("Arial", 18), textvariable=marker["

long"]) 

    markerLngBlock.grid(column=1, row=(i*2)+2) 

 

    lbl6 = Label(tab_markers, text="CSV:", justify=LEFT,font=("Arial Bold", 24)) 

    lbl6.grid(column=0, row=(i*2)+3) 

 

    markercsvBlock = Entry(tab_markers,width=40, font=("Arial", 18), textvariable=marker["c

svDir"]) 

    markercsvBlock.grid(column=1, row=(i*2)+3) 

    btncsvSelect = Button(tab_markers, text="Choose File", bg="grey", fg="black", command

=partial(clickSelectCSV,marker["csvDir"])) 

    btncsvSelect.grid(column=2, row=(i*2)+3) 

 

    lbl7 = Label(tab_markers, text="Description:", justify=LEFT,font=("Arial Bold", 24)) 

    lbl7.grid(column=0, row=(i*2)+4) 

 

    markerDescBlock = Entry(tab_markers,width=40, font=("Arial", 18), textvariable=marker[

"description"]) 

    markerDescBlock.grid(column=1, row=(i*2)+4) 

 

    lbl8 = Label(tab_markers, text="Image:", justify=LEFT,font=("Arial Bold", 24)) 

    lbl8.grid(column=0, row=(i*2)+5) 

 

    markerImgBlock = Entry(tab_markers,width=40, font=("Arial", 18), textvariable=marker["

imgDir"]) 

    markerImgBlock.grid(column=1, row=(i*2)+5) 

    btnImgSelect = Button(tab_markers, text="Choose File", bg="grey", fg="black", command

=partial(clickSelectImage,marker["imgDir"])) 

    btnImgSelect.grid(column=2, row=(i*2)+5) 

 

    btnImgSelect = Button(tab_markers, text="Create", bg="grey", fg="black", command=parti

al(sendMarker,marker)) 

    btnImgSelect.grid(column=2, row=(i*2)+6) 

 

def buildForecastTab(): 

    lbl = Label(tab_forecast,text="Select Destination Folder:", justify=LEFT,font=("Arial Bold

", 24)) 

  

    lbl.grid(column=0, row=0) 

 

    folderEntry = StringVar() 

    folderDir = Entry(tab_forecast,width=40, font=("Arial", 18), textvariable=folderEntry) 

    folderDir.grid(column=0, row=1) 
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    btnSelect = Button(tab_forecast,text="Choose Folder", bg="honeydew3", fg="black", com

mand=partial(clickSelectFolder,folderEntry)) 

     

    btnSelect.grid(column=1, row=1) 

 

    btn = Button(tab_forecast,text="Create", bg="DarkOliveGreen2", fg="black", command=p

artial(createForecastCSV, folderEntry)) 

    btn.grid(column=1, row=2) 

 

buildForecastTab() 

 

btnSelect = Button(tab_areas, text="Choose File", bg="grey", fg="black", command=partial(c

lickSelectFile,fileEntry)) 

  

btnSelect.grid(column=1, row=1) 

 

btn = Button(tab_areas, text="Send to app", bg="grey", fg="black", command=partial(sendCli

cked,fileEntry)) 

  

btn.grid(column=1, row=7) 

 

tab_control.pack(expand=1, fill='both') 

window.mainloop() 

 


