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Abstract

Comparative genomics is a field of biological research in which genomic features, such
as DNA sequence, genes, gene order, regulatory sequences or other structural aspects,
are evaluated to compare different species. To this end, whole or parts of genomes are
compared to find biological similarities and differences as well as evolutionary relationships
between organisms. Based on these findings, genome and molecular evolution can be
inferred and this may in turn be put in the context of, for instance, phenotypic evolution,
phylogenetic evaluation, population genetics or ancestral genome reconstruction.

Genome rearrangements—large-scale mutations responsible for complex changes and
structural variations—are subject of extensive studies in comparative genomics. Given
two genomes, we are interested in the problems of computing the rearrangement distance
between them, i.e., finding the minimum number of rearrangement operations that trans-
form one genome into the other, and the genomic similarity between them, i.e., finding
structural similarities given some rearrangement operation. The study of these problems
supports the investigation of important questions in a number of other fields, such as
molecular biology, genetics, biomedicine and paleogenomics.

Most rearrangements that modify the organization of a genome can be represented
by the double-cut-and-join (DCJ) operation. In this work, we propose a linear time
approximation algorithm with approximation ratio O(k) for the a restrict case of the DCJ
distance problem where, given two unichromosomal genomes, each gene occurs the same
amount of times in both genomes and no gene occurs more than k times. The general case
of this problem is NP-hard and there already exists an ILP exact algorithm for solving it.

We also study the problem of computing the genomic similarity under the DCJ model
in a setting that does not assume genes of the compared genomes are grouped into gene
families. This problem is called family-free DCJ similarity and is NP-hard. We show
it is also APX-hard, and then propose an exact ILP algorithm and four combinatorial
heuristics to solve the problem.

For both problems above, we run computational experiments comparing the proposed
algorithms with the exact ILP algorithms. Experiments show that the approximation
algorithm and the heuristics are very competitive both in efficiency and in quality of the
solutions with respect to the ILP algorithms.

Lastly, we propose a local similarity measure based on DCJ operations. Analogous
to local sequence alignment, the local DCJ similarity scores local regions in compared
genomes with high levels of structural similarity. Such a local measure is often convenient
when comparing highly dissimilar genomes containing some or many conserved regions.
We show its usefulness by modifying a popular ancestral genome reconstruction pipeline,
performing the ancestral reconstruction for an eudicots dataset, and obtaining improved
results compared to those presented in a recent publication using the original pipeline.

Keywords: double-cut-and-join (DCJ), Genome rearrangements, Comparative genomics,
Approximation algorithms, Heuristics, Integer linear programming, Local genome rear-
rangements, Ancestral genome reconstruction

i



ii



Resumo

A genômica comparativa é um campo de pesquisa da biologia em que caracteŕısticas
genômicas, como sequência de DNA, genes, ordem de genes, sequências reguladoras ou ou-
tros aspectos estruturais, são avaliadas para comparar diferentes espécies. Para tal, todo
ou parte dos genomas são comparados para encontrar semelhanças e diferenças biológicas,
bem como relações evolutivas entre organismos. Com base nessas descobertas, a evolução
molecular e dos genomas pode ser inferida, podendo ser avaliada no contexto de, por exem-
plo, evolução fenot́ıpica, avaliação filogenética, genética de populações ou reconstrução de
genomas ancestrais.

Os rearranjos de genomas — mutações em larga escala responsáveis por mudanças
complexas e variações estruturais — são objeto de extensos estudos em genômica compa-
rativa. Dados dois genomas, estamos interessados nos problemas de calcular a distância
de rearranjo entre eles, ou seja, encontrar o número mı́nimo de operações de rearranjo que
transformam um genoma em outro, e a similaridade genômica entre eles, ou seja, encon-
trar semelhanças estruturais estáticas ou semelhanças estruturais dada alguma operação
de rearranjo. O estudo desses problemas apoia a investigação de questões importantes em
vários outros campos, como biologia molecular, genética, biomedicina e paleogenômica.

A maioria dos rearranjos que modificam a organização de um genoma podem ser re-
presentados pela operação double-cut-and-join (DCJ). Propomos um algoritmo de apro-
ximação de tempo linear com razão de aproximação O(k) para um caso restrito do pro-
blema da distância DCJ, em que, dados dois genomas unicromossomais, cada gene ocorre
a mesma quantidade de vezes em ambos genomas e nenhum ocorre mais que k vezes. O
caso geral do problema é NP-dif́ıcil e já existe um algoritmo PLI exato para resolvê-lo.

Também estudamos o problema de calcular a similaridade genômica sob o modelo DCJ
em um cenário que não pressupõe que os genes dos genomas comparados sejam agrupados
em famı́lias de genes. Esse problema é chamado de similaridade DCJ livre de famı́lias, e é
NP-dif́ıcil. Mostramos que também é APX-dif́ıcil e, em seguida, propomos um algoritmo
PLI exato e quatro heuŕısticas combinatórias para resolver o problema.

Para ambos os problemas, realizamos experimentos computacionais comparando os
algoritmos propostos com os algoritmos PLI exatos. Os experimentos mostram que o
algoritmo de aproximação e as heuŕısticas são muito competitivos tanto em eficiência
quanto em qualidade das soluções em relação aos algoritmos PLI.

Por fim, propomos uma medida de similaridade local baseada em operações DCJ. De
forma análoga ao alinhamento local de sequências, a similaridade DCJ local pontua regiões
locais com altos ńıveis de similaridade estrutural nos genomas comparados. Medidas locais
tais como esta são frequentemente convenientes quando se compara genomas altamente
diferentes contendo algumas ou muitas regiões conservadas. Mostramos a utilidade desta
medida modificando um procedimento (pipeline) popular para reconstrução de genomas
ancestrais, realizando a reconstrução ancestral para um conjunto de dados de eudicots, e
obtendo resultados melhorados em comparação com os apresentados em uma publicação
recente usando o pipeline original.

Palavras-chave: double-cut-and-join (DCJ), Rearranjos de genomas, Genômica compa-
rativa, Algoritmos de aproximação, Heuŕısticas, Programação linear inteira, Rearranjos
locais de genomas, Reconstrução ancestral de genomas
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To mom.
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“It has documentation.”

Dumbfounded reviewer (concerning ANGORA).
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Chapter 1

Introduction

Chromosomes are molecules present in all living organisms and carry their genetic in-
formation. The set of all chromosomes of an organism is its genome. A chromosome is
composed of a double-stranded molecule called DNA (Fig. 1.1), where each strand is a
sequence of nucleotides complementary to nucleotides in the other strand. Chromosomes
can be linear (eukaryotes and some prokaryotes) or circular (most prokaryotes). A nu-
cleotide is composed of, besides other molecules, one among four nucleobases: adenine
(A), which pairs with thymine (T), and cytosine (C), which pairs with guanine (G). Since
strands are complementary, a DNA molecule can be seen as a single sequence over the
alphabet {A,C,G,T}.

DNA
Deoxyribonucleic acid

Base pair

Cytosine

Guanine

Adenine

Thymine

helix of
sugar-phosphates

Nucleobases
of DNA

Figure 1.1: Structure of DNA. Each base pair is formed by a pair of complementary
nucleotides. Source: Wikimedia commons, licensed under CC BY-SA 3.0.
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Introduction 2

Problems and applications in molecular biology can work with the DNA sequence in
low level, i.e., at the level of nucleotides, or in higher, that is, looking into each chromosome
as a sequence of blocks, each one formed by a nucleotide sequence of arbitrary length. Such
blocks are loosely defined as genomic markers. Naturally, the length of the sequence that
composes a marker must be of a reasonable size. A marker formed by a single nucleotide
takes us back to the low level view of the chromosome. At the other extreme is a marker
comprising the whole chromosome. At the same time, a large proportion of nucleotide
sequences play, however, no role in any known function in genomes. For this reason, we
usually consider only nucleotide sequences relevant in some aspect. There are different
approaches for defining genomic markers, none of them being superior in every aspect,
though. One such approach is to take sequences of a minimum length that have been
kept minimally conserved through evolution [47]. Another usual approach is to simply
take genes, which can be defined as DNA sequences that code the information needed to
produce other molecules (e.g. proteins) [2, 135]. Even the formal definition of the term
gene is, however, subject to discussion [58,98]. Despite of that, the set of genomic markers
of a genome is very often defined directly as the set of its genes. Further, in many cases,
the approach used to define genomic markers is simply irrelevant. Therefore, the term
gene will be used in this text as a synonym of genomic marker, unless noted otherwise.

The diversity of living organisms is possible mainly due to a process known as DNA
replication, where one genome is the basis to construct another similar genome. The
inaccuracy of this process is the principle of the molecular evolution. Changes in a DNA
molecule may occur by point mutations, at the level of nucleotides, and by large-scale
mutations or rearrangements, changing the number of chromosomes and/or the positions
and orientations of genes. Examples of such rearrangements are inversions (also called
reversals), translocations, fusions, and fissions.

Genome comparison methods by means of large-scale mutations support the investiga-
tion of important questions of molecular biology, genetics, biomedicine, and other areas.
The research on the field of comparative genomics often involves definitions of distance or
similarity measures between genomes, in order to use such measures to obtain phylogenetic
trees, predict orthologous genes, or identify propagation of gene functions across different
species. A classical problem in comparative genomics is to compute the rearrangement
distance, that is, the smallest number of rearrangements required to transform a given
genome into another given genome [110].

Some branches of comparative genomics are summarized below.

Detection of conserved structures
The study of gene order in genomes is responsible for detecting similarities or quan-
tifying conserved structures based on close relationships between pairs or groups of
genes considering their sequences in chromosomes. The most representative rela-
tions of proximity or distance between pairs of genes include breakpoints [26, 112]
and adjacencies [3, 33], while relations between groups of genes encompass common
intervals [72, 73, 113], approximate common intervals [77, 100], and max-gap clus-
ters [13,71].

Reconstruction of ancestral genomes
A more complete and in-depth view of evolutionary mechanisms, gene functions,
and the reconstruction of phylogenetic trees can be obtained through the study

facom-ufms



Introduction 3

of the conservation of gene orders or rearrangement processes in the context of the
phylogeny of involved organisms. The reconstruction of ancestral genomic structures
from homologies between species is a problem that has been extensively studied [1,
10, 39, 48, 93, 97, 107, 108, 123]. Fig. 1.2 depicts an overview of an anscestral genome
reconstruction.

Figure 1.2: Example of ancestral genome reconstruction overview. Different colors
in modern genomes (bottom) reflect the origin of chromosome segments with respect to the
seven ancestral chromosomes from the ancestral eudicot karyotype (AEK) on top. Ellipses
and stars show whole genome duplication (WGD) and triplication (WGT) events, respec-
tively. Source: The sunflower genome provides insights into oil metabolism, flowering and
Asterid evolution, Badouin et al. [10], licensed under CC BY 4.0.

Genome rearrangements
In contrast to methods for detecting conserved structures, where only the static prop-
erties of the genomes are studied and compared, genome rearrangement is a research
area in comparative genomics that attempts to understand the dynamics of struc-
tural modifications of genomes over time. Typical operations of genome rearrange-
ments are reversals (or inversions) of a chromosome segment, block interchanges
which exchange pairs of segments, transpositions which are block interchanges of
adjacent segments, translocation of genetic material between two chromosomes, and
fusion and fission of chromosomes (see Fig. 1.3). One important rearrangement
operation studied in the recent years is the double-cut-and-join (DCJ) [134], that
consists of cutting a genome in two distinct positions (possibly in two distinct chro-
mosomes) and joining the four resultant open ends in a different way, represents most
of large-scale rearrangements that modify genomes (see Fig. 1.3). Additionally, some
methods allow indels (Fig. 1.3), meaning the insertion or deletion of chromosome

facom-ufms
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Introduction 4

segments. In this branch, we often want to obtain (i) a distance measure under some
rearrangement operation or (ii) a sequence of rearrangement operations that trans-
forms one genome into another (counting the number of operations in that sequence
is one way to obtain (i)).

Reversal Transposition Translocation

Block
interchange

Fusion Fission InsertionDeletion

Figure 1.3: Examples of rearrangement events. Symbols are genes, solid lines group
genes in chromosomes and dashed or dotted lines represent regions or positions affected
by a rearrangement event. One DCJ can mimic a reversal, a fusion, a fission, or a translo-
cation, whereas two DCJs are required to model a block interchange or a transposition
(details in the Section 2.1).

The purpose of this work is to investigate distance and similarity measures for genomes
under rearrangement events and applications of such measures. The most basic scenario
in comparing genomes is where each gene occurs only once in each of the genomes. In
this scenario, several measures have been studied, many of which can be efficiently com-
puted [11,15,65,134]. However, this model does not match strictly what is found in nature,
where several copies of the same gene (or orthologous genes) occur in the same genome due
to duplications. When orthologous genes occur, gene families are defined, which are gene
sets with similar biochemical functions. In order to address the occurrence of multiple
genes from the same family in genomes, the family-based approaches have been proposed,
establishing measures usually hard to compute [3–5,27,29,111,115].

Although family information can be obtained by accessing public databases or by direct
computing, data can be incorrect, and inaccurate families could be providing support
to erroneous assumptions of homology between segments [45]. Thus, it is not always
possible to classify each gene unambiguously into a single family, and an alternative to
the family-based setting was proposed recently [22, 44, 45, 89]. It consists of studying
genome rearrangements without prior family assignment, by directly accessing the pairwise
similarities between genes of the compared genomes. This approach is said to be family-
free (FF). Such problems in general are at least as difficult as those based on gene families.

More recently, an intermediate modeling between the family-based and the family-free
approaches has been proposed, called gene connections [43]. Some problems on this model
are proven to be polynomial while others are as difficult as family-based and family-free
harder problems.

facom-ufms



Introduction 5

In the following sections, solutions, hardness, inapproximability, and approximation re-
sults are summarized for family-based and family-free measures under the most common
rearrangement operations. Measures for unichromosomal genomes are far more common
than for multichromosomal genomes, since the simplest operations do not exchange genes
between chromosomes (e.g. reversals or transpositions). Therefore, when not specified, we
assume unichromosomal genomes. However, considering translocation, fusion, fission, or
any rearrangement operation that acts solely over two chromosomes (DCJs not included)
only makes sense for and imply multichromosomal genomes. Hence, when these rear-
rangement operations are involved, we assume multichromosomal genomes. In addition,
problems for multichromosomal genomes (general case) are harder than for unichromoso-
mal genomes (restricted case), therefore any solution or approximation for the former is
also for the latter and any hardness or inapproximability result for the latter is also for
the former.

Lastly, since the usefulness of a new measure proposed in this work is shown by im-
proving a popular ancestral genome reconstruction pipeline, we also provide a succinct
overview on this field.

1.1 Some background on family-based measures

In this section we overview family-based measures for most common rearrangement oper-
ations. See [55] for a detailed review of other problems and variants. In the family-based
setting, some preprocessing is required as a first step before genomes can be compared.
The most common method, adopted for about 20 years [110, 111], is to base the analysis
on the order of conserved syntenic DNA segments across different genomes and group
homologous segments into families.

It is worth mentioning that many references for family-based measures on genomes
without duplicate genes concern sorting or measures for permutations, signed or unsigned,
sometimes not even in the context of genome rearrangements. However, signed linear
(circular) permutations are equivalent to linear (circular) chromosomes without duplicate
genes. Besides, distance measures are often obtained by counting the number of operations
to “sort” one permutation into another, e.g., the reversal distance is calculated by counting
the minimum number of reversals required to transform one unichromosomal genome
into another. In addition, when considering only operations that do not change the sign
of elements in permutations (orientation of genes), such as transpositions, the sign is
irrelevant and the problem is equivalent for signed and unsigned permutations. Similarly,
many references for measures with duplicate genes concern sorting or measures for strings,
which are equivalent to linear chromosomes with duplicate genes. In this context, the term
rearranging is often used instead of sorting because we want to transform one string into
another.

First, we present older and simpler problems, for which genomes have no duplicate
genes. Next, we consider more recent and harder problems, where duplicate genes are
present in genomes. In both cases, genomes can be balanced or unbalanced. Two genomes
are balanced when each family has the same number of genes in each genome, otherwise
they are unbalanced. The same relation between multichromosomal and unichromosomal
genomes exists for unbalanced (“harder”, general case) and balanced (“easier”, restricted
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case) genomes. Therefore, any solution or approximation for the former is also for the
latter and any hardness or inapproximability result for the latter is also for the former. Few
rearrangement operations under family-based methods have been studied for unbalanced
genomes. Henceforward, when not specified, we consider results on family-based measures
for balanced genomes.

Genomes without duplicate genes

Without duplicate genes, i.e., with the additional restriction that at most one representa-
tive of each family occurs in any genome, several polynomial time algorithms have been
proposed to compute genomic distances and similarities. Recall that, when not specified,
we assume linear chromosomes.

A conserved segment is a maximal common sequence of genes to both genomes. For any
pair of consecutive genes, if they belong to the same conserved segment they form an ad-
jacency, otherwise they form a breakpoint. One of the first distance measures for genomes,
defined by Sankoff and Blanchette, the breakpoint distance is trivially calculated for uni-
or multichromosomal linear or circular genomes [26, 112, 125]. Unlike most measures, the
breakpoint distance is a dissimilarity measure that does not take into account any re-
arrangement operation. In fact, the breakpoint distance is not really a rearrangement
distance, but a simple and one of the first measures of dissimilarity between genomes.

The reversal distance is solvable in polynomial time for linear [11, 66, 124] and circu-
lar [90] genomes. This is also true for block interchanges for both linear [34,53,76,86] and
circular [76, 86] genomes. While the sign of elements plays an important role for defining
more realistic models in genome rearrangement problems, the reversal distance is a classic
example where the unsigned version of a problem is much more difficult to solve. In fact,
the unsigned reversal distance is NP-hard [30,31].

Bafna and Pevzner [12] analyzed the problem with respect to transpositions, presenting
an 1.5-approximation algorithm, which was outperformed later by means of time [53, 68]
and approximation ratio [40,50]. After 15 years the problem was found to be NP-hard [28].
Hartman and Shamir [68] also found that the problem of sorting circular permutations
(unichromosomal circular genomes) by transpositions is equivalent to the problem of sort-
ing linear permutations (unichromosomal linear genomes) by transpositions, hence all
algorithms for the latter problem can be used for the former.

The complexity of sorting unichromosomal genomes by reversals and transpositions
is unknown. For reversals with weight 1 and transpositions with weight α, the best
approximation ratios are 2, 1.5 and 1 + ε for α = 1 [61, 85, 129], 1 ≤ α ≤ 2 [9], and
α = 2 for any ε > 0 [51], respectively.

For translocations only, the distance can be computed in polynomial time [14,64]. Han-
nenhalli and Pevzner [65] studied the distance problem for genomes involving reversals, fu-
sions, fissions, and translocations, devising a polynomial time algorithm, further corrected
or improved [16,78,96,126]. The problems for genomes under fusions, fissions, and trans-
positions (weighting twice as much as fusions and fissions) [42], circular genomes under
fusions, fissions and block interchanges [87], or circular genomes under block interchanges
and reversals [91] are also polynomial. The same holds for both uni- or multichromosomal
linear or circular genomes under DCJs [15,134].
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The problems presented above consider the default scenario for genome rearrangements
without duplicate genes (one gene per family), where the input is two balanced genomes
(with the same genes, in different orders). Despite that, some models admit as input
unbalanced genomes (some genes appear in only one of them). Therefore, some genes
must be inserted or removed so that both genomes end up having the same genes. The
reversal distance for unbalanced circular genomes where additional genes are present in
only one genome, thus allowing deletions or insertions only, is polynomial [130]. The DCJ
distance for unbalanced multichromosomal linear or circular genomes allowing indels can
be computed in linear time [24].

Genomes with duplicate genes

When duplicates are allowed, problems become more intricate and many of them are NP-
hard. For measures in this context, first we have to consider three standard models for
dealing with duplicates (Fig. 1.4):

• The exemplar model, in which, for each genome, exactly one gene in each family is
selected, and then the seleced pairs (one in each genome) are associated;

• The full model, in which as many genes as possible must be associated between
genomes (a maximal matching for gene associations between genomes must be de-
fined);

• The intermediate model, which is similar to the full model but requires an association
of at least one gene in each family in each genome, instead of as many as possible.

O
ri
g
in
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l

R
es
u
lt
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g

Exemplar Full Intermediate

Figure 1.4: Examples of original and resulting genomes for exemplar, full and
intermediate models. Genes in the same family are represented by the same symbol,
genes with multiple copies are distinguished by different colors, and gene associations are
indicated by solid lines. The same color in different genomes has no special meaning. The
measure between genomes is usually calculated from the resulting genomes.

In all cases, an association of genes is made such that some measure between the two
resulting genomes (usually ignoring unassociated genes) is the best possible. Although
unassociated genes are usually simply ignored (removed from resulting genomes), some
measures model this by indels events. Notice that resulting genomes under the exemplar
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model have no duplicate genes. In this work we regard only measures under the full model,
i.e., we want to keep as many genes as possible.

Additionally, an important note is that all the three models are identical when one of
the two genomes contains no duplicates. Hence, hardness and inapproximability results for
problems in this restrict case (no duplicates in one genome) under one model are carried
to the same restrict case under all models, and then to the general case (with duplicates
in both genomes) for all models.

The breakpoint distance for both linear and circular genomes is NP-hard [3, 21] and
APX-hard [4]. Moreover, when the number of genes in the largest family is k, the problem
admits 1.1037, 4, and 8k-approximation when k = 2 [60], k = 3 [60], and k is free [83],
respectively. The complementary problem, the adjacency similarity (or non-breaking simi-
larity) is also NP-hard [3] for both linear and circular genomes and admits approximations
with ratios 1.1442 when k = 2, (3 + ε) when k = 3 (for any ε > 0), and 4 in the general
case for linear and circular genomes [4]. Further, for the general case of unbalanced linear
and circular genomes, this problem does not admit a polynomial time approximation for
any ratio n1−ε, for 0 ≤ ε ≤ 1 [33].

For signed strings (equivalent to linear unichromosomal genomes), the minimum com-
mon string partition (MCSP) problem [32] is closely related to the breakpoint distance
problem. The breakpoint distance can be viewed as the minimum number of places where
a rearrangement scenario has to break, whereas the number of contiguous segments with-
out breaks is the solution of MCSP. Hence, the number of these segments is exactly the
breakpoint distance plus one. On the other hand, the breakpoint distance (or MCSP) is
known to differ only by a constant multiplicative factor from the reversal distance [32].
More precisely, for two genomes let b be the breakpoint and let r be the reversal distance
between them, then

⌈
b
2

⌉
≤ r < b. Because of this, approximation results for the break-

point distance can often be used for reversal distance, although approximation ratios are
not kept the same. The reversal distance is NP-hard [99] and is O(k)-approximate when
the largest family has k genes [83]. For the general unbalanced case, the reversal distance
is APX-hard [4].

Recall that problems are equivalent for signed or unsigned strings when considering
only operations that do not change the sign of genes, such as transpositions or block inter-
changes. The transposition distance for unsigned strings is NP-hard [99] and there exist an
O(log n log∗ n)-approximation [36,116] for the general case and an O(k)-approximation [83]
when the largest family has k genes, which comes from the close relation between transpo-
sition distance and MCSP for unsigned strings [82, 117]. Similarly, the block interchange
distance for unsigned strings is NP-hard [35] and is closely related to the transposition
distance [55]. Approximation algorithms for the former are approximation algorithms for
the latter with ratios multiplied by a constant not exceeding 2 [55]. Therefore, this prob-
lem can also be approximated with ratios O(log n log∗ n) [36,116] and O(k) [83] when the
largest family has k genes.

Regarding the DCJ operation, even when the genomes are balanced the DCJ distance
is NP-hard [115].
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1.2 Some background on family-free measures

The family-free approach was proposed recently [22, 45] as an alternative to family-based
methods. In the family-based setting, comparative studies can lead to inaccurate results, as
most gene families are uncurated and this can result in erroneous homology assumptions.
Family-free methods can sometimes even better reflect the biological reality, where the
similarity of each pair of genes is calculated directly. On the other hand, problems in
this setting are usually at least as difficult as family-based problems. We present in this
section the few problems studied under family-free approaches. In this context, many
rearrangement operations have not been studied at all.

In family-free methods, no prior family assignment is made. Instead, we directly
access the pairwise similarities between genes of the compared genomes. For such, it
is a common sense that comparing protein sequences (amino acids) coded by codons is
almost always preferable than DNA sequences (nucleotides). Also, some amino acids can
be easily replaced by others because of their similar chemical and spatial properties, but
such information is contained in protein substitution matrices [74,118] used by alignment
softwares (such as blastp).

The first family-free measure proposed was an adjacency similarity measure named FF-
Adjacencies, shown to be NP-hard [45] to compute for linear or circular genomes. The FF-
Adjacencies is modeled similarly to the intermediate model for family-based measures with
duplicate genes [89]. This adjacency similarity is related to the family-based adjacency
similarity, which is complementary to the family-based breakpoint distance.

The DCJ similarity was first proposed following the ideas of FF-Adjacencies [22], being
redefined later [89] under a model similar to the full model for family-based measures with
duplicate genes and proved to be NP-hard [89]. The DCJ distance is NP-hard and APX-
hard [89].

1.3 Some background on ancestral genome reconstruction

The growing field of paleogenomics aims at reconstruction and analysis of genomic data
in extinct species. Research in this field is supported by two different approaches focused
on tracing genome evolution back in time [97]. The first one, the direct or allochronic
approach, relies on methods for the extraction of ancient DNA from subfossils. The
second one, indirect or synchronic, reconstructs ancestral genomes by comparing modern
descendant genomes.

Ancestral genomes, that is, genome sequences of extinct species, are constituent for
inferring phylogenies and for our understanding of evolutionary processes, such as adapta-
tions to changing environmental conditions, the dynamics of genomes within populations
and across species, and the study of pathogen-host interactions. At the same time, the
study of ancestral sequences can give insights into gene function, regulatory networks, and
molecular processes.

Next-generation sequencing technologies and the following growing of genomic da-
tabases have allowed, specially for plants, the comparison of related genomes and the
inference of their ancestral genome known as most recent common ancestor (MRCA).
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Reconstructing MRCAs is relevant not only for understanding the evolution of a particular
set of organisms, but also for providing insight on other research questions, such as the
use of conserved orthologous gene clusters to define efficient strategies for genetic studies
and gene isolation or to improve the accuracy of gene annotation [108].

The field of computational paleogenomics has established several methods to infer
genome sequences of ancestral organisms from genome sequences of their extant descen-
dants and relatives. In general, ancestral genome reconstruction is divided into two largely
complementary—although interdependent—tasks: One is the inference of the genome’s ar-
chitecture, i.e., the number, appearance, and composition of ancestral chromosomes. The
other concerns the reconstruction of the genome content constituting the set of “build-
ing blocks” of the genome architecture that are the genomic markers, often represented
by (protein coding) genes. Provided that the genomic coordinates of extant markers are
known, the latter task coincides with the inference of homology classes (families), and the
determination of whether and how many members of each family are part of the ancestral
genome content [97]. Most popular methods for reconstructing the ancestral genome archi-
tecture follow one of two strategies: either they make use of a genome rearrangement model
to derive parsimonious rearrangement scenarios that explain the observed differences in
modern genome architectures, or they infer syntenic blocks. These constitute conserved
neighborhoods of individual pairs of markers, also denoted adjacencies, or neighborhoods
of marker sets comprising more than two markers [6].

Model-based reconstruction methods

For mostly all known rearrangement models, if duplications are not considered, the mini-
mum number of operations (distance) to transform one given genome into another given
genome can be computed efficiently. However, considering one step further, the reconstruc-
tion of an ancestral genome for three given genomes under the DCJ model, also called the
DCJ median problem, is already an NP-hard problem [125]. When duplications are taken
into account, even pairwise distances between given genomes are NP-hard to compute for
mostly all rearrangement models.

Consequently, to deal with the aforementioned issues for the reconstruction of ancestral
genomes, there are some proposed heuristic methods such as GASTS [133], MGRA [8] and
Badger [84]. GASTS and MGRA operate under the command of parsimony, i.e., they aim
to minimize the number of DCJ operations occurring along the edges of a given phylogeny.
Conversely, Badger [84] considers a probabilistic model, using Bayesian analysis, aiming
to solve the corresponding maximum likelihood problem. All methods assume that each
marker is unique, with MGRA supporting that some markers may be missing in some of
the genomes. As mentioned before, despite this unrealistic limitation, both objectives are
computationally intractable, hence neither of the methods is exact but both implement
fast heuristics that permit the analysis of biological datasets in practice.

Synteny-based reconstruction methods

Syntenic blocks are blocks of two or more extant genome sequences that are homologous,
i.e., they originate from the same block of a common ancestral sequence. Methods that
make use of inferred syntenic blocks must resolve conflicts between contradicting neigh-
borship relations of genomic markers imposed by these blocks in order to derive a total or
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partial, sequential or circular order of common ancestral markers. The most popular such
method, ANGES [81], identifies a subset of neighborship relations that can be displayed
by a PQ-tree, a data structure for capturing local variations in a set of permutations.
ANGES’ procedure implies that each family can contribute at most with one marker to
the ancestral genome content. This severely limits the applicability of the method for
the reconstruction of ancestral plant genomes, where multiple rounds of polyploidy have
frequently occurred, resulting in multiple copies of each gene. Alternative methods such as
PMAG [75] and DeCoStar [46] use likelihood estimation to infer ancestral gene orders, yet
are limited to process adjacencies only. Nevertheless, DeCoStar infers evolutionary trees
of marker adjacencies and therefore can handle evolutionary events such as duplication,
insertion, and loss [6].

Contiguous ancestral regions

Independent of the strategy used for reconstructing ancestral genomes, the outcome are
contiguous ancestral regions (CARs), that detail the composition of ancestral chromosomes
(or parts thereof) as well as the relative order of their contained genomic markers. Such
an order may not be entirely fixed—the resolution of ancestral marker orders depends on
the input data [136], the method of choice [6], and its alacrity to proclaim neighborship
relations derived from the analysis of extant genomes as ancestral. Many methods output
multiple candidates for ancestral gene order, either because their strategy is based on
sampling, or because it is subject to optimization criteria that give rise to many co-optimal
solutions.

1.4 Outline of this thesis

Chapter 2 presents formal definitions of some terms described previously or common to
both family-based and family-free methods, along with the basics of complexity classes,
reductions and approximation-preserving reductions. Chapter 3 describes a linear time
approximation algorithm with approximation ratio O(k) for the DCJ distance problem for
balanced unichromosomal linear genomes with duplicate genes, where k is the maximum
number of occurrences of any gene in the input genomes [102, 103]. The approximation
algorithm is also extended to circular unichromosomal balanced genomes in linear time. In
Chapter 4 the family-free DCJ similarity for linear or circular multichromosomal genomes
is investigated, showing its APX-hardness, proposing an exact ILP algorithm to solve it
and presenting four combinatorial heuristics [104,106]. Next, Chapter 5 proposes the local
DCJ similarity, a novel family-based measure by means of DCJ operations for genomes
with duplicate genes. Its usefulness is evaluated by showing that an estabilished pipeline
for ancestral reconstruction in plants used in multiple studies [10, 93, 97, 107, 132] can be
improved by using this novel measure [105]. Finally, Chapter 6 summarizes the results
presented in this doctoral study.
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Chapter 2

Preliminaries

The first section of this chapter introduces common definitions for both family-based
and family-free measures under DCJ. Even though many definitions are similar for both
approaches, most of them differ slightly. Consequently, some general definitions are pre-
sented here and the particular remaining definitions are presented in their own chapters.
In addition, we assume that the reader is familiar with graphs and their notations.

To fully understand a couple of results in the later chapters, some background in
complexity classes is required. The second section of this chapter thus describes briefly a
few complexity classes related to hardness and inapproximability of problems and how to
demonstrate problems belong to these classes.

2.1 Genomic definitions

A (genomic) marker g is an oriented DNA fragment. The term gene will be used in this
text as a synonym of genomic marker, unless noted otherwise. The double-strandedness
of the DNA imposes a relative orientation to each gene g: If g’s orientation conforms with
the (predetermined) reading direction of its sequence, g is denoted by the symbol g itself.
Otherwise, it has reverse orientation and is denoted by g or −g. In addition, (g = g).
If the orientation of a gene g is irrelevant, we denote by |g| the gene itself, omitting its
orientation.

A chromosome is a linear or a circular sequence of genes, and a genome is a set of
chromosomes. Each one of the two ends of a linear chromosome is a telomere, represented
by the symbol ◦. The two distinct extremities of a gene g are called tail and head, denoted
by gt and gh, respectively. An adjacency in a chromosome is then an unordered pair of
consecutive extremities (one of the two extremities can be a telomere). As an example,
observe that the adjacencies eh, etbt, bhdt, dhct, chf t, fhah and at can define a linear
chromosome. Often adjacencies with telomeres are represented explicitly, for instance ◦eh
and at◦. Another representation of the same linear chromosome, flanked by parentheses
for the sake of clarity, would be (◦ e b d c f a ◦). As noted above, a genome is represented
by the set of its chromosomes, for instance {(◦ e b d a ◦), (◦ f g c ◦)}. However,
a unichromosomal genome may be optionally represented by its only chromosome, for
instance (◦ e b d a ◦).
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A double-cut-and-join or DCJ operation [134] applied to a genome A is the operation
that cuts two adjacencies of A and joins the separated extremities in a different way,
creating two new adjacencies. For example, a DCJ acting on two adjacencies pq and rs
would create either the adjacencies pr and qs, or the adjacencies ps and qr (this could
correspond to an inversion, a reciprocal translocation between two linear chromosomes,
a fusion of two circular chromosomes, or an excision of a circular chromosome, that is,
splitting it in two). In the same way, a DCJ acting on two adjacencies pq and r would
create either pr and q, or p and qr (in this case, the operation could correspond to an
inversion, a translocation, or a fusion of a circular and a linear chromosome). For the
cases described so far we can notice that for each pair of cuts there are two possibilities
of joining. There are two special cases of a DCJ operation, in which there is only one
possibility of joining. The first is a DCJ acting on two adjacencies p and q, that would
create only one new adjacency pq (that could represent a circularization of one or a fusion
of two linear chromosomes). Conversely, a DCJ can act on only one adjacency pq and
create the two adjacencies p and q (representing a linearization of a circular or a fission of
a linear chromosome).

Consider, a DCJ applied to the unichromosomal genome (◦ c a d b e f ◦) that cuts
before and after a d, creating the segments (◦ c •), (• a d •) and (• b e f ◦), where the
symbol • represents the open ends. If we then join the first with the third and the second
with the fourth open end, we obtain (◦ c d a b e f ◦). This DCJ corresponds to the
inversion of contiguous genes a d.

In unichromosomal genomes, DCJ operations can correspond to various rearrangement
operations such as reversals, block interchanges (transpositions included), or transreversals
(transpositions followed by a reversal on one of the transposed segments). Notice that
block interchanges and transreversals are modeled by two DCJs representing one fission,
which creates a “temporary” chromosome, followed by one fusion, even though input
genomes are unichromosomal. In multichromosomal genomes, DCJ operations can also
correspond to other rearrangements, such as translocations, fusions, and fissions.

Lastly, when comparing two distinct genomes, we usually denote them by A and B.

2.2 Complexity classes

This is a very succinct and somewhat informal reference for complexity classes. More
complete references are [7, 37,38,54,57], on which this section is based.

Problems are defined as decision or optimization problems, which in turn are either
maximization or minimization problems. In a decision problem we want to answer an
yes/no question (e.g. given a graph G and an integer k, does there exist an independent
set of G of size k?). On the other hand, in an optimization problem we want to find an
optimal solution from all feasible solutions (e.g. given a graph G, find an independent set
of G of maximum size). A solution (for an instance) of a problem is the correct yes/no
answer, if it is a decision problem, or an optimal solution, if it is an optimization problem.
This common definition of solution for both decision and optimization problems allow us
to simplify some definitions in this chapter. We say that an algorithm solves a problem if
it returns a solution for any instance taken as input.
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Completeness and hardness

The class P (polynomial time) contains all decision problems that can be solved by a
deterministic algorithm in polynomial time. Similarly, the class NP (nondeterministic
polynomial time) is the class of all decision problems that can be solved by polynomial
time nondeterministic algorithms (i.e. using a nondeterministic Turing machine), and the
class NEXP is the class of all decision problems that can be solved by nondeterminis-
tic algorithms in exponential time. In an equivalent definition, the class NP consists of
those problems that are “verifiable” in polynomial time, that is, the yes answer have a
“certificate” that can be verified in deterministic polynomial time. For instance, for the
hamiltonian cycle problem, which is in NP, a certificate could be a sequence of vertices
composing a hamiltonian cycle, which can be checked easily. Clearly, P ⊆ NP. It is also
known that NP ( NEXP.

A (polynomial-time) reduction from a problem P to a problem P ′ is a pair of functions
(f, g) such that f transforms instances x of P into instances f(x) = x′ of P ′, in polynomial
time, in such a way that, given a solution y′ for x′, g transforms y′ into a solution g(x, y′) =
y for x in polynomial time. We write P ≤P P ′ to denote that P is reduced to P ′. In general,
this means that P ′ is at least as difficult as P.

As consequence of P ≤P P ′, if an algorithm is known to solve P ′ in polynomial time,
P can also be solved in polynomial time (P ′ ∈ P implies P ∈ P) as follows:

1. given x, apply the reduction and obtain x′,

2. solve P ′ for the instance x′ and obtain y′, and

3. transform y′ into y to solve P.

Further, if P cannot be solved in polynomial time, then P ′ cannot be solved in polynomial
time (P /∈ P implies P ′ /∈ P).

A problem P is (in the class) NP-complete if:

(i) P ∈ NP, and

(ii) P ′ ≤P P for every P ′ ∈ NP (P is as “hard” as any problem in NP).

Thus, NP-complete contains the most difficult problems in NP. If a problem P satisfies (ii)
but not necessarily (i), we say that P is (in the class) NP-hard. For instance, the NP-hard
problem of finding the longest path between two vertices in a graph is an optimization
problem (and thus cannot be in NP), and the NP-hard problem of deciding whether there is
a Hamiltonian path in a graph represented by a succinct circuit [56] is a decision problem in
NEXP but not in NP, therefore both cannot be NP-complete. A deterministic polynomial
time algorithm that solves a NP-complete or NP-hard problem would also solve every
problem in NP, what implies that such an algorithm exists if and only if P = NP.

By the definition of NP-complete and because reductions are transitive, a problem P
can be proved to be NP-complete by showing a polynomial-time nondeterministic algo-
rithm that solves P(i.e. P ∈ NP) and then showing P ′ ≤P P for some problem P ′ ∈
NP-complete. Similarly, a problem P can be proved to be NP-hard just by showing that
P ′ ≤P P for some problem P ′ ∈ NP-complete or P ′ ∈ NP-hard.
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Approximations, inapproximability, and related classes

For optimization problems, there are classes equivalent to P and NP. Formally, an NP-
optimization problem P = (I, sol, val, goal) is such that:

(i) the set of instances I can be recognized in polynomial time, that is, it can be verified
if some instance x is valid (x ∈ I) in polynomial time;

(ii) given x ∈ I, sol(x) is the set of feasible solutions of x and the length of any y ∈ sol(x)
is polynomial in the length of x;

(iii) given x ∈ I and any y of length polynomial in the length of x, it can be verified if
y ∈ sol(x) in polynomial time;

(iv) given x ∈ I and y ∈ sol(x), the value (often called measure) val(x, y) of the objective
function is a positive integer computable in polynomial time; and

(v) goal ∈ {max,min} which defines whether we want to maximize or minimize the value
of the objective function.

The class NPO, an extension of NP for optimization problems, contains all NP-opti-
mization problems, while the class PO contains problems in NPO that can be solved in
polynomial time, hence it is an extension of P for optimization problems.

The value of an optimal solution (which maximizes or minimizes the value of the
objective function, depending on goal) is defined as opt(x). Thus, the performance ratio
(also called performance factor) of y with respect to x is defined as:

RP(x, y) =


opt(x)

val(x, y)
, if goal = max ;

val(x, y)

opt(x)
, if goal = min .

(2.1)

The performance ratio can be seen as the quality of a solution. It is a number greater
than or equal to 1 and, the closer it is to 1, the closer y is to an optimal solution.

Approximation algorithms find approximate solutions with provable performance ratios
for any instance in polynomial time, usually concerning NP-hard problems. Given an
optimization problem P, an approximation algorithm is an α-approximation algorithm
(or α-approximate algorithm) for P if, given any x ∈ I, it returns an approximate solution
y ∈ sol(x) such that RP(x, y) ≤ α. We also say that such an algorithm approximates P
within ratio α, that P can be approximated within ratio α, or that P is α-approximable.
The class APX is formed by problems in NPO for which there is an α-approximation
algorithm for some constant α.

In fact, there are approximation algorithms with small constant approximation ratios
for many hard problems. Nevertheless, some problems allow polynomial-time approxima-
tion algorithms with increasingly ratios by the cost of progressively larger computation
times. Obviously, this cost increases with the inverse of the performance ratio. An algo-
rithm for the problem P ∈ NPO is said to be a polynomial-time approximation scheme
(PTAS) if, for any x ∈ I and any given rational ε > 0, it returns in polynomial time
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an approximate solution y ∈ sol(x) such that RP(x, y) ≤ 1 + ε. The running time of a
PTAS can increase quickly as ε decreases, for example, when the running time is O(n1/ε).
In most polynomial-time approximation schemes, choosing a very small ε indeed leads to
solutions very close to the optimal solution, but at expense of a dramatic increase in the
running time. The class PTAS is the set of problems in NPO that admit a polynomial-
time approximation scheme. As consequence, problems in this class allow arbitrarily good
solutions in polynomial time.

From the classes defined in this section, we have that:

PO ⊆ PTAS ⊆ APX ⊆ NPO .

If any of the subsets above is not proper, then P = NP [54]. On the other hand, if P =
NP, then PO = NPO.

A reduction P ≤P P ′ preserves membership in a class C if P ′ ∈ C implies P ∈ C.
Depending on its type, an approximation-preserving reduction preserves membership in
either APX (generically denoted by ≤APX ), PTAS (generically denoted by ≤PTAS ), or
both classes. Given P ∈ APX, a reduction P ′ ≤APX P can be used to find an approxima-
tion algorithm for P ′. Similarly, given P ∈ PTAS, a reduction P ′ ≤PTAS P can be used to
find an polynomial-time approximation scheme (PTAS) for P ′. There are many types of
approximation-preserving reductions (see [37]), such as L-reduction, PTAS-reduction or
AP-reduction, some of them preserving membership in APX, PTAS or both. The strict
reduction (denoted by ≤strict ), which is the simplest type of approximation-preserving
reduction, preserves membership in both APX and PTAS classes and must satisfy the
following condition:

RP(x, g(x, y)) ≤ RP ′(f(x), y) . (2.2)

A problem P ∈ NPO is (in the class) APX-complete if:

(i) P ∈ APX (allows an approximation with constant ratio), and

(ii) P ′ ≤PTAS P for every P ′ ∈ APX.

If a problem P ∈ NPO satisfies (ii) but not necessarily (i), we say that P is (in the class)
APX-hard. Similarly to showing that a problem P ∈ NP-hard belongs to P, showing that
a problem P ∈ APX-hard (or APX-complete) belongs to PTAS (has a PTAS) implies P
= NP. In other words, if PTAS = APX, then P = NP, otherwise, every APX-complete
problem is in APX \ PTAS. Related to this, the class APX-hard is also defined as the
class formed by problems P ∈ NPO such that the existence of a PTAS for P implies P
= NP. Therefore, to show that a problem P is APX-hard, it usually suffices to show that
P ′ ≤PTAS P for some P ′ ∈ APX-hard, as ≤PTAS is transitive.

For some problems, it is possible to prove that even the existence of an approximation
algorithm with ratio smaller than some constant r is impossible, unless P = NP. We
also say that is NP-hard to approximate these problems with ratios better (smaller) than
r. These are called inapproximability results and also imply that the problems are APX-
hard, because the existence of a PTAS for them would lead to approximation ratios smaller
than r. Finally, notice that APX-hardness implies NP-hardness, since a problem hard to
approximate (in polynomial time) certainly is also hard to solve (in polynomial time).
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Chapter 3

Family-based DCJ distance

Under the context of family-based approaches, here we describe in details the DCJ distance
and present an approximation algorithm for computing it between two balanced unichro-
mosomal genomes [102, 103]. The main step of our approximation algorithm is similar to
approximating the problem of computing the Breakpoint Distance (BD). The breakpoint
distance is NP-hard in the presence of duplicate genes [27] (from the exemplar breakpoint
distance when one genome has no duplicates), even if genomes are balanced [21]. Let k
be the maximum number of occurrences of any gene in the input genomes. With this
parameter, BD has a 1.1037-approximation if k = 2 and a 4-approximation if k = 3 [60].
Otherwise, for general values of k, it has an O(k)-approximation [79, 120]. The latter re-
sult is based on a linear time approximation algorithm for the Minimum Common String
Partition (MCSP) problem [60] with approximation ratio O(k) [83].

As we will show, the algorithm we developed to compute the DCJ distance of balanced
genomes also has an approximation ratio O(k) and linear running time. It works properly
on inputs that are balanced unichromosomal linear genomes. Moreover, we describe how
to extend it for balanced unichromosomal circular genomes. Aditionally, experiments on
simulated data sets show that the approximation algorithm is very competitive both in
efficiency and in quality of the solutions.

After some concluding remarks, few techincal details on how to obtain data used in
our experiments are presented in an appendix.

3.1 Preliminaries

Before addressing the approximation algorithm, we first present formal definitions related
to the subject of this chapter.

Genes, families, and chromosomes

Given a gene g, let mA(g) be the number of occurrences of g in a genome A. To refer
to each occurrence of a gene g unambiguously, we number the occurrences of g from 1 to
mA(g). When there exists at least one gene that occurs more than once in genome A, we
say that A has duplicate genes.
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In this chapter we consider only unichromosomal genomes, that are genomes composed
of a single chromosome. Consider for instance the unichromosomal linear genome A =
(◦ c1 a1 d1 b1 a2 c2 ◦). In A we have one occurrence of genes b and d and two occurrences
of genes a and c, that is, A has duplicate genes, and mA(a) = 2, mA(b) = 1, mA(c) = 2,
and mA(d) = 1.

We use the notations G(A) and GN (A), respectively, to refer to the set of (non-
numbered) genes and to the set of numbered genes of a genome A. Considering again
the genome A above, we have G(A) = {a, b, c, d} and GN (A) = {a1, a2, b1, c1, c2, d1}. Ob-
serve that the genomes A′ = (◦ c2 a1 d1 b1 a2 c1 ◦), A′′ = (◦ c1 a2 d1 b1 a1 c2 ◦), and
A′′′ = (◦ c2 a2 d1 b1 a1 c1 ◦) are equivalent to A = (◦ c1 a1 d1 b1 a2 c2 ◦). Given a genome
A, possibly with duplicate genes, we denote by [A] the equivalence class of genomes that
can be obtained from A by swapping indices between occurrences of the same gene.

Balanced genomes

Let A and B be two unichromosomal genomes, possibly with duplicate genes. If they
contain the same number of occurrences of each gene, i.e. GN (A) = GN (B), we say that
A and B are balanced. We can then simply denote by G = G(A) = G(B) the set of (non-
numbered) genes and by GN = GN (A) = GN (B) the set of numbered genes of A and B. For
example, for balanced genomes A = (◦ c1 a1 d1 b1 c2 c3 ◦) and B = (◦ a1 c3 c1 b1 d1 c2 ◦)
we have G = {a, b, c, d} and GN = {a1, b1, c1, c2, c3, d1}.

DCJ distance and adjacency graph

Observe that the DCJ operation alone can only sort balanced genomes. We formally define
the DCJ distance problem:

Problem DCJ-distance(A,B): Given two balanced genomes A and B, com-
pute their DCJ distance ddcj(A,B), i.e., the minimum number of DCJ opera-
tions required to transform A into B′, such that B′ ∈ [B].

Any sequence of ddcj(A,B) DCJ operations transforming A into B′ ∈ [B] is called an
optimal sequence of DCJ operations.

Given two balanced genomes A and B, ddcj(A,B) can be computed with the help of
some concepts. A genome A can also be defined as a set of adjacencies adj(A) of its
numbered genes. For the genome A = {(◦ c1 a1 d1 b1 a2 c2 ◦)}, for instance, we have
adj(A) = { ◦ct1 , ch1ah1 , at1dt1 , dh1bt1 , bh1ah2 , at2ct2 , ch2◦ }.

Given two balanced genomes A and B, the adjacency graph AG(A,B) [15] is a bipartite
multigraph such that each partition corresponds to the set of adjacencies of one of the
two input genomes, and an edge connects the same gene extremities of adjacencies in
both partitions, regardless of their index numbers. We say that the edge represents those
extremities. If A and B are linear, each of the two telomeres of A must be connected by an
edge to each of the two telomeres of B. After this operation, called capping of telomeres,
the adjacency graph has no vertex of degree one.
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Without duplicate genes

First we consider the case when the genomes A and B contain no duplicate genes. If
A and B are circular, there is a one-to-one correspondence between the set of edges in
AG(A,B) and the set of gene extremities. In this case, all vertices have degree two and
thus the adjacency graph is a collection of disjoint cycles. Here, problem DCJ-distance
can easily be solved in linear time [15,134] using the formula

ddcj(A,B) = n− c ,

where n = |adj(A)| = |adj(B)| = |G| is the number of adjacencies or genes in any of the
two genomes and c is the number of cycles in AG(A,B).

If A and B are linear, besides the edges connecting gene extremities, each telomere
of A must be connected by an edge to each telomere of B. There is then an ambiguity
concerning the vertices that contain a telomere, that have degree three. This means that
we need to choose one of the two possible matchings of telomeres to obtain a graph in
which all vertices have degree two, that is, a graph that is composed of cycles only. We
must choose a matching that maximizes the number of cycles in the resulting AG(A,B).
To accomplish this task, we just need to do a walk on the graph starting in one telomere
of A until we find the next telomere in AG(A,B). If the second telomere is also in A,
then we can pick any of the two possible matchings. In this case we have one big cycle
covering all four vertices that contain a telomere. If the second telomere is in B, then we
can pick the matching that connects these two telomeres (and consequently connects the
other two telomeres, that were not covered by this walk). In this case we have two cycles
covering the four vertices that contain a telomere. Once this matching is defined, problem
DCJ-distance can again be solved in linear time [134] using the formula

ddcj(A,B) = n− c ,

where n = |adj(A)| = |adj(B)| = |G| + 1 is the number of adjacencies in any of the two
genomes and c is the number of cycles in AG(A,B).

With duplicate genes

When genomes have duplicate genes, problem DCJ-distance becomes NP-hard [115]. In
the same paper, the authors present an exact, exponential-time algorithm for its solution,
phrased in form of an Integer Linear Program (ILP).

An approach to compute the DCJ distance with duplicate genes

Observe that, in the presence of duplicate genes, the adjacency graph may contain vertices
of degree larger than two. A decomposition of AG(A,B) is a collection of disjoint cycles
covering all vertices of AG(A,B).

There can be multiple ways of selecting a decomposition of the adjacency graph. We
need to find one that allows to match each occurrence of a gene in genome A with exactly
one occurrence of the same gene in genome B and each telomere of A to one telomere of
B. In order to build such a decomposition, we need the following definitions.

Let gi and gj be, respectively, occurrences of the same gene g in genomes A and B.
The edge e that represents the connection of the head of gi to the head of gj and the edge
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f that represents the connection of the tail of gi to the tail of gj are called siblings. Two
edges are compatible if they are siblings, if they represent the connection of extremities of
distinct occurrences of the same gene, or if they represent the connection of extremities of
distinct genes. Otherwise they are incompatible. A set of edges is consistent if it has no
pair of incompatible edges. A cycle C of AG(A,B) is consistent if the set E(C) of edges
of C is consistent. Note that, when constructing a decomposition, by choosing consistent
cycles one may still select incompatible edges that occur in separate cycles (see the three
dotted cycles of length 2 in Fig. 3.1). Thus, consistency cannot be taken into account in
cycles separately.

b2
ha3

t

a1
t b2

t b2
ha2

t a2
ha3

t a3
ha4

t a4
ha5

t

a3
ha4

t a4
ha5

ta2
hb2

tb1
ha2

ta1
hb1

t

a 1
−

1
h a 2
−

1
t b 2−

2h a 3−
2t a 4

−
4

h a 5
−

5
t

b
1−2

t b 1−
1h

a 4−
3

h

a
4−5

t

a 5−
4t

a
3−4

h

b1
ha1

h

a 5
−

5
h

a1
t

b1
t

a5
h

a5
h

Figure 3.1: Examples of an inconsistent cycle (dashed edges) and an inconsistent
set of cycles (dotted edges). The adjacency graph for A = (◦ a1 b1 a2 b2 a3 a4 a5 ◦)
and B = (◦ b1 a1 b2 a2 a3 a4 a5 ◦), with some edges omitted. For the sake of clarity, edges
are labeled with extremities they represent. For example, an edge labeled gti−j represents
extremities gti from A and gtj from B.

A set of cycles {C1, C2, . . . , Ck} of AG(A,B) is consistent if and only if E(C1)∪E(C2)∪
· · · ∪ E(Ck) is consistent. A consistent decomposition D of AG(A,B) is a consistent
set of disjoint cycles that cover all vertices in AG(A,B). Observe that in a consistent
decomposition D we have only pairs of siblings, i.e., either an edge e and its sibling f are
in D or both e and f are not in D. Thus, a consistent decomposition corresponds to a
matching of occurrences of genes and telomeres in both genomes and allows us to compute
the value

dD = n− cD ,

where n = |adj(A)| = |adj(B)| and cD is the number of cycles in D. Observe that n = |GN |
if A and B are circular. If A and B are linear genomes, then n = |GN |+ 1.

We can now compute the DCJ distance of two balanced unichromosomal genomes.

Theorem 3.1 Given two balanced unichromosomal genomes A and B, the solution for
the problem DCJ-distance is given by the following equation:

ddcj(A,B) = min
D∈D
{dD} ,

where D is the set of all consistent decompositions of AG(A,B).

Proof. Since a consistent decomposition allows to match duplicates in both genomes,
clearly ddcj(A,B) ≤ minD∈D{dD}. Now, assume that ddcj(A,B) < minD∈D{dD}. By
definition, this distance corresponds to an optimal rearrangement scenario from A to some
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B′ ∈ [B] and therefore implies a matching between the genes of A and the genes of B′.
Furthermore, this matching gives rise to a consistent decomposition D′ of AG(A,B) such
that dD′ < minD∈D{dD}, which is a contradiction. �

A consistent decomposition D such that dD = ddcj(A,B) is said to be optimal.

Once a consistent decomposition D of the adjacency graph AG(A,B) is found, follow-
ing [15] it is easy to derive in linear time a DCJ rearrangement scenario with dD DCJ
operations transforming A into B. Moreover, an optimal consistent decomposition allows
to find all optimal rearrangement scenarios [23].

3.2 The O(k)-approximation

Actually, all definitions and properties for the DCJ distance of balanced genomes presented
from the beginning of the chapter to here work properly for the general case, where
genomes can be multichromosomal. However, as we will see in this section, to solve the
DCJ distance problem we use an intermediate procedure whose inputs are strings. For this
reason we restricted our inputs to unichromosomal genomes. Moreover, for the moment
we will additionally consider only unichromosomal linear genomes, discussing later how to
deal with unichromosomal circular genomes. The extension to multichromosomal genomes
is left as an open problem.

Approximating the DCJ distance by cycles of length 2

As mentioned above, given two balanced unichromosomal linear genomes A and B, we have
to find a consistent decomposition of AG(A,B) to compute the DCJ distance according
to Theorem 3.1. Recall that this is an NP-hard problem [115].

Given a consistent decomposition D ∈ D of the adjacency graph AG(A,B), we can
see that

dD = n− cD = n− c2 − c> ,

where n = |adj(A)| = |adj(B)|, c2 is the number of cycles of length 2, and c> is the number
of cycles of length longer than 2 in D.

Building a consistent decomposition by maximizing c2 as a first step is itself an NP-hard
problem [3]. Furthermore, this strategy is not able to optimally solve the DCJ distance,
as we can see in Fig. 3.2. Nevertheless, it allows us to approximate the DCJ distance:

Lemma 3.2 A consistent decomposition D′ of AG(A,B) containing the maximum num-
ber of cycles of length 2 is a 2-approximation for the DCJ-distance problem.

Proof. Let c∗2 and c∗> be the number of cycles of length 2 and longer than 2, respectively,
of an optimal consistent decomposition D∗ of AG(A,B). Let c′2 and c′> be the numbers
analogous to c∗2 and c∗> with respect to the decomposition D′. It it easy to see that
c∗2 + 2c∗> ≤ n, thus

0 ≤ n− c∗2 − 2c∗>

n− c∗2 ≤ n− c∗2 − 2c∗> + n− c∗2
n− c∗2 ≤ 2(n− c∗2 − c∗>) . (3.1)
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Therefore, we have

dD′

dD∗
=
n− c′2 − c′>
n− c∗2 − c∗>

≤
n− c∗2 − c′>
n− c∗2 − c∗>

(3.2)

≤ n− c∗2
n− c∗2 − c∗>

≤
2(n− c∗2 − c∗>)

n− c∗2 − c∗>
(3.3)

= 2 , (3.4)

where (3.2) holds since c′2 ≥ c∗2, and (3.3) is true from (3.1). �

(a)

(b)

Figure 3.2: Two consistent decompositions for the same pair of genomes. The
genomes (with gene indices omitted) are A = (◦ c a f e d a b i h g b ◦) and B =
(◦ c a d e f a b g h i b ◦). Solid edges are in both decompositions. (a) A consistent
decomposition D′ containing the maximum number of cycles of length 2, composed of 2
cycles of length 2, 1 cycle of length 4 and 2 cycles of length 8, resulting in dD′ = 12−5 = 7.
(b) An optimal consistent decomposition D∗, composed of 6 cycles of length 4, resulting
in dD∗ = 12− 6 = 6.

The problem of finding a decomposition maximizing c2 is equivalent to the Adjacency
Similarity (AS) problem [3], the complement of the Breakpoint Distance (BD) problem,
where one wants to minimize n− c2.

Minimum common string partition

The main result of this chapter relies on a restricted version of the Minimum Common
String Partition (MCSP) problem [60,83], described briefly as follows.

Given a string s, a partition of s is a sequence S = [S1,S2, . . . ,Sm] of substrings called
blocks whose concatenation is s, i.e., S1S2 · · · Sm = s, and m is the size of S.
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Two strings s and t are balanced if any character has the same number of occurrences
in s and in t, disregarding signs. Given two balanced strings s and t, and partitions
S = [S1, . . . ,Sm] of s and T = [T1, . . . , Tm] of t, the pair (S, T ) is a common partition
of s and t if there exists a permutation f on {1, . . . ,m} such that Si = Tf(i) for each
i = 1, . . . ,m. The minimum common string partition problem (MCSP) is to find a
common partition (S, T ) of two balanced strings s and t with minimum size.

We are interested in a restricted version of MCSP:

Problem k-MCSP(s, t): Given two balanced strings s and t such that the
number of occurrences of any character in s and t is bounded by k, find a
common partition (S, T ) of s and t with minimum size.

Now let occ(A) = maxg∈G(A){mA(g)} be the maximum number of occurrences of any
gene in a genome A. If two genomes A and B are balanced, we have occ(A) = occ(B).
For simplicity, in this case we use only occ.

For a given unichromosomal linear genome A, let the index-free string Â be the gene
sequence of the chromosome of A ignoring telomeres and gene indices. For example, for
genome A = (◦ c1 a1 d1 b1 c2 c3 ◦), we have Â = cadbcc.

Finding consistent decompositions

In this section we present a linear time approximation algorithm Consistent-Decompo-
sition, which receives two balanced unichromosomal linear genomes A and B with occ = k
and returns a consistent decomposition of AG(A,B), which is an O(k)-approximation
for the DCJ distance. The main steps of Consistent-Decomposition can be briefly
described as follows.

First, from the input genomes A and B, we build their adjacency graph AG(A,B).
We can then find a consistent decomposition by computing an approximation for k-
MCSP(Â, B̂), which gives an approximation for the number of breakpoints between
genomes A and B. After that we remove the chosen cycles of length 2 from AG(A,B).
Following, we iteratively collect arbitrary cycles of length longer than 2, removing them
from the remaining graph after each iteration. Finally, we return the set of collected cycles
as a consistent decomposition of AG(A,B). Pseudocode of Consistent-Decomposition
is given in Algorithm 3.1. The individual steps are detailed in the following.

Step 1 of Consistent-Decomposition consists of building the adjacency graph of the
given balanced genomes A and B as described previously. After that, Step 2 collects cycles
of length 2 of AG(A,B) using an O(k)-approximation algorithm for k-MCSP(Â, B̂) [83].
Step 3 removes from AG(A,B) vertices covered by cycles in C2 and edges incompatible
with edges of cycles in C2.

Step 4 constructs the set C> by decomposing the remaining graph into consistent cycles.
Iteratively, it chooses a consistent cycle C and then removes from the remaining graph
vertices covered by C. To find C, it can start with an empty path, choose some edge e from
the remaining graph that extends the path and then remove from the remaining graph
edges incompatible with e (just inspecting edges incident to vertices which are adjacent
to e and to its sibling), repeating both edge selection and removal steps until the cycle is
closed (it is easy to verify that this procedure will always close a consistent cycle). Hence
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Algorithm 3.1 Consistent-Decomposition(A,B)

Input: balanced unichromosomal linear genomes A and B such that occ = k, |A|= |B|=n
Output: a consistent decomposition of AG(A,B)

1: Build the adjacency graph AG(A,B)
2: Obtain an O(k)-approximation C2 for the set of cycles of length 2 in AG(A,B) using

the O(k)-approximation algorithm for k-MCSP(Â, B̂) [83]
3: Remove from the adjacency graph vertices covered by C2 and all edges incompatible

with edges of C2
4: Decompose the remaining graph into consistent cycles by iteratively finding a con-

sistent cycle C and then removing from the graph vertices covered by C and edges
incompatible with edges of C, collecting them in C>

5: Return C2 ∪ C>

the algorithm does not form an inconsistent cycle nor choose an inconsistent set of cycles.
Further, this guarantees that for every edge in the decomposition, its sibling edge will also
be in the decomposition. Note that C> may contain cycles of length 2 not collected in C2.

A consistent decomposition of AG(A,B) is then the set C2 ∪ C>, returned in Step 5.

To conclude this section, we present the following result which, together with the O(k)-
approximation algorithm for k-MCSP from [83], establishes an approximation ratio for
DCJ-distance.

Theorem 3.3 Let A and B be balanced unichromosomal linear genomes with occ = k. Let
(A,B) be a common string partition with approximation ratio O(k) for k-MCSP(Â, B̂). A
consistent decomposition D of AG(A,B), containing cycles of length 2 reflecting preserved
adjacencies in (A,B), is an O(k)-approximation for the DCJ-distance problem.

Proof. Let c∗2 and c∗> be the number of cycles of length 2 and longer than 2, respectively,
of an optimal consistent decomposition D∗ of AG(A,B). Let C2 be the set of cycles of
length 2 reflecting preserved adjacencies in (A,B), and let C> be an arbitrary consistent
decomposition of cycles in AG(A,B)\C2. Let D = C2∪C> be a consistent decomposition,
c2 = |C2|, and c> = |C>|. Since (A,B) is an O(k)-approximation of k-MSCP, it follows
that n − c2 ≤ `(n − c′2), where ` = O(k) and c′2 is the number of cycles of length 2 in a
consistent decomposition with maximum number of cycles of length 2. Hence,

dD
dD∗

=
n− c2 − c>
n− c∗2 − c∗>

≤ ` (n− c′2)− c>
n− c∗2 − c∗>

≤ ` (n− c′2)
n− c∗2 − c∗>

≤ 2`

(
n− c′2 − c′>
n− c∗2 − c∗>

)
(3.5)

≤ 4` , (3.6)

where (3.5) is analogous to (3.1) and (3.6) holds from (3.4), both in the proof of Lemma 3.2.
�
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3.3 Running time

Prior to addressing the running time of Consistent-Decomposition, we must consider
one implicit but important step in the algorithm, which is to obtain the set C2 given the
output of the k-MCSP approximation algorithm [83]. This algorithm takes as input Â
and B̂ and outputs a common string partition (A,B).

Both A and B are composed of the same set of substrings, in different orders and
possibly reversed, e.g., A = [ba, a, ab] and B = [ab, ab, a] for index-free strings Â = baaab
and B̂ = ababa. Each substring of length l > 1 in A and B induces a sequence of l − 1
preserved adjacencies in Â and B̂. Then we just have to map each substring in A to the
same substring in B (in case of multiple occurrences, we choose any of them). Considering
A and B in the example above, ab and ba in A could be mapped to the first and second
occurrences of ab in B, respectively, since both ab and ba contain exactly the same preserved
adjacency ahbt. We describe carefully in the next paragraphs the algorithm Substring-
mapping (Algorithm 3.2) and how to use it to find such a mapping while preserving the
linear time complexity of Consistent-Decomposition.

The nontriviality of finding such a mapping in linear time comes from the fact that
alphabets of strings representing genomes are not constant size alphabets. They can and
most likely will be of size O(n). One could obtain this mapping by sorting substrings in
A and B or building one trie containing all substrings of A and B. However, linear time
algorithms for sorting strings or building tries assume constant size alphabets. Thus, these
approaches do not lead to a mapping in linear running time. Another option could be to
add all substrings of A and B into a hash map, but since we are working with strings and
not integers, perfect hashing techniques does not achieve linear running time.

Before describing the Substring-mapping algorithm, some observations and prepro-
cessing must be addressed. We assume that the value v(g) of each symbol (gene family)
g in the alphabet G is unique and in the range [1, n]. For reversed symbols we define
v(g) = v(g) + n, therefore their values will be in the range [n + 1, 2n]. Given different
strings s = s1, . . . , s` and t = t1, . . . , t` of the same length ` such that i is the first posi-
tion in which they differ, s is lexicographically smaller than t if v(si) < v(ti). (Note that
v(g) < v(g), therefore g comes lexicographically before g for any symbol g.)

As preprocessing, we first create normalized versions Ã of A and B̃ of B, to ensure that
for any substring s, only s or only its reverse s occurs in Ã ∪ B̃. Therefore, for each string
s in A (respectively B), the normalized partition Ã (respectively B̃) contains s itself, if s is
lexicographically smaller than s, or s otherwise. For instance, normalizing A = [ba, a, ab]
would change it to Ã = [ab, a, ab]. Also as a preprocessing step, given that we must find
the same substrings in A and B, it only makes sense to analyze substrings in both sets
of the same length. Then, if there are substrings of multiple lengths in Ã and B̃, in one
pass through them (i.e. linear time) we can gather substrings of same length in buckets.
Therefore, we define multisets Ãl = {s in Ã : |s| = l} (analogously B̃l) and the generic

bucket (multiset) ÃBl = Ãl ∪ B̃l (also recording in some manner whether a string in ÃBl
comes from A or B), running the algorithm Substring-mapping for each bucket ÃBl.
See Fig. 3.3 for an example of this preprocessing step.

The main idea of the algorithm Substring-mapping is, given a set of strings of length
l, to obtain a set of buckets for some value of i (from 1 to l), each one containing strings
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A = [aba, bbb, abba, aba, bba]
B = [bbb, aba, aba, abb, abba]

⇓

Ã = [aba, bbb, abba, aba, abb]
B̃ = [bbb, aba, aba, abb, abba]

abaA
bbbB
abbA
abaB
abaB
abaA
bbbA
abbB

ÃB3

abbaA
abbaB

ÃB4

Figure 3.3: Example of the preprocessing step for the mapping of substrings.
The subscript represents the origin of the string (A or B).

which are found to be equal to the i-th symbol, by splitting buckets for which strings are
equal to the (i − 1)-st symbol. At the end, each bucket holds equal strings and we just
have to map them taking into account their origin, A or B. See an example in Fig. 3.4. Of
course, instead of working with the substrings themselves we work just with references.

abaA
bbbB
abbA
abaB
abaB
abaA
bbbA
abbB

T0

abaA
abbA
abaB
abaB
abaA
abbB

T1

bbbB
bbbA

abaA
abbA
abaB
abaB
abaA
abbB

T2

bbbB
bbbA

abaA
abaB
abaB
abaA

T3

abbA
abbB

bbbB
bbbA

Figure 3.4: Example of the algorithm Substring-mapping for the bucket ÃB3 of
Fig. 3.3.

It is worth mentioning that the array w plays an important role in this algorithm.
Each position j is associated to some symbol g of the alphabet whose value v(g) = j. It
helps us not having to iterate over alphabet (which can be O(n)) repeatedly and further
finding the bucket related to some symbol in O(1). Related to this, we avoid iterating
over w repeatedly (for instance in the line 6 of this algorithm), which is of size O(n).
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Algorithm 3.2 Substring-mapping(ÃBl)

Input: the bucket ÃBl, for some l ∈ [1, n], and an array w1..2n of 2n empty buckets
Output: a mapping of strings that come from Ãl to equal strings that come from B̃l

1: T0 = {ÃBl}
2: for i← 1 to l do
3: for each bucket S ∈ Ti−1 do
4: for each string s ∈ S do
5: add s to bucket wv(si)
6: for each string s ∈ S do
7: if bucket wv(si) is not empty then
8: move contents of bucket wv(si) to a new bucket in set Ti
9: for each bucket S ∈ Tl do

10: SA = {s ∈ S : s comes from A}
11: SB = {s ∈ S : s comes from B}
12: for each s ∈ SA do
13: map s to some string s′ ∈ SB
14: remove s from SA and s′ from SB

We shall demonstrate in the following lemma that this implicit mapping step can be
performed in O(n) time:

Lemma 3.4 The running time of Substring-mapping is proportional to the sum of
lengths of strings in ÃBl, for some l.

Proof. Operations in lines 5, 7, and 8 can be done in constant time and are performed
at most once per symbol of strings in ÃBl. Operations after line 9 are performed O(1)

times for each string in ÃBl. Therefore, the total running time of Substring-mapping
is O(

∑
s∈ÃBl

|s|). �

Since the buckets ÃBl are disjoint, we also have:

Lemma 3.5 The set C2 can be obtained from the output of the k-MCSP approximation
algorithm in O(n) time.

Proof. Let S̃ = {ÃBl : there exists at least one substring of length l in Ã (and therefore

also in B̃)}. To obtain C2, Substring-mapping is called for each ÃBl ∈ S̃. The time
complexity is the sum of time spent in all calls plus some extra preprocessing time. It is
easy to see that S̃ can be obtained in one pass through Ã and B̃, therefore in linear time.
The array of buckets w1..2n can be defined in linear time once before calling Substring-
mapping the first time and the buckets are empty at the end of each call. Finally, by
Lemma 3.4 the running time of Substring-mapping for some ÃBl is linear in the sum of
lengths of strings in ÃBl, and the total sum of the lengths of strings in buckets ÃBl ∈ S̃
is 2n (each substring of Ã or B̃ appears once in exactly one ÃBl). Hence, the total time
complexity is O(n). �

Having the running time of the implicit step of obtaining C2 by the output of the
k-MCSP approximation algorithm, we can now analyze the complexity of Consistent-
Decomposition.
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Theorem 3.6 Given balanced unichromosomal linear genomes A and B such that |A| =
|B| = n and occ = k, the running time of the algorithm Consistent-Decomposition is
linear in the size of the genomes, i.e., O(n).

Proof. First, note that AG(A,B) is a bipartite graph composed of 2(n + 1) vertices and
at most 2kn + 4 edges. This worst case occurs if there are bn/kc gene families of size k,
yielding 2k2 edges each (k2 for the gene heads and k2 for the gene tails), thus 2kn edges in
total; plus 4 edges from the capping. Therefore, assuming that k is a constant, AG(A,B)
is of size O(n).

It is easy to see that Step 1 of Algorithm 1 has linear running time with respect to the
size of AG(A,B), i.e., O(n). Computing the k-MCSP approximation [83] in Step 2 (with
suffix trees for integer alphabets [52]) takes O(n) time. The same holds for the implicit step
described above. The running time of Step 3 is O(n) since we have just to traverse vertices
and edges of the remaining adjacency graph. Step 4 consists of collecting cycles arbitrarily
and its running time is also linear, since we just have to walk in the remaining graph finding
cycles and this can be done looking at each edge and each vertex at most O(1) times. The
last step (Step 5) has running time O(1). Therefore, Consistent-Decomposition has
running time O(n). �

3.4 Extension to unichromosomal circular genomes

Meidanis et al. [90] showed that the problem of calculating the reversal distance for signed
circular chromosomes without duplicate genes is essentially equivalent to the analogous
problem for linear chromosomes (similar for transpositions in the unsigned case [68]).
Therefore, any algorithm for the latter works for the former. The main idea is that each
reversal on some region of a circular chromosome can be performed in two ways: reversing
it directly or reversing everything else (Fig. 3.5). In the following we show that similar
ideas can also be applied to genomes with duplicate genes.

ab

c

d

e

ab

c

d

e

ba

e

d

c

Figure 3.5: Example of two ways of performing a reversal in a circular chro-
mosome (center). Dashed lines denote where cuts are made, shaded regions denote the
reversed region. The two resulting chromosomes (sides) are the same.

Let A and B be balanced unichromosomal circular genomes such that occ = k. For
some gene family g, there are genes g1, g2, . . . , gl, with l ≤ k, in both A and B. Gene g1 of A
can be associated with l genes of B. We linearize A having g1 with positive sign in the first
position and linearize B l times, each one of them having one of the genes g1, g2, . . . , gl
with positive sign in the first position, associating it with g1 (and assuming that both
already are in the correct position). Next, we run Consistent-Decomposition on each
one of the l linearizations, taking into account only the sequence of genes from position 2
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to position n, keeping the best result. Thus, the running time of this strategy is l ·O(n),
that is, O(n) since l ≤ k and k is a constant.

Corollary 3.7 For unichromosomal circular genomes A and B, the strategy of keeping
the minimum output of Consistent-Decomposition for one linearization of A and l
linearizations of B as described above leads to an O(k)-approximation for problem DCJ-
distance.

Proof. Let d be the DCJ distance between A and B and let gc be the copy of gene g
in B associated to g1 in A of the correct gene association to obtain d. One of the l
linearizations of B associates gc in B with g1 in A, approximating d with an O(k) ratio
by the Consistent-Decomposition algorithm. Clearly, the minimum output of all l
linearizations cannot be higher. �

3.5 Experimental results

We have implemented our approximation algorithm in C++, with the addition of a lin-
ear time greedy heuristic for the decomposition of cycles not induced by the k-MCSP
approximation (available at https://git.facom.ufms.br/diego/k-dcj).

We compare our algorithm with Shao et al.’s ILP [115] (GREDU software package1)
on simulated datasets. Given two genomes, the ILP based experiments first build the
adjacency graph, followed by capping of the telomeres, fixing some safe cycles of length
two, and finally invoking an ILP solver to obtain an optimal solution with a time limit of
2 hours. The experiments for were performed on an Intel i7 3.4GHz (4 cores) machine.

Following [115], we simulate artificial genomes with segmental duplications and DCJs.
We uniformly select a position to start duplicating a segment of the genome and place
the new copy to a new position. From a genome of s distinct genes, we generate an
ancestor genome with 1.5s genes by randomly performing s/2l segmental duplications
of length l, resulting in an average k = 1.5. Then we simulate two extant genomes
from the ancestor by randomly performing r DCJs (reversals) independently. Thus, the
simulated evolutionary distance between the two extant genomes is 2r. For each gene copy
in the extant genomes we keep track of which gene copy in the ancestor it corresponds
to, establishing the reference bijection, allowing us to compute the true positive rate, that
is, for two genomes A and B, the rate of matchings of gene occurrences in A and B
corresponding to the same gene occurrence in the ancestor genome.

We first set s = 1000, test three different lengths for segmental duplications (l = 1, 2, 5)
and vary the r value over the range 200, 220, . . . , 500. We also simulate genomes having
s = 5000, l = 1, 2, 5, 10, and r over the range 1000, 1100, . . . , 2000. Figs. 3.6 and 3.9 show
the average difference “computed number of DCJs minus simulated evolutionary distance”,
taking as input three pairs of genomes for each combination of l and r, Figs. 3.7 and 3.10
show the true positive rate, while Figs. 3.8 and 3.11 show the average running times.
Note that, although the DCJ distance is unknown, it is always less than or equal to the
simulated evolutionary distance for these artificial genome pairs.

1https://github.com/shaomingfu/gredu
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Figure 3.6: The computed number of DCJs vs. the simulated evolutionary dis-
tance for s = 1000.
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Figure 3.7: True positive rate for s = 1000.

The difference of the number of DCJs (blue lines in Figs. 3.6 and 3.9) calculated by
our approximation algorithm remains very close to the simulated evolutionary distance
for small values of l. Moreover, it remains roughly the same for the same value of l even
for greater values of r. The values obtained by the ILP approach (red lines in Figs. 3.6
and 3.9) are very close to those obtained by the approximation algorithm and to the
simulated evolutionary distance from the simulations for l ≤ 2 and smaller values of r.
However, beyond some point the DCJ distance calculated by the ILP gets even lower
than the simulated evolutionary distance, showing the limitations of parsimony for larger
distance ranges.

While the true positive rate is higher than 95% for most of datasets (Figs. 3.7 and 3.10),
the rate remains between 75% and 85% when l ≥ 5 for the approximation approach and
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Figure 3.8: Execution time for s = 1000 of (a) approximation and (b) ILP based
programs.
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Figure 3.9: The computed number of DCJs vs. the simulated evolutionary dis-
tance for s = 5000.

even for the ILP approach in some cases. For s = 5000 and l ≥ 5, the computed number
of DCJs increases while the true positive rate decreases significantly beyond some point
for the ILP results. Notice that the approximation algorithm results for the same sets
have small rates of increase or decrease, even for greater values of r.

The running time of our implementation of Consistent-Decomposition increases
slowly from ≈ 0.03 seconds (2r = 400) to ≈ 0.08 seconds (2r = 1000) on average, when
s = 1000, see Fig. 3.8(a). The ILP approach takes ≈ 0.3 seconds for smaller values of
r (where the preprocessing step fixes a considerable amount of cycles of length 2 in the
adjacency graph), while always reaching the time limit of 2 hours beyond some point, see
Fig. 3.8(b). A similar behavior is observed for s = 5000 (Fig. 3.11).
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Figure 3.10: True positive rate for s = 5000.
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Figure 3.11: Execution time for s = 5000 of (a) approximation and (b) ILP based
programs.

3.6 Concluding remarks

This chapter presented a new approximation algorithm for the DCJ distance for balanced
unichromosomal linear genomes, an NP-hard problem, and showed how to make it work
for circular genomes as well. The algorithm runs in linear time in the size of the genomes
and approximates the problem by a ratio of O(k), where k is a constant representing the
size of the largest family in both genomes. As experiments on simulated genomes have
shown, our algorithm is very competitive both in efficiency and quality of the solutions,
in comparison to an exact ILP solution.
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Appendix

3.A How to get data

The experiments presented above were performed using files generated in specific formats
by a tool. Here we describe them briefly and provide online references for further details.

The simulated data is given by RINGO project2, which generates files in the UniMog
file format3, as required by the implementation of the approximation algorithm4 and by
the ILP5. These files are very simple and define the sequences of genes in two genomes,
where genes are represented by numbers and equal numbers represent duplicates of the
same gene, that is, genes in the same family. For example, the following file represents
two unichromosomal genomes A = (◦ 1 2 −1 −3 ◦), named T1, and B = (◦ −1 3 −1 2 ◦),
named T2:

>T1

1 2 -1 -3 |

>T2

-1 3 -1 2 |

The simulation.py script of RINGO project generates an ancestral genome and then
descendant genomes forming an evolution tree, where the resulting output genomes are
the leaves of this tree. Since genomes must be balanced, we must allow duplications only
in the ancestral genome by using the --predup parameter followed by the number of
duplications.

Since UniMog files do not distinguish between different copies of the same gene,
GREDU also requires, for each input genome file, a file with the same name of the genomes
and extension .coser in the COSER format6. Files in the COSER format define labels
for each gene copy in the corresponding UniMog file. Labels in the these files are usually
defined as <gene number> <copy number> and should appear in the same order as in the
genome files. For instance, for the UniMog file above, we could use the file T1.coser:

1 1 1 chr1 1

2 1 2 chr1 1

2https://github.com/pedrofeijao/RINGO
3Info about this format in http://bibiserv.techfak.uni-bielefeld.de/dcj, “Manual” tab
4https://git.facom.ufms.br/diego/k-dcj
5https://github.com/shaomingfu/gredu
6Info about this format in http://lcbb.epfl.ch/softwares/coser or https://github.com/

shaomingfu/gredu
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1 2 -1 chr1 1

3 1 -3 chr1 1

and the file T2.coser:

1 2 -1 chr1 1

3 1 3 chr1 1

1 1 -1 chr1 1

2 1 2 chr1 1

Finally, our implementation also requires COSER files if we want to output the asso-
ciation of genes between genomes instead of only the approximate distance.
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Chapter 4

Family-free DCJ similarity

In this chapter we are interested in the problem of computing the overall similarity of two
given linear or circular multichromosomal genomes in a family-free setting under the DCJ
model [104,106]. This problem is called FFDCJ similarity. The complexity of computing
the FFDCJ similarity was proven to be NP-hard [89], while the counterpart problem of
computing the FFDCJ distance was already proven to be APX-hard [89].

In the remainder of this chapter, after preliminaries and a formal definition of the
FFDCJ similarity problem, we first demonstrate its APX-hardness and an inapproxima-
bility result. We then present an exact ILP algorithm to solve it and four combinatorial
heuristics, with computational experiments comparing their results for datasets simulated
by a framework for genome evolution. Lastly, concluding remarks are discussed, followed
by an appendix containing information on how simulated and real data were obtained for
experiments.

4.1 Preliminaries

Here we present definitions related to the FFDCJ similarity and extend the notation
introduced previously [89]. In the following sections, we consider two given genomes A
and B, and denote by A the set of genes in genome A, and by B the set of genes in genome
B. To contextualize the FFDCJ similarity, we begin presenting the DCJ similarity, a
correlate problem under the family-based setting.

Family-Based DCJ Similarity and Adjacency Graph

In most versions of the family-based setting the two genomes A and B have the same
content, that is, A = B. When in addition there are no duplicates, that is, when there
is exactly one representative of each family in each genome, we can easily build the adja-
cency graph of genomes A and B, denoted by AG(A,B) and described in details in the
Section 3.1. Since the graph is bipartite and vertices have degree one or two, the adja-
cency graph is a collection of paths and even cycles. An example of an adjacency graph
is presented in Fig. 4.1.

It is well known that a DCJ operation that modifies AG(A,B) by increasing either
the number of even cycles by one or the number of odd paths by two decreases the DCJ
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eh etbt bhdt dhct chft fhah at

at ahbt bhdt dhch ctft fhet eh

Figure 4.1: Example of adjacency graph. The genomes for AG(A,B) are A =
{(◦ e b d c f a ◦)} and B = {(◦ a b d c f e ◦)}.

distance between genomes A and B [15]. This type of DCJ operation is said to be optimal.
Conversely, if we are interested in a DCJ similarity measure between A and B, rather than
a distance measure, then it should be increased by such an optimal DCJ operation. This
suggests that a formula for a DCJ similarity between two genomes should correlate to the
number of connected components (in the following just components) of the corresponding
adjacency graph.

When the genomes A and B are identical, their corresponding adjacency graph is a
collection of c 2-cycles and b 1-paths [15], so that c+ b

2 = |A| = |B| . This should be the
upper bound of our DCJ similarity measure, and the contribution of each component in
the formula should be upper bounded by 1.

We know that an optimal operation can always be applied to adjacencies that belong to
one of the two genomes and to one single component of AG(A,B), until the graph becomes
a collection of 2-cycles and 1-paths. In other words, each component of the graph can be
sorted, that is, converted into a collection of 2-cycles and 1-paths independently of the
other components. Furthermore, it is known that each of the following components—an
even cycle with 2d + 2 edges, or an odd path with 2d + 1 edges, or an even path with
2d edges—can be sorted with exactly d optimal DCJ operations. Therefore, for the same
d, components with more edges should actually have higher contributions in the DCJ
similarity formula.

With all these considerations, the contribution of each component C in the formula is
then defined to be its normalized length ̂̀(C):

̂̀(C) =



|C|
|C|

= 1 , if C is a cycle ,

|C|
|C|+ 1

, if C is an odd path ,

|C|
|C|+ 2

, if C is an even path .

Let C be the set of all components in AG(A,B). The formula for the family-based
DCJ similarity is the sum of their normalized lengths:
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sdcj(A,B) =
∑
C∈C

̂̀(C) . (4.1)

Observe that sdcj(A,B) is a positive value, indeed upper bounded by |A| (or, equiva-
lently, by |B|). In Fig. 4.1 the DCJ similarity is sdcj(A,B) = 2 · 12 + 3 · 1 = 4. The formula
of Equation (4.1) is the family-based version of the family-free DCJ similarity defined by
Martinez et al. [89], as we will see in the following subsections.

From the family-based to the family-free setting

In the family-free setting, each gene in each genome is represented by a unique (signed)
symbol. In contrast to letters used in family-based methods, genes in family-free methods
are usually labeled as 1, . . . , |A| in A and as |A| + 1, . . . , |A| + |B| in B. Notice that
A ∩ B = ∅ and the cardinalities |A| and |B| may (and in fact very often will) be distinct.
Moreover, as we label genes with numbers, we prefer −g instead of g to represent a gene
g with reverse orientation.

Additional concepts of the family-free DCJ similarity are presented in a timely manner
in the following subsections.

Gene Similarity Graph

Let a be a gene in A and b be a gene in B, then their normalized gene similarity is given by
some value σ(a, b) such that 0 ≤ σ(a, b) ≤ 1. Values closer to 1 mean gene sequences have
high similarity and therefore genes are evolutionary “closer” to each other, while values
closer to 0 mean genes are not related.

We can represent the gene similarities between the genes of genome A and the genes
of genome B with respect to σ in the so called gene similarity graph [22], denoted by
GSσ(A,B). This is a weighted bipartite graph whose partitions A and B are the sets of
(signed) genes in genomes A and B, respectively. Furthermore, for each pair of genes (a, b)
such that a ∈ A and b ∈ B, if σ(a, b) > 0 then there is an edge e connecting a and b in
GSσ(A,B) whose weight is σ(e) := σ(a, b). An example of a gene similarity graph is given
in Fig. 4.2.
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Figure 4.2: Representation of a gene similarity graph. Unichromosomal
linear genomes for GSσ(A,B) are A = {(◦ 1 2 3 4 5 6 ◦)} and B =
{(◦ 7 8 −9 −10 11 −12 −13 14 ◦)}.

facom-ufms



Family-free DCJ similarity 40

Weighted Adjacency Graph

The weighted adjacency graph AGσ(A,B) of two genomes A and B has a vertex for each
adjacency in A and a vertex for each adjacency in B. For a gene a in A and a gene b in B
with gene similarity σ(a, b) > 0 there is one edge eh connecting the vertices containing the
two heads ah and bh and one edge et connecting the vertices containing the two tails at

and bt. The weight of each of these edges is σ(eh) = σ(et) = σ(a, b). Differently from the
simple adjacency graph, the weighted adjacency graph cannot be easily decomposed into
cycles and paths, since its vertices can have degree greater than 2. As an example, the
weighted adjacency graph corresponding to the gene similarity graph of Fig. 4.2 is given
in Fig. 4.3.

1t 1h2t 2h3t 3h4t 4h5t 5h6t 6h

7t 7h8t 8h9h 9t10h 10t11t 11h12h 12t13h 13t14t 14h
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Figure 4.3: Example of weighted adjacency graph. The unichromosomal lin-
ear genomes for AGσ(A,B) are A = {(◦ 1 2 3 4 5 6 ◦)} and B =
{(◦ 7 8 −9 −10 11 −12 −13 14 ◦)}, and gene similarities are given in Fig. 4.2.

We denote by w(G) the weight of a graph or subgraph G, that is given by the sum
of the weights of all its edges, that is, w(G) =

∑
e∈G σ(e). Observe that, for each edge

e ∈ GSσ(A,B), we have two edges of weight σ(e) in AGσ(A,B), thus, the total weight of
the weighted adjacency graph is w(AGσ(A,B)) = 2w(GSσ(A,B)).

Reduced Genomes

Let A and B be two genomes and let GSσ(A,B) be their gene similarity graph. Now let
M = {e1, e2, . . . , en} be a matching in GSσ(A,B) and denote by w(M) =

∑
ei∈M σ(ei)

the weight of M , that is, the sum of its edge weights. Since the endpoints of each edge
ei = (a, b) inM are not saturated by any other edge ofM , we can unambiguously define the
function `M (a) = `M (b) = i to relabel each vertex in A and B [89]. The reduced genome
AM is obtained by deleting from A all genes not saturated by M , and renaming each
saturated gene a to `M (a), preserving its orientation (sign). Similarly, the reduced genome
BM is obtained by deleting from B all genes that are not saturated by M , and renaming
each saturated gene b to `M (b), preserving its orientation. Observe that the set of genes
in AM and in BM is G(M) = {`M (g) : g is saturated by the matching M} = {1, 2, . . . , n}.
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Weighted Adjacency Graph of Reduced Genomes

Let AM and BM be the reduced genomes for a given matching M of GSσ(A,B). The
weighted adjacency graph AGσ(AM , BM ) can be obtained from AGσ(A,B) by deleting all
edges that are not elements of M and relabeling the adjacencies according to `M . Vertices
that have no connections are then also deleted from the graph. Another way to obtain
the same graph is building the adjacency graph of AM and BM and adding weights to the
edges as follows. For each gene i in G(M), both edges itit and ihih inherit the weight of
edge ei in M , that is, σ(itit) = σ(ihih) = σ(ei). Consequently, the graph AGσ(AM , BM ) is
also a collection of paths and even cycles and differs from AG(AM , BM ) only by the edge
weights.

For each edge e ∈ M , we have two edges of weight σ(e) in AGσ(AM , BM ), therefore
w(AGσ(AM , BM )) = 2w(M). Examples of weighted adjacency graphs of reduced genomes
are shown in Fig. 4.4.
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Figure 4.4: Two distinct maximal matchings in a gene similarity graph in-
ducing two different reduced genomes. Considering, as in Fig. 4.2, the genomes
A = {(◦ 1 2 3 4 5 6 ◦)} and B = {(◦ 7 8 −9 −10 11 −12 −13 14 ◦)}, let M1 (dashed
edges) and M2 (dotted edges) be two distinct maximal matchings in GSσ(A,B), shown in
the upper part. The two resulting weighted adjacency graphs AGσ(AM1 , BM1), that has
two cycles and two even paths, and AGσ(AM2 , BM2), that has two odd paths, are shown
in the lower part.
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The Family-Free DCJ Similarity

For a given matching M in GSσ(A,B), a first formula for the weighted DCJ (wDCJ)
similarity sσ of the reduced genomes AM and BM was proposed by Braga et al. [22] only
considering the cycles of AGσ(AM , BM ). After that, this definition was modified and
extended [89] in order to consider all components of the weighted adjacency graph.

First, let the normalized weight ŵ(C) of a component C of AGσ(AM , BM ) be:

ŵ(C) =



w(C)

|C|
, if C is a cycle ,

w(C)

|C|+ 1
, if C is an odd path ,

w(C)

|C|+ 2
, if C is an even path .

Let C be the set of all components in AGσ(AM , BM ). Then the wDCJ similarity sσ is
given by the following formula [89]:

sσ(AM , BM ) =
∑
C∈C

ŵ(C) . (4.2)

Observe that, when the weights of all edges in M are equal to 1, this formula is equivalent
to the one in Equation (4.1).

The goal now is to compute the family-free DCJ similarity, i.e., to find a matching in
GSσ(A,B) that maximizes sσ. However, although sσ(AM , BM ) is a positive value upper
bounded by |M |, the behaviour of the wDCJ similarity does not correlate with the size of
the matching, since smaller matchings, that possibly discard gene assignments, can lead to
higher wDCJ similarities [89]. For this reason, the wDCJ similarity function is restricted
to maximal matchings only, ensuring that no pair of genes with positive gene similarity
score is simply discarded, even though it might decrease the overall wDCJ similarity. We
then have the following optimization problem:

Problem ffdcj-similarity(A,B): Given genomes A and B and their gene
similarities σ, calculate their family-free DCJ similarity

sffdcj(A,B) = max
M∈M

{sσ(AM , BM )}, (4.3)

where M is the set of all maximal matchings in GSσ(A,B).

Problem ffdcj-similarity is NP-hard [89]. Moreover, one can directly correlate the
problem to the adjacency similarity problem, where the goal is to maximize the number
of preserved adjacencies between two given genomes [3, 33]. However, since there the
objective is to maximize the number of cycles of length 2, even an approximation for the
adjacency similarity problem is not a good algorithm for the ffdcj-similarity problem,
where cycles of higher lengths are possible in the solution [102].
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Capping Telomeres

A very useful preprocessing to AGσ(A,B) is the capping of telomeres, a general technique
for simplifying algorithms that handle genomes with linear chromosomes, commonly used
in the context of family-based settings [65, 114, 134]. Given two genomes A and B with
i and j linear chromosomes, respectively, for each vertex representing only one extremity
we add a null extremity τ to it (e.g., 1t of Fig. 4.4 becomes τ1t). Furthermore, in order
to add the same number of null extremities to both genomes, |j − i| null adjacencies ττ
(composed of two null extremities) are added to genome A, if i < j, or to genome B,
if j < i. Finally, for each null extremity of a vertex in A we add to AGσ(A,B) a null
edge with weight 0 to each null extremity of vertices in B. Consequently, after capping
of telomeres the graph AGσ(A,B) has no vertex of degree one. Notice that, if before
the capping p was a path of weight w connecting telomeres in AGσ(A,B), then after the
capping p will be part of a cycle closed by null extremities with normalized weight w

|p|+1 if

p is an odd path, or of normalized weight w
|p|+2 if p is an even path. In any of the two cases,

the normalized weight is consistent with the wDCJ similarity formula in Equation (4.2).

4.2 APX-hardness and inapproximability

This section contains the APX-hardness proof of problem ffdcj-similarity and a lower
bound for the approximation ratio. Here we restrict ourselves to feasible solutions.

Consider the following optimization problem, to be used within the results of this
section:

Problem max-2sat3(φ): Given a 2-cnf formula (i.e., with at most 2 literals
per clause) φ = {C1, . . . , Cm} with n variables X = {x1, . . . , xn}, where each
variable appears in at most 3 clauses, find an assignment that satisfies the
largest number of clauses.

The formula φ as defined above is called a 2sat3 formula. max-2sat3 [7, 19] is a special
case of max-2satk (also known as max-2sat(k) or k-occ-max-2sat), where each variable
occurs in at most k clauses for some fixed k, which in turn is a restricted version of max-
2sat [101]. Some authors consider restrict versions of sat for El-cnf [69] formulae,
which have exactly l literals, nevertheless, any hardness or inapproximability result for
El-cnf is also for l-cnf. There are also other variants such as symmetric (l,Bk)-sat
or relaxed (l,k)-sat instances, where clauses have exactly l literals and each literal or
variable, respectively, occurs exactly k times [20].

To prove that ffdcj-similarity is APX-hard, we present a strict reduction max-
2sat3 ≤strict ffdcj-similarity in the form (f, g), showing that

Rmax-2sat3(φ, g(f(φ), γ)) ≤ Rffdcj-similarity(f(φ), γ) ,

for any instance φ of max-2sat3 and solution γ of ffdcj-similarity with instance f(φ).
Since variables occurring only once imply their clauses and others to be trivially satisfied,
we consider only clauses that are not trivially satisfied in their instance. Similar for clauses
containing both literals xi and xi, for some variable xi.
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Function f

We show progressively how the function builds GSσ(A,B) and defines genes and their
sequences in chromosomes of A and B. For each variable xi occurring three times, let Cx1i ,
Cx2i , and Cx3i be aliases for the clauses where xi occurs (notice that a clause composed
of two literals has two aliases). We define a variable component Ci adding vertices (genes)
x1i , x

2
i , and x3i to A, vertices (genes) Cx1i , Cx

2
i , and Cx3i to B, and edges exji = (Cxji , x

j
i )

and exi
j = (Cxji , x

k
i ) for j ∈ {1, 2, 3} and k = (j+1) mod 3+1 in GSσ(A,B). An edge exji

(exi
j) has weight 1 if the literal xi (xi) belongs to the clause Cxji , otherwise it has weight

0. Edges in the variable component Ci form a cycle of length 6 (Fig. 4.5) in GSσ(A,B).
Variable components for variables occurring two times are defined similarly and form cycles
of length 4. Genomes are A = {(xji ) for each occurrence j of each variable xi ∈ X} and

B = {(Cxji ) : Cxji is an alias to a clause in φ with only one literal} ∪ {(Cxji Cx
j′

i′ ) : Cxji
and Cxj

′

i′ are aliases to the same clause in φ}. (A and B have only circular chromosomes
with 1 or 2 genes.)

Figure 4.5: Preliminary graphs of max-2sat3 ≤strict ffdcj-similarity.
GSσ(A,B) and AGσ(A,B) for genomes A = {(x11), (x21), (x31), (x12), (x22)} and B =
{(Cx11 Cx12), (Cx

2
1), (Cx

3
1 Cx22)} given by function f applied to 2sat3 clauses C1 =

(x1 ∨ x2), C2 = (x1), and C3 = (x1 ∨ x2). In GSσ(A,B), solid edges correspond to exji
and dashed edges correspond to exi

j . In AGσ(A,B), shaded region corresponds to genes
of genome B and solid (dashed) edges correspond to solid (dashed) edges of GSσ(A,B).
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The function f as defined here maps an instance φ of max-2sat3 (a 2-cnf formula) to
an instance f(φ) of ffdcj-similarity (genomes A and B, and GSσ(A,B)) and is clearly
polynomial. Besides, since all chromosomes are circular, the corresponding weighted adja-
cency graph AGσ(A,B) (or AGσ(AM , BM ) for some matching M) is a collection of cycles.

Now, notice that any maximal matching in GSσ(A,B) covers all genes in both A and B,
inducing in AGσ(A,B) only cycles of length 2, composed by (genes in) chromosomes (xji )

and (Cxj
′

i ), or cycles of length 4, composed by chromosomes (xji ), (xlk), and (Cxj
′

i Cx
l′
k ).

Recall that the normalized weight for a cycle C is ŵ(C) = w(C)
|C| . In this transformation,

each cycle C is such that ŵ(C) = 0, 0.5, or 1. A cycle C such that ŵ(C) > 0 is a helpful
cycle and represents a clause satisfied by one or two literals (ŵ(C) = 0.5 or ŵ(C) = 1,
respectively). See an example in Fig. 4.6.

Figure 4.6: Example of the relation between a solution of ffdcj-similarity

using preliminary graphs and a solution of max-2sat3 in max-2sat3 ≤strict

ffdcj-similarity. A matching M of GSσ(A,B) and cycles induced by M in
AGσ(AM , BM ) for genomes of Fig. 4.5. This solution of ffdcj-similarity represents
clauses C1 and C3 of max-2sat3 satisfied.

In this scenario, however, a solution of ffdcj-similarity with performance ratio r
could lead to a solution of max-2sat3 with ratio 2r, since the total normalized weight

facom-ufms



Family-free DCJ similarity 46

for two cycles C1 and C2 with ŵ(C1) = ŵ(C2) = 0.5 (two clauses satisfied by one literal
each) is the same for one cycle C with ŵ(C) = 1.0 (one clause satisfied by two literals).
Therefore, achieving the desired ratio requires some modifications in f . It is not possible
to make these two types of cycles have the same weight, but it suffices to get close enough.

We introduce special genes into the genomes called extenders. For some p even, for
each edge exji = (Cxji , x

j
i ) of weight 1 in GSσ(A,B) we introduce p extenders α1, . . . , αp

into A (as a consequence, they are also introduced into A) and p extenders αp+1, . . . , α2p

into B. Each exji of weight 1 has its own set of extenders, and the same process is done

for each exi
j of weight 1. Edge exji is replaced by edges (Cxji , α1) with weight 1 (which we

consider equivalent to exji ) and (αp+1, x
j
i ) with weight 0, and edges (αk, αp+k) with weight

0 are added to GSσ(A,B) for each k, 1 ≤ k ≤ p (extenders α1 and αp+1 are now part of the
variable component Ci). Regarding new chromosomes in genomes A and B, A is updated
to A ∪ {(α1 −αp)} ∪ {(αk −αk+1) : k ∈ {2, 4, . . . , p − 2}} and B to B ∪ {(αk −αk+1) :
k ∈ {p + 1, p + 3, . . . , 2p − 1}}. By this construction, which is still polynomial, the path
from xjti to Cxjti in AGσ(A,B) is extended from 1 to 1 + p edges, from {(xjti , Cx

jt
i )} to

{(xjti , αtp), (αtp+1, α
t
2), (α

t
3, α

t
p+2), (α

t
p+3, α

t
4), . . . , (α

t
1, Cx

jt
i )}. The same occurs for the path

from xjhi to Cxjhi (see Fig. 4.7). Now, cycles in AGσ(A,B) induced by edges of weight 0
in GSσ(A,B) have normalized weight 0, cycles previously with normalized weight 1 are
extended and have normalized weight 1

1+p , and cycles previously with normalized weight

0.5 are extended and have normalized weight 1
2+p . Notice that, for a sufficiently large p,

1
1+p is quite close to 1

2+p , hence the problem of finding the maximum similarity in this
graph is very similar to finding the maximum number of helpful cycles.

Figure 4.7: Final graphs of max-2sat3 ≤strict ffdcj-similarity including extender
genes. Detail of graphs GSσ(A,B) and AGσ(A,B) for genomes of Fig. 4.5 including
extenders for edge (x11, Cx

1
1) for p = 4. Shaded regions correspond to genes of genome B.

Extending all edges of weight 1 and selecting the matching of Fig. 4.6, this helpful cycle
(only half of it is in this figure) would have normalized weight 4

4(p+1) = 1
p+1 = 1

5 = 0.2.
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Function g

By the structure of variable components in GSσ(A,B), and since solutions of ffdcj-
similarity are restricted to maximal matchings only, any solution γ for f(φ) is a matching
that covers only edges exji or exi

j for each variable component Ci. For a Ci, if edges exji
(exi

j) are in the solution then the variable xi is assigned to true (false), inducing in
polynomial time an assignment for each xi ∈ X and therefore a solution g(f(φ), γ) to
max-2sat3. A clause is satisfied if vertices (or the only vertex) corresponding to its
aliases are in a helpful cycle.

Ratio and final steps

The next step to obtain the strict reduction is showing that Rmax-2sat3(φ, g(f(φ), γ)) ≤
Rffdcj-similarity(f(φ), γ). In order to do so, we must set some parameters to specific values
and establish some properties and relations between max-2sat3 and ffdcj-similarity.

Given f(φ) and a feasible solution γ of ffdcj-similarity with the maximum number
of helpful cycles, denote by c′ the number of helpful cycles in γ. Notice that c′ is also
the maximum number of satisfied clauses of max-2sat3, that is, the value of an optimal
solution for max-2sat3 for any instance φ, denoted here by opt2sat3(φ). Thus, c′ =
opt2sat3(φ).

Let n := |A| = |B| before extenders are added. We choose for p (the number of
extenders added for each edge of weight 1 in GSσ(A,B)) the value 2n and define

ω =
1

2 + p
=

1

2 + 2n

and

ε =
1

1 + p
− 1

2 + p
=

1

4n2 + 6n+ 2
,

which implies that ω + ε = 1
p+1 . Thus, it is easy to see that nε < ω, i.e.,

ε <
ω

n
< 1 . (4.4)

If optsim(f(φ)) denotes the value of an optimal solution for ffdcj-similarity with
instance f(φ) and c∗ denotes the number of helpful cycles in an optimal solution of ffdcj-
similarity, then we have immediately that

optsim(f(φ))

ω + ε
≤ c∗ ≤ optsim(f(φ))

ω
. (4.5)

Besides that

0 ≤ c∗ ≤ n , (4.6)

and

c∗ω ≤ optsim(f(φ)) ≤ c∗(ω + ε) . (4.7)
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Thus, we have

c∗(ω + ε) = c∗ω + c∗ε

< c∗ω +
c∗ω

n
(4.8)

≤ c∗ω + 1 · ω (4.9)

= c∗ω + ω , (4.10)

where (4.8) comes from (4.4) and (4.9) is valid due to (4.6). Given the definitions above,
we are able to demonstrate some propositions related to the ratios of the reduction.

Proposition 4.1 Let c′ be the number of helpful cycles in a feasible solution of ffdcj-
similarity with the greatest number of helpful cycles possible. Let c∗ be the number of
helpful cycles in an optimal solution of ffdcj-similarity. Then,

c′ = c∗ .

Proof. Since c′ is the greatest number of helpful cycles possible, it is immediate that
c∗ ≤ c′.

Let us now show that c∗ ≥ c′. Suppose for a moment that c∗ < c′. Since c∗ and c′ are
integers, this implies that c∗ + 1 ≤ c′, i.e.,

c∗ ≤ c′ − 1 . (4.11)

Let C′ be the set of cycles with c′ cycles, i.e., with the maximum number of helpful cycles
possible. Let ŵ(C′) :=

∑
C∈C′ ŵ(C) =

∑
C∈C′ w(C)/|C|. Then

ŵ(C′) ≥ c′ω = (c′ − 1)ω + ω

≥ c∗ω + ω (4.12)

> c∗(ω + ε) (4.13)

≥ optsim(f(φ)) , (4.14)

where (4.12) follows from (4.11), (4.13) comes from (4.10), and (4.14) is valid due to (4.7).
It means that ŵ(C′) > optsim(f(φ)), which is a contradiction.

Therefore, c′ = c∗. �

Proposition 4.2 Let cr be the number of helpful cycles given by an approximate solu-
tion for ffdcj-similarity with approximation ratio r. Let c′ be the same as defined in
Proposition 4.1. Then,

cr ≥ c′

r
.

Proof. Given an instance f(φ) of ffdcj-similarity, let γr be an approximate solution

of f(φ) with performance ratio r, i.e., val(f(φ), γr) ≥ optsim(f(φ))
r . Let cr be the number of
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helpful cycles of γr. Then

cr ≥

(optsim(f(φ))

r

)
ω + ε

>
optsim(f(φ))

r(ω + ω/n)
(4.15)

=
optsim(f(φ))

rω
· n

n+ 1

≥ c′ω

rω
· n

n+ 1
(4.16)

=
c′

r
·
(
1− 1

n+ 1

)
=
c′

r
− c′

r(n+ 1)

≥ c′

r
− 1 , (4.17)

where (4.15) follows from (4.4), (4.16) is valid from (4.7) and Proposition 4.1, and (4.17)
is true because r ≥ 1 and c′ = c∗ ≤ n. Then, from (4.17) we know that cr > c′

r − 1 and,
since cr is an integer number, the result follows. �

From the results above, it is possibile to establish the desired ratio for the strict
reduction.

Lemma 4.3 Let cr be the number of helpful cycles given by an approximate solution for
the ffdcj-similarity with approximation ratio r. Then, Rmax-2sat3(φ, g(f(φ), γ)) ≤ r.

Proof. Directly from the result of Proposition 4.2,

Rmax-2sat3(φ, g(f(φ), γ)) =
opt2sat3(φ)

cr
=
c′

cr
≤ r ,

�

We now present the main result of this section.

Theorem 4.4 ffdcj-similarity is APX-hard.

Proof. The statement follows immediately from the strict reduction max-2sat3 ≤strict

ffdcj-similarity given by the functions (f, g), presented previously, and the relation of
ratios Rmax-2sat3(φ, g(f(φ), γ)) ≤ Rffdcj-similarity(f(φ), γ), given by Lemma 4.3. �

This theorem also leads us directly to the first inapproximability result.

Corollary 4.5 ffdcj-similarity cannot be approximated by a ratio of 2012/2011−ε for
any ε > 0, unless P = NP.

Proof. First, notice that if a problem is APX-hard, the existence of a PTAS for it implies
P = NP. Since a strict reduction preserves membership in the class PTAS, finding a
PTAS for ffdcj-similarity implies a PTAS for every APX-hard problem and P = NP.
A PTAS for ffdcj-similarity would also imply an approximation ratio better than
2012/2011 = 1.0005 . . ., unless P = NP. This follows immediately from the reduction in
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Theorem 4.4 with Rmax-2sat3 = Rffdcj-similarity and the fact that max-2sat3 is shown [19]
to be NP-hard to approximate within a ratio of 2012/2011− ε for any ε > 0. �

However, there is a slightly stronger result.

Corollary 4.6 ffdcj-similarity cannot be approximated with approximation ratio bet-
ter than 22/21 = 1.0476 . . ., unless P = NP.

Proof. Notice particularly that the reduction max-2sat3 ≤strict ffdcj-similarity can
be trivially extended to max-2sat ≤strict ffdcj-similarity by extending variable com-
ponents to arbitrary sizes. This increases the lower bound to 22/21 = 1.0476 . . . [69]. �

4.3 An Exact Algorithm

In order to exactly compute the family-free DCJ similarity between two given genomes,
we propose an integer linear program (ILP) formulation that is similar to the one for the
family-free DCJ distance [89]. It adopts the same notation and also uses an approach to
solve the maximum cycle decomposition problem defined by Shao, Lin and Moret [115].

Let A and B be two genomes, let G = GSσ(A,B) be their gene similarity graph, and
let XA and XB be the extremity sets (including null extremities) with respect to A and
B for the capped adjacency graph AGσ(A,B), respectively. The weight w(e) of an edge
e in G is also denoted by we. For the ILP formulation, an extension H = (VH , EH) of
the capped weighted adjacency graph AGσ(A,B) is defined such that VH = XA ∪ XB,
and EH = Em ∪ Ea ∪ Es has three types of edges: (i) matching edges that connect two
extremities in different extremity sets, one in XA and the other in XB, if they are null
extremities or there exists an edge connecting these genes in G; the set of matching edges
is denoted by Em; (ii) adjacency edges that connect two extremities in the same extremity
set if they form an adjacency; the set of adjacency edges is denoted by Ea; and (iii) self
edges that connect two extremities of the same gene in an extremity set; the set of self edges
is denoted by Es. Matching edges have weights defined by the normalized gene similarity
σ, all adjacency and self edges have weight 0. Notice that any edge in G corresponds to
two matching edges in H.

The description of the ILP follows. For each edge e in H, we create a binary variable
xe to indicate whether e will be in the final solution. We require first that each adjacency
edge be chosen:

xe = 1, ∀ e ∈ Ea.

Now we rename each vertex in H such that VH = {v1, v2, . . . , vk} with k = |VH |. We
require that each of these vertices be adjacent to exactly one matching or self edge:∑

e=vrvt∈Em∪Es

xe = 1,∀ vr ∈ XA, and
∑

e=vrvt∈Em∪Es

xe = 1,∀ vt ∈ XB.

Then, we require that the final solution be valid, meaning that if one extremity of a
gene in A is assigned to an extremity of a gene in B, then the other extremities of these
two genes have to be assigned as well:

xahbh = xatbt , ∀ ab ∈ EG.
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We also require that the matching be maximal. This can easily be ensured if we
guarantee that at least one of the vertices connected by an edge in the gene similarity
graph be chosen, which is equivalent to not allowing both of the corresponding self edges
in the weighted adjacency graph be chosen:

xahat + xbhbt ≤ 1, ∀ ab ∈ EG.

To count the number of cycles, we use the same strategy as described by Shao, Lin
and Moret [115]. For each vertex vi we define a variable yi that labels vi such that

0 ≤ yi ≤ i, 1 ≤ i ≤ k.

We also require that adjacent vertices have the same label, forcing all vertices in the same
cycle to have the same label:

yi ≤ yj + i · (1− xe), ∀ e = vivj ∈ EH ,
yj ≤ yi + j · (1− xe), ∀ e = vivj ∈ EH .

We create a binary variable zi, for each vertex vi, to verify whether yi is equal to its upper
bound i:

i · zi ≤ yi, 1 ≤ i ≤ k.

Since all variables yi in the same cycle have the same label but a different upper bound,
only one of the yi can be equal to its upper bound i. This means that zi is 1 if the cycle
with vertex i as representative is used in a solution.

Now, let L = {2j : j = 1, . . . , n} be the set of possible cycle lengths in H, where
n := min(|A|, |B|). We create the binary variable xei to indicate whether e is in i, for each
e ∈ EH and each cycle i. We also create the binary variable x`ei to indicate whether e
belongs to i and the length of cycle i is `, for each e ∈ EH , each cycle i, and each ` ∈ L.

We require that if an edge e belongs to a cycle i, then it can be true for only one length
` ∈ L. Thus, ∑

`∈L
x`ei ≤ xei, ∀ e ∈ EH and 1 ≤ i ≤ k. (4.18)

We create another binary variable z`i to indicate whether cycle i has length `. Then
` · z`i is an upper bound for the total number of edges in cycle i of length `:∑

e∈EM

x`ei ≤ ` · z`i , ∀ ` ∈ L and 1 ≤ i ≤ k.

The length of a cycle i is given by ` · z`i , for i = 1, . . . , k and ` ∈ L. On the other hand,
it is the total amount of matching edges e in cycle i. That is,∑

`∈L
` · z`i =

∑
e∈Em

xei, 1 ≤ i ≤ k.

We have to ensure that each cycle i must have just one length:∑
`∈L

z`i = zi, 1 ≤ i ≤ k.
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Now we create the binary variable yri to indicate whether the vertex vr is in cycle i.
Thus, if xei = 1, i.e., if the edge e = vrvt in H is chosen in cycle i, then yri = 1 = yti (and
xe = 1 as well). Hence,

xei ≤ xe,
xei ≤ yri,
xei ≤ yti,
xei ≥ xe + yri + yti − 2,

 ∀ e = vrvt ∈ EH and 1 ≤ i ≤ k. (4.19)

Since yr is an integer variable, we associate yr to the corresponding binary variable
yri, for any vertex vr belonging to cycle i:

yr =
r∑
i=1

i · yri, ∀ vr ∈ VH .

Furthermore, we must ensure that each vertex vr may belong to at most one cycle:

r∑
i=1

yri ≤ 1, ∀ vr ∈ VH .

Finally, we set the objective function as follows:

maximize
k∑
i=1

∑
`∈L

∑
e∈Em

wex
`
ei

`
.

Note that, with this formulation, we do not have any path as a component. Therefore, the
objective function above is exactly the family-free DCJ similarity sffdcj(A,B) as defined in
Equations (4.2) and (4.3).

Notice that the ILP formulation has O(N4) variables and O(N3) constraints, where
N = |A| + |B|. The number of variables is proportional to the number of variables x`ei,
and the number of constraints is upper bounded by (4.18) and (4.19).

4.4 Heuristics

We now propose four heuristic algorithms to compute the family-free DCJ similarity of
two given genomes: one which is directly derived from a maximum matching of the gene
similarity graph GSσ and three greedy-like heuristics that, according to different criteria,
select cycles from the weighted adjacency graph AGσ, such that the cycles selected by each
heuristic induce a matching in GSσ.

Maximum Matching

In the first heuristic, shown in Algorithm 4.1 (Maximum-Matching), we find a maximum
weighted bipartite matching M in GSσ by the Hungarian Method, also known as Kuhn-
Munkres Algorithm [49, 92, 127]. Given the matching M , it is straightforward to obtain
the reduced genomes AM and BM and return the similarity value sσ(AM , BM ).
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Algorithm 4.1 Maximum-Matching(A,B, σ)

Input: genomes A and B, gene similarity function σ
Output: a family-free DCJ similarity between A and B

1: Build the gene similarity graph GSσ(A,B).
2: Obtain a maximum weighted matching M in GSσ(A,B) defining reduced genomes AM

and BM .
3: Build the capped weighted adjacency graph AGσ(AM , BM ) of the reduced genomes.
4: Let C be the set of all cycles in AGσ(AM , BM ).
5: Return sσ(AM , BM ) =

∑
C∈C ŵ(C).

For the implementantion of this heuristic we cast similarity values (floating point edge
weights in [0, 1]) in GSσ(A,B) to integers by multiplying them by some power of ten,
depending on the precision of similarity values. Given real or general simulated instances,
and for a power of ten large enough, this operation has little impact on the optimality of
the weighted matching M for the original weights in GSσ(A,B) obtained from the Kuhn-
Munkres algorithm, i.e., the weight of M for the original weights in GSσ(A,B) is optimal
or near-optimal since only less significant digits are not considered.

Greedy Heuristics

Before describing the greedy heuristics, we need to introduce the following concepts. We
say that two edges in AGσ(A,B) are compatible if one connects the head and the other
connects the tail of the same pair of genes, or if they connect extremities of distinct genes
in both genomes. Otherwise they are incompatible. A set of edges, in particular a cycle, is
consistent if it has no pair of incompatible edges. A set of cycles is consistent if the union
of all of their edges is consistent. Observe that a consistent set of cycles in AGσ(A,B)
induces a matching in GSσ(A,B).

Each one of the three greedy algorithms selects disjoint and consistent cycles in the
capped AGσ(A,B). Consistent cycles are selected from the set of all cycles of AGσ(A,B),
that is obtained in Step 4 of each heuristic (see Algorithms 4.2, 4.3 and 4.4 below), using
a cycle enumeration algorithm by Hawick and James [70], which is based on Johnson’s
algorithm [80]. For this reason, the running time of our heuristics is potentially exponential
in the number of vertices of AGσ(A,B).

In the three heuristics, after completing the cycle selection by iterating over the set
of all cycles of AGσ(A,B), the induced matching M in GSσ(A,B) could still be non-
maximal. Whenever this occurs, among the genes that are unsaturated by M , we can
identify disposable genes by one of the two following conditions:

1. Any unsaturated gene in GSσ(A,B) that is connected only to saturated genes, is a
disposable gene;

2. For a given set of vertices S ⊆ A (or S ⊆ B) in GSσ(A,B) such that, for the set
of connected genes N(S), we have |S| > |N(S)| (Hall’s theorem), then any subset of
size |S| − |N(S)| of unsaturated genes of S can be set as disposable genes. In our
implementation we choose those |S| − |N(S)| unsaturated genes with the smallest
labels. Such S ⊆ A can be found as follows. Let V be the set of vertices saturated
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by M , and let M ′ be a maximum cardinality matching in GSσ(A,B) \ V . Consider
the sets A′ = A \ V and B′ = B \ V . Now let GS′σ(A,B) be a directed bipartite
graph on the vertex set A′ ∪ B′, which includes the edges of M ′ oriented from B′ to
A′ and the remaining edges of GSσ(A,B) \V oriented from A′ to B′, and let U ⊆ A′
be the set of vertices of A′ unsaturated by M ′. S ⊆ A is the corresponding set of
vertices reachable from U in GS′σ(A,B), if any. S ⊆ B can be found analogously.

If there is no consistent cycle to be selected and the matching M is still non-maximal,
new consistent cycles appear in AGσ(A,B) after the deletion of all identified disposable
genes (see Fig. 4.8). In order to delete a disposable gene g, we need to remove from
AGσ(A,B) the edges corresponding to extremities gt or gh and “merge” the two vertices
that represent these extremities. Every time disposable genes are deleted from AGσ(A,B),
a new iteration of the algorithms starts from Step 4 (see again Algorithms 4.2, 4.3 and
4.4). This procedure assures that, in each one of the three algorithms, the final set of
selected cycles defines a maximal matching M , such that AGσ(AM , BM ) is exactly the
union of those selected cycles.
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Figure 4.8: Example of disposable genes. Consider genomes A = {(◦ 1 2 3 ◦)} and
B = {(◦ −4 5 6 −7 ◦)} and their gene similarity graph GSσ(A,B). The selection of
the dashed cycle in AGσ(A,B) adds the edges connecting gene 1 to gene 4 and gene 2
to gene 5 to the matching M in GSσ(A,B). After this selection, although the matching
M is not yet maximal, there are no more consistent cycles in AGσ(A,B). Observe that
gene 6 in GSσ(A,B) is unsaturated and its single neighbor—gene 2—is already saturated.
Since gene 6 can no longer be saturated by M , it is a disposable gene and is deleted from
AGσ(A,B), resulting in AG′σ(A,B), where a new consistent cycle appears. The selection
of this new cycle adds to the matching M the edge connecting gene 3 to gene 7. Both
AGσ(A,B) and AG′σ(A,B) have a simplified representation, in which the edge weights, as
well as two of the four null edges of the capping, are omitted. Furthermore, for the sake
of clarity, in this simplified representation each edge has a label describing the extremities
connected by it.

Best Density

The best density heuristic is shown in Algorithm 4.2 (Greedy-Density). The density

of a cycle C is given by w(C)
|C|2 (its weight divided by the square of its length). The cycles

of AGσ(A,B) are arranged in decreasing order of their densities, and consistent cycles are
selected following this order.
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Algorithm 4.2 Greedy-Density(A,B, σ)

Input: genomes A and B, gene similarity function σ
Output: a family-free DCJ similarity between A and B

1: M := ∅; C := ∅.
2: Build the gene similarity graph GSσ(A,B).
3: Build the capped weighted adjacency graph AGσ(A,B).
4: for ` = 10, 20, . . . ,maximum cycle length possible do
5: List all cycles of AGσ(A,B) of length at most ` in decreasing order of their densities.
6: While it is possible, select the best density consistent cycle C that is also consistent

with all cycles in C and add it to C, let AGσ(A,B) := AGσ(A,B) \C, update M by
adding the new gene connections induced by C.

7: If M is not a maximal matching of GSσ(A,B), find and delete disposable genes from
AGσ(A,B) and go back to Step 4.

8: Return
∑

C∈C ŵ(C).

Since the number of cycles of any length may be exponential in the size of the input
graph, in our implementation we add a heuristic in which initially the search is restricted
to cycles of length up to ten. Then, as long as the obtained matching is not maximal,
Steps 4 to 7 are repeated, while gradually increasing the allowed maximum cycle length
in steps of ten.

Best Length

The best length heuristic is shown in Algorithm 4.3 (Greedy-Length). The cycles of
AGσ(A,B) are found in increasing order of their lengths, and ties are broken by the
decreasing order of their weights. Here we first find and select cycles of length 2, then of
length 4, and so on, for each fixed length iterating over the set of all cycles in decreasing
order of their weights. Consistent cycles are selected following this procedure.

Algorithm 4.3 Greedy-Length(A,B, σ)

Input: genomes A and B, gene similarity function σ
Output: a family-free DCJ similarity between A and B

1: M := ∅; C := ∅.
2: Build the gene similarity graph GSσ(A,B).
3: Build the capped weighted adjacency graph AGσ(A,B).
4: for ` = 2, 4, . . . ,maximum cycle length possible do
5: List all cycles of AGσ(A,B) of length ` in decreasing order of their weights.
6: While it is possible, select the best weight consistent cycle C that is also consistent

with all cycles in C and add it to C, let AGσ(A,B) := AGσ(A,B) \C, update M by
adding the new gene connections induced by C.

7: If M is not a maximal matching of GSσ(A,B), find and delete disposable genes from
AGσ(A,B) and go back to Step 4.

8: Return
∑

C∈C ŵ(C).
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Best Length with Weighted Maximum Independent Set

The best length heuristic with wmis is shown in Algorithm 4.4 (Greedy-wmis) and is a
variation of Greedy-Length. Instead of selecting cycles of greater weights for a fixed
length, this algorithm selects the greatest amount of cycles for a fixed length by a wmis
algorithm. The heuristic builds a cycle graph where each vertex is a cycle of AGσ(A,B),
the weight of a vertex is the weight of the cycle it represents and two vertices are adjacent if
the cycles they represent are inconsistent. The heuristic tries to find next an independent
set with the greatest weight in the cycle graph. Since this graph is not d-claw-free for any
fixed d, the wmis algorithm [17,18] does not guarantee any fixed approximation ratio.

Algorithm 4.4 Greedy-wmis(A,B, σ)

Input: genomes A and B, gene similarity function σ
Output: a family-free DCJ similarity between A and B

1: M := ∅; C := ∅.
2: Build the gene similarity graph GSσ(A,B).
3: Build the capped weighted adjacency graph AGσ(A,B).
4: for ` = 2, 4, . . . ,maximum cycle length possible do
5: List all cycles of AGσ(A,B) of length `.
6: Select a set C′ of consistent cycles trying to maximize the sum of weights by a wmis

algorithm and add C′ to C, let AGσ(A,B) := AGσ(A,B) \ C′, update M by adding
the new gene connections induced by C′.

7: If M is not a maximal matching of GSσ(A,B), find and delete disposable genes from
AGσ(A,B) and go back to Step 4.

8: Return
∑

C∈C ŵ(C).

4.5 Experimental Results

Experiments for the ILP and our heuristics were conducted on an Intel i7-4770 3.40GHz
machine with 16 GB of memory. In order to do so, we produced simulated datasets by the
Artificial Life Simulator (ALF) [41] and obtained real genome data from NCBI, using the
FFGC tool1 to obtain similarity scores between genomes. Gurobi Optimizer 7.0 was set
to solve ILP instances with default parameters, time limit of 1800 seconds and 4 threads,
and the heuristics were implemented in C++.

Simulated Data

We generated datasets with 10 genome samples each, running pairwise comparisons be-
tween all genomes in the same dataset. Each dataset has genomes of sizes around 25, 50
or 1000 (the latter used only for running the heuristics), generated based on a sample from
the tree of life with 10 leaf species and PAM distance of 100 from the root to the deepest
leaf. Gamma distribution with parameters k = 3 and θ = 133 was used for gene length
distribution. For amino acid evolution we used the WAG substitution model with default
parameters and the preset of Zipfian indels with rate 0.00005. Regarding genome level
events, we allowed gene duplications and gene losses with rate 0.002, and reversals and

1https://bibiserv2.cebitec.uni-bielefeld.de/ffgc
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transpositions (which ALF refers to as translocations) with rate 0.0025, with at most 3
genes involved in each event. To test different proportions of genome level events, we gen-
erated simulated datasets with 2- and 5-fold increase for reversal and transpositions rates.

Results are summarized in Table 4.1. Each dataset is composed of 10 genomes, totaling
45 comparisons of pairs per dataset. Rate r = 1 means the default parameter set for
genome level events, while r = 2 and r = 5 mean the 2- and 5-fold increase of rates,
respectively. For the ILP the table shows the average time for instances for which an
optimal solution was found, the number of instances for which the optimizer did not find
an optimal solution within the given time limit and, for the latter class of instances, the
average relative gap between the best solution found and the upper bound found by the
solver, calculated by (upper bound

best solution − 1) × 100. For our heuristics, the running time for all
instances of sizes 25 or 50 was negligible, therefore the table shows only the average relative
gap between the solution found and the upper bound given by the ILP solver (if any).

Table 4.1: Results of experiments for simulated genomes.

ILP
Maximum-
Matching

Greedy-
Density

Greedy-
Length

Greedy-
wmis

Time (s)
Not

finished
Gap (%) Gap (%) Gap (%) Gap (%) Gap (%)

25 genes, r = 1 19.50 0 – 16.26 5.03 5.84 5.97
25 genes, r = 2 84.60 2 69.21 58.69 30.77 43.57 43.00
25 genes, r = 5 49.72 0 – 81.39 43.83 55.38 55.38
50 genes, r = 1 265.23 12 23.26 63.02 24.76 27.86 26.94
50 genes, r = 2 463.50 29 38.12 123.71 65.41 66.52 64.78
50 genes, r = 5 330.88 29 259.72 281.70 177.58 206.60 206.31

Results clearly show the average relative gap of heuristics increases proportionally to
the rate of reversals and transpositions. This is expected, as higher mutation rates often
result in higher normalized weights on longer cycles, thus the association of genes with
greater gene similarity scores will be subject to the selection of longer cycles. Interestingly,
for some larger instances the relative gap for heuristics is very close to the values obtained
by the ILP solver, suggesting the use of heuristics may be a good alternative for some
classes of instances or could help the solver finding lower bounds quickly. It is worth
noting that the Greedy-Density heuristic found solutions with gap smaller than 1% for
38% of the instances with 25 genes.

In a single instance (25 genes, r = 2), the gap between the best solution found and
the upper bound was much higher for the ILP solver and for the heuristics. This instance
in particular is precisely the one with the largest number of edges in GSσ(A,B) in the
dataset. This may indicate that a moderate increase in degree of vertices (1.3 on average
to 1.8 in this case) may result in much harder instances for the solver and the heuristics,
as after half of the time limit the solver attained no significant improvement on solutions
found, and the heuristics returned solutions with a gap even higher.

We also simulated 10 genomes of sizes around 50, with PAM distance of 15 from the
root to the deepest leaf, therefore evolutionarily “closer” to each other and for which higher
similarity values are expected. For these genomes the default rates were multiplied by ten
(10-fold) for Zipfian indels, gene duplications, gene losses, reversals and transpositions,
otherwise there would be no significative difference between them. The exact ILP algo-
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rithm found an optimal solution for only 4 of the 45 instances, taking 840.59 seconds on
average. For the remaining instances, where the ILP did not finish within the time limit,
the average gap is 329.53%. Regarding the heuristics (Table 4.2), that all run in negligible
time, Greedy-Density outperforms the others, with an average gap of 163% compared
to the best upper bound found by the ILP solver. Surprisingly, values returned by greedy
heuristics are better than values obtained by the ILP for these instances. Results again
suggest that the ILP could benefit greatly from heuristics by using their results as initial
lower bounds. Moreover, for some groups of instances even heuristics alone can obtain
excellent results.

Table 4.2: Results of experiments for 10 simulated genomes (45 pairwise com-
parisons) with smaller PAM distance.

ILP
Maximum-
Matching

Greedy-
Density

Greedy-
Length

Greedy-
wmis

Time (s)
Not

finished
Gap (%) Gap (%) Gap (%) Gap (%) Gap (%)

50 genes, r = 10 840.59 41 329.53 415.57 163.00 172.02 168.58

Although we have no upper bounds for comparing the results of our heuristics for
genome sizes around 1000, they are still very fast. For these genomes we analyze the
Maximum-Matching algorithm separately afterwards, taking into account for now only
the other three heuristics. The average running times are 0.30 s, 15.11 s and 12.16 s
for Greedy-Density, Greedy-Length and Greedy-wmis, respectively, showing nev-
ertheless little difference on results.

However, in 25% of the instances with r = 5, the difference from the best to the worst
solutions provided by these heuristics varied between 10% and 24%, the best of which
were given by Greedy-Density. That is probably because, instead of prioritizing shorter
cycles, Greedy-Density attempts to balance both normalized weight and length of the
selected cycles. The average running times for the instances with r = 5 are 1.84 s, 76.02 s
and 80.67 s for Greedy-Density, Greedy-Length and Greedy-wmis, respectively.

Still for genomes of size around 1000 and r = 5, the Maximum-Matching heuristic is
the fastest, with an average running time of 1.70 s. Despite being the best heuristic for a
few cases, the similarity value given by this heuristic is merely 27% of the value given by the
best heuristic, on average. While the Maximum-Matching heuristic is clearly not useful
for calculating similarity values, these results show how significant it is to choose cycles
with the best normalized weights versus prioritizing edges with best weights in the gene
similarity graph for the ffdcj-similarity problem. Since this property of the Maximum-
Matching somehow reflects the strategy of family-based comparative genomics, this ob-
servation indicates an advantage of family-free analysis compared to family-based analysis.

To better understand how cycles scale, we generated 5-fold instances with 100, 500,
1000, 5000, and 10000 genes, running the Greedy-Density heuristic for these instances
and counting different cycle lengths. The running time was 0.008s, 0.667s, 1.98s, 508s, and
2896s, respectively, on average. Results (Fig. 4.9) show that most of the cycles found are of
short lengths compared to the genome sizes, providing some insight on why heuristics are
fast despite having to enumerate a number of cycles that could be exponential. Besides,
even the maximum number of longer cycles found for any instance is reasonably small.
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Figure 4.9: Average count of cycles found by lengths in the Greedy-Density

heuristic. Instances have r = 5 and genome sizes of 100, 500, 1000, 5000, and 10000
genes. Numbers above marks denote the maximum number of cycles for a pair of genomes
in an instance (only for values greater than 50). Recall that this heuristic finds and selects
cycles of lengths for smaller ranges first.

Finally, as expected, experiments for genomes simulated with different parameters
indicate the FFDCJ similarity decreases as the PAM distance or the rates of genome level
events increases (data not shown).

Real Genome Data

To show the applicability of our methods to real data, we obtained from NCBI protein-
coding genes of X chromosomes of human (Homo-sapiens, assembly GRCh38.p7), house
mouse (Mus musculus, assembly GRCm38.p4 C57BL/6J), and Norway rat (Rattus norvegi-
cus, assembly Rnor 6.0). In mammals, the set of genes on the X chromosome has been
reasonably conserved throughout the last several million years [94], having however their
order disrupted many times.

Since protein sequences are used to obtain the similarity scores (with the help of the
BLASTp tool) instead of nucleotide sequences, 76 genes from the rat genome were excluded
because no protein sequence was available. Besides, when a gene has multiple isoforms,
the longest is kept. The number of genes in the resulting genomes were 822, 953 and 863
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for human, mouse and rat, respectively, some of them removed from the pairwise genome
comparison due to the pruning process of FFGC.

Table 4.3 shows, as expected, that the two rodent X chromosomes have a higher
similarity than any of them to the human X chromosome. The values returned by the
greedy heuristics are very similar, where Greedy-Length is the fastest. Maximum-
Matching results are less than 5% distant from the results of the greedy heuristics, which
indicates the choice of cycles has some influence but does not dominate the similarity values
obtained for these instances. Matching sizes are similar for all heuristics, showing that
about 8% of the genes of the smaller genomes could not be matched to some gene of the
other genome and had to be removed, that is, they are disposable genes.

Table 4.3: Results for heuristics on real genomes. Smaller genome column shows
for each pair of genomes the number of genes in the smaller one, an upper bound for the
matching size. Heuristics are represented by their initials (e.g. Greedy-Length = GL).

Smaller
genome

Matching size Time (s) Similarity

MM GD GL GW MM GD GL GW MM GD GL GW

human/mouse 696 643 643 643 643 0.07 19.6 0.1 8.6 404.56 420.64 421.48 420.72
human/rat 672 613 611 611 612 0.05 11.6 0.04 3.3 358.36 374.17 374.27 373.82
mouse/rat 746 690 689 689 689 0.17 0.18 0.13 0.18 481.53 500.59 500.57 500.36

4.6 Concluding remarks

In this chapter we studied the (NP-hard) problem of computing the family-free DCJ
similarity. After presenting it formally, we showed that the problem is also APX-hard and
cannot be approximated with approximation ratio better than 22/21 = 1.0476 . . ., unless
P = NP. Then, we proposed an exact ILP algorithm to solve it. Following, we developed
four heuristic algorithms and could show that they perform well while having reasonable
running times also for realistic-size genomes. Further, heuristics could improve the ILP
running time and results.

Initial experiment on real data can be considered a proof of concept. In general,
the computational results of this work can be used to more systematically study the
applicability of the DCJ similarity measure in various contexts. One important point to
be investigated is whether, differently from parsimonious distance measures that usually
only hold for closely related genomes, a genomic similarity would allow to perform good
comparisons of more distant genomes as well. Fine-tuning of both the data preparation
and objective function may be necessary, though.

For example, one drawback of the function sffdcj as defined in Equation (4.3) is that
distinct pairs of genomes might give family-free DCJ similarity values that cannot be
compared easily, because the value of sffdcj varies between 0 and |M |, where M is the
matching giving rise to sffdcj. Therefore some kind of normalization would be desirable. A
simple approach could be to divide sffdcj by the size of the smaller genome (a trivial upper
bound for |M |). On the other hand, dividing by the size of the larger would decrease the
maximum similarity to values bellow 1, depending on the proportion of sizes of compared
genomes. Moreover, such simple approaches be applied as a simple postprocessing step,
keeping all theoretical results of this work valid. A better normalization, however, might
be to divide by |M | itself. An analytical treatment here seems more difficult, though.
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Appendix

4.A How to get data

This final subsection presents a brief and high level description of steps and tools used to
obtain simulated or real data in a suitable input format for the implementation used in
the experiments. The complete description can be found in https://git.facom.ufms.

br/diego/ffdcj-sim.

The file format is very simple and defines two unichromosomal genomes. Each line is
composed by 4 fields:

1. Gene number in genome A;

2. Gene number in genome B;

3. Relative orientation between genes; and

4. Similarity between genes.

For instance:

1 1 1 0.1

2 2 1 0.2

2 1 -1 0.3

3 2 1 0.4

where relative orientation 1 means a direct correspondence and −1 a reverse correspon-
dence. Notice, however, that this file format does not define explicitly the order of genes
in genomes. This is handled by the implementation, but in short, for the input:

1 1 1 0.64753765

2 1 -1 0.76287652

a compatible gene order would be A = {(◦ 1 −2 ◦)}, B = {(◦ 1 ◦)} and another one would
be A = {(◦ −1 2 ◦)}, B = {(◦ − 1 ◦)}.

To obtain these input files from simulated or real data, FFGC2,3 can be used to
automate some steps. This is a workflow that provides many functionalities related to
family-free analysis of genes.

2https://bibiserv2.cebitec.uni-bielefeld.de/ffgc
3https://git.danieldoerr.de/projects/FFGC
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For simulated data, after obtaining the files generated by ALF4 (online or standalone
versions), the script convert alf seq ids.py (by Daniel Doerr, included with the source
files of the implementation of the heuristics) must be executed taking as input the FASTA5

files provided by ALF to prepare them for use with FFGC. This script just makes few
adjustments in the FASTA files. After that, the command create project of FFGC can
create a project which automates the process of obtaining input files in a format that can
be used with our implementation.

For real data, GenBank files of species from NCBI6 database are required. The follow-
ing step is using the create project as above. For example, to download the GenBank
file for Homo Sapiens:

1. Look for Homo Sapiens in genome database at NCBI (e.g. https://www.ncbi.nlm.
nih.gov/genome/?term=homo+sapiens);

2. In the X chromosome row, click at “RefSeq” column (ex. NC 000023.11); and

3. Download the GenBank file by clicking at “Send to” with “Complete Record”, “File”
(in “Choose Destination”) and “GenBank (full)” (at “Format”) options selected.

Lastly, given input files with genomes as specified above, the same implementation also
generates input files containing restrictions and the objective function for the ILP solver.

4http://alfsim.org
5https://www.ncbi.nlm.nih.gov/BLAST/fasta.shtml
6https://www.ncbi.nlm.nih.gov
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Chapter 5

Family-based local DCJ similarity

As the last part of this doctoral study, we introduce the concept of (family-based) local
DCJ similarity, a local genome rearrangement measure analog to local sequence align-
ment [105]. As this thesis is directed towards rearrangement measures, the first sections
of this chapter focuses on presenting preliminaries and this novel measure.

Then, in the following sections, we present ANGORA, an improved workflow for ances-
tral genome reconstruction from highly diverged genomes such as those of plants, including
how the local DCJ similarity allowed reconstructed ancestral regions with higher resolu-
tion [105]. Such a workflow relies on an established workflow in the reconstruction of
ancestral plants [107]. However, it is important to stress that the enhancement allowed
by the local DCJ similarity is only one among other improvements of our workflow. In
addition, instead of using gene annotations for inferring the genome content of the ances-
tral sequence, we identify genomic markers through a process called genome segmentation.
This enables us to reconstruct the ancestral genome from hundreds of thousands of markers
rather than the tens of thousands of annotated genes.

With the enhanced workflow at hand, we reconstruct the ancestral genome of eudicots,
a major sub-clade of flowering plants, using whole genome sequences of five modern plants.
Our reconstructed genome is highly detailed, yet its layout agrees well with that reported
in Badouin et al. [10], which was reconstructed using the original workflow. Using local
genome rearrangement, not only the marker-based, but also the gene-based reconstruction
of the eudicot ancestor exhibited increased genome content, evidencing the power of this
novel concept. We review our ancestral reconstruction results in relation to those of
Badouin et al. in the last part of the chapter. At the very end, technical details related to
availability of tools and data and parameters used in tools are provided in an appendix.

Another important point to highlight is that, for the different ancestral genome recon-
struction approaches considered here, it does matter how genomic markers are defined.
Therefore, in this chapter we consider chromosomes as sequences of “genomic markers”
and we use “annotated genes” to refer to one specific method for obtaining such mark-
ers [2, 135].
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5.1 Preliminaries

Here, for ease of reading, we recall a couple of previously described definitions before
presenting few formal definitions necessary in the following sections.

Genomic sequences

Given a sequence S over n =: |S| markers, S[i] denotes the marker at the position i and
G(S) :=

⋃n
i=1{|S[i]|} is the (genome) content of S. Further, we define the multiplicity

of a marker g in sequence S as mS(g) := |{i : 1 ≤ i ≤ n and |S[i]| = g}|. A sequence
S is duplicated if any of its markers has multiplicity larger than one. Such markers are
duplicate markers. Further, two sequences S and T are balanced if G(S) = G(T ) =: G
and each marker g ∈ G has the same multiplicity in both genomes, i.e., mS(g) = mT (g).
The concepts of multiplicity, duplication, and balance naturally propagate to collections
of marker sequences and thus apply equally to genomes.

The interval [i, j] in sequence S gives rise to the substring S[i, j] = S[i]S[i+ 1] · · ·S[j],
with 1 ≤ i ≤ j ≤ |S|. An interval [i, j] of sequence S is called maximal if it cannot be
extended to its left or right without changing the genome content, i.e., either i = 1
or G(S[i − 1, j]) 6= G(S[i, j]) and either j = n or G(S[i, j + 1]) 6= G(S[i, j]). Given
two sequences S and T , a pair of intervals [i, j] and [k, l] of S are common intervals
if G(S[i, j]) = G(T [k, l]). A sequence T is a subsequence of S if T = S[i1] S[i2] · · ·S[ik]
such that 1 ≤ i1 < i2 < · · · < ik ≤ |S|.

Adjacency graph for genomes without duplicate markers

A genome without duplicate markers A can be represented by its set of adjacencies adj(A),
where each genomic marker g of its chromosomes is represented by a pair of its head and
tail extremity gh and gt, respectively, i.e., by pair (gt, gh) if marker g lies in reading
direction of the chromosome, otherwise by (gh, gt). Then adj(A) is given by the set of
incident extremities of consecutive markers, where the first and last adjacencies of linear
chromosomes correspond to the outermost extremities of the first and last markers, called
telomeric adjacencies.

Given two balanced genomes A and B without duplicate markers, the adjacency graph
AG(A,B) is a bipartite multigraph (U, V,E), with vertex sets U = adj(A) and V = adj(B)
and edge multiset E = {(u, v) with multiplicity |u ∩ v| : u ∈ U, v ∈ V and u ∩ v 6= ∅}. For
such A and B, there is one single decomposition of AG(A,B) in paths and cycles, which
can be found easily. Informally, short cycles and paths in AG(A,B) reflect conserved
structures between A and B, whereas long cycles and paths reflect the opposite. For
instance, it is a classic result of the field that the DCJ distance between A and B, that is,
the mininum number of DCJ operations necessary to transform A into B, can be computed
in linear time by counting the number of cycles and odd paths in AG(A,B) [15,134]. The
adjacency graph is described in detail in Chapter 3.

5.2 The local DCJ similarity

Similar to local sequence alignment, local genome rearrangement aims at identifying highly
conserved pairs of substrings of two given marker sequences. For the same reason that the
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edit distance cannot be used for computing local alignments, the DCJ distance cannot be
used to compute local rearrangements: Both would favor pairs of substrings that minimize
the number of edit operations independent of their length, thereby giving pairs of small
substrings—in particular the pair of empty strings—a dishonest advantage. Clearly, the
method of choice are similarity measures that, rather than solely penalizing dissimilarity,
quantify similarity. Conversely, global measures of DCJ similarity that only maximize
the (weighted) number of cycles and paths in the adjacency graph [89, 104, 106], are un-
suitable as well: In search of locally similar sequences, it is not sufficient to reward only
similarity (then, a best local solution would always correspond to a global solution), but
it is necessary to also penalize dissimilarity.

With the goal of studying highly diverged genomes, we designed a procedure able
to tolerate all kinds of differences caused by insertion, deletion, or duplication of one or
several genomic markers. To this end, we first discover referenced-based approximate
common intervals in the studied genomes. Each discovered set of intervals gives rise to a
set of pairs of substrings between the reference and the remaining genomes for which local
rearrangement scores are calculated.

Let S and T be two substrings associated with one of these pairs of approximate
common intervals. Our method relies in two steps that are illustrated by an example in
Figure 5.1. First, pairs of sequences S′, T ′ are identified such that (i) S′ is a subsequence
of S, and T ′ of T , (ii) S′ and T ′ are balanced, and (iii) for each marker g ∈ G(S′) holds
true that mS′(g) = min(mS(g),mT (g)). The last constraint ensures maximality of the
balanced subsequences.

=

=

syntenic sequences balanced sequences

=

=

non-duplicated balanced sequences

=

=

=

=

Figure 5.1: Example of local DCJ similarity. The figure illustrates the procedure for
computing local DCJ similarity scores from a pair of syntenic marker sequences.

Sequences S′ and T ′ are then subjected to a second procedure that finds one-to-one
assignments between all markers of the two sequences, thus further refining them to non-
duplicated balanced sequences S′′ and T ′′. This allows us to define formally the local DCJ
similarity problem:
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Problem local-DCJ-similarity(S, T, f): Given two substrings S and T
associated with a pair of approximate common intervals, and a function f :
2N → R that scores each cycle and path proportional to its length, identify
non-duplicated balanced sequences S′′ and T ′′ that maximize the following
formula:

sdcj(S
′′, T ′′) =

∑
C∈C

f(|C|) +
1

2

(∑
O∈O

f(|O|+ 1) +
∑
E∈E

f(|E|+ 2)

)
− d · p ,

where C, O and E are the sets of cycles, odd paths, and even paths in the
constructed adjacency graph of S′′ and T ′′, d := |S|+ |T | − (|S′′|+ |T ′′|) is the
number of deleted markers and p is the deletion penalty.

Notice that, as in earlier literature [23, 95], the lengths of paths are corrected in
sdcj(S

′′, T ′′) so that structures with the same sorting distance have the same “length”.

Because short cycles and paths are indicators of similarity, whereas long cycles and
paths suggest the opposite, we found a simple realization of f that has been working well
in our experiments:

f(l) =
2− l
L− 2

+ 1 . (5.1)

Our function f makes use of a constant L, a length threshold that demarcates short from
long cycles and paths.

5.3 An improved ancestral genome reconstruction workflow

In an attempt to combine the two complementary strategies presented in Section 1.3, that
is, model-based and synteny-based reconstruction methods, we developed a rearrange-
ment-aware synteny-based reconstruction method that extends an established pipeline for
ancestral genome reconstruction in plants [97,107] used in multiple studies [10,93,132]. In
addition to other important improvements, the local DCJ similarity make it possible for
our method to refine the genome content of syntenic blocks—conserved neighborhoods of
individual pairs of markers—prior to deriving contiguous ancestral sequences.

We present in this section ANGORA (ANcestral reconstruction by local GenOme
Rearrangement Analysis), a workflow for inferring ancestral genome sequences with unlike
higher degree of detail than obtained by currently available approaches. Later in this
chapter we further report on our ongoing progress in refining the resolution of the ancestral
genome sequence of eudicots based on the genome sequences of five modern plants. We
achieve a high degree of detail by improving several steps in the ancestral reconstruction
process: First, our method identifies genomic markers, enabling the reconstruction of
the ancestral genome from hundreds of thousands of markers rather than the tens of
thousands of genes that have been annotated in the five eudicot genomes as of today.
That way, our method does not need to rely on the quality of the gene annotation. But
more importantly, our method can lead to a more comprehensive reconstruction of the
ancestral genome content, as it is not restricted to those blocks of DNA attributed to
protein-coding genes, and reveal new conserved blocks of yet unknown function [121].
Second, it infers syntenic blocks across all extant genomes by tolerating inserted, deleted,
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and duplicated markers. Third, our method takes into account the internal structure of
syntenic blocks for the reconstruction of contiguous ancestral regions by means of the local
DCJ similarity measure proposed in this chapter.

In the following we describe in detail ANGORA. Our method is based on previous
work by Salse [97, 107], but, in short, it additionally includes a preceding step to identify
genomic markers. Subsequently, syntenic blocks are identified, families are refined with the
help of the local DCJ similarity, and finally syntenic blocks are used to derive contiguous
ancestral regions.

Identification of genomic markers

We obtain genomic markers by a heuristic for the genome segmentation problem (GSP) [25].
Informally, the objective of genome segmentation is, given a DNA sequence and pairwise
alignments of the DNA sequence onto itself, to decompose the DNA sequence into fami-
lies of non-overlapping similar segments, called atoms. Figure 5.2 shows an example of a
segmentation of two DNA sequences.

L

A1 B1

B2

C1

C2

D1 D2

D3

E1 F1 F2

F3

G1

G2

H1

I1 J1 J2

Figure 5.2: Example of a segmentation of two DNA sequences. The minimum
segment length L is indicated by the line in the upper left corner, waste regions not
covered by any atom are marked by thick red lines, input pairwise alignment boundaries
by colored arcs. Capital letters above atoms indicate their family membership. For ease of
visualization, the two sequences are not depicted as a single concatenated DNA sequence.

In order to define a consistent set of families, genome segmentation requires that no
two atoms overlap and no alignment boundary lies within any of the created atoms. In
addition, whenever a segment s defining an atom is aligned to another segment t (so they
are put in the same family), t must comprise another single atom (see Fig. 5.3)

A trivial segmentation would establish every single character of the input sequence
into an atom of its own, thus satisfying the stated criteria. To avoid such a meaningless
segmentation, a minimal length requirement is also imposed on the constructed atoms.
Any nucleotide that is not covered by an atom resides in a waste region. Note that
the genome segmentation problem for multiple DNA sequences is simply defined as the
segmentation problem of the concatenated DNA sequences. Given the observations above,
we can define the problem GSP formally.
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B2A2

A1 B1 a

Figure 5.3: Example of an inconsistent segmentation. Waste regions not covered
by any atom are marked by thick red lines and two input pairwise alignment boundaries
are shown by solid and dash-dotted arcs. Atoms are shown in solid black lines, capital
letters near atoms indicate their family membership, and colored shaded regions represent
the alignments that define family membership of atoms. This situation does not define
a proper segmentation, because the segment defining the atom a is aligned to another
segment comprising two atoms A2 and B2, thus there is now way to define a’s membership.

Problem GSP(S, α, L): Given a sequence S, a set of alignments α of S onto
itself and a length L, find a set of atoms A that minimizes the total number
of nucleotides located in waste regions and for which the following conditions
hold:

1. No two atoms overlap;

2. Each atom has length at least L;

3. There is no alignment boundary inside any atom;

4. Whenever a segment s defining an atom is aligned to another segment t
to define membership, t must comprise another single atom.

In 2013, Visnovská and colleagues have proven the intractability of GSP and devised
a heuristic called IMP for its solution [128].

Discovery of syntenic blocks

Syntenic blocks are blocks of two or more extant genome sequences that are homologous,
i.e., they originate from the same block of a common ancestral sequence. The identification
of syntenic blocks in highly diverged genomes, such as the five eudicots subject to our
study, is challenging. That is because on the one side, the notion of synteny is highly
flexible, simultaneously allowing an entire chromosome to be classified into a single syntenic
block, as well as individual segments thereof [59]. On the other side, multiple rounds of
mutations such as insertions, deletions, duplications, and rearrangements can scramble and
decompose syntenic blocks into barely recognizable units. Methods to identify syntenic
blocks under such conditions must be equally flexible: they must tolerate comprehensive
changes in the order and multiplicity of genomic markers, but at the same time pick up
the signal of synteny on all levels of granularity, ranging from chromosome level down to
synteny of individual pairs of genomic markers.
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One such method that is particularly fast (speed is another important concern of this
step in the ancestral reconstruction workflow) is Gecko3 [131], which identifies syntenic
blocks by discovering approximate common intervals in marker sequences. These are sets
of intervals with associated genome content G such that the symmetric difference between
each interval and G is bounded by δsum and, more specifically, the number of excessive
(i.e., inserted) markers is bounded by δadd, and the number of missing markers by δloss.
Gecko3 identifies the genome content of a set of intervals by a referenced-based approach.
In doing so, a designated genome (the “reference”) is taken as scaffold for the discovery
of approximate common intervals in the other genomes. Any interval in the reference
defines the genome content G of an interval set. Gecko3 can find approximate common
intervals with multiple occurrences within a single sequence and also provides a quorum
parameter q by which reference-based approximate common intervals can be discovered
that are conserved only in a subset of genomes of size at least q.

Family refinement using local DCJ similarity

In reconstructing ancestral genomes, we use non-duplicated balanced sequences S′′ and T ′′

identified by the local DCJ similarity optimization procedure to refine the genomic marker
families across the entire genomic dataset. Because each family can contribute with at
most one marker to the ancestral reconstruction, this enables substantial improvement in
determining the ancestral genome content, as detailed in the next section. To this end, we
implemented a procedure that takes unambiguous one-to-one assignments across overlap-
ping syntenic blocks to decompose their marker families into disjoint subsets. Further, if
non-overlapping sets of syntenic blocks share markers from the same family, this family is
also decomposed into disjoint subsets corresponding to the syntenic block affiliation of its
members. The refinement process is depicted in Figure 5.4 and described here in detail.

Two sets of syntenic blocks B = {b1, b2, . . .} and B′ = {b′1, b′2, . . .} overlap if any
block of B shares a genomic marker with a block of B′. Given a collection B of sets
of syntenic blocks, we define a graph G = (V,E) with vertex set V = B and edge set
E = {(B,B′) : {B,B′} ⊆ B, B and B′ overlap}. Each connected component of G induces
a (maximal) overlapping set of sets of syntenic blocks. For each such overlapping set O,
new (sub-) families are created according to the following two rules:

(i) Let F be a family of markers and FO ⊂ F be the subset of markers embedded in
any set of syntenic blocks of O. For each such family F for which FO 6= ∅, a new
family FO is created;

(ii) Let m1 ∈ FO be a marker of the reference sequence S1 and let S2, . . . , Sk be the
k − 1 genomic sequences other than the reference such that each Si, 2 ≤ i ≤ k, has
a marker assigned to m1 in at least one local DCJ similarity computation. If, for all
2 ≤ i ≤ k, m1 is assigned to the same marker mi of Si in every local DCJ similarity
computation between the reference and Si, then the set of markers {m1,m2, . . . ,mk}
induces a new family. This rule further refines new families created by rule (i).

Reconstruction of CARs

The last step of the workflow is conducted with ANGES and is the same as in the original
workflow of Salse [107]. ANGES takes as input syntenic blocks or identifies them by
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...

...

...

...

...

...

...

Refinement
rule

Figure 5.4: Example of family refinement for hypothetical species 1 (reference),
2 and 3. For each species, occurrences of exemplary syntenic blocks are shown, indicated
by gray boxes. Families a, b, c, d and e are refined based on one-to-one assignments
(indicated by dotted, dashed, and dotted-dashed lines) of local DCJ similarity calcula-
tions between the reference and the other two sequences. Subscript indices are used to
distinguish markers of the same family.

discovering maximal common intervals (or constrained variants thereof). The identified
intervals are then either weighted by user-provided data, or according to the occurrences
in the extant genomes and subsequently used to construct and output a PQ-tree. A PQ-
tree is a hierarchical data structure capable for the lossy representation of all common
intervals of two or more permutations. To this end, PQ-trees make use of two kinds of
nodes: P -nodes, which do not impose any order of their child nodes, and Q-nodes, which
indicate a linear order of their children.

5.4 Results

As a test scenario for our workflow, we have conducted the ancestral genome reconstruction
of eudicots, a major sub-clade of flowering plants, using whole genome sequences of five
modern plants. This is the same reconstruction made by Badouin et al. [10] using the
original workflow of Salse [107]. A brief overview of eudicots, the selected species and the
challanges for ancestral reconstruction of plant genomes can be found bellow.

In the following few subsections we describe the implementation and evaluate each
major step of the ancestral reconstruction of eudicots made by our workflow, comparing
our results with those reported by Badouin et al. [10].

Eudicots

Flowering plants, with eudicots being their largest sub-clade, are an important subject of
paleogenomic studies, not only because of their ecological significance and relevance for the
crop industry, but also because the reconstruction of ancestral plant genomes is considered
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the most challenging endeavor of the field [119,122]. The reconstruction of ancestral plant
genomes is hard for multiple reasons: above all, plant genomes are often repetitive, as a
result of one or more rounds of whole genome multiplication events that often occurred in
their evolutionary past. Each round of polyploidization is followed by a period of dramatic
genomic turnover in which the numbers of chromosomes and genes are reduced close to the
order of magnitude prior to polyploidization. In doing so, chromosomes sustain large-scale
rearrangements. Redundant genes and other functional units are randomly lost, leading
to a fractionated layout of the genome when compared to its pre-polyploidization state.
Furthermore, plant genomes are large, often exhibiting extensive intra- and inter-genic
regions which themselves host repetitive elements such as transposons and long terminal
repeats [107].

We study the eudicot phylogeny composed of grape, a representative of the rosids, and
four asterids—artichoke, coffee, lettuce, and sunflower. Polyploidization is a major source
of genomic innovation in plants and the studied eudicots are no exception to this rule [10,
107]. After the speciation of the eudicots and monocots around 140 to 150 millions years
ago, the eudicot ancestor underwent a whole genome triplication (WGT), further denoted
as γ, common to all known eudicots of today. Further polyploidizations occurred on
subbranches, such as the WGT in the ancestor of the Asterids II group, to which sunflower,
artichoke, and lettuce belong. The sunflower lineage underwent another whole genome
duplication (WGD) event. Figure 5.5 gives an overview of the eudicot phylogeny and the
described polyploidizations. The genome architecture of grape is closest to the post-γ
ancestor, with only one chromosome fission and three chromosome fusions separating the
two genomes. Therefore, in this chapter, the karyotypic architecture of the grape genome
serves as proxy for reconstructing the genome of the post-γ ancestor.

Grape (x3)

Lettuce (x9)

Artichoke (x9)

Sunflower (x18)

Coffee (x3)

Eudicots
ancestor

post-γ (x3)

Rosids

Asterids

Asterids II

Asterids I

118 Ma

100 Ma

38 Ma

4 Ma

Eudicots
ancestor

pre-γ
122–164 Max1 ancestral

region

WGT

WGT

WGD
35–50 Ma

29 Ma

Figure 5.5: Eudicot phylogeny including grape and four asterids [10]. Circles and
squares mark WGT and WGD events, respectively. Time is expressed in millions of years
(Ma).

Genome segmentation

To enable the processing of large genomic datasets such as the one at hand, we have re-
implemented the heuristic IMP [128] in C++ and adapted it for parallel computation. Our
software, named GEESE (GEnomE SEgmentation), is included in the ANGORA work-
flow, but can also be obtained separately. (For details, see Section 5.A.) Following the
approach by Visnovská, Vinař and Brejová [128], we used LASTZ [67] to compute local
sequence alignments between all pairs of genomic sequences from the five eudicots. In
doing so, we chose alignment parameters (see Section 5.C) that improved the clarity and
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detail of dot-plots of inter-species chromosome pairs, such as those shown in Figure 5.6.
We further compared our dot-plots with those generated by CoGe [88], a popular plat-
form for comparative genomics analyses, under default parameter settings. Based on the
DAGChainer [62] algorithm, CoGe provides functionality to identify genomic markers in
pairs of genomes. Despite CoGe’s method for identifying genomic markers being unrelated
to ours, the dot-plots are similar, suggesting that the constructed genome segmentation is
robust and unbiased.

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

0.
0e

+
00

1.
0e

+
07

2.
0e

+
07

3.
0e

+
07

(a)

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

0
.0

e
+

0
0

1
.0

e
+

0
7

2
.0

e
+

0
7

3
.0

e
+

0
7

(b)

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

0
.0

e
+

0
0

1
.0

e
+

0
7

2
.0

e
+

0
7

3
.0

e
+

0
7

(c)

Figure 5.6: Dot-plot for chromosomes 1 of grape and 11 of coffee. The plots
are given by (a) CoGe [88], (b) our computed LASTZ alignments, and (c) after genome
segmentation.

Based on 246 million pairwise local alignments reported by LASTZ, IMP derived 640
thousand atoms of minimum length 100bp which are associated with families occurring
in two or more genomes. In comparison, the total amount of annotated genes in the
five eudicots is around 140 thousand [10]. Table 5.1 shows for the same five eudicots the
number of genes that have been used in ancestral reconstruction by Badouin et al. [10]
and information on the annotated genes and genomic markers obtained from latest genome
databases. We subsequently removed those markers/genes from their genomic sequences
that were associated to families not shared by at least two genomes. That way we obtained
9,374 families from the set of annotated genes, with average size 6.5 and occurring in 4.1
genomes on average. For genomic markers, 123,218 families were derived, with average
size 5.7 and occurring in 2.9 genomes on average.

Table 5.1: Genes, markers and families in each of the five eudicots. For each
species, shared genes (markers) represents the amount of genes (markers) occurring in at
least one other genome. Average family occurrences shows, for families occurring in at
least two genomes, how many times each family occur on average in each genome.

Badouin et al. (2017) Annotated genes Genomic markers

total
genes

total
genes

shared
genes

families
avg.
fam.
occ.

total
markers

shared
markers

families
avg.
fam.
occ.

Grape 26,346 23,180 10,514 7,675 1.4 145,152 50,103 31,533 1.6
Coffee 25,574 21,971 13,267 9,374 1.4 97,735 34,125 23,598 1.4
Artichoke 27,121 23,394 11,124 7,034 1.6 396,323 153,448 92,401 1.7
Lettuce 12,841 37,829 11,249 7,032 1.6 860,023 178,217 83,806 2.1
Sunflower 52,243 58,022 14,604 7,300 2.0 1,364,948 223,500 93,526 2.4
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Syntenic blocks

We extended Gecko3 by our method for computing local DCJ similarity scores, thereby
quantifying structural similarities within approximate common intervals, which the orig-
inal Gecko3 does not take into account. We have used in Gecko3 a default and a relaxed
table (see Table 5.6 in the Section 5.C) to set indel thresholds depending on the size of the
shared genome content of compared intervals. Using grape as reference genome, we ran
Gecko3 with varying quorum, and default and relaxed indel thresholds. A list of results for
each of those parameter settings is shown in Table 5.2. For the calculation of the local DCJ
similarity scores of reported syntenic blocks, we set the deletion cost to p = 0.25 and the
length threshold of function f (see Eq. (5.2)) to L = 8. Gecko3 reported 48,877 syntenic
blocks for our final choice of parameter settings (see Table 5.2, run 2). Each such block
occurred on average 1.0, 1.1, 1.6, 1.7, and 2.1 times in grape, coffee, artichoke, lettuce and
sunflower, respectively. These values are compatible with the ancestral polyploidization
events of their phylogeny.

Contiguous ancestral regions

Our reconstructed genome of the eudicot ancestor is composed of 32,788 markers dis-
tributed across 3,153 CARs, with the largest CARs comprising between 50 and 100 mark-
ers. This ancestral genome is in remarkably high agreement with that constructed by
Badouin and colleagues [10], despite the fact that quite different sets of genomic markers
have been used: By comparing the proportions of genomic markers attributed to each
ancestral chromosome with the proportions derived from Badouin et al.’s gene-based re-
construction, the two ancestral genomes differ only 3.2% on average in absolute terms,
with standard deviation of 3.7%. Figure 5.7 shows the comparison of ancestral genome
content w.r.t. coffee and grape chromosomes of this analysis. The genome architecture of
grape is closest to the post-γ ancestor, therefore the layout of the grape genome serves as
proxy for reconstructing the genome of the post-γ ancestor in this chapter.

1 2 3 4 5 6 7 8 9 10 11

20

40

60

80

100

19

18

17

16

15

14

14

13

13

12

11

10

10

9
8

7

76

5

4

4

4

3

32

1

1

coffee chromosome number

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

19

18

17

16

15

14

14

13

13

12
12

11

10

10

10

9
8

7

7
6

5

4

4

4

3
3

2

1

1

Figure 5.7: Shared content between coffee and grape genomes in the recon-
structed ancestor. For each coffee chromosome (x-axis), each pair of bars shows the
proportion shared with grape chromosomes (indicated by the color and chromosome num-
ber inside each bar segment) by the ancestral genome of Badouin et al. [10] (left) and ours
(right), respectively. For better visualization, proportions of ancestral genome contents
below 1% are not shown.
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The method used for calculating the proportions of shared content between the grape
genome and one of the other genomes in the reconstructed ancestor is as follows: Given
a chromosome C of the other species, let S be the set of syntenic blocks occurring in C
that are part of some CAR. We compute the percentage of blocks in S that also occur in
each of the chromosomes in grape genome. As an example, for the chromosome 1 of coffee
genome, the total number of syntenic blocks that are part of some CAR is 385 and, from
this total, 233 blocks (60.52%) occur in chromosome 6 and 127 (32.99%) in chromosome
7 of grape genome. Based on these calculated proportions, the difference of the layouts
given by our ancestral reconstruction and the ancestral reconstruction by Badouin et al. is
used as a measure of how much the two reconstructions differ. Our measure is simply the
average absolute difference over all chromosomes between our calculated proportions and
those reported by Badouin et al. More specifically, we calculate the average of |P −PB| for
each proportion PB reported by them and the corresponding proportion P by our method.

We investigated whether our family refinement approach using local genome rearrange-
ment improved the ancestral reconstruction. We followed three different paths: First, we
quantified the impact that the family refinement procedure has on the ancestral genome
content. Second, to untangle the effects of this refinement procedure from marker-based
vs. gene-based reconstruction, we re-ran our reconstruction pipeline, this time using the
latest gene annotations of the five eudicot genomes. To this end, we constructed gene
families as described by Salse [107] by binning genes with cumulative identify percentage
(CIP) of 60% and cumulative alignment length percentage (CALP) of 70% [109]. Third,
we quantified the fixation in ancestral marker order by measuring the average number of
children of Q nodes in the PQ-tree constructed by ANGES.

The results obtained with these modified workflows make us believe that the fam-
ily refinement indeed has a non-negligible positive effect: First, when skipping the local
rearrangement-based family refinement procedure, the number of markers in the recon-
structed ancestor amounted to 27,798. In other words, the family refinement led to an
increase of 18% in ancestral genome content. Second, in the gene-based reconstruction,
we observed similar results: Whereas local rearrangement-based family refinement led to
6,961 ancestral genes, without refinement their number decreased to 5,945. Third, the
average number of children of Q nodes increased through rearrangement-based family re-
finement from 4.0 to 4.6 in marker-based reconstruction. Again, we observed the same
trend in the gene-based reconstruction (4.2 without and 5.0 with refinement).

In addition, we studied the parameter space of our pipeline by conducting multiple runs
listed in Table 5.2. By far the biggest impact w.r.t. the size of the ancestral genome content
had the parameter settings of Gecko3, i.e., the choice of δ table, and the quorum parameter
q (cf. runs 1, 2, and 7). ANGES weights syntenic blocks to guide the choice of discarding
some of them in cases of conflict. We provided our local DCJ similarity scores as weights,
but also ran ANGES on its internally computed weights, observing only minor differences,
although surprisingly in favor of ANGES’ weights (cf. runs 5 and 6). Furthermore, ANGES
provides two different algorithms for reconstructing the PQ-tree: a heuristic (H) and a
branch-and-bound (B) algorithm. Although the latter can recruit more markers into the
ancestral genome content (cf. runs 3 and 4), it has a much higher running time, that
only allowed us to compute ancestral reconstructions when we dramatically reduced the
number of provided syntenic blocks. We limited then the number of overlapping syntenic
blocks to 30 and chose (heuristically) promising subsets whenever this limit was exceeded.
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Table 5.2: Overview of ancestral reconstructions under varying parameters of
our pipeline. Our final choice of parameters is highlighted in gray.

run
Gecko3

family
refinement

ANGES ancestor

δ table q
syntenic
blocks

DCJ sim.
weights

overlap
limit.

alg. markers
PQ-tree
fixation

1 default 3 35,708 y y - H 29,746 3.78
2 relaxed 3 48,877 y y - H 32,350 4.62
3 relaxed 3 48,877 y y 22,831 H 29,871 3.90
4 relaxed 3 48,877 y y 22,831 B 30,212 3.81
5 relaxed 3 48,877 n n - H 27,914 4.01
6 relaxed 3 48,877 n y - H 27,798 4.03
7 relaxed 4 37,298 y y - H 28,607 4.09

The number of syntenic blocks after this filtering step dropped to 22,831, reducing the
number of markers and the fixation of the ancestral PQ-tree.

5.5 Concluding remarks

Recently, Badouin and colleagues reconstructed the eudicot ancestor from the gene an-
notations of grape, coffee, artichoke, lettuce and sunflower and arrived at an ancestral
genome comprising 6,525 genes [10]. In this chapter, we followed the same workflow for
ancestral reconstruction, but made multiple improvements: First, instead of using anno-
tated genes, we identify genomic markers and use them as building blocks of the ancestral
sequence, allowing us to reconstruct both intra- and intergenic blocks of DNA. Second,
instead of using CloseUp [63], a statistical method for discovering syntenic blocks in pairs
of genomic sequences, we use Gecko3 [131], which computes exact solutions under a prin-
cipled definition of synteny [59, 77] in multiple sequences. Third, based on the local DCJ
similarity introduced in this chapter, we score syntenic blocks and refine the family assign-
ment of their contained genomic markers. Our improvements lead to a reconstruction of
the ancestral eudicot genome that is composed of 32,788 markers distributed across 3,153
CARs. Remarkably, the layout of our ancestral genome differs on average only in 3.2%
from that Badouin et al. [10]. Our method is also applicable to gene-based reconstruction,
where it increased the genome content of the eudicot ancestor to 6,961 reconstructed genes
while differing on average only in 4.6% from Badouin et al.’s reconstruction.

There is, however, room for immediate improvement on how is calculated this average
difference (of proportions of shared content between coffee and other species chromo-
somes). Currently, we calculate the average of |P − PB| for each proportion PB reported
by Badouin et al. [10] and the corresponding proportion P given by our method. Because
we calculate these differences in absolute terms, whenever there are many residual small
proportions they tend to dominate the average making it smaller, neglecting large shared
regions between chromosomes. An alternative would be calculating the average of differ-
ences in relative terms with respect to Badouin et al. proportions, that is, taking their
values as reference. For instance, the average of |P −PB|/PB × 100. In this case however,
differences in small proportions end up overly increasing the average (for instance, 2% dif-
fer in 100% from 1%). A better alternative could be using some kind of weighted average,
nevertheless no best approach is clear so far.
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Appendix

5.A Workflow, tools and data availability

The workflow implementation, named ANGORA, is publicly available at https://gitlab.
ub.uni-bielefeld.de/gi/angora. All steps necessary to download and configure the
workflow, its dependencies, and how it can be run are described in the provided README.md.
The workflow package includes two small sample datasets, one having 3 unichromosomal
genomes of simulated species, and one having 3 multichromosomal genomes of real species
(Ostreococcus green algae).

Experimental data obtained in this ancestral genome reconstruction study is available
at http://doi.org/10.4119/unibi/2936848.

Gecko3-DCJ is available at https://gitlab.ub.uni-bielefeld.de/gi/gecko-dcj.

GEESE is available at https://gitlab.ub.uni-bielefeld.de/gi/geese.

5.B Genome databases

This section describes datasets used in this chapter, including where they can be obtained
and how they were prepared to be used with our workflow.

Data repositories

Following are the genome assemblies used in this study and where they can be obtained:

Grape Vitis vinifera (wine grape), assembly GCA 000003745.2 12X, NCBI,
https://www.ncbi.nlm.nih.gov/genome/401?genome_assembly_id=214125

Coffee Coffea canephora, assembly v1.0, Coffee Genome Hub,
http://coffee-genome.org/coffeacanephora

Artichoke Cynara cardunculus var. scolymus, assembly GCA 001531365.1 CcrdV1,
NCBI,
https://www.ncbi.nlm.nih.gov/genome/11286?genome_assembly_id=372115

Lettuce Lactuca sativa var Salinas, assembly L. sativa cv Salinas V8, Lettuce Genome
Resource,
http://lgr.genomecenter.ucdavis.edu/Private/Downloads/BulkDownload.php
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Sunflower Helianthus annuus (common sunflower), assembly GCA 002127325.1
HanXRQr1.0, NCBI,
https://www.ncbi.nlm.nih.gov/genome/351?genome_assembly_id=317475

Data preparation

Our workflow takes as input genome data in the form of GenBank files. However, the
genome data obtained from different databases (e.g. JGI, NCBI, Ensembl) are in different
formats. Conversion of these formats was necessary to standardize the dataset. Further,
scaffolds not associated to any chromosome but which were also present in the data files
have been filtered out. In detail, we have:

Sunflower: Removed scaffolds and added locus tag to all CDS entries.

Grape: Removed scaffolds and added locus tag to all CDS entries.

Artichoke: Removed scaffolds and added locus tag to all CDS entries.

Coffee: A GenBank file was built from Fasta and GFF files by using the auxiliary script
fa+gff2gbk.py included in the workflow under the data/scripts folder. 12,996
unmapped scaffolds (totaling 204 Mb) were removed.

Lettuce: A GenBank file was built from Fasta and GFF files by using the auxiliary
script fa+gff2gbk.py included in the workflow under the data/scripts folder.
Chromosome names had to be shortened, since they were too long and were causing
errors in BioPython’s GenBank writer.

5.C Parameters for tools used in this study

Here we describe the parameters for the ANGORA’s family filtering step and for the
integrated tools that are used in this ancestral genome reconstruction study. We also
provide the locations where third party tools can be obtained.

LASTZ: local sequence alignment

The tool used for aligning DNA sequences is LASTZ, which can be obtained at https://
github.com/lastz/lastz. However, LASTZ has a bug that, depending on the parameters
choice, outputs inconsistent data. By the time this study was conducted, there was no
public release correcting the bug. Therefore, our workflow contains a custom LASTZ hotfix
version that can be found at https://gitlab.ub.uni-bielefeld.de/gi/lastz-hotfix.
The complete list of LASTZ parameters can be found at https://lastz.github.io/

lastz/. Parameters and their settings used in our eudicot study are:

--notransition

--step=10

--gapped

--hspthresh=6000

--nochain

--gfextend

--ambiguous=iupac
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--masking=5

--filter=identity:70

Values under 6000 for hspthresh resulted in excessive noise for the eudicots dataset. Ta-
ble 5.3 shows how to configure LASTZ parameters in the config.yaml file of our workflow.

Table 5.3: Mapping of parameters for sequence alignment.

LASTZ parameter → Workflow configuration (config.yaml) entry
any parameter --parameter lastz params: --parameter ...

any parameter --parameter=<value> lastz params: --parameter=<value> ...

GEESE: genome segmentation

For genome segmentation we have used GEESE, an efficient parallel implementation of
the IMP algorithm [128] written in C++, which can be found at https://gitlab.ub.

uni-bielefeld.de/gi/geese. The parameters used are:

• Minimum atom length (--minLength): 100;

• Minimum percent identity (--minIdent): 30;

• Minimum alignment block size (--minAlnLength): 13;

• Maximum gap length inside of an alignment (--maxGap): 100.

Table 5.4 shows how to configure GEESE parameters in the config.yaml file of our
workflow.

Table 5.4: Mapping of parameters for segmentation.

GEESE parameter → Workflow configuration (config.yaml) entry
--minLength <value> marker min length: <value>

--minIdent <value> sgmtn alignment ident: <value>

--minAlnLength <value> sgmtn alignment minlen: <value>

--maxGap <value> sgmtn alignment maxgap: <value>

Filtering families

After the genome segmentation, the resulting families pass through a filtering step made
by the script that post-processes the genome segmentation output (atoms2cog.py). In
this filtering step, families that are too large or occur only once can be removed. We have
filtered out families according to the following rules:

• Families larger than 98% of all the families (--percent 98);

• Families that have a single representative (--ignore0).

Table 5.5 shows how to configure family filtering parameters in the config.yaml file
of our workflow.
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Table 5.5: Mapping of parameters for family filtering.

atoms2cog.py parameter → Workflow configuration (config.yaml) entry
any parameter --parameter cog params: --parameter ...

any parameter --parameter <value> cog params: --parameter <value> ...

Gecko3-DCJ: discovering syntenic blocks

Syntenic blocks in our workflow are found by Gecko3-DCJ, which finds (referenced-based)
approximate common intervals and quantifies their structural similarity by means of the
local DCJ similarity score. A collection of intervals associated with genome content G
is approximate common if the symmetric difference between the genome content of each
interval and G is bounded by δsum and, more specifically, the number of excessive (i.e.,
inserted) markers is bounded by δadd, and the number of missing markers by δloss. The
two δ tables (default and relaxed) used in the eudicots study are shown in Table 5.6 (-dT
<table> parameter). The quorum parameter q was set to 3 using the -q 3 option. All
Gecko3-DCJ options used in command line can also be set using its graphical interface.

Table 5.6: δ tables used by Gecko3.

Default Relaxed
Size δadd δloss δsum Size δadd δloss δsum

2 0 0 0 2 0 0 0
3 0 0 0 3 1 0 1
4 1 0 1 4 1 1 1
5 2 1 2 5 2 1 2
6 3 2 3 6 3 2 3
7 4 2 4 7 4 2 4
8 5 3 5 8 6 3 7
9 6 3 6 9 8 4 8

The local DCJ similarity formula as defined in the main text requires a function f :
2N→ R that scores each cycle and path proportional to its length. In this study we have
used the function

f(l) =
2− l
L− 2

+ 1 , (5.2)

where l is the length of the cycle or path and L is a length threshold that demarcates
short from long cycles and paths (called borderline cycle length in Gecko3-DCJ). In the
calculation of the local DCJ similarity, enabled in Gecko3-DCJ by the --dcj option, the
value L = 8 was used (--dcjBorderline 8). See Figure 5.8 for an example of the function
f for L = 8. We have also allowed the use of heuristics to compute the local DCJ similarity
when gene families are too large (--dcjUseHeuristics). As for the deletion cost d, we
have used the value 0.25 (--dcjPenality 0.25).

Table 5.7 shows how to configure Gecko3-DCJ parameters in the config.yaml file of
our workflow.

ANGES: Ancestral genome reconstruction

In this last step of the pipeline, ANGESpy3 (a port of ANGES to Python 3) was used
with default parameters. In the main experiments made for this work we provided to
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Figure 5.8: Plot of function f as defined in Equation 5.2 for L = 8. The horizontal
axis represents the cycle or path length l and the vertical axis represents the score f(l).

Table 5.7: Mapping of parameters for discovery of syntenic blocks.

Gecko3-DCJ parameter → Workflow configuration (config.yaml) entry
any parameter --parameter gecko params: --parameter ...

any parameter --parameter <value> gecko params: --parameter <value> ...

ANGESpy3 syntenic block scores calculated by the average local DCJ similarity between
the block occurrence in the reference genome (grape) and all block occurrences in other
species. Besides, the heuristic algorithm was used to reconstruct the PQ-tree. ANGESpy3
can be downloaded from https://gitlab.ub.uni-bielefeld.de/gi/angespy3.

Table 5.8 shows how to configure ANGESpy3 behavior in the config.yaml file of our
workflow.

Table 5.8: Mapping of parameters for ancestral reconstruction.

ANGESpy3 behavior → Workflow configuration (config.yaml) entry
Use local DCJ similarity scores for blocks anges use sim weight: True

Compute scores for blocks (do not use the
local DCJ simimarity score) anges use sim weight: False

Use heuristics + branch-and-bound anges run bab: True

Use heuristics only anges run bab: False
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Chapter 6

Conclusion

After presenting some background on the subject of this work and preliminary defini-
tions, in Chapter 3 we have studied the family-based DCJ distance for genomes with
duplicate genes. This problem is known to be NP-hard [115], despite having no formal
proof. We have proposed an O(k)-approximation algorithm for the restrict case of bal-
anced unichromosomal genomes [102,103]. This limitation is due to an intermediate step
that approximates the minimum common string partition problem [60,83], which guaran-
tees the approximation ratio of our algorithm. The approximation algorithm has linear
running time in the size of the genomes. A natural extension to this algorithm would
be approximating the problem for unbalanced genomes, multichromosomal genomes, or
both. Another use for the approximation could be providing an initial lower bound to the
ILP solver. In addition, the hardness of this restricted case (balanced unichromosomal
genomes) yet has to be investigated.

Next, in Chapter 4, we have presented formally the (NP-hard) problem of computing
the family-free DCJ similarity, showing its APX-hardness and a lower bound for approx-
imation ratios (unless P = NP) [104, 106]. Following, we have proposed an exact ILP
algorithm and four combinatorial heuristics to solve it, with computational experiments
comparing the results obtained by the heuristics and by the ILP solver [104, 106]. While
the ILP is fast and accurate for smaller instances, it cannot solve larger instances due to
the number of restrictions, which is cubic in the size of the input genomes. On the other
hand, the heuristics obtained good results for a number of instances, some of them even
better than the results returned by the ILP solver after reaching the time limit. Moreover,
the ILP could benefit greatly from heuristics by using their outputs as initial lower bounds.
One drawback of the similarity function as defined in this work is that distinct pairs of
genomes might give family-free DCJ similarity values that cannot be compared easily,
because the similarity value varies between 0 and |M |, where M is the matching giving
rise to the similarity value. Therefore some kind of normalization would be desirable. A
simple approach could be to divide the similarity value obtained by the size of the smaller
genome, because this is a trivial upper bound for |M |. Moreover, it can be applied as
a simple postprocessing step, keeping all theoretical results of this work valid. A better
normalization, however, might be to divide by |M | itself. An analytical treatment here
seems more difficult, though.
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Lastly, in Chapter 5 we have proposed the local DCJ similarity, a local genome rear-
rangement based measure [105]. Then, we have shown how to use the local DCJ similarity
to improve a popular ancestral genome reconstruction workflow, among other modifica-
tions. Results for the eudicot ancestor reconstruction from grape, coffee, artichoke, lettuce
and sunflower show that our reconstructed genome is highly detailed, yet its layout agrees
well with that reported in Badouin et al. [10]. Using our local genome rearrangement
measure in both marker-based and gene-based reconstructions of the eudicot ancestor ex-
hibited increased genome content, evidencing the power of this novel concept. Further
investigation of theoretical aspects of the local DCJ similarity (e.g. hardness, exact al-
gorithms, approximations) and other useful applications for this measure are subjects of
future work related to the content of that chapter.
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IMPA, Rio de Janeiro-RJ, 2001.
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