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Abstract

A Secondary Study (SS) is an important research method used in seve-

ral areas. A crucial step in the Conduction phase of an SS is the search of

studies. This step is time-consuming and error-prone, mainly due to the re-

finement of the search string. The objective of this study is to validate the

effectiveness of an automatic formulation of search strings for SS. Our ap-

proach, termed Search String Generator (SeSG), takes as input a small set

of studies (as a Quasi-Gold Standard) and processes them using text mining.

After that, SeSG generates search strings that deliver a high F1-Score on the

Start Set of a hybrid search strategy. To achieve this objective, we (1) gene-

rate a structured textual representation of the initial set of input studies as

a bag-of-words using Term Frequency and Document Frequency; (2) perform

automatic topic modeling using LDA (Latent Dirichlet Allocation) and enrich-

ment of terms with a pre-trained dense language representation (embedding)

called BERT (Bidirectional Encoder Representations from Transformers); (3)

formulate and evaluate the search string using the obtained terms; and (4)

use the developed search strings in a digital library. For the validation of

our approach, we conduct an experiment – using some SS as objects – com-

paring the effectiveness of automatically formulated search strings by SeSG

with manual search strings reported in these studies. SeSG generates search

strings that achieve better final F1-Score on the Start Set than searches re-

ported by these SS. Our study shows that SeSG can effectively supersede the

formulation of search strings, in hybrid search strategies, since it dismisses

the manual string refinements.

Keywords: Search String, Text Mining, Secondary Studies, Systematic Li-

terature Review and Systematic Mapping Study
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Resumo

Estudo Secundário (ES) é um importante método de pesquisa utilizado em

diversas áreas. Uma etapa crucial na fase de Condução de um ES é a busca

de estudos. Esta etapa é demorada e sujeita a erros, principalmente devido ao

refinamento da string de busca. O objetivo deste estudo é validar a eficácia de

uma formulação automática de strings de busca para ES. Nossa abordagem,

denominada Search String Generator (SeSG), leva como entrada um pequeno

conjunto de estudos (um Quasi-Gold Standard) e os processa usando mine-

ração de texto. Depois disso, o SeSG gera strings de busca que fornecem

um alto F1-Score do Start Set em estratégias de busca híbridas. Para atingir

esse objetivo, (1) geramos uma representação textual estruturada do conjunto

inicial de estudos de entrada como uma bag-of-words usando Frequência de

Termos e Frequência de Documentos; (2) realizamos uma modelagem automá-

tica de tópicos utilizando LDA (Latent Dirichlet Allocation) e enriquecimento de

termos com uma representação de linguagem densa pré-treinada (embedding)

chamada BERT (Bidirectional Encoder Representations from Transformers); (3)

formulamos e avaliamos a string de busca usando os termos obtidos; e (4)

usamos as strings de busca desenvolvidas em uma biblioteca digital. Para a

validação da nossa abordagem, conduzimos um experimento - usando alguns

ES como objetos - comparando a eficácia de strings de busca formuladas auto-

maticamente pelo SeSG com strings de busca manuais relatadas nesses estu-

dos. O SeSG gera strings de busca que alcançam um melhor F1-Score do Start
Set do que as pesquisas relatadas pelos ES. Nosso estudo mostra que SeSG

pode substituir efetivamente a formulação de strings de busca, em estratégias

de busca híbridas, uma vez que dispensa os refinamentos manuais da string.

Palavras-chave: String de Busca, Mineração de Texto, Estudos Secundá-

rios, Revisão Sistemática da Literatura e Estudo de Mapeamento Sistemático
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SECTION

1
Introduction

Secondary Studies (SS) are widely used in Software Engineering (SE) to

synthesize the knowledge in a given research topic. This method of empirical

research has a growing interest in the SE community. This interest increase

as indicated by the high number of related published studies (Ali and Usman,

2018) and by the thousands of citations made to the main guides of Systematic

Literature Review (SLR) in SE (Kitchenham, 2004; Kitchenham and Charters,

2007; Kitchenham et al., 2015).

An SS is usually grouped into three phases: planning, conducting and

documentation. During the planning phase, the need to perform the SS is de-

tailed, and the study protocol is created and validated. This protocol contains,

for example, the research questions, the search strategy and the selection

criteria of the studies. In turn, the conduction phase aims to identify rele-

vant studies, to select Primary Studies (PS) and to extract and synthesize the

data obtained, following the protocol previously formulated. Finally, in the

documentation phase, the results obtained during the SS are reported to the

community (Kitchenham et al., 2015).

During the conduction of the SS, different types of search strategy can be

formulated in order to find relevant studies. Manual search, automated search

and snowballing are commonly used search strategies. In manual search, a

search is manually performed in journals and conferences. For automated

search, a search string is formulated with specific terms related to the rese-

arch area in question. Then, the search string is used in digital libraries to

search for interesting studies. In snowballing, the references and citations of

an initial list of relevant studies are analyzed, increasing this list with related

studies.
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Combining search strategies is also possible. Mourão et al. (2020) proposes

the use of hybrid strategies (automated search followed by snowballing) to

reduce the effort required during the improvement of the search strategy. This

concern with effort is related to the complexity of obtaining an efficient search

string. Ideally, a search string must retrieve a high number of relevant studies

(high recall) with the smallest number of retrieved studies (high precision).

In less structured areas of study (e.g., SE), where relevant concepts may be

represented by multiple terms, manual refinement of the search string can

become an extremely complicated and time-consuming activity.

In order to facilitate the creation of the search strategy in SS, some effort

has been made to assist the search string refinement through Text Mining (TM)

(Mergel et al., 2015; Ros et al., 2017; Grames et al., 2019). In general, these

studies propose the use of an initial search string in an automated search.

Documents retrieved in this initial search are presented to TM techniques in

order to extract interesting search terms. These terms are then used in a

manual refinement of the search string.

Unlike these approaches, in this work we propose SeSG (Search String Ge-

nerator), an approach for automatically formulating search strings for SS. The

main contribution of SeSG is to automatically generate and refine the search

string, minimizing the researchers effort in performing SS. SeSG requires only

a list of relevant studies already known (called Quasi-Gold Standard - QGS)

as input and does not require an initial search string. Also, SeSG automa-

tically assists the search string refinement by incorporating external terms

using pre-trained word embeddings (Turian et al., 2010). These embeddings

can find similar words that can improve the search string recall.

SeSG aims to balance precision and recall on a search, particularly in hy-

brid search strategies. The effectiveness of a search undermines a strict recall

(full completeness) which in several topics is not necessary or even difficult to

achieve (Kitchenham et al., 2015; Cooper et al., 2018).

To evaluate the effectiveness of the search using the search strings genera-

ted by SeSG, an experiment was conducted to compare the proposed approach

to automated searches used in SS in the SE area. Our experiments used three

different SS and SeSG achieved better F1-Score on the Start Set of a hybrid

search than the manual searches.

Considering the advances obtained during this study, we can highlight

some as those that can contribute in some way to the field of search strings

automation. These are: (1) the investigation of different ways of representing a

collection of texts, such as bag-of-words, topics formulation and embeddings;

(2) the enrichment of terms present in a search string via BERT; and (3) a

strategy for the formation of search strings in an automated way.
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SECTION

2
Background

This section presents an overview of SS phases, detailing concepts applied

in the generation of search strings. Additionally, we describe a generic TM

process aiming to enlighten how it can help researchers automate the search

of PS.

2.1 Secondary Study Process

A SS poses difficulties for experienced and novice researchers. Some gui-

delines have been published to assist researchers, defining phases and steps

of a SS process. Kitchenham et al. (2015) divides the SS process in planning,

conducting, and reporting phases, as shown in Figure 2.1.

The steps to be performed in the Plan Review phase are:

• Specify Research Questions: Research questions direct a SS, providing

the foundation for decisions such as which PS will be included, which

data should be extracted, and how it will be synthesized.

• Develop Protocol: A review protocol is a documented plan that descri-

bes the details of the execution of a SS. It is an important document

that helps to reduce the likelihood of researcher bias by limiting the in-

fluence of researcher expectations. Also, a protocol can be evaluated by

other researchers who may provide feedback on the design of a review

before its conduction. Lastly, a protocol can aid the writing of a review

report. Amongst other fundamental components, a protocol must have a

documented search strategy.

3



Figure 2.1: Phases and steps of the SLR Process. Adapted from Kitchenham
et al. (2015).
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• Validate Protocol: A protocol is validated internally and externally. In-

ternal validation includes the test of aspects of the review plan, such as

the search strings and the data extraction forms. Also, it is essential to

evaluate the protocol by researchers who are external to a review team.

After the Plan Review phase, the SLR process continues in the Conduct
Review phase. In this phase, the steps to perform are:

• Identify Research: As mentioned, an important element of a SS plan is

a search strategy that finds the largest possible number of relevant PS to

the research questions. A search strategy usually combines complemen-

tary search methods. A broadly used method is automated searching

using digital libraries and indexing systems. Other methods are ma-

nual searching in journals and conference proceedings and snowballing

(forward and backward) (Wohlin, 2014).

• Select Studies: Once the candidate studies are identified, their relevance

to the research questions should be assessed. In this sense, researchers

should employ an inclusion and exclusion criteria to filter the set of can-

didates. Studies that are not relevant to answer the research questions

should be excluded.

• Assess Quality: During the formulation of the protocol, besides defining

inclusion and exclusion criteria for selecting relevant studies, it is also

necessary to formulate some measures to evaluate the quality of the se-

lected PS. This assessment’s main objective is to assert that the results

are complete, valid, and unbiased.

• Extract Data: The main objective of this step is to extract the necessary

information to answer the research questions.

• Synthesize: This step consists of synthesizing studies included in the

review.

Finally, Kitchenham et al. (2015) defines the Document Review phase,

which is responsible for documenting or reporting the study in appropriate

ways for the intended audience. This phase has the following steps:

• Planning Reports: Planning for final reports should be initiated during

the preparation of the review protocol. This step involves specifying po-

tential audiences and deciding what type of document would suit their

needs.

5



• Writing the Reports: This step is especially important since the report of

a SS will contribute to other researchers. According to Kitchenham et al.

(2015), a report should address traceability to provide a clear connection

between the research questions and their answers. It must also address

repeatability to ensure that the method is defined clearly and in sufficient

detail that other researchers could replicate it.

• Validating the Reports: It involves internal and external assessment of

the quality of reports.

As described, a search strategy is planning in the Develop Protocol step

and applied in the Identify Research step. Usually, the Validate Protocol
step implies a string refinement to balance the SS completeness target with

the effort to identify and select PS.

2.1.1 Challenges in Performing Secondary Studies

The most common problems related to SS research are: (1) the difficulty

of performing complex automated searches in digital libraries, (2) the time

and effort required to complete the study, (3) the definition of the research

protocol, and (4) the evaluation of the quality of PS (Kitchenham et al., 2015).

Imtiaz et al. (2013) analyzed the results of 116 studies and reported that

the formulation of the search strategy, planning, and data extraction are the

most challenging steps in SS. They state that defining a proper search strategy

is one of the most problematic and time-consuming steps in SS, mainly due

to the limitations of online databases and the difficulty of creating efficient

search strings.

Likewise, Ampatzoglou et al. (2019) conducted a study aiming to identify,

categorize, and mitigate the threats to validity, and corresponding mitigation

actions, commonly found in SS. From 165 studies, they found that two of

the most common threats to validity are building the search string and selec-

ting digital libraries. Solutions usually applied to mitigate the search string

problem are using a hybrid strategy with complementary snowballing and the

inclusion of synonyms in the search string. To the problem of selecting digital

libraries, conventional solutions are the inclusion of the best known digital

libraries and the use of search engines or indexers.

Also, Marshall et al. (2014) note that the provision of tools that support the

search process is mostly absent. They further argue that this poor support

may be a consequence of the difficulties inherent in automated search, and

suggest that this field should be developed.

6



Several studies have analyzed the most considerable difficulties during the

SLR or SMS process execution (Babar and Zhang, 2009; Imtiaz et al., 2013;

Marshall et al., 2014; Mergel et al., 2015; Mourão et al., 2017; Ampatzoglou

et al., 2019). These studies point out a latent difficulty in formulating an

efficient search string and manipulating digital libraries to index all necessary

searches.

This work aims to automate the formulation of the search string, using

TM techniques. Therefore, we further detail relevant concepts about search

strategies and completeness assessment of a SS.

2.2 Search Strategies and the Completeness Target

of a Secondary Study

An essential step in any SS is formalizing a search strategy to find the

most substantial number of relevant studies to address the research questions

(Kitchenham et al., 2015).

There are many ways of searching for relevant PS in the literature. One of

the widely used search methods is the automated search using digital libra-

ries. Another complementary technique that has widely used in the identifica-

tion of PS is snowballing, described by Wohlin (2014).

Snowballing is a technique generally used in hybrid strategies, which ve-

rifies, from a Start Set, all studies that cited and were cited by each item in

this set, in order to identify more relevant studies. Wohlin (2014) stresses the

importance of choosing the Start Set for the success of the technique, as the

initial set will determine the path followed by the process. Usually, the Start

Set is chosen through an automated search.

2.2.1 Automated Literature Search with Search Strings

The automated search with search strings involves using some electronic

resources such as digital libraries and indexing systems to search for relevant

studies. The researcher must decide which electronic resources intended use

and also specify the search strings that will conduct the research.

The definition and refinement of search strings are iterative processes. Se-

arch string keywords are usually obtained directly from research questions or

terms often used (keywords) in relevant studies. Synonyms of the keywords

can also complement the list of terms. The format of search strings, with

different keywords and logical combinations, change the returned results, de-

pending on the chosen association (Dieste and Padua, 2007). The logical com-

bination of terms implies a complex balance between a search that finds most

7



relevant studies (i.e., a high recall) and one that does not generate numerous

irrelevant studies (i.e., best precision) (Kitchenham et al., 2015).

Each digital library or indexing system (e.g., Scopus, IEEE Xplore, ACM,

Web of Science, SpringerLink) has a specific way of accepting the search string

formulation. In general, the changes are small, but some adaptations are

required to use the search string formulated on different libraries.

Database search always returns studies outside the research context since

other areas of knowledge could apply search string terms. Aiming to keep the

search in the research context, the snowballing strategy presents efficiency

comparable to database search while minimizes the noise from not related

areas of concern (Badampudi et al., 2015).

2.2.2 The Snowballing Search

The purpose of the analysis of references and citations is to find distinct

relevant studies that cite (forward snowballing) or were cited (backward snow-

balling) by relevant studies already found. The strategy uses communication

between studies to deepen the search. The citation’s locus and context usually

provide information about the content of the candidate study, and it is practi-

cal to get this information from a paper being examined instead of finding the

candidate by a database search (Wohlin, 2014).

Snowballing should not necessarily be seen as an alternative to database

searches. Different approaches to identifying the relevant literature should

be used together in an hybrid approach, seeking to ensure the best possible

coverage of the literature. Snowballing is useful to deepen any SS, since rele-

vant papers tend to cite or be cited by other relevant studies on the research

topic (Booth, 2016). It is usually used as a secondary method to complement

an automated search. In an hybrid approach, the results of an initial search

using search strings are used as a Start Set for the snowballing.

An essential requirement of any SS is to outline a search strategy that retri-

eves as many studies as possible that answer the research questions. Probably

the strategy will combine search methods. Indeed, the search strategy aims to

achieve an acceptable level of completeness within time and human resources

available (Kitchenham et al., 2015).

Within the next section, we look at how to assess the completeness of the

set of studies found by a search process.

2.3 Completeness Assessment

In the context of Information Retrieval theory, retrieval effectiveness is mos-

tly measured in terms of precision and recall or by measures based thereon

8



(van Rijsbergen, 1979). Precision is the ratio of the number of relevant do-

cuments retrieved to the total number of documents retrieved, and recall (or

sensitivity) is the ratio of the number of relevant documents retrieved to the

total number of relevant documents (retrieved and not retrieved). These can

be calculated as follows:

Recall = R f ound

Rtotal
(2.1)

Precision = R f ound

Ntotal
(2.2)

If possible, a search should have a high recall. In short, it should find most

of the relevant studies (Kitchenham et al., 2015). A high recall search strategy

maximizes the result of relevant studies retrieved; however, it retrieves many

irrelevant studies in return.

On the other hand, precision is also essential and desirable because high

precision means that the load on reviewers to check studies that become not

to be relevant is low. Nevertheless, a high precision strategy decreases the

number of retrieved studies with the penalty of missing a good number of

relevant ones. Thus, a trade-off is unavoidable between recall and precision.

The goal will be to get optimal or at least an acceptable search strategy (Dieste

et al., 2009).

In qualitative studies, and for SS where a complete identification of rele-

vant PS is hard to achieve (e.g., in SE), a lower degree of completeness may be

tolerated (Dieste et al., 2009). Likewise, Cooper et al. (2018) claim that com-

prehensive searches are not necessarily an indicator of quality, as previously

thought.

Petitti et al. (2000) states that “an optimal search can be defined as a search

that strikes a balance between high recall and high precision” (as quoted in

Dieste et al. (2009)).

The “effectiveness measure” proposed by van Rijsbergen (1979) derives the

F-measure (also F-score), which is defined as the harmonic mean of precision

(P) and recall (R). Its general formula is shown in Equation 2.3. The F-Score’s

general formula has a positive real β, where β is chosen so that the recall is

considered β times more important than the precision.

For a balanced F-Score, that corresponds to a user who attaches equal

importance to precision and recall, the value of β is equal to one, being called

F1-Score, as shown in Equation 2.4.

Fβ-Score = (1+β2)
P ×R

(β2 ×P)+R
(2.3)
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F1-Score = 2× P ×R
P +R

(2.4)

An actual conundrum in a recall calculation is that the total number of

relevant studies (Rtotal), is not known. Unfortunately, it is impossible to find

out the value of this parameter in advance.

A way of assessing completeness is to have a set of studies that are known

as relevant studies. This known set can be obtained in several ways, such as

through the construction of a Quasi-Gold Standard (QGS). The use of a QGS

to assess a search strategy is discussed following.

2.4 Quality Assessment of Search Strategies Using

Quasi Gold Standard

A Gold Standard (GS) represents the set of studies (the “golden bullets”)

that undoubtedly should be part of the review due to their alignment with the

inclusion criteria for the SS (Zwakman et al., 2018). The GS has been used

to refine search strategies in systematic reviews in other disciplines, such as

medicine, clinical research, and social science.

As it is not possible to have GS for most SS in SE, Zhang et al. (2011) in-

troduces the concept of Quasi-Gold Standard (QGS) as a set of known studies

on a research topic. The QGS has two fundamental roles in SS: (1) it is a set

of documents used to evaluate the search process, and (2) is a source for the

refinement of the search strings (Kitchenham et al., 2015).

Figure 2.2 shows how QGS can assist the SS process. A manual search

finds the QGS. From this QGS, search terms are extracted and used du-

ring the automated search. When observing the automated search result,

the researcher decides to redo the automated search or considers it to be good

enough. When the researcher considers that the formulated search string is

good enough, the relevant studies obtained by the automated search are then

used in snowballing. The sum of all these steps then provides the GS.

Kitchenham et al. (2011) proposes an improvement of QGS usage. The

authors suggest that the set of known papers should be split into two inde-

pendent subsets, and one is used to refine search strings. In contrast, the

other independent subset should be used to evaluate the effectiveness of the

search process.

Identifying search terms to retrieve an unknown set of literature is chal-

lenging, particularly for literature that uses varied terminology or is not con-

sistently indexed. Given the challenges in creating search strings from a QGS

sample of literature on a topic, TM is considered here as an aid that could
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Figure 2.2: The use of QGS to support the search for relevant studies in a
hybrid search strategy. Based on Zhang et al. (2011).

contribute to a solution aiming to devise search strategies for topics that wrap

a range of conceptual aspects or are described by diverse vocabularies.

2.5 Text Mining

TM can be characterized as a set of techniques and processes to discover

new knowledge in texts (Aggarwal and Zhai, 2012). In a scenario where much

data is available textually, the TM process emerges as a relevant knowledge

management support tool. TM aims to look for patterns and trends in textual

documents and be considered a specialization of the Data Mining. While Data

Mining operates on predefined databases, TM works with inherently unstruc-

tured data (Weiss et al., 2010).

The TM process is developed in a cycle, where at the end of the process, the

user acquires knowledge about the analyzed data. This process can be organi-

zed according to each application’s requirements, and there are several ways

to describe it. Based on the work of Fayyad et al. (1996), Weiss and Indurkhya

(1998) and Shearer (2000), Rezende (2003) describes the TM process in five

steps: (1) problem identification, (2) pre-processing, (3) pattern extraction, (4)

post-processing, and (5) knowledge usage, as presented in Figure 2.3.
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Figure 2.3: Cycle that makes up the TM process and its respective steps.
Based on Rezende (2003).

This process is iterative (can be repeated several times to adjust parameters

or improve the data selection process for better results in the next iteration)

and interactive (based on the interaction users). The steps in the TM pro-

cess are described as follows. The role of each user class is also superficially

presented. Pre-processing, pattern extraction, and post-processing will have

more details as they form the process’s core.

2.5.1 Problem Identification

At this stage, the domain expert identifies and delimits the scope of the

research problem and the collection of texts to be analyzed. This domain

expert also examines any prior knowledge in the studied domain that may be

beneficial, what is expected at the end of the process and how the results may

be used.

Problem Identification is a crucial step since there is no knowledge disco-

very without the demand for it. Rezende (2003) define four questions that

must be answered in this step, adapted from the CRISP-DM model (Shearer,

2000):

1. What are the main goals of the process?

2. What performance criteria are important?
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3. Should the extracted knowledge be understandable to humans or a black
box model is appropriate?

4. What should be the relationship between simplicity and precision of the
extracted model?

The decisions that are made in the Problem Identification step guide the

subsequent steps in the process.

2.5.2 Pre-Processing

The Pre-Processing step is one of the most important and time-consuming

steps. It aims to structure the texts for knowledge extraction. Generally, the

analyst should check for features that ensure reliability, non-redundancy, and

balance of the text collection.

According to Laguna et al. (2014), pre-processing is performed in five activi-

ties that seek to extract the terms that represent the collection of documents.

These activities are (1) standardization of text formats; (2) text cleaning; (3)

normalization of the words; (4) identification of terms and (5) representation

of the textual collection. Such steps are represented in the diagram shown in

Figure 2.4.

Figure 2.4: Activities developed during the pre-processing step. Based in La-
guna et al. (2014).

Since documents can come from various data sources, they can be found

in different formats, such as Portable Text Format (PDF) and hypertext. To

ensure that all documents are equally accessible and manipulable, formats

must be standardized to a plain text format.

All useless content found in standardized documents is removed. Punc-

tuation and mathematical symbols, if they are not useful for the application,

are cleared from texts. Terms that do not represent usable knowledge, known

as stopwords, must be removed. Examples of stopwords are prepositions,

pronouns, studies, interjections, adverbs, among others. In certain domains,

domain-specific stoplists are also common, which are sets of words that can

be disregarded in the application context.
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Subsequently, similarities of meanings are sought among the remaining

words, as in cases of morphological variations or synonyms, aiming to norma-

lize the texts’ terms. For this, according to Nogueira (2013), it is possible to re-

duce a word for your root through the stemming processes (Krovetz, 1993), to

reduce the words to its lemma through the lemmatization (Arampatzis et al.,

1999), substantiate the terms through the substantivation (Gonzalez et al.,

2006) or even use dictionaries or thesaurus (Jones and Willett, 1997).

Since words are normalized, Laguna et al. (2014) indicates the use of sta-

tistical measures to weight terms in the collection, such as:

• Boolean: it assigns the value one to the attribute present in the collection-

specific document and zero otherwise;

• Term Frequency (TF): it consists of counting appearances of a given

term in a collection document;

• Document Frequency (DF): it counts the number of documents that the

term candidate has in the document collection;

• Term Frequency Inverse Document Frequency (TF-IDF): it gives less

weight to terms that appear in many documents, making very traditional

terms unrepresentative.

The choice of the most appropriate measure depends on the purpose of

the application. It also depends on whether each term’s representation is

calculated in a given document or the entire collection. These metrics can be

used to filter the terms in the representation. Relevant terms can be selected

by employing a metric threshold (Luhn, 1958).

Such approaches are sufficient to identify simple terms (uni-grams). From

these simple terms, it is possible to search the document collection for com-

pound terms (n-grams), consisting of more than one element, but with a single

semantic meaning (Manning et al., 2010). The compound terms found in the

documents represent the notion of occurrence context since it considers the

order of appearance to form the compound terms.

The selected terms are used to form a structured representation for the

document collection. The most common structure is the Vector Space Model

(VSM) (Salton et al., 1975). In the VSM model, each document is represented

as a vector (D i), and each position of this vector corresponds to a document

term (T j). The vectors for all documents form the attribute-value matrix, as

presented in Table 2.1. This matrix is known as bag-of-words. The last column

of the matrix corresponds to the document class (Ci) if the process handles

14



labeled data. The A i j cell values are filled using the weight metrics previously

discussed.

Table 2.1: Representation of a attribute-value matrix. Each row represents a
document and each column represents a term. D1...DN are the documents,
T1...TM are the terms of the documents, A11...ANM are the cell values, filled in
according to the metric used and C1...CN are the document class.

Docs

Terms
T1 T2 ... TM Class

D1 A11 A12 . . . A1M C1

D2 A21 A22 . . . A1M C2

...
...

...
...

...
...

DN AN1 AN2 . . . ANM CN

2.5.3 Embedding-Based Documents Pre-Processing

With the development of more refined techniques of Machine Learning (ML)

and Natural Language Processing (NLP), more effective representations emer-

ged that take into account the order of occurrence of the words. Bengio et al.

(2003) used neural networks to automatically learn vector representations.

This type of representation, formally titled as distributed representations, is

currently known as word embeddings or just embeddings.

Turian et al. (2010) explains that word embeddings are real vectors distri-

buted in a multidimensional space induced through unsupervised learning.

Each vector dimension of a specific word represents a characteristic of it. This

is done to capture semantic, syntactic, or morphological properties of the word

in question (Collobert et al., 2011). The number of vector dimensions can dif-

fer, and it is generally possible to obtain better representations with more

dimensions. However, if this number is too large, the process can become

extremely time-consuming.

Collobert and Weston (2008) proposes a model based on a neural network

that tries to predict the next term for its context, considering the previous

terms. Word representations are learned by adjusting the net weights using

the back-propagation algorithm. Thereby, words that occur in equivalent cir-

cumstances have similar vectors, and it is the process of training the network

that absorbs this notion.
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The word embeddings model known as Word2Vec, proposed by Mikolov

et al. (2013), popularized this type of representation. The technique used to

generate the model follows the same principle as presented in Collobert and

Weston (2008), except that it does not use the hidden layer of the network,

providing a computationally faster log-linear model. Word2Vec is divided into

two models. The first, called CBOW (Continuous Bag-of-Words), receive a

window of input words that the network tries to predict the middle word as

output. Meanwhile, the other, known as Skip-gram, tries to predict the words

in the context window using the middle word as input.

In the model presented, vector representations are generated only for words

found in the corpus (set of written texts and oral records in a given language

that serves as the basis of analysis), since word-level context windows are vital

to the training. This feature may be problematic for applications whose corpus

is not the same as the one used for the training of words embeddings, as there

may be words that do not have associated vectors.

Although Mikolov et al. (2018) and other studies like Pennington et al.

(2014) was instrumental in advancing the field of research, studies on word

representations that focus on representations regardless of the learning con-

text are considered obsolete. More recent work focused on context-dependent

representations of learning using NLP tasks. For example, ELMo (Peters et al.,

2018) uses a bidirectional language model, while CoVe (McCann et al., 2017)

uses machine translation to incorporate context information into word repre-

sentations (Lee et al., 2019).

Another advance in this area is BERT (Bidirectional Encoder Representati-

ons from Transformers) (Devlin et al., 2019), a contextualized word represen-

tation model, which is pre-trained based on a masked language model using

bidirectional transformer from and unlabeled text set. BERT uses a mas-

ked language model that predicts randomly masked words in a sequence and

hence can be used for learning better bidirectional representations. BERT

encodes the input tokens as a sum of token embedding segmentation embed-

ding and position embedding. This embedding is thus capable of capturing the

semantic and contextual meaning for each word. Currently, BERT achieved

state-of-the-art performance in many NLP tasks (Lee et al., 2019).

2.5.4 Pattern Extraction

The pattern extraction step is focused on meeting the objectives set during

Problem Identification. That step selects, configures and executes one or more

pattern extraction algorithms, usually based on ML. As in Data Mining, the

main Pattern Extraction activities are classified as predictive and descriptive

(Rezende, 2003).
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Predictive activities consist of generalizing past experiences with known

answers. These tasks use supervised algorithms, which depends on fully la-

beled datasets. Supervised algorithms may perform two tasks: classification

and regression. Classification refers to the process in which the class attri-

bute has a categorical value. Regression, in turn, symbolizes the process of

seeking to predict real-valued classes (Weiss and Indurkhya, 1998).

Descriptive activities consist of identifying behaviors intrinsic to the set of

texts. These tasks use unsupervised ML algorithms, where all data is unla-

beled. This class of algorithms has two main branches: association rules and

clustering.

Association rules are logical relations inferred between correlated data from

the text collection, analyzed together, with the central objective of finding as-

sociations between collection items (Agrawal and Srikant, 1994).

Data grouping, also known as clustering, seeks to group data according to

some measure of similarity between them. So, data in the same group are

similar to each other, while data in different clusters are different (Manning

et al., 2010). In TM, clustering is usually employed to perform topic mode-

ling. This activity consists of finding sets of similar documents and the most

representative words in these sets.

A classic topic modeling technique is Latent Dirichlet Allocation (LDA), a

statistical model that allows sets of terms to be described by topics that explain

why some parts of the data are similar (Blei et al., 2003). LDA assumes that

each document is a mixture of a set of topics, as well as each topic is a mixture

of a set of words. LDA has two basic parameters: a prior of document topic

distribution α; and a prior of topic word distribution β. By presenting a set o M
documents with N words, LDA generates K topics, which can be understood

as a set of words. For each topic we can compute φ(k), the word distribution

for topic k, as well as θ(m), the topic distribution for document m. For each

topic k, it is possible to select a set of W words that describe that topic. These

words may be the W most relevant words according to φ(k). In this work, we

use LDA to extract topics from a QGS and use those topics to formulate the

search string. More details of this process are presented in Section 4.

2.5.5 Post-Processing and Knowledge Usage

After performing the Pattern Extraction, a validation step known as Post-

Processing is required. Post-processing is the stage at which users validate

their findings. Users must evaluate, for example, the representativeness ac-

cording to the application context, such as the representativeness of the ag-

gregated knowledge, the novelty contained in the results obtained, and how

such knowledge can be used (Nogueira, 2009). In summary, this is the step
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where findings made in Pattern Extraction are simplified, evaluated, viewed,

and documented for the end-user.

After being evaluated and validated in Post-Processing, the knowledge uti-

lization stage consolidates the information obtained. The knowledge is incor-

porated into an intelligent system or used directly by the end-user to support

some decision-making process. If the process has taken place correctly, it can

be ensured that knowledge at this point is valid and useful.

Given this background, it is possible to realize that the SS development

process is pervasive and that techniques can be used to assist this process as

a whole or at least parts of it. In the next session, some works found in the

literature that use TM techniques and ML to support the SS process will be

presented.
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SECTION

3
Related Work

Ali and Usman (2018) presents a SS that explores conventional approa-

ches to search strategy in SS. Automated search is the most frequently used

method. Among these studies, 33% use automated search alone. Besides

that, 49% use automated search as their primary search method, supported

primarily by a snowballing step, and in one case by a manual search. Only

one SLR did not use automatic search as the primary or secondary method,

highlighting the importance of search string formulation. Note also that 96%

of studies used some search string to find studies that answered the research

questions.

Almost half of the studies mentioned in Ali and Usman (2018) do not only

use automated search in digital libraries. This shows that SE researchers

consider the automated search insufficient to explore the area under study.

Similarly, Mourão et al. (2020) compare several hybrid search strategies and

state that the use of a search string in Scopus followed by snowballing would

provide a high search recall.

Tsafnat et al. (2014) presented a study on the automation of SS. The authors

describe in detail the potential for automation in different parts of the SS pro-

cess. According to the authors, decision support tools for search strategy de-

rivation should suggest data sources, keywords, and search strategies. Some

algorithms can also be used to increase the utility (in terms of precision and

recall) of user search strings or help users write a better search string.

With the increased use of SS to answer certain research questions, several

researchers have created tools that support some part of the SS process. With

that, some SS were carried out with the objective of grouping these tools, ma-

king it more evident which areas had not yet been fully explored. Marshall and
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Brereton (2013), O’Mara-Eves et al. (2015), Feng et al. (2017) and Stansfield

et al. (2017) investigate tools or approaches that help the SS process using

TM. Many authors reinforce the importance of partial or total automation of

the search strategy. However, such studies show that automation’s focus is in

other stages of the SS, like study selection.

Marshall and Brereton (2013) conducted an SMS to obtain the current state

of the art on tools to support SS in SE. The results suggest a predominance of

visualization and TM techniques to support study selection, data extraction,

and data synthesis stages of the SS process.

Also, O’Mara-Eves et al. (2015) conducted an SLR investigating the use of

TM to select studies specifically in systematic reviews. Through this study,

it is possible to observe many approaches that address the selection activity

of PS. On the other hand, results suggest a lack of effort to formulate search

strategies for automated PS selection.

Feng et al. (2017) performed an SLR with a focus on TM techniques and

tools that support any activity of the SLR process. The authors report that the

current studies offer only two solutions that support the search process, des-

pite its time-consuming and labor-intensive characteristics. These solutions

use (i) federated search approaches, providing a unified interface for all data

sources; or (ii) search string expansion techniques (Tomassetti et al., 2011;

Ghafari et al., 2012; Smalheiser et al., 2014).

Finally, Stansfield et al. (2017) performs a brief review of the literature

on TM applications for developing search terms for SLRs. According to their

findings, the TM approaches can be used in five ways: (i) to improve search

precision; (ii) to identify search terms to improve search recall; (iii) to aid the

translation of search strategies across databases; (iv) to search and to screen

within an integrated system; and (v) to develop objectively-derived search stra-

tegies.

The problem of search string formulation is addressed in a few works on

the literature. Ros et al. (2017), for example, explore an approach to support

semi-automated search and selection in SLRs. They propose a cyclical process

for identifying studies, where decision trees with information obtained from

the identified studies form the search string. The idea is that every path from

the root of the decision tree to a leaf with a positive classification generates a

search string that will be joined later. Making a search string that improves

itself with the results obtained seems promising but extremely complicated.

Besides, the results presented are initial, made in a proof of concept tool.

Marcos-Pablos and García-Peñalvo (2018) develop a TM and ML technique

that acts on a corpus of downloaded abstracts. This technique requires an

initial search string. The abstracts collected using this initial search string
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are projected into a vector space. Then, manually or using Support Vector

Machine (SVM), the abstracts are labeled as relevant or irrelevant. With this

labeling, new terms are obtained and can be entered into the search string

manually.

Grames et al. (2019) produces a quasi-automated method that generates

improvements to search strings, based on the use of TM and keyword co-

occurrence networks. The approach combines automated and manuals steps,

where at the beginning of the process, it is necessary to formulate an initial se-

arch string, returning several studies. From these studies, relevant terms are

extracted and treated with a document × feature matrix and a co-occurrence

network. Finally, terms are provided to the researchers, who must filter them

and organize them into groups to provide enhanced search strings.

Lastly, there is an approach provided by Mergel et al. (2015) proposes an

iterative method to support the search string refinement. This method ori-

ginated a tool, called SLR.qub. In practice, SLR.qub receives an initial se-

arch string and displays the results of using this search string in the IEEE

Xplore digital library. From the returned studies’ names, the researchers vote

whether the study appears to be relevant or not. The terms of the relevant stu-

dies are ordered based on the TF-IDF calculation. These terms are provided

to the tool used to refine their initial search string manually.

The use of TM to assist the SS process is not uncommon. However, most

studies are concerned with other stages that also require a lot of time and

effort, such as selecting studies. Few studies seek to automate part of the

formulation stage of the search strategy.

Among the studies that automate part of the search strategy, the vast ma-

jority only support the search string refinement. These refinements usually

occur after a manual creation of an initial search string. Therefore, they are

not intended to provide an initial search string. Also, do not usually worry

about possible search strategies that not only include the automated search.

We will then present an approach named SeSG that aims to create an initial

search string, without requiring manual refinement. Moreover, the approach

is targeted for use in a hybrid search strategy, predicting that a snowballing

step will be made after the automated search.
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SECTION

4
Search String Generator (SeSG)

As discussed in Section 3, there is a lack of TM approaches that assist in

the automatic formulation of search strings. As a consequence of this gap,

we present an approach called Search String Generator (SeSG). SeSG aims

at reducing the effort spent by researchers in the generation and refinement

of search strings to be used in a hybrid search strategy. Using a set of pre-

selected studies (called QGS), SeSG generates a search string that can retrieve

relevant studies to the research field portrayed in the QGS.

The objective of SeSG is to automatically generate a search string without

manual refinements. The lack of manual refinements in the search string

can affect the completeness of the search, involuntarily excluding studies that

would be relevant to the research questions. For this reason, SeSG is sugges-

ted for use in hybrid search strategies. If any relevant study is not achieved

from the search using the search string generated by SeSG, snowballing will

likely find this missing study.

Besides completeness, other factors make SeSG preferentially (but not ex-

clusively) used in hybrid search strategies. The difficulty of manually ob-

taining a QGS that represents all the ramifications of the research area in

question makes advisable the subsequent use of snowballing. In addition,

the selection bias in listing the QGS is also partially removed when using a

hybrid strategy. The QGS will have a crucial relationship in the formulation

and evaluation of the search string, but it will not radically impact the search

completeness.

In an SLR, the refinement of a search string occurs during the protocol

development step to assist the identification of PS (Kitchenham et al., 2015).

A good search string must present a high recall (percentage of the relevant
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documents retrieved) and high precision (percentage of recovered documents

that are relevant). We employ the harmonic mean of recall and precision,

known as the F1-Score (van Rijsbergen, 1979), to evaluate the search results.

The F1-Score is calculated comparing the results retrieved in digital libraries

using the automatically generated string having the QGS as a parameter.

SeSG is an instance of the TM process presented in Rezende (2003). Figure

4.1 presents this instance, showing that the steps will be carried out in sub-

processes. In the next sections, we explain the four core steps of SeSG: (i)

Pre-Processing; (ii) Topics Extraction and Enrichment; (iii) Generation of the

Search String; and (iv) Application of the Search String in Digital Libraries.

Figure 4.1: The Search String Generator (SeSG) process.

4.1 Pre-Processing: Organizing the Documents and

Generating Their Representations

Figure 4.2 presents an expanded view of the Pre-Processing sub-process,

showing its activities. In SeSG, the input to the approach is a collection of

scientific studies from a particular area of knowledge that represents the area

of research to be investigated, known as the QGS. It is a difficult task to define

the ideal size of the QGS. We suggest the size of the QGS (QGSSize) to range

from 5 to 15 studies from some initial empirical studies. This set of studies

may come in a wide variety of forms and should be pre-processed to allow its

correct manipulation.

First, the format of the input studies should be standardized. In general,

scientific studies come in a PDF format, which is not directly manipulable.

Also, different scientific studies may present different textual forms that may

turn unfeasible adequate information extraction. In this sense, every study in

QGS and its metadata are transformed into plain text.

A word selection process is then carried out by removing stopwords, special

characters, and numbers. This task requires a stoplist, which is language-

dependent and may be provided as an input to SeSG.
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Figure 4.2: The expanded ‘Pre-Processing’ sub-process of the SeSG approach.

Each word (token) in the collection is considered as a simple term (uni-

gram). From these simple terms, it is possible to search for semantically sig-

nificant compound terms, also known as n-grams, where n stands for the

number of tokens in the word. The n-grams are essential to convey the notion

of context of occurrence since it considers the terms’ order of appearance. In

search string, terms composed by more than three words are unusual. Thus,

in our approach, it has been delimited that the number of tokens in an n-gram

varies in the range 1 to 3.

Then, infrequent terms may be removed, since they do not carry sufficient

information. A simple way to filter those terms is by counting the number of

documents a term occurs - the Document Frequency (DF) of a term. In SeSG,

the advised range of minimum DF (MinDF ) is between 10% and 40% of the

number of documents in the QGS and must be empirically tuned. Larger QGS
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may require larger values of MinDF.

Finally, each selected term is related to each document in the collection th-

rough its Term Frequency (TF). This metric counts the number of occurrences

of each term in each document. This kind of association is structured as a

vector space model, called bag-of-words. The attribute-value matrix represen-

ting this vector space model is used as input for the topic extraction, described

in the next section.

4.2 Topic Modeling Using LDA and Enrichment of

Terms Using BERT

In this step, as described in Figure 4.3, two main activities are carried out

to formulate search strings: (i) topic extraction through LDA, which finds the

most significant terms that describe the different topics addressed in the QGS;

and (ii) the enrichment of the topics, using the BERT word embedding to add

similar words to the topics.

Figure 4.3: The expanded ‘Topics Extraction and Enrichment’ sub-process of
the SeSG approach.

In the first activity, LDA implicitly groups the words in the QGS into a

predefined number K of disjoint groups (topics). Then, LDA finds the W most

representative terms to each of these groups (topic descriptors), capturing the

core subjects addressed in these different groups. The details of this clustering

process were discussed in Section 2.5.4.

In the search string generation context, we assume that the K different

topics found by LDA should be concatenated with disjunction operators (OR)

since these topics represent the different subjects in the QGS. Similarly, the W

26



different words on the same topic should be concatenated with a conjunction

operator (AND), since these are the words that represent that topic. LDA’s

application requires as input the number of topics desired K and the number

of descriptors per topic W, which may be empirically tuned. The broader the

research area under investigation is, the more topics and descriptors may be

extracted. Both Dirichlet priors α and β are automatically calculated by using

(1/K), as suggested by Blei et al. (2003).

Since a small set of representative studies forms the QGS, the vocabulary

analyzed by LDA, and consequently, the topic descriptors are limited to words

present in these studies. This limitation may impact the recall of the genera-

ted search strings since different words are commonly used to represent the

same concept. In order to overcome this limitation, in the second activity of

the Pattern Extraction step in SeSG we introduce similar words to enrich the

topics extracted. For this end, we use the contextualized word representation

model called BERT (Devlin et al., 2019).

As discussed in Section 2.5.3, BERT learns a word embedding in which

words with similar semantic meaning present similar representation. This

high-quality feature fits the objectives of this work, since semantically similar

words may be used to expand search strings and perform a broader search.

In SeSG, we use a BERT word embedding to incorporate, for each of the W
words in the K topics, the S most similar terms to each detected topic.

Word embeddings like BERT encode semantically similar words with si-

milar embeddings. So, similar terms may be found by calculating the cosine

distance between the word embeddings. For this process, SeSG requires a pre-

trained BERT embedding, like the one made available by Devlin et al. (2019),

which was trained on the Wikipedia dataset. Performing a fine tuning, training

a BERT embedding for the specific context is also an alternative. However, this

would limit the scope of the approach, and therefore this idea was discarded.

The parameter S must be defined beforehand, considering that a large value of

S may deteriorate the search precision and a small value of S may negatively

impact the search recall.

An example of the topic extraction in SeSG can be observed in Figure 4.4.

This process takes as input the bag-of-words generated in the Pre-Processing

step from an initial set of documents (QGS), considering a MinDF previously

established. In this example, LDA is executed using K = 2 and W = 2, while

BERT was used to add S = 1 similar word to each topic descriptor.

The enriched topics are then used to generate the search string. In the

next section, we detail the generation of the search string in SeSG, which

concatenates the topics and their enriched descriptors to formulate the search

string.
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Figure 4.4: An example of the Topics Extraction and Enrichment and Genera-
tion of the Search String sub-processes of SeSG.
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4.3 Generation of the Search String

With the terms obtained in the extraction of topics and the use of enrich-

ment techniques, we have a collection of terms and topics that represent the

set of studies provided in the entry (QGS). With this collection in hand, it is

necessary to formulate the boolean search string, following the process des-

cribed in Figure 4.5. This string should follow the standardization that the

search engines impose, with the concatenations between terms with “ANDs”

and “ORs”.

Figure 4.5: The expanded ‘Generation of the Search String’ sub-process of the
SeSG approach.

Most of the digital libraries accept boolean search strings. The reserved

word “AND” is used when all the terms connected by it must appear, being

able to be distant from one another (e.g., “machine” AND “learning”). On the

other hand, the reserved word “OR” is used when at least one of the terms

linked must necessarily appear, symbolizing synonyms, alternative spellings

or abbreviations (e.g., “process” OR “method”).

In Figure 4.6, we illustrate the formulation of the search string shown in the

second part of Figure 4.4. In this example, two topics are found with LDA, and

each of these topics has two descriptors. Note in the first representation that

the topics are concatenated by “ORs” connectors, while “ANDs” concatenate

the terms in a topic. Then, each topic descriptor is enriched with its most

similar word with an “OR” concatenation.

When formulating the search string, there is an optional parameter that

delimits the publication year of the studies retrieved in the search. This pa-

rameter is commonly accepted in search engines with the directive PUBYEAR
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Figure 4.6: Concept used to formulate the search string, without and with the
enrichment of terms.

and is concatenated to the end of the search string with an AND operator. This

parameter is expressed as an interval of years (floor and ceiling). For example,

suppose that a user would like a research to be limited to studies published

after 2010 and before 2015. So, 2009 may be set as the floor and 2016 as

the ceiling years. In this case, SeSG adds the constraint PUBYEAR > 2009
AND PUBYEAR < 2016. If this limitation is not required, it can be ignored, and

SeSG creates the search string using just terms found in the topic modeling

step.

After this process, the search string is ready to be used in a search engine.

The usage of the search string and the evaluation of the results are described

in the next section.

4.4 Application of the Search String in Digital

Libraries

Having an initial search string, the automated search may be executed and

evaluated, as shown in Figure 4.7. First, the search string generated by SeSG

may be introduced in the search field of a digital library. The studies retrieved

by this search are considered as a Start Set for a hybrid search, as described

in Section 2.2.2.

The completeness assessment of the Start Set in terms of the QGS can be

used as a quality measure of the search string assembled. As discussed in

Section 2.4, the recall score of the search string in relation to the QGS set is

an appropriate form of evaluating the completeness of a search.

According to Zhang et al. (2011), in hybrid search strategies as SeSG, a

minimum recall score of 70% in QGS documents is required after the search
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Figure 4.7: The expanded ‘Application of the Search String’ sub-process of the
SeSG approach.

in digital libraries using search strings. In SeSG, if the recall achieved in QGS

documents after applying the search string generated is bellowing this mini-

mum threshold, the user should go back to previous steps of SeSG and change

one or more parameters of the process: the minimum document frequency of

a term (MinDF ); the number of topics (K); the number of topic descriptors (W);

or the number of words for topic descriptor enrichment (S).

On the other hand, if the generated search string achieves a QGS recall

above the minimum threshold value, the automated search is concluded, and

the user may proceed to the snowballing process. As a part of a hybrid search

approach, SeSG does provide an optimized start set, leading to a faster and

more efficient snowballing search.

In order to evaluate SeSG, in the next section, we present an experiment

with complete hybrid searches using three different Secondary Studies. In

these experiments, we evaluate the completeness of searches conducted with

SeSG and simulate snowballing processes using Start Sets generated by SeSG.
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SECTION

5
Experiment Process

This section presents the process applied to conduct the experimentation.

All methodological tasks described in this experiment are based on well-known

guidelines about empirical studies in SE (Wohlin et al., 2012; Kitchenham

et al., 2015). The process, shown in Figure 5.1, follows the method proposed

by Wohlin et al. (2012).

With the objective of the experiment defined, the next task was to plan the

experiment. After the planning activity, the operation activity of SeSG was

conducted, where automated searches were carried out in Scopus, using the

automatically formulated search strings. We used Scopus because this digital

library consistently delivered high values for precision (Mourão et al., 2020).

Moreover, Scopus provides an API1 that helps automation of the search. Spe-

cifically for SeSG, we applied a Python library, called pyscopus2, to enable the

use of the Scopus API. Finally, we carried out statistical analysis to unders-

tand the results obtained in the execution of the experiment.

Although Wohlin et al. (2012) uses the terms “phase” and “steps”, we prefer

the hierarchical decomposition presented by Münch et al. (2012) that descri-

bes a process subdividing it into activities that, in turn, are subdivided into

tasks. While representing a product of the presentation activity, this study

describes scoping, planning, operation, and analysis & interpretation activi-

ties.

1https://dev.elsevier.com/
2https://github.com/zhiyzuo/python-scopus
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Figure 5.1: Overview of the experiment process. Based in Wohlin et al. (2012).
The numbers correspond to sections in this study.
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5.1 Scoping

The scope of the experiment is described using the goal template proposed

in Wohlin et al. (2012). Our goal is:

Analyze the results of the automatic search using SeSG
for the purpose of evaluation
with respect to effectiveness of the search
from the perspective of the researchers
in the context of secondary studies applying the snowballing strategy.

5.2 Planning

The Scoping activity determines why the experiment is conducted, while

the Planning activity outlines how the experiment is conducted.

According to Wohlin et al. (2012), the Planning activity has seven tasks.

Based on the scope of the experiment, the context selection characterizes

the environment of experimentation. Then, hypotheses are formulated, and

independent and dependent variables are selected. The selection of objects
and/or subjects is thereafter fulfilled. The experimentation design is chosen,

and the instrumentation is prepared for the practical implementation of the

experiment. Finally, an evaluation of the threats to validity anticipate factors

that may put the results of the experimentation in question.

5.2.1 Context Selection

The experiment context demands online search trials of real SS. The subject

is a researcher, and the experiment focuses on a specific scenario in which a

hybrid search strategy is pertinent, and strict completeness is not required.

The control group is a previously published SS (the object).

5.2.2 Hypothesis Formulation

The hypothesis test aims at verifying whether it is possible to reject a par-

ticular null hypothesis, H0, based on a sample of some statistical distribution.

If the null hypothesis is not rejected, nothing can be said about the result.

In contrast, if the hypothesis is rejected, it can be said that the hypothesis is

false, with a significance level (α) (Wohlin et al., 2012). The level of significance

used in this experiment is α= 0.05.

An one-tailed hypothesis (Trochim and Donnelly, 2020) was formulated to

address the experiment scope described before. The hypotheses adopted for

this experiment are as follows:
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The null hypothesis for this study is:

H0: As a result of the automatic search using the SeSG approach, there

will be either no significant difference in effectiveness (measured as F1-Score

on the Start Set) or there will be a significant decrease.

Specifically, the sample mean of F1-Score on the Start Set retrieved by

automatically generated search strings - using the SeSG approach (µAF1StS)

- will be less than or equal to the F1-Score on the Start Set obtained by a

manually generated search string (MF1StS).

H0 :µAF1StS ≤ MF1StS

The null hypothesis is tested against the alternative hypothesis:

H1: As a result of the automatic search using the SeSG approach, there

will be a significant increment in search effectiveness.

In other words, the sample mean of F1-Scores obtained from a Start Set

retrieved by an automatically generated search string using the SeSG appro-

ach (µAF1StS) will be higher than the F1-Score on Start Set obtained by a
manually generated search string (MF1StS).

H1 :µAF1StS > MF1StS

5.2.3 Variables Selection

In our experiment, the factor under study is the SeSG usage. The con-

trol group is an SS previously published, which applied the snowballing with

a Start Set constructed by an automated search (a hybrid search). This ob-

ject (the SS) must document the final set of selected studies (a retrieved Gold

Standard - GS), from which we randomly take sets of studies for input to the

experimental group (the SeSG usage).

To construct a search string, SeSG takes as input a set of known studies

(a subset of the GS) that we typified as a Quasi-Gold Standard (QGS). Thus,

the independent variable is the QGS set of studies, randomly selected from

the studies present in the GS. Another independent variable is the size of the

QGS. We blocked this variable for each tested object, as it affects the result of

the experiment, but we are not interested in this effect. The SeSG approach

suggests the size of the QGS (QGSSize) within the range of 5 to 15 studies (see

Section 4). Particularly, for each object studied in our experiment, we defined

that the QGSSize would be at least one third the size of the respective GS (until

a maximum of 15 studies).

The dependent variable, derived from the hypothesis, is the F1-Score on

the Start Set (F1StS). This variable is not directly measurable, and we derive it
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using the following base metrics:

• GSSize: size of the GS (the total of relevant studies from the object);

• NTotal: number of results retrieved from the search on Scopus;

• RStS: number of GS studies retrieved from the search on Scopus (i.e., the

relevant studies found in the Start Set).

We obtain the precision (PrecisionStS) and recall (RecallStS) of the Start Set,

as shown in the Equations 5.1 and 5.2, respectively.

PrecisionStS = RStS

NTotal
(5.1)

RecallStS = RStS

GSSize
(5.2)

With the precision and recall of the Start Set, we calculate the the F1-Score

on the Start Set (F1StS), using the Equation 5.3.

F1StS = 2× PrecisionStS ×RecallStS

PrecisionStS +RecallStS
(5.3)

5.2.4 Selection of Subjects and Objects

Our experiment is characterized as technology-oriented because technical

treatments are applied to objects (Wohlin et al., 2012). Nevertheless, as the

experiment does not intend to study the influence of the subjects, it is recom-

mended a design that sets aside the variability of different subjects (Juristo

and Moreno, 2001). One of the authors of the SeSG approach was the only

subject throughout the experiment. To minimize this specific threat to vali-

dity, we planned the maximum automation of the SeSG usage. The operation

is mainly concerned with running automated scripts and collecting data.

To select objects, a search was conducted to find recent SS in the SE area.

From 102 SLRs retrieved, we included 44 studies that applied snowballing

following a database search as a hybrid strategy. We selected Vasconcellos

et al. (2017) as a pilot because we had direct access to the authors. This pilot

implied on a search replication of the original study.

Vasconcellos et al. (2017) presents an SS focused on approaches to the

strategic alignment of software process improvement. The search strategy

is a combination of database search and snowballing, and they assessed the

search effectiveness with a QGS composed of ten studies. The database search

resulted in 517 studies retrieved from seven digital libraries. The replication,
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almost three years later, retrieved 1082 results (in 2019). The increase of

NTotal affects the precision metric and decreases the F1StS as a result.

Also, we decided to select other recently published objects. From the 44

identified SS, we filtered eight studies published in 2019. Then we selected

Azeem et al. (2019) because it presents the best recall of the Start Set (see

Equation 5.2), and Hosseini et al. (2019) because it presents the higher F1-

Score on the Start Set (see Equation 5.3). As we select the objects of the expe-

riment in a non-random way, it may me characterized as a quasi-experiment.

For the purpose of simplicity, in this work we use to the word “experiment” to

refer to a “quasi-experiment”.

Azeem et al. (2019) describes an SLR on ML techniques for code smell

detection. The search strategy is a combination of database searches with

snowballing, but they did not calculate the search effectiveness. The database

search retrieved 2456 studies from six different digital libraries. The Start Set

has 12 studies (RStS) and the GS has 15 studies (GSSize).

Hosseini et al. (2019) developed an SLR about cross-project defect pre-

diction. They also applied a search strategy that uses database search and

snowballing. The database search resulted in 1889 studies from five different

digital libraries. The Start Set has 29 studies (RStS) and the final data set (the

GS) contains 46 studies (GSSize).

We did not replicate the studies because we did not have enough infor-

mation that would allow the replication. However, both studies are recently

published, and replication only affects the F1StS due to the increase of NTotal.

We argue that if we reject the H0 with the original F1StS, we would also reject

the H0 with any subsequent search results.

5.2.5 Experiment Design

The experiment design explains how tests are organized and performed.

In this task, we determine how many tests the experiment should perform to

ensure that the treatment effect is visible (Wohlin et al., 2012). The type of

project used in the experiment design is the one factor - the method used to

formulate a search string - with two treatments - the ‘manual’ approach used

in the control group and the SeSG approach used in the experimental group.

The hypothesis has a single value - the MF1StS - for each object since its

measure derived directly from the study performed (past evidence). Therefore,

the experiment involves comparing a sample mean (X̄ ) with a specified value

(µ0). For this specific case, where the variance is unknown, it is recommended

to use the test known as the one-sample t-test (Montgomery, 2017). The

validity of the test relies on the assumption that the population distribution is

at least approximately normal. A Shapiro-Wilk test (Shapiro and Wilk, 1965)
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on pilot confirmed the data normal distribution.

Moreover, the type II error probability (β) for the t-test depends on the dis-

tribution of the statistic test. So we have to choose an adequate sample size

(n). We pilot on n = 10 to find β smaller than 0.05 (the probability of rejecting H0

becoming approximately 0.95). We applied the Operating Characteristic Curve

presented by Montgomery and Runger (2018) in Appendix A (Chart g) that

shows different values of n for the one-sided t-test for a level of significance

α = 0.05. The Chart plots β for the t-test against a parameter d for various

sample sizes n. The parameter d is calculated according to Equation 5.4.

d = |X̄ −µ0|
s

(5.4)

Table 5.1: The pilot n = 10 sample evaluation. X̄ is the sample mean of
F1-Score on the Start Set retrieved by the n automatically generated search
strings, µ0 is the F1-Score on the Start Set from the object, and s is the sample
standard deviation of F1-Score on the Start Set retrieved by the n automati-
cally generated search strings.

n X̄ µ0 s d β

Vasconcellos (Replicated) 10 0.043 0.027 0.014 1.183 ≈ 0.03

The pilot sample size evaluation results are presented in Table 5.1. We

derived an approximate β = 0.03 and conclude that a sample size of n = 10 is

adequate to provide the desired sensitivity. After the execution of the experi-

ment on each object selected, we tested whether ten trials were sufficient and

the results are further detailed.

As mentioned before, we blocked some variables to avoid confounding fac-

tors. In this experimentation, the SeSG approach works on a fixed range of

parameters that we described in the next section.

5.2.6 Instrumentation

Some parameters of the SeSG approach may oscillate, varying the genera-

ted search string produced. After carrying out some initial tests on the pilot

object, we proposed value ranges for the approach parameters. These para-

meters oscillate in a coordinated manner, as shown in Table 5.2. MinDF is

the minimum frequency of documents required for the terms found to be va-

lid, K is the number of topics in the search string, W is the number of words

in each topic (topic descriptors) of the search string and S is the number of

similar words that will be obtained for each word, during the search string

enrichment.
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Table 5.2: Range of parameters of the SeSG approach. MinDF is the minimum
frequency of documents required for the terms found to be valid, K is number
of topics that will be obtained during the execution of the LDA algorithm,
W number of words that will be obtained during the execution of the LDA
algorithm and S is the number of similar words that will be obtained for each
word, during the search string enrichment.

Instrument
Variables

Value/
Range

Numerical

Increment

MinDF 0.1 - 0.4 0.1

K 1 - 5 1

W 5 - 10 1

S 0 - 3 1

In addition to the oscillating parameters of the SeSG approach, other ins-

truments present in the experiment are objects, guides and output measures.

The objects of this experiment were defined in Section 5.2.4. Although only

one researcher conducted the entire experiment, being the only subject, a

guide was created to ensure that the operation was followed during execution

on all objects. This guideline contained the steps to be followed during the

information extraction from objects, the execution of automated scripts, and

the collection of output data.

Measurements in the experiment are performed via data collection. The

data collected from the experiment were stored in spreadsheets. The search

strings generated by SeSG and used in the tests were stored in text files, for

future manual analysis. Co-citation graphs were also automatically generated,

showing the relationship between the studies of the GS. In this graph, and

edge is added if a study cites or is cited by another study in the GS.

The output spreadsheets containing the results of the tests have two me-

asurements: NTotal and RStS. The first measurement, NTotal, quantifies the

results found in Scopus (chosen digital library) with the automated search.

This measurement is compared with the amount of results found by all the di-

gital libraries used in the object study. RStS, on the other hand, represents the

amount of GS studies found using the search string provided by SeSG. This

value reflects the effectiveness of the search string in retrieving GS studies. In

the context of hybrid searches, the evaluation of only the final result may be

misleading and may not reflect the real contribution of the automated search.

For example, in an extreme case where the co-citation graph of the GS is fully

connected, the retrieval of just one study of the GS in the automatic search
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leads to the retrieval of the entire GS through snowballing.

The other measurements were obtained through specific calculations on

the collected data. The dependent variable F1StS is the harmonic mean between

the precision and recall of the start set. This variable is used for the mathema-

tical comparison between the research previously carried out by the authors

of the objects and the results obtained with the tests. In turn, the RecallFinal

measurement represents the spectrum comparison of the second stage of the

hybrid search strategy, checking if all studies present in GS were found af-

ter all the search strategy. The value of RecallFinal becomes important since

when using only one digital library in the experimental group (Scopus), there

is a risk that a relevant study will not found.

5.2.7 Threats to Validity Evaluation

Wohlin et al. (2012) propose a checklist with possible threats to validity as

characterized by Campbell and Cook (1979). We use this checklist to describe

which threats apply to the experiment and how we planned to mitigate each

threat.

Conclusion Validity

The statistical conclusion validity focuses on the relationship between tre-

atment and outcome of the experiment (Wohlin et al., 2012). In this type of

threat the validity, we point out three possible threats:

1. Fishing and the error rate: To avoid the possibility of “fishing” the best

result, we performed experimental tests ten randomized trials on each

object with different sets of QGS.

2. Reliability of treatment implementation: To minimize this threat, all the

tests on different objects, were performed in the shortest possible time

(preferably in the same week). This was done to prevent treatments

from occurring on different occasions, as the digital library used (Sco-

pus) could change suddenly.

3. Random irrelevancies in experimental setting: To reduce the possibility of

this threat, we executed all tests without interruption, ensuring similar

conditions between the tests. Tests with interruptions were discarded.

Internal Validity

The threat to internal validity symbolizes the issue that the treatment really

causes the effect. In this type of threat to the validity, a possible threat was

detected:
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1. History: Although there is a difference in times between the conduction

of the groups (the control group was conducted years ago), this difference

does not interfere with the analysis. The execution of the control group in

a more recent timestamp would worsen F1StS, contributing to the rejec-

tion of the null hypothesis. We argue that if we manage to refute the null

hypothesis with the original data, we would also refute in an eventual

replication.

Construct Validity

Construct validity ensures that the treatment reproduces the cause’s cons-

truct, and the output reproduces the cause of the effect (Wohlin et al., 2012).

Two possible construct validity threats were detected:

1. Mono-operation bias: If an experiment includes a single subject, it can

under-represent the construct, not providing a complete picture of the

theory. This experiment has only one subject; however, measures to

avoid the subject’s direct impact have been taken, mainly to the auto-

mation of a major part of the operation activity. A protocol for the ex-

periment’s execution was created, seeking to minimize a possible bias

originated by the subject.

Besides, despite the experiment having two independent variables, only

one was manipulated (the QGS set), while the other (QGSSize) was fixed.

This was done precisely to observe the effect that the variation of the

QGS causes on the formulated string, without manipulating the size of

the QGS between the tests.

2. Restricted generalizability across constructs: The analysis of the effecti-

veness of the search string is based on the F1StS obtained. However,

RecallFinal is also relevant, since a search string qualified as efficient

may not return certain relevant studies (RecallFinal less than 100%). We

will then tolerate a lower degree of completeness, as suggested by Dieste

et al. (2009).

External Validity

Threats to external validity represent the capacity to generalize the experi-

ment results in the real world. The last threat was detected:

1. Interaction of selection and treatment: To avoid this threat, objects with

different sizes of GS were selected, addressing different contexts and

made by different authors. Despite having, for each object, enough sam-

ples to generalize the statements found, through the hypothesis test, the

number of objects used in the experiment may not be sufficient to gene-

ralize the effectiveness of the SeSG.
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After the planning activity of the experiment is complete, it can finally be

performed. The following subsection will present the operation of the experi-

ment, showing how its execution was carried out.

5.3 Operation

We will divide the experiment’s operational activity into three stages: pre-

paration, execution, and data validation. For this experiment, the preparation

activity is where the three selected objects are analyzed, and their relevant

information and characteristics are filtered to be used in the execution. In the

execution activity, SeSG is performed several times on each object, with pre-

established treatment variations. Finally, data validation takes place, where

specific data obtained automatically by SeSG are checked manually.

5.3.1 Preparation

Once the studies to be used in the experiment are selected, some informa-

tion is needed so that the execution is finally running. First, for each object,

all items present in the GS must be available. These studies will be further

used in the co-citation graph. The metadata of the GS studies, used during the

formation of the bag-of-words, are also necessary. Finally, a file with the titles

of the GS studies is necessary to make an automated comparison between the

studies found in the search and the GS.

In other words, the execution requires PDFs and metadata of the studies

present in the respective GS and a list with the names of those studies. More-

over, certain characteristics of the objects must be saved for future measure-

ments, such as the size of the QGS (QGSSize) and the size of the GS (GSS).

5.3.2 Execution

The experiment’s execution task is based on running the experiment in

the three studies selected ten times, providing a random QGS for each of

these runs. If the SS already uses any QGS, SeSG will perform imitating the

QGS used by the author. The idea of running ten times aims to reduce the

possibility of some bias in selecting random QGS, besides providing a mean of

the dependent variables returned. The entire experimental group was run on

an Intel(R) Xeon(R) ES-2620 @ 2.00GHz. Some previous tests for delimiting

the operating range and checking functionality were performed on an Intel(R)

Core(TM) i7-8850U @ 1.80GHz.

A framework for the execution task of the experiment is presented in Fi-

gure 5.2. This framework characterizes how the experiment is divided into
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Figure 5.2: The framework for the execution task of the experiment. Based on
Kitchenham et al. (2015).

two groups, control, and experiment. In the control group, the objects of the

experiment are selected. For each of the selected objects, their GS is extrac-

ted, obtaining their names and files. Then, the hybrid search’s relevant control

measures are collected to allow later comparison between the approaches.

In the experiment group, some actions are different. First, we already have

the GS and we use it to formulate a random QGS. With the metadata of this

formulated QGS, added to some application parameters, we were able to for-

mulate an automated search string. Using this automated search string in

Scopus, we obtain a start set of relevant studies that answer the research

questions. From this formulated start set, we assembled a co-citation graph

between the GS studies. This graph allows to detect missing GS studies that

would be found by snowballing. Similarly, measures are obtained that enable

the comparison between groups, and an analysis of the experiment can be

formulated.

All the variations in the application parameters are performed on the ob-

jects in an automated way via a Python script. Each execution generates
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two output files. The first file (in .txt format) contains a collection of search

strings formulated from the tests. The second file (a worksheet in .csv format)

contains the mathematical results themselves, such as the number of results

found by the search and the number of GS studies found before and after the

co-citation graph. That information found in the second file is mathemati-

cally sufficient to get the dependent variable. These results are automatically

saved in multiple worksheets and files, named according to the application’s

parameters.

Besides these output files, a graph is also generated for each oscillation

of the application’s parameters, representing the connections between the GS

studies. The type of vertex in the graph delimits at which stage of the search

strategy, the GS study in question was found, whether in base search or snow-

balling. GS studies that were not found by the SeSG are characterized too in

the graph. Since a large part of this output data is generated in an automated

way, it is essential to perform data validation.

5.3.3 Data Validation

When data is collected, it is necessary to check if this data is reasonable

and collected correctly. In this experiment’s case, to ensure data validation,

the search strings with the highest effectiveness (which generate the best re-

sults) are manually validated in Scopus. Besides, the co-citation graph gene-

rated in an automated manner from these most effectively search strings is

also manually checked, ensuring data correctness.

5.4 Analysis and Interpretation

After the operation of the experiment, a detailed analysis of the results

should be evidenced. For this analysis, the best results obtained by SeSG

were examined and compared with the results obtained by the search string

developed manually by the objects’ authors. For the sake of space limitations,

only the most relevant results were exposed in the study. There is a repository

on GitHub3 with more complete results, in addition to the Python code used

during the experiment.

During each test, specific parameters that delimit the structure of the se-

arch string (MinDF, K, W and S) fluctuate within a range of performance. This

oscillation allows search strings of different sizes, having terms with different

relevance to be tested. Thereby, for each test, 480 search strings and their res-

pective results were generated. Given that there are 30 tests in total (ten for

each object), 14400 search strings are obtained with their respective results.

3https://github.com/sesg-creator/SeSG
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A mathematical ranking was performed to classify the generated search

strings according to their efficiency. For this, each test result was ordered first

by the RecallFinal, followed by the F1StS. This order is adopted so that results

with highest RecallFinal can appear at the top (the search string should return

as many GS studies as possible). Then, among the search strings with same

RecallFinal, the most effective is the one with the best F1StS.

With this classification, the best results for each test are found. The com-

parison with the search string results carried out manually formulated by the

authors of the objects can then take place. The most efficient test results are

shown in Tables 2, 3, and 4. These results can be partially analyzed in the

tables, but their analysis can be further developed. The observation of the out-

put graphics and their respective search strings will be used to complement

this analysis.

5.4.1 Analysis in Vasconcellos et al. (2017)

The Table 5.3 presents the relevant data obtained through the execution of

experiment on the Vasconcellos et al. (2017) object. The first part of the table

reports the control group of the experiment. It presents the data obtained

during the execution of the original study and the recent replication of the

search strategy.

For comparison purposes, the measurements obtained during the repli-

cation of the search strategy will be used. In this case, the search string

formulated by the authors results in 1082 studies located in different digital

libraries. In addition, this search string provides 15 of the 30 studies pre-

sent in the GS (i.e., the RStS has 15 studies), with an F1StS of 0.027 and a

RecallFinal of 100%.

The second part of Table 5.3 reports about the experimental group of the

experiment. It presents the data obtained during the execution of the SeSG

approach in the Vasconcellos et al. (2017) object, as shown in Figure 5.2. The

lines with the input set varying from QGS 01 to 10 represent the values of the

most efficient search strings in each of the ten tests.

In the case of the Vasconcellos et al. (2017) study, all the tests presented a

RecallFinal of 97%, while the third test had the best F1StS (0.063), extremely

superior to the used in the control group (0.027). Thus, although in some

cases the F1StS is lower than the obtained originally (tests 6 and 7). However,

the mean F1StS obtained by the tests with SeSG (0.043) is higher than that

obtained by the original search string (0.027).

As noted earlier, there was a possibility that certain studies would not be

found at all, because they are not indexed by Scopus and not cited by any

of the other GS studies. In the case of Vasconcellos et al. (2017) object, this
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Table 5.3: Relevant data obtained through the execution of the experiment on
the Vasconcellos et al. (2017) object. The table has two parts. The first reports
the control group of the experiment. Exclusively on this object, are presented
measures of the original and the replicated search strategy, both with the ori-
ginal QGS. The second part shows the experimental group. The most effective
results from ten tests (01-10) are reported, each having a different random
QGS from the final GS. Lastly, the mean of these ten tests was also displayed.
MinDF is the minimum frequency of documents required for the terms found
to be valid, K is number of topics that will be obtained during the execution
of the LDA algorithm, W number of words that will be obtained during the
execution of the LDA algorithm and S is the number of similar words that will
be obtained for each word, during the search string enrichment. NTotal is the
number of results retrieved from the search on Scopus, RStS is the number of
GS studies retrieved from the search on Scopus, F1StS is the F-Score of start
set, and RecallFinal is the final recall.

Control Group

Vasconcellos et al. (2017) / GSSize = 30 NTotal RStS F1StS RecallFinal

Original Automated Search 517 15 0.054 1.00

Replicated Automated Search 1082 15 0.027 1.00

Experimental Group

InputSet MinDF K W S NTotal RStS F1StS RecallFinal

QGS 01 0.1 5 8 1 384 12 0.058 0.97

QGS 02 0.2 5 6 1 814 18 0.042 0.97

QGS 03 0.4 5 9 1 474 16 0.063 0.97

QGS 04 0.3 5 8 1 554 16 0.054 0.97

QGS 05 0.2 5 7 1 903 17 0.036 0.97

QGS 06 0.2 5 8 1 1341 18 0.026 0.97

QGS 07 0.1 3 5 2 1321 18 0.026 0.97

QGS 08 0.4 5 7 0 1184 17 0.028 0.97

QGS 09 0.1 5 8 2 665 18 0.051 0.97

QGS 10 0.2 4 7 1 718 18 0.048 0.97

Mean (01-10) 0.2 5 7 1 836 17 0.043 0.97
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Figure 5.3: Graph representing the third random QGS experiment presented
in Table 5.3 from the Vasconcellos et al. (2017) object. Filled vertex represents
GS studies found with the use of search string in digital libraries. Vertex with
bold outline represents GS studies founded with the correlation between the
studies. Dashed vertex represent studies of the GS that would not be found
by the hybrid strategy.

problem occurs with a study (Waina (2001)). Despite being a negative point

for the search, the missing study in question would not have much impact on

the conclusion of the SS. Vasconcellos et al. (2017) reduces the relevance of

Waina (2001) in the final result because it is an approach without associated

empirical evidence and its influence on other studies is 0.

The interpretation of the experimental tests can be complemented with the

analysis of the graphs obtained during the experimental tests. Figure 5.3

shows one of the output graphs obtained during the experimentation in the

Vasconcellos et al. (2017) object. The graph explicitly represents the GS of

the third test (QGS 03) presented in Table 5.3. This graph has the best F1StS

obtained from the results with a random QGS (in this case, the random QGS

was formed by the studies 02, 06, 07, 10, 13, 14, 21, 22, 27, 30).

Note that in Figure 5.3, the node enumerated as 01 is dashed, which sym-

bolizes that the search strategy did not find it (because of this the RecallFinal

showed in Table 5.3 is no more than 97%). Also, the nodes listed as 06, 07, 08,

09, 10, 11, 13, 14, 15, 20, 21, 22, 23, 26, 27, 28 are filled, which represents

that all these studies were found with the automated search string formulated

by SeSG. The search string used in this particular case is as follows:

TITLE-ABS-KEY(((“improvement” OR “ideal”) AND (“business” OR “objective”) AND
(“process” OR “quality”) AND (“process improvement”) AND (“spi”) AND (“soft-
ware” OR “business”) AND (“model” OR “process”) AND (“goals” OR “thinking”)
AND (“software process improvement”)) OR ((“process” OR “quality”) AND (“soft-
ware” OR “business”) AND (“strategic” OR “design”) AND (“process improve-
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ment”) AND (“improvement” OR “ideal”) AND (“software process”) AND (“soft-
ware process improvement”) AND (“goals” OR “thinking”) AND (“strategy” OR
“model”)) OR ((“software” OR “business”) AND (“software process”) AND (“im-
provement” OR “ideal”) AND (“process” OR “quality”) AND (“software process
improvement”) AND (“process improvement”) AND (“model” OR “process”) AND
(“organizations” OR “communities”) AND (“based” OR “modeled”)) OR ((“pro-
cess” OR “quality”) AND (“software” OR “business”) AND (“software process”)
AND (“approach” OR “guide”) AND (“development” OR “design”) AND (“goals”
OR “thinking”) AND (“engineering” OR “development”) AND (“process improve-
ment”) AND (“improvement” OR “ideal”)) OR ((“measurement” OR “process”) AND
(“software” OR “business”) AND (“engineering” OR “development”) AND (“soft-
ware engineering”) AND (“spi”) AND (“strategy” OR “model”) AND (“strategies”
OR “management”) AND (“organization” OR “communities”) AND (“development”
OR “design”))) AND PUBYEAR < 2015

On the other hand, the nodes 02, 03, 04, 05, 12, 16, 17, 18, 19, 24, 25,

29, 30 in Figure 5.3 are bold outline, representing that these studies from GS

were found through correlation of the vertices of the graph in question. It is

relevant to this graph analysis since the SeSG was modeled to act in hybrid

search strategies. This demonstrates that although the search string does not

return the entire GS, it will be achieved in the snowballing.

5.4.2 Analysis in Hosseini et al. (2019)

Table 5.4 presents the relevant data obtained from the experiment execu-

tion in Hosseini et al. (2019) object. As with Vasconcellos et al. (2017), the first

part of the table represents the control group of the experiment. In the Hos-

seini et al. (2019) object case, the automated search adopted by the authors

results in 1889 studies located in different digital libraries. In addition, this

search string provides 29 of the 46 studies present in the GS (i.e., the RStS

has 29 studies), with an F1StS of 0.029 and a RecallFinal of 100%.

The second part of Table 5.4 also reports about the experimental group of

the experiment. The lines with the input set varying from QGS 01 to 10 re-

present the values of the most efficient search strings obtained in each of the

ten tests. Analyzing the data obtained during the tests shows that the value

of the F1StS fluctuates considerably (between 0.047 and 0.475). However, in

all tests, the values of F1StS are higher than those presented by the original

search strategy (0.029). This also makes the mean of the F1StS values, presen-

ted in the last row of the Table 5.4, higher than that presented by the original

automated search (0.043 against 0.027).

As with Vasconcellos et al. (2017) object, the RecallFinal obtained during the

49



Table 5.4: Relevant data obtained through the execution of the experiment on
the Hosseini et al. (2019) object. The table has two parts. The first reports
the control group of the experiment, presenting the measures of the original
search strategy. The second part shows the experimental group. The most
effective results from ten tests (01-10) are reported, each having a different
random QGS from the final GS. Lastly, the average of this ten tests was also
displayed. MinDF is the minimum frequency of documents required for the
terms found to be valid, K is number of topics that will be obtained during
the execution of the LDA algorithm, W number of words that will be obtained
during the execution of the LDA algorithm and S is the number of similar
words that will be obtained for each word, during the search string enrich-
ment. NTotal is the number of results retrieved from the search on Scopus,
RStS is the number of GS studies retrieved from the search on Scopus, F1StS
is the F-Score of start set, and RecallFinal is the final recall.

Control Group

Hosseini et al. (2019) / GSSize = 46 NTotal RStS F1StS RecallFinal

Original Automated Search 1889 29 0.029 1.00

Experimental Group

InputSet MinDF K W S NTotal RStS F1StS RecallFinal

QGS 01 0.4 3 8 0 101 22 0.299 0.96

QGS 02 0.4 2 8 0 38 19 0.452 0.96

QGS 03 0.2 3 8 1 200 20 0.162 0.96

QGS 04 0.1 4 6 3 1018 25 0.047 0.96

QGS 05 0.4 4 10 0 34 11 0.275 0.96

QGS 06 0.1 4 9 1 41 19 0.436 0.96

QGS 07 0.4 4 6 0 252 27 0.181 0.96

QGS 08 0.4 5 7 0 153 26 0.261 0.96

QGS 09 0.1 4 7 3 51 23 0.474 0.96

QGS 10 0.1 5 5 0 363 21 0.102 0.96

Mean (01-10) 0.3 4 7 1 225 21 0.269 0.96
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tests in Hosseini et al. (2019) object did not reach the expected value, being

limited to 96%. This limitation is because two studies were not found du-

ring the Scopus search stage and the co-citation graph (Pravin and Srinivasan

(2012); Wang and Wang (2016)). This symbolizes that these studies are possi-

bly not indexed in Scopus. It also shows that no other GS study references or

is referenced by them.

As commented earlier, studies not indexed in Scopus and not referenced by

the set that forms the GS in the SS in question cannot be attributed by SeSG.

Wang and Wang (2016) was not found because Hosseini et al. (2019) object

states that the studies contained in GS were published until 2015, but Wang

and Wang (2016) was published in 2016. This information conflict causes that

filter in the search string (PUBYEAR < 2016) to remove Wang and Wang (2016)

from the search results. Pravin and Srinivasan (2012) was not found because

it is in a gray area not reached by Scopus, being indexed only in ProQuest and

not cited by any other study besides Hosseini et al. (2019) study.

During the SS quality assessment stage, Hosseini et al. (2019) excluded

both studies not founded with SeSG. Wang and Wang (2016) fails during con-

text assessment, while Pravin and Srinivasan (2012) fails in more than one

step of the assessment. This does not minimize the severity of two studies not

being found but mitigates the impact this could have on a real case.

A graph with the higher F1StS (QGS 09) in the tests is provided. Because

it has a larger GS (46 studies) and such studies have much communication,

this output graph will not be presented due to its illegibility. This high con-

nectivity between the GS studies shows that the area in question of the study

of Hosseini et al. (2019) is extremely consolidated.

However, specific data regarding the graph generated with SeSG from the

study of Hosseini et al. (2019) can be presented. The graph has 46 nodes,

each representing a GS study, with two dashed nodes (06 and 12). Also, the

graph with the higher F1StS result has 23 filled nodes, representing the studies

found during the database search step and 21 bold outline nodes representing

items correlated to the filled nodes. The search string used in this particular

case is as follows:

TITLE-ABS-KEY(((“prediction” OR “.” OR “observed” OR “risk”) AND (“models”
OR “##s” OR “designs” OR “systems”) AND (“project” OR “border” OR “country”
OR “fault”) AND (“defect” OR “error” OR “cost” OR “model”) AND (“cross” OR “in”
OR “within” OR “small”) AND (“cross project”) AND (“projects” OR “elements”
OR “samples” OR “countries”)) OR ((“cpdp”) AND (“projects” OR “elements” OR
“samples” OR “countries”) AND (“metric” OR “forecast” OR “diagnostic” OR “ar-
chitecture”) AND (“software” OR “product” OR “manufacturing” OR “vehicle”)
AND (“sets”) AND (“defect data”) AND (“data” OR “required” OR “experience”
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OR “provided”)) OR ((“data” OR “required” OR “experience” OR “provided”) AND
(“defect” OR “error” OR “cost” OR “model”) AND (“company” OR “sectional” OR
“platform” OR “border”) AND (“prediction” OR “.” OR “observed” OR “risk”) AND
(“cc” OR “”) AND (“cc data”) AND (“wc” OR “”)) OR ((“prediction” OR “.” OR “ob-
served” OR “risk”) AND (“data” OR “required” OR “experience” OR “provided”)
AND (“project” OR “border” OR “country” OR “fault”) AND (“defect” OR “error” OR
“cost” OR “model”) AND (“defect prediction”) AND (“cross” OR “in” OR “within”
OR “small”) AND (“cross project”))) AND PUBYEAR < 2016

As in Vasconcellos et al. (2017), practically half of the GS studies in Hos-

seini et al. (2019) were obtained by database searching using the search string

displayed. Another half will be obtained with the co-citation graph, highligh-

ting the importance of using a hybrid search strategy.

5.4.3 Analysis in Azeem et al. (2019)

Lastly, Table 5.5 presents the data obtained during the execution of the

experiment in Azeem et al. (2019) object. This particular case has a much

lower GS than previous cases (only 15 studies), using the QGSSize floor in

random QGS (only five studies). Thus, perhaps metadata from only five studies

may have impacted the quality of SeSG in formulating a bag-of-words that

represents the field of study in question.

As done with the other objects, Table 5.5 has two parts. The first part

also represents the control group, showing the values used during the SS’s

original execution. In the case of Azeem et al. (2019) object, the automated

search resulted in 2456 studies, located in different digital libraries. Of the

GS formed with only 15 studies, 12 are returned in this automated search,

while the rest were obtained via snowballing. These measures provides an

RStS of 12 and an F1StS of 0.009.

The second part of Table 5.5 also reports about the experimental group.

The lines with the input set varying from QGS 01 to 10, representing the

values of the most efficient search strings obtained in each of the ten tests.

Analyzing the data obtained during the tests, it can be noted that there is

a different variation in NTotal. As the QGS used for the formulation of the

search string is very small (5 studies), the impact of the studies selected to

form the QGS is higher than that observed in other objects. This leads to

such a considerable variation between the NTotal, ranging from 3 results to

2676.

This oscillation obtained in the number of results returned (NTotal), directly

impacts the F1StS. As a result, there is also a big fluctuation between the

values obtained by F1StS, ranging from 0.007 to 0.608. However, only in one
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Table 5.5: Relevant data obtained through the execution of the experiment
on the Azeem et al. (2019) object. The table has two parts. The first reports
the control group of the experiment, presenting the measures of the original
search strategy. The second part shows the experimental group. The most
effective results from ten tests (01-10) are reported, each having a different
random QGS from the final GS. Lastly, the mean of this ten tests was also dis-
played. MinDF is the minimum frequency of documents required for the terms
found to be valid, K is number of topics that will be obtained during the execu-
tion of the LDA algorithm, W number of words that will be obtained during the
execution of the LDA algorithm and S is the number of similar words that will
be obtained for each word, during the search string enrichment. NTotal is the
number of results retrieved from the search on Scopus, RStS is the number of
GS studies retrieved from the search on Scopus, F1StS is the F-Score of start
set, and RecallFinal is the final recall.

Control Group

Azeem et al. (2019) / GSSize = 15 NTotal RStS F1StS RecallFinal

Original Automated Search 2456 12 0.009 1.00

Experimental Group

InputSet MinDF K W S NTotal RStS F1StS RecallFinal

QGS 01 0.3 2 5 2 817 9 0.021 1.00

QGS 02 0.1 3 7 0 6 5 0.476 1.00

QGS 03 0.1 5 5 1 2676 10 0.007 1.00

QGS 04 0.3 1 8 3 656 7 0.020 1.00

QGS 05 0.3 3 8 0 8 7 0.608 0.80

QGS 06 0.3 4 10 0 9 7 0.583 0.80

QGS 07 0.3 5 10 0 3 3 0.333 1.00

QGS 08 0.3 5 8 1 249 10 0.075 1.00

QGS 09 0.1 5 10 0 6 4 0.381 1.00

QGS 10 0.1 4 9 0 3 3 0.333 1.00

Mean (01-10) 0.2 4 8 1 443 7 0.284 0.96
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test (QGS 03), the value of F1StS (0.007) is not higher than that presented

by the original search strategy (0.029). This makes the mean of the F1StS,

presented in the last row of the Table 5.5, much higher than that presented

by the original automated search (0.284 against 0.009).

One negative detail that further represents the oscillation between the tests

is the RecallFinal variation. Contrary to what happens in Tables 5.3 and 5.4,

the RecallFinal present in QGS 05 and 06 are distinct from the others. This

recall oscillation results in a certain subgroup of studies not being reached in

all cases, making the search string limited to only part of the GS provided.

Figure 5.4 shows what happens. The sub-graph with nodes 07, 14, and 15

was not reached by SeSG in these tests, limiting the final recall obtained.

This segregation of this sub-graph with the other studies of the GS occurs

due to the research focus. Nodes 07, 14, and 15 are the only GS studies

that seek to investigate the code smell aimed at duplicate codes. Thus, these

studies are only related to each other, and if the search string returns none of

these studies, they will never be reached through the co-citation graph.

This highlights a threat to the SeSG approach. If the area in question of

the SS has particular sub-areas, at least one study of each sub-area must be

obtained by the search string. This would ensure that all research sub-areas

have been reached. This is exactly what does not happen in the tests with

QGS 05 and 06. The lack of completeness in the sub-areas made it possible

to exclude part of the GS.

Even with this drawback that two tests presented in Table 5.5 did not reach

the expected RecallFinal, the results are impressive. The evidence that the

refinement of the search string does not always have to be so profound. With a

hybrid approach, snowballing can find most studies missing without excessive

search string refinement.

As previously mentioned, an output from the Azeem et al. (2019) object

is shown in Figure 5.4. The GS from this study has a relatively small size

compared to the others (15 studies), making graph analysis more visible. In

this case, the graph explicitly represents the GS of the second test (QGS 02).

This graph was chosen because it presents the best F1StS obtained with a

RecallFinal of 100%. This specific test was realized with a random QGS formed

by studies 01, 02, 06, 11, 15.

Unlike the other objects, in this situation, no node shown in Figure 5.4 is

dashed, since the search strategy found all studies present in GS. Besides,

five nodes are filled (01, 06, 10, 11, 15), representing that they were found in

digital libraries. The remaining ten nodes are bold outline (02, 03, 04, 05, 07,

08, 09, 12, 13, 14), found from the graph correlations. The search string used

in this particular case is as follows:
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Figure 5.4: Graph representing the second random QGS experiment presented
in Table 5.5 from the Azeem et al. (2019) study.

TITLE-ABS-KEY((“code” AND “clones” AND “clone” AND “model” AND “code clo-
nes” AND “classification” AND “learning”) OR (“anti” AND “patterns” AND “anti
patterns” AND “smurf” AND “systems” AND “software” AND “occurrences”) OR
(“design” AND “detection” AND “software” AND “code” AND “smells” AND “dif-
ferent” AND “learning”)) AND PUBYEAR < 2018 AND PUBYEAR > 1999

Note that the search string has the floor and ceiling date filter. This filter

is used to match the spectrum reached by the search string that the authors

reached at the time of publication, making the comparison fairer. Thus, as the

author limited himself to studies from 2000 onwards, the search string was

incremented with a date filter seeking to correspond to this limitation.

From all these analyzes, both numerically in the tables and visually th-

rough the graphs, it is evident that they are promising despite the results

oscillating much. Considering the work that researchers usually have refining

a search string, SeSG can minimize the difficulty of finding studies in digital

libraries. The time saved that SeSG provides can be used in other steps of the

process or to reduce an SS’s execution time.
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5.4.4 Hypothesis Testing

The analysis was performed to test the hypothesis individually for each

object. For each object of the experiment, a check is made if the treatments

represent a normal distribution, through the Shapiro-Wilk test (Shapiro and

Wilk, 1965). Table 5.6 presenting the values referring to the Shapiro-Wilk test

performed on each object of the experiment and their respective results. It is

interesting to note that the values used in the samples are in Tables 5.3, 5.4

and 5.5. Moreover, all the objects are normal distributions.

Table 5.6: Values referring to the Shapiro-Wilk test of normality, performed on
each of the objects. If p-value is greater than α (0.05), the distribution can be
considered normal. n is the sample size, W is the test statistic from Shapiro-
Wilk, p-value is the significance probability and α is the level of significance.

Vasconcellos
(Replicated)

Hosseini
(Original)

Azeem
(Original)

n 10 10 10

Statistic (W) 0.92 0.93 0.87

p-value 0.36 0.52 0.11

α 0.05 0.05 0.05

Conclusion Normal Normal Normal

Since all the objects in the experiment are parametric, the one-sample Stu-

dent’s t-test (Montgomery, 2017) is performed for each object to test the pre-

sented hypothesis. To test the null hypothesis that the population mean is

equal to a specified value µ0, the Equation 5.5 is used. Table 5.7 shows all the

values used in Equation 5.5 for each object and their respective results. For

information, X̄ is the sample mean, µ0 is the F1-Score provided by the object

when using the manual search string, s is the sample standard deviation, and

n is the sample size.

t = X̄ −µ0
sp
n

(5.5)

As can be seen in Table 5.7, the null hypothesis (H0) was rejected in favor

of the alternative hypothesis in all objects of the experiment. This emphasizes

the premise that the use of the automated search string, formulated by SeSG,

is, on mean, better than the manual formulation of a search string.

To analyze the sample size, we applied the technique presented in Section

5.2.5 (Montgomery and Runger, 2018). The results, presented in Table 5.8,
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Table 5.7: Values referring to the Student’s t-test, performed on each of the
objects. If p-value is less than α (0.05), the null hypothesis can be rejected. X̄
is the sample mean, µ0 is the F1-Score provided by the object when using the
manual search string, s is the sample standard deviation, n is the sample size,
t is the one-sample t-test value, and p-value is the significance probability.

Vasconcellos
(Replicated)

Hosseini
(Original)

Azeem
(Original)

X̄ 0.043 0.269 0.284

µ0 0.027 0.029 0.009

s 0.014 0.149 0.237

n 10 10 10

t 3.741 5.079 3.668

p-value 0.0023 0.0003 0.0025

H0 Rejected Rejected Rejected

shows that the sample n = 10 was sufficient to carry out the experiment on all

objects, assuring a probability of a type II error less than 0.05.

Table 5.8: Values referring to the probability of a type II error (β) from an O.C.
Curve from α= 0.05. If β is less than 0.05, H0 will be rejected with probability
at least 0.95. X̄ is the sample mean, µ0 is the F1-Score provided by the object
when using the manual search string, s is the sample standard deviation, d is
the type II error parameter, and n is the sample size.

Vasconcellos
(Replicated)

Hosseini
(Original)

Azeem
(Original)

X̄ 0.043 0.269 0.284

µ0 0.027 0.029 0.009

s 0.014 0.149 0.237

d 1.183 1.606 1.160

n 10 10 10

β ≈ 0.03 0.00 ≈ 0.04
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5.4.5 Evaluation of Results

After analyzing the data obtained during the experiment and perform hy-

pothesis testing, some assessments can be made about what it was got. Des-

pite the number of samples used in the hypothesis test for the objects to be

small, the p-values obtained have a considerable distance for the level of sig-

nificance determined. This distance guarantees a certain tranquility to reject

the null hypothesis H0.

The main concern with data analysis is in the RecallFinal obtained, where

it did not always reach 100% as in the control group. However, this problem

was predictable from the moment that the SeSG uses only one digital library,

unlike the control groups that employ five or more. Specifically in the Azeem

et al. (2019) object, the small number of studies used in the formulation of the

QGS possibly had an impact on obtaining relevant terms for the formulation

of the search string. As a result, the choice of studies to form the QGS had a

more incisive impact on the search, generating large fluctuations between the

tests.

It is evident that although the SeSG is an evolving approach, its results

are promising. The SeSG behaved satisfactorily on objects with different sized

GS (15, 30 and 46), using randomized QGS with proportional sizes (5, 10 and

15). It was also clear that the SeSG must necessarily be used in hybrid search

strategies since the completeness when performing only the automated search

with the formulated search string is low.

5.4.6 Limitations

Some limitations of the experiment were evident during the process. First,

the generalization of the experiments results can be compromised due to the

relatively small number of objects in the experiment. Although the objects

try to portray the field of action in SE, three objects may not be enough for a

complete generalization.

Another limitation is related to the comparisons made. The experiment

aims at comparing the efficiency of the search strings formulated with other

methods for search strategy formulation. However, no comparison is made

with SeSG and other automated or semi-automated search string formulation

approach.

Also, the use of the automated search string in only one digital library (Sco-

pus) can be considered a limitation. This usage limitation restricts the search

spectrum to only a series of studies indexed by the study base. Although this

base of studies is large, it does not imply that all relevant studies on a given

topic will be found.
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SECTION

6
Conclusion and Future Work

In this study, we presented an approach, called SeSG, that generates se-

arch strings for SS using only a list of relevant studies selected by researchers

(QGS). In SeSG, the QGS metadata is processed following a TM process and

LDA is used used to extract and group relevant terms. Besides, a BERT word

embedding improves the search string by adding similar terms to those ex-

tracted in the metadata. The proposed approach then assembles the search

string with the selected terms and automatically executes it in digital libraries.

To evaluate the efficiency of the SeSG application, an experiment was con-

ducted. Three SS were used as objects of the experiment, all of them having

a hybrid search strategy. The experiment results suggest that SeSG provided

higher F1-Score on the Start Set than manually generated search strings.

However, the generalizability across the experiment’s constructs are still

limited. The number of objects used during experimentation is not sufficient

to completely generalize the proposed approach. Thus, a possible future work

consists in replicating the experiment on a more significant number of objects,

seeking to observe the behaviour of SeSG in SS conducted in different ways,

with different sizes.

In this study, we did not focus on achieving full completeness in the se-

arch, given that our premise was to meet the balance between precision and

recall (the use of the F1-Score explicitly this). Due to this fact, in some objects

of the experiment the GS was not entirely retrieved. Thus, we point as fu-

ture work the investigation of different TM techniques for the generation and

enrichment of search strings that may establish search strings focusing on

completeness (100% final recall). The use of a pre-trained BERT embedding

model in a scientific study base can help to find enriched terms that provide
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the completeness of the search. Finally, we plan to perform experiments using

more digital libraries.
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