FÁBIO KANOMATA

ESTUDO QUANTITATIVO NA EXPRESSÃO DE FAS LIGANTE PÓS INDUÇÃO DE ESTRESSE OXIDATIVO EM MUCOSA GÁSTRICA COM ADMINISTRAÇÃO DE AZOXIMETANO, EM RATOS.

CAMPO GRANDE

2011

FÁBIO KANOMATA

ESTUDO QUANTITATIVO NA EXPRESSÃO DE FAS LIGANTE PÓS INDUÇÃO DE ESTRESSE OXIDATIVO EM MUCOSA GÁSTRICA COM ADMINISTRAÇÃO DE AZOXIMETANO, EM RATOS.

Dissertação apresentada à Universidade Federal de Mato Grosso do Sul, Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, objetivando obtenção de título de Mestre.

Área de Concentração em Tecnologia e Saúde, Carcinogênese Experimental e estudos do câncer na Região Centro-Oeste.

Orientador: Prof. Doutor Guido Marks

Co-orientador: Prof. Doutor Ricardo Dutra Aydos.

CAMPO GRANDE

2011

FOLHA DE APROVAÇÃO

FÁBIO KANOMATA

ESTUDO QUANTITATIVO NA EXPRESSÃO DE FAS LIGANTE PÓS INDUÇÃO DE ESTRESSE OXIDATIVO EM MUCOSA GÁSTRICA COM ADMINISTRAÇÃO DE AZOXIMETANO, EM RATOS.

Dissertação apresentada à Universidade Federal de Mato Grosso do Sul, Programa de Pós-graduação em Saúde e Desenvolvimento Região Centro-Oeste, objetivando na obtenção de título de Mestre. Resultado Campo Grande (MS),_____de _____de_____de_____de_____ Banca Examinadora Prof. Doutor Guido Marks Instituição: UFMS Prof. Doutor Valdir Shigeiro Siroma Instituição: UFMS

Prof. Doutor Fabrício Colacino Silva

Instituição: Hospital do Câncer Alfredo Abrão

A Letícia, esposa, companheira e apoio em todos os momentos.

A Sussumu e Noriko, meus pais, pelo presente da vida.

AGRADECIMENTOS

À Universidade Federal de Mato Grosso do Sul, instituição representada pela Reitora Prof^a. Doutora Célia Maria Silva Correa Oliveira.

À Fundação Centro de Estudos da Santa Casa de Campo Grande "Dr. William Maksoud", representados pelo Sr. Marcos Szucala e Sr. Ademir Morbi, pelo apoio aos alunos pertencentes ao Corpo Clínico da Santa Casa.

Ao orientador Prof. Doutor Guido Marks, idealizador dos estudos experimentais com o Azoximetano na UFMS e responsável direto por sua viabilização e desdobramento em vários outros estudos, estimulando o aprendizado em todos os seus níveis, especialmente na orientação deste trabalho científico.

À coordenação do Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, representado pelo Prof. Doutor Ricardo Dutra Aydos, pela oportuna oferta de aprimoramento.

À Prof. Doutora Luciana Nakao Odashiro Miiji, ao Prof. Mestre Luis Carlos Takita e ao Técnico em citopatologia Sr. Rodrigo Avelar pelo apoio na realização do estudo imuno-histoquímico.

Aos Professores Doutora Elenir Rose J. Cury Pontes, Doutor Paulo Haidamus Roberto Bastos e Doutor Paulo Zárate Pereira, pela dedicação e tempo extra no ensino de suas disciplinas e esclarecimento de dúvidas

RESUMO

Kanomata F. Estudo quantitativo na expressão de FAS ligante pós indução de estresse oxidativo em mucosa gástrica com administração de azoximetano, em ratos. Campo Grande, MS; 2011. [Dissertação – Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, da Universidade Federal de Mato Grosso do Sul].

Objetivo: Estudar quantitativamente a expressão da proteína ativadora de apoptose FAS ligante (FAS-L) na mucosa gástrica de ratos submetidos à exposição ao Azoximetano (AOM). Métodos: Ratos Wistar (n=56) divididos em 2 grupos: G1, controle (n=28), e G2, AOM (n=28), recebendo injeções subcutâneas de solução salina (1 mL/Kg) ou AOM (5 mg/Kg), respectivamente, na 3ª e 4ª semanas do experimento. Eutanásia semanal e coleta de material 3 horas após a administração de AOM, subdividindo cada grupo em 4 subgrupos:E1 (n=7), E2 (n=7), E3 (n=7) e E4 (n= 7). Quantificação da expressão de FAS-L pela imuno-histoquímica, com uso de processamento de imagem assistida por computador na quantificação da expressão do biomarcador FAS ligante com o programa Adobe Photoshop®. Análise estatística da mediana de expressão de FAS ligante com método de Mann Wittman, evidenciando aumento significante na porcentagem da área de expressão FAS-L no grupo G2 (G1= 20,56 x G2= 27,66 e p<0.05) e diminuição na mediana da densidade óptica no grupo G2 consegüente a maior intensidade de cor do cromógeno FAS-L (G1= 151,69 x 140,31 e p<0.01). Conclui-se que o AOM, indutor de estresse oxidativo, aumenta significativamente a expressão de FAS-L em mucosa gástrica após administração subcutânea, em ratos.

Palavras-chave: FAS ligante, azoximetano, estômago, carcinogênese, estresse oxidativo.

ABSTRACT

Kanomata F. Quantitative study of FAS ligand expression on gastric mucosa of rats submited to oxidative stress by Azoxymethane. Campo Grande, MS; 2011. [Dissertation – Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, da Universidade Federal de Mato Grosso do Sul].

This experimental study quantified FAS ligand (FAS-L) expression on gastric mucosa of rats submitted to Azoxymethane (AOM). Methods: Wistar rats (n=56) distributed in 2 groups: G1 (n=28) and G2 (n=28), submitted to placebo (saline solution, 1 mL/Kg) or AOM (5 mg/Kg), respectively, in 3nd and 4th weeks. Euthanasia and gastrectomy 3 hours after injections, weekly, obteining four subgroups from each group: E1 (n=7), E2 (n7), E3 (n=7), E4 (n=7). Imunohistochemistry, digital capture and computer assisted quantitative processing with Adobe Photoshop[™]. Statistical analysis by Mann Wittman method, with significative increasing of FAS ligand expression percentage area in G2 (G1= 20,56 x G2= 27,66 and p<0.05) and decreasing gray scale optical density meaning increase of positive color (G1= 151,69 x 140,31 e p<0.01), however not significative difference in subgroups E2 e E4 positive area percentage (G1E2= 26,02 x G2E2= 27,40 and p=0,28; G1E4= 26,77 x G2E4= 26,77 and p= 0,33) and gray scale (G1E2= 142,03 x G2E2= 141,45 and p= 0,33; G1E4= 149,65 x G2E4= 141,02 and p=0,09). Conclusion: oxidative stress by AOM subcutaneous injection increases FAS-L expression in gastric mucosa, in rats.

Key-Words: FAS ligand, azoxymethano, carcinogenesis, stomach, oxidative stress.

LISTA DE FIGURAS

Figura 1. Fórmula estrutural do Azoximetano.	17
Figura 2. Distribuição da amostra	23
Figura 3. Delineamento de administração de	
drogas e eutanásia no experimento	24
Figura 4: A) peça cirúrgica a fresco; B) peça	25
cirúrgica após abertura e lavagem e; C) 1 -	
Dermatótomo circular de 5 mm utilizado para	
retirada do fragmento; 3 – Peça cirúrgica fixada	
em formol a 10%.	
Figura 5. Fotomicrografia de lâmina corada por	26
imunoistoquimica.	
Figura 6. Software Adobe Photoshop™ com	27
imagem original da foto capturada no	
microscópio.	
Figura 7. Software Adobe Photoshop™ com	27
imagem editada após seleção e deleção de	
artefatos, visibilizando somente área de estudo	
Figura 8. Seleção da área total de análise e	28
demarcação. Em circulo vermelho e sublinhado,	
o parâmetro "Pixels", relativo a aferição da área	
selecionada.	
Figura 9. Seleção de área na coloração marrom	28
(FAS ligante positiva).	
Figura 10. Utilização do recurso "Semelhante"	29
da ferramenta de seleção "Varinha Mágica" para	
expandir seleção a toda área marrom.	
Figura 11. Ampliação da área de seleção para	29
toda a área marrom.	
Figura 12. Área em coloração marrom com	30
deleção da área sem expressão de FAS ligante.	

Figura 13. Área sem expressão de FAS ligante ------30 na coloração azul após deleção da área em cor marrom.

Figura 14. Utilização do recurso "Imagem", ------31 "Modo", "Tons de Cinza", realizando conversão para tons de cinza.

Figura 15. Seleção da área FAS ligante ------31 positiva, aferindo a densidade óptica média e mediana na escala de escurecimento (0/preto a 250/branco).

16. Imagens representativas Figura do processamento das imagens para aferição da ------32 área e densidade, em grupos e subgrupos.

Figura 17. Quadro exemplificando imagens ------32 editadas e histograma aferindo as variáveis: Área Total, Área FAS ligante e Densidade.

LISTA DE TABELAS

Tabela 1: Resultados da leitura das lâminas por	34
grupos e subgrupos	
Tabela 2: Teste de Mann-Whitney comparando	34
porcentagem de Área FAS ligante positiva.	
Tabela 3.Densidade óptica da Área FASligante.	34
Tabela 4. Medianas da Área FAS ligante e	35
Densidade distribuídos por grupos e sub-	
grupos.	

LISTA DE ABREVIATURAS E SIGLAS

AOM	Azoximetano
DCC	Deleted in Colorectal Cancer
E1	Eutanásia 1 em semana 3
E2	Eutanásia 2 em semana 4
E3	Eutanásia 3 em semana 5
E4	Eutanásia 4 em semana 6
EPM	Escola Paulista de Medicina
FAS	Proteína Fas
FAS-L	Ligante da proteína Fas
FAS ligante	Ligante da proteína Fas
G1	Grupo controle
G2	Grupo experimento
SF 0,9%	Solução salina a 0,9%
TGF	Tumor Growth Factor
TNF	Tumor Necrosis Factor
UFMS	Universidade Federal de Mato Grosso do Sul

LISTA DE SÍMBOLOS

- mg miligrama
- mL mililitro
- mg/mL miligrama por mililitro
- mg/Kg miligrama por quilo
- µm micrômetro
- BMP Bitmap

SUMÁRIO

1. INTRODUÇÃO	14
2. REVISAO DE LITERATURA	16
3. OBJETIVOS	21
3.1 Geral	21
3.2 Específico	21
4. MÉTODOS	22
4.1 Aprovação	22
4.2 Amostra	22
4.3 Distribuição dos Grupos	22
4.4 Drogas usadas	23
4.4.1 Azoximetano	23
4.4.2 Solução Salina	23
4.5 Coleta de material	24
4.6 Preparo de blocos e lâminas	25
4.7 Imuno-histoquímica	25
4.8 Captura de imagens	25
4.9 Quantificação da imuno-histoquímica	26
4.10 Armazenamento dos resultados	33
4.11 Estudo estatístico	33
5. RESULTADOS	34

6. DISCUSSÃO	36
7. CONCLUSÃO	38
8. REFERÊNCIAS	39
9. APÊNDICES	43
10. ANEXOS	61

1. INTRODUÇÃO

A apoptose é o mecanismo responsável pela remoção fisiológica das células intrinsecamente programada. É caracterizada por alterações morfológicas distintas no núcleo e no citoplasma, clivagem da cromatina em locais regularmente espaçados e clivagem endonucleolítica do DNA genômico em sítios internucleossômicos. Este modo de morte celular serve como um equilíbrio para a mitose no controle do tamanho dos tecidos animais e mediação nos processos associados com o crescimento tumoral (BIREME, 2011).

Microscopia eletrônica e, mais recentemente, estudos moleculares vêm elucidando mecanismos de ativação, regulação e contra-regulação da apoptose, identificando proteínas de superfície celular que funcionam como receptores para agentes capazes de induzir morte celular (BREDESEN et al, 2004).

A morte celular programada é via comum a múltiplas patologias. O estresse oxidativo causado por radicais livres vem sendo implicado na gênese de várias doenças, seja por alterações na homeostase do meio externo, como por erros intrínsecos do metabolismo celular, orgânico e sistêmico (BREDESEN et al, 2004).

O mecanismo regulador da apoptose é complexo, com múltiplas vias de ativação. Tais vias não são estáticas ou únicas, principalmente quando elementos como dose dependência, farmacocinética e farmacodinâmica encontram múltiplas variáveis em diferentes tecidos (BREDESEN et al, 2004).

O resultado final do estresse oxidativo não se manifesta uniformemente em todos os tecidos, mesmo quando o agente é administrado sistemicamente, devido a peculiaridades celulares, bem como fenômenos sistêmicos e farmacológicos (GOLD et al, 2011).

Os efeitos morfológicos do estresse oxidativo tecidual vão desde falência funcional até carcinogênese. Existindo variações de resposta decorrentes de peculiaridades da relação entre agente oxidativo e tecido alvo, mesmo com administração sistêmica em estudos controlados (KOBAEK-LARSEN et al, 2004; STRASSER et al, 2009).

Formatado conforme Zárate P, Andrade SMO, Aydos RD. Diretrizes para elaboração de Teses e Dissertações. Programa de Pós Graduação em Saúde e Desenvolvimento na Região Centro-Oeste. 2ª Ed. UFMS, 2011. De acordo com a NBR 14724 (ABNT, 2005).

A proteína FAS ligante é um ativador de apoptose que pode ser quantificado por imuno-histoquímica. O estudo da expressão da proteína FAS ligante em modelo experimental de estresse oxidativo na mucosa gástrica não é encontrado na literatura atual, muito embora variações na expressão do complexo FAS/FAS ligante estejam relacionadas a particularidades fenotípicas do câncer gástrico humano. Determinar o comportamento de FAS ligante frente ao estresse oxidativo é importante na compreensão da via de ativação de apoptose na mucosa gástrica, vinculando a alta importância de agentes exógenos na etiologia de tumores gástricos.

2. REVISÃO DE LITERATURA

A glicoproteína FAS ligante, isolada em 1994 (SUDA; NAGATA, 1994), apresenta atividade indutora de apoptose em células portadoras da Apolipoproteína FAS em sua membrana celular, iniciando uma série de eventos que culminarão em apoptose (BREDESEN et al, 2004).

Apoptose é um tipo de morte celular com morfologia relativamente uniforme, muito embora ocorra em diferentes situações, desde resposta a injúria, renovação tecidual fisiológica ou frente a mutações celulares. O termo "morte celular programada" foi pela primeira vez sugerido por Lockshin em 1964, a partir da observação da morte regular de células de insetos. Em 1972, o termo apoptose (do grego, *apo*= fora e *ptosis*= cair), foi utilizado pela primeira vez para descrever o processo por Kerr (BREDESEN, 2004).

A ativação ocorre por múltiplas vias. FAS é um receptor de superfície celular que ao interagir com FAS ligante em condições normais exerce efeito pró apoptótico. FAS ligante faz parte da família de citoquinas TNF (fator de necrose tumoral), exercendo efeitos anti-tumorais, assim como regulando auto-imunidade. Vários achados, no entanto, mostram que a sinalização FAS-FAS ligante, em situações especificas, está implicada em ativação celular, diferenciação e proliferação em via contrária a apoptose, favorecendo privilégios imunológicos a tumores. Estudos experimentais têm sido utilizados para desvendar tais eventos, demonstrando alta complexidade no mecanismo envolvido (STRASSER et al, 2009).

Estudo *in vitro* com células de adenocarcinoma gástrico humano submetidas ou não ao FAS ligante comparadas a células de mucosa gástrica normal também submetidas ao FAS ligante, observou que células de adenocarcinoma proliferam em resposta ao FAS ligante, sugerindo via inibidora da apoptose mediada por receptor FAS nessas células, já que tal resposta anormal foi diretamente proporcional a expressão do antígeno FAS na superfície de membrana (LI et al, 2008).

O Azoximetano (AOM) é um azocomposto, isolado da Cycasina a partir da observação de carcinogênese obtida quando introduzido na dieta de ratos, potente causador de estresse oxidativo (MATSUMOTO; HIGA, 1966). Apresenta em sua fórmula estrutural (C2N2H6O) uma ligação instável, tendo um grande efeito oxidativo tecidual (GOLD et al, 2011).

Figura 1. Fórmula estrutural do Azoximetano.

A administração sistêmica de Azoximetano demonstrou causar alterações nas proteínas sinalizadoras de apoptose, aumentando a expressão de FAS ligante em mucosa do cólon de ratos submetidos a experimento de carcinogênese de curta duração (MARKS et al, 2008; BUSSUAN et al, 2010) . Foi identificada alteração na metilação do DNA como provável mecanismo causador de tumores induzidos pelo Azoximetano em cólon de ratos, muito embora essa alteração não encontre correlação em modelos humanos (BORINSTEIN et al, 2010).

Durante estudo experimental em 47 ratos submetidos ao azoximetano administrado sistemicamente, visando desenvolvimento de metástases de tumor colônico, foram descritos efeitos colaterais com até 52 semanas de exposição, observando-se desenvolvimentos de tumores no cólon em 46 ratos, 13 no duodeno, 12 nos rins, 2 jejunais e um hepático, demonstrando a seletividade do azoximetano para a mucosa colônica (KOBAEK-LARSEN et al, 2004).

Estudo experimental em 169 ratos utilizando azoximetano e radioterapia durante 26 semanas, obteve carcinogênese gástrica em 4 de 29 animais submetidos à essa associação, enquanto que nos grupos submetidos somente a um agente esta não ocorreu. Os autores associam o efeito carcinogênico do azoximetano no estômago de ratos à metaplasia intestinal causada pela radiação, já que em sua experiência prévia, mucosa colônica enxertada no estômago também apresentou carcinogênese pelo azoximetano (KASHIWABARA et al, 2005).

Estudo experimental *in vitro* utilizando cultura de tecido de mucosa gástrica de ratos, demonstrou que a exposição ao H. pilory, TGF e Interleucina Beta aumentaram a expressão de FAS, mas somente a inclusão de FAS ligante ao meio culminou em apoptose. Quando tratadas com monócitos, foi obtida apoptose rápida

e maciça. Quando submetidas somente ao FAS ligante foi observado resposta oposta, com aumento de células em Fase S, sugerindo resposta proliferativa (HOUGHTON et al, 2000).

Estudo de peças anatômicas de câncer gástrico detectou variações na expressão de FAS ligante inversamente proporcionais ao grau histológico e volume do tumor (ZHAO et al, 2005). Outro estudo de peças anatômicas de câncer gástrico evidenciou expressão imuno-histoquímica aumentada de FAS ligante em linfonodos metastáticos, com ativação da apoptose, sendo sugerido pelos autores que a necrose resultante favorece a disseminação tumoral (LI et al, 2010). Em mucosa gástrica de ratos submetidos a infecção pelo Helicobacter pilory foi descrita uma anormalidade do mecanismo de apoptose via FAS ligante favorecendo o surgimento de linfomas gástricos (BERGMAN et al, 2010).

O sistema imune tem a capacidade de identificar e destruir tumores iniciais. Em humanos têm sido identificados aspectos específicos em portadores de câncer ou síndromes predisponentes. Em animais, principalmente ratos, têm sido desenvolvidos modelos com animais suscetíveis por deficiências induzidas ou perpetuadas em linhagens especificas, bem como com experimentação com exposição a fatores de risco. Defeitos da imunidade em modelos animais deixam evidente que falhas específicas, dão origem a determinados tipos de tumores em órgãos alvos muito bem determinados, destacando a estreita relação entres imunidade e carcinogênese como vias antagônicas (SWANN et al, 2007).

Alterações na regulação da via sinalizadora de apoptose têm sido implicadas na carcinogênese em modelos teóricos, baseados em evidências. DCC (*Deleted in Colorectal Cancer*) é um receptor de superfície de membrana, que se encontra diminuído em vários tipos de tumores, marcadamente colorretais. Durante a embriogênese exerce efeitos na migração celular da crista neural, na presença de um ligante Netrin-1 (proteína responsável pela orientação da migração da crista neural na embriogênese) exerce efeito anti- apoptótico, na ausência é capaz de iniciar apoptose. Tal interação ocorre também entre receptores hormonais, como o androgênico e testosterona, por exemplo (BREDESEN et al, 2004).

Modelos envolvendo receptores dependentes têm sido propostos para elucidar estas vias. Defeitos detectados têm papel importante na construção de tais modelos. A apoptose tem uma regulação dinâmica, envolvendo múltiplas vias de inibição e iniciação, exercendo efeito antagônico à carcinogênese. Além disso, evidencias apontam para variação na agressividade tumoral, tanto invasora como metastática, dependentes de falha na apoptose (BREDESEN et al, 2004).

O complexo FAS-FAS ligante exibe diferentes efeitos sobre a mucosa gástrica em duas doenças distintas associadas a infecção pelo Helicobacter pylori. Na gastrite auto-imune a infecção crônica leva à ativação da apoptose com destruição e atrofia da mucosa. Em contrapartida, no Linfoma MALT uma anormalidade na resposta da apoptose, leva a proliferação de células B, sugerindo uma desrregulaçao por exaustão induzida pelo Helicobacter pylori (BERGMAN et al, 2010).

FAS ligante foi detectado em 30 adenocarcinomas gástricos humanos em estudo de peças anatômicas em parafina (n=30), através de imuno-histoquímica, não sendo encontradas diferenças expressivas quanto ao grau do tumor e estadiamento, com reação positiva em mais de 70% da área tumoral estudada (BENNET et al, 1998).

Estudo de 64 casos de câncer gástrico encontrou expressão da proteína FAS maior em áreas de tecido normal que em áreas tumorais (85,0% x 25,0%, respectivamente, p< 0,001) e o inverso em relação a FAS ligante (30,0% x 81,3%, respectivamente, p< 0,001). Diferença também foi encontrada quando estudados presença ou não de metástase linfonodal: a expressão de FAS foi maior na presença de metástase que na ausência (82,9% x 56,5%, respectivamente, p= 0,003) e a expressão de FAS ligante foi menor na presença de metástases que na ausência (56,1% x 69,65, respectivamente, p= 0,593). Tais resultados associam a expressão de FAS ligante em áreas tumorais e metastáticas a valores diferentes do encontrado em áreas normais. Uma das explicações aventadas pelos autores do estudo é o privilégio imunológico para o tumor que escapa ao ataque de linfócitos T indutores de apoptose (LI et al, 2010).

Estudo comparativo entre pacientes diagnosticados com câncer gástrico através de endoscopia (n=59) e pacientes com endoscopia normal (n= 62) encontrou diferença estatística entre os níveis séricos de FAS/FAS ligante detectados pelo método ELISA. O nível sérico de FAS foi maior em portadores de câncer gástrico que no grupo controle (305,97±63,71 pg/ml x 92,98±4,95 pg/ml, p<0,001) enquanto o nível sérico de FAS ligante foi menor em pacientes com câncer gástrico comparado ao grupo controle (0,138±0,04 x 0,150±0,2,p<0,001), com os autores sugerindo tais

dosagens como marcadores para diagnóstico precoce de câncer gástrico (BOROUMAND-NOUGHAB et al, 2010).

Estudo comparando dosagem sérica pelo método ELISA de FAS/FAS ligante em portadores de câncer colorretal irressecável (n= 47) com grupo controle saudável (n=31), encontrou níveis maiores em portadores de câncer do que no controle ($8,79\pm1,39 \times 5,53\pm1,13$, respectivamente, p<0,01), mas não foi encontrada importância estatística em relação a resposta a tratamento quimioterápico, proposta original do estudo (LIANG et al, 2010).

Estudo de carcinogênese gástrica experimental em ratos (n=169), distribuídos em 6 grupos submetidos a exposição de radiação isolada (n=32), ou radiação + 2-amino-1metil-6-fenilimidazol piridina (n= 25), ou radiação+azoximetano (n= 29), ou 2-amino-1metil-6-fenilimidazol piridina isolado (n= 25), ou azoximetano isolado (n= 28) e grupo controle 9 (n= 30), encontrou indução de metaplasia intestinal nos ratos submetidos a radioterapia i solada ou associada (84-95%) maior que nos ratos que não receberam radioterapia (11 – 33%) e carcinogênese somente quando associados dois agentes. O autor associa a carcinogênese gástrica a dados prévios mostrando suscetibilidade de metaplasia intestinal aos carcinógenos sistêmicos (KASHIWABARA et al, 2005).

3.1. Geral

Estudar a apoptose em mucosa gástrica exposta a estresse oxidativo, em ratos.

3.2. Específico

Estudar expressão imuno-histoquímica de FAS ligante na mucosa gástrica exposta a estresse oxidativo pela administração de azoximetano, em ratos.

4. MÉTODOS

4.1. Aprovação

O projeto de pesquisa foi aprovado pela Comissão de Ética no Uso de Animais da Universidade Federal de Mato Grosso do Sul, UFMS. Protocolo 68/2004.

4.2. Amostra

Foram utilizados ratos (n= 56) Wistar (*Rattus norvegicus albinus*), machos, com 08 semanas de idade, peso médio 150±20 gramas, linhagem EPM-1 originários do Biotério Central da Universidade Federal de Mato Grosso do Sul, UFMS.

O experimento foi realizado no Laboratório de Carcinogênese Experimental do Biotério Central da UFMS. Os animais foram submetidos a 14 dias prévios de adaptação em caixas padrão para 5 animais, feitas de polipropileno e tampa metálica galvanizada. O ambiente climatizado com temperatura a 22±3° C, iluminação artificial com ciclos claro/escuro de 12 horas e umidade do ar de 56±13%. Foram alimentados com ração Nuvilab® CR1 (Nuvital Alimentos e Produtos Veterinários Ltda® - Curitiba – PR – Brasil) e água filtrada a vontade.

4.3. Distribuição dos grupos

Os animais foram distribuídos por sorteio em 2 grupos (n=28). Grupo 1 (controle, n=28) animais que receberam placebo; e Grupo 2 (AOM, n=28), com administração de azoximetano. Tatuagem na cauda, numerados de 1 a 28. Na terceira, quarta, quinta e sexta semanas do experimento foi realizada a eutanásia para coleta de material de 7 animais sorteados de cada grupo, caracterizando-se 4 sub-grupos assim nominados: E1= eutanásia 1, em semana 3; E2= eutanásia 2, em semana 4; E3= eutanásia 3 em semana 5 e; E4= eutanásia 4 em semana 6.

Figura 2. Distribuição da amostra.

4.4. Drogas usadas

4.4.1. Azoximetano (AOM)

Substância carcinogênica, formulação C2H6N2O (Laboratório Sigma®, produto A9517, lote 70K0847).

Uma quantidade de 100mg (0,1mL) da droga foi diluída em 49,9mL de solução salina de cloreto de sódio 0,9% resultando na concentração de 2 mg/mL. Para cada animal do Grupo 2 foi administrada uma dose de 5 mg/Kg, via subcutânea, no início das semanas 3 e 4.

4.4.2. Solução salina

Solução salina de Cloreto de Sódio 0,9% (Laboratório Fresenius-Kabi®). Uma dose de 1 ml/Kg foi administrada por via subcutânea nos animais do Grupo 1 no início das semanas 3 e 4.

Figura 3. Delineamento de grupos, administração de drogas e eutanásias no experimento.

4.5. Coleta de Material

Execução de eutanásia em 7 animais sorteados de cada grupo em 3, 4, 5 e 6 semanas do experimento, com injeção intraperitoneal de 150mg/Kg de pentobarbital sódico induzindo parada cardiorrespiratória. Nas semanas 3 e 4 a eutanásia foi executada 3 horas após administração de AOM.

Animais posicionados em decúbito dorsal horizontal, submetidos a laparotomia mediana xifo-púbica com bisturi, identificado o estômago e resseccionado do esôfago distal e duodeno proximal.

A peça cirúrgica, delimitado pelo esôfago distal e duodeno proximal, contendo todo o estômago, foi aberta pela grande curvatura, lavada com solução salina até retirada de todo resíduo intra-gástrico, afixada com alfinetes metálicos em molde de isopor, imersa em solução tamponada de formol a 10% em volume dez vezes superior ao volume da peça, em recipientes individuais etiquetados, identificados e submetidos a processamento histo-técnico até o dia seguinte.

4.6. Preparo de blocos e lâminas

Resseccionamento de fragmento circular de mucosa gástrica em ponto médio distante entre cárdia e piloro.

O fragmento tecidual obtido recebeu tratamento rotineiro com preparação histológica com desidratação progressiva em álcool, inclusão em blocos de parafina, corte sagital em micrótomo, espessura de 2µm e afixação em lâmina de vidro silanizada tipo Super Frost Dako®.

Figura 4: A) peça cirúrgica a fresco; B) peça cirúrgica após abertura e lavagem; C) 1- Dermatótomo circular de 5 mm utilizado para retirada do fragmento; 2- Fragmento retirado da peça cirúrgica para processamento; 3-Peça cirúrgica fixada em formol a 10%.

4.7. Imuno-histoquímica

O processamento imuno-histoquímico (técnica *avidin-biotin complex*, ABC) foi executado no Laboratório Screenlab® e realizado com a utilização de anticorpo primário anti-FAS ligante (epítopo terminação-N20, SantaCruz®, produto SC834, lote E2804, diluição 1:100). Utilização de anticorpo secundário Dako LSAB®, produto K609, lote 15068; revelador de cor DAB (diaminobenzidina), Dako® (produto K3468, lote 01317, diluição 1:10); com obtenção da expressão de biomarcador anti-FAS ligante na coloração marrom.

4.8. Captura de Imagens

Utilizou-se microscópio óptico marca Nikon, modelo Eclipse E 200, acoplado a câmera fotográfica digital marca Nikon® modelo Coolpix 950. As imagens foram capturadas em aumento de 400 vezes (10 vezes na ocular e 40 vezes na óptica), tendo como limite inferior de enquadramento a serosa da parede gástrica. Obtenção de 7 fotos de cada lâmina, aleatoriamente. Cada foto foi arquivada em formato

Bitmap (BMP) nomeada de acordo com o grupo (G1 ou G2), número da lâmina (L1 a L28) e número da imagem adquirida (1 a 7).

Figura 5. Fotomicrografia de lâmina corada por imuno-histoquímica.

4.9. Quantificação da imuno-histoquímica

Utilizou-se processamento de imagem assistido por computador com software Photoshop CS3®, da Adobe System Incorporated, utilizando ferramentas de seleção e leitores de densidade óptica (LEHR et al. 1997).

As imagens abertas na área de trabalho do programa e, utilizando ferramentas de seleção e deleção, foram deletados os contornos do campo de microscopia e outros artefatos, obtendo a aferição da área de interesse para estudo em unidades pixel.

A ferramenta de seleção automática por semelhança de cor foi utilizada para selecionar somente as áreas na cor marrom, correspondente a expressão de FAS ligante. As áreas FAS ligante positivas isoladas foram aferidas em pixels, e posteriormente convertidas para cor cinza e sua densidade óptica aferida em escala de cinza que vai de zero (cor preta) a 250 (cor branca). Foram obtidos três valores quantitativos: total da área estudada, área FAS ligante positiva (ambas em pixels) e densidade óptica da área FAS ligante positiva (escala de 0 a 250) (LEHR; MANKOFF et al, 1997; LEHR; VAN DER LOOS et al, 1999; MATKOWSKYJ et al, 2000; PHAM et al, 2007; DE MATOS, 2006).

O processamento de imagem assistida foi realizado em cada micrografia, as etapas de interesse foram armazenadas, capturando a imagem da tela do computador utilizando a tecla "Print Screen" e gravadas, identificadas de A a D.

Figura 6. Software Adobe Photoshop[™] com imagem.

Figura 7. Software Adobe Photoshop[™] com imagem editada após deleção de artefatos, preservando área de análise.

Figura 8. Seleção da área total de análise e demarcação. Em circulo vermelho e sublinhado, o parâmetro "Pixels", relativo a aferição da área selecionada.

Figura 9. Seleção da expressão na coloração marrom (FAS ligante positiva).

Figura 10. Utilização do recurso "Semelhante" da ferramenta de seleção "Varinha Mágica" para expandir seleção a toda área marrom.

Figura 11. Ampliação da área de seleção para toda a área de coloração marrom (expressão FAS ligante).

Figura 12. Área de coloração marrom com deleção da área sem expressão FAS ligante.

Figura 13. Área sem expressão de FAS ligante na coloração azul, após deleção da área na coloração marrom.

To Argana Ellar	Diagoni Catinda Selectoriar Pitro Visualizar	Tanela Akuda	pp //		
10.00	- 164	Littlet de Cetta	Cont (Constant)	the Area de Tubalto	•
P	Dighter Apicer Invigen Calculas	Cores Sidenadas Cores ASB Cores Offic	eter Plates Plates Plates Plates Plates	Cantan Pantan (D Cond (age of Condition
11. 12.	Tationho da Inagen Al + Cirl+	Cores Lab Multicenal			
Š.	Propogões de Poel	 ✓ BIRs/Canal IS BRs/Canal 			*
4	Celler Celler	32 Bits/Canal	Man Mar 1		8
1	Aparat	Adult & Com-	ALL		L man (man the second sec
¥.	1000	. 4	112		Al Des Adv 25.50 Tand
4	Cherron Construction of Cherron		and a start		Brain 30700 Vie Carler 1
I GE OF HIS	24	No.			
2	1 - 1		<i></i>		Cenatar + Cenar (Denarations)
2		10	~		mend of spandale (area +)
					Rec D V & Rec (Mr. 1)
iora (6 1	Deci WAR/OLAL (1) Co				*****

Figura 14. Utilização do recurso "Imagem", "Modo", "Tons de Cinza", realizando conversão para tons de cinza

Figura 15. Seleção da área FAS ligante positiva, aferindo a densidade óptica média e mediana na escala de escurecimento (0/preto a 250/branco).

		G1		G2			
	Área total	Área FAS	Densidade	Área total	Área FAS	Densidade	
		ligante			ligante		
E1				605			
E2		So d		1 0.3 20	No and R		
E3							
E4				Sel of L	8,8,2	1000 get	

Figura 16. Imagens representando o processamento das imagens para aferição da área e densidade, em grupos e subgrupos.

Figura 17. Quadro exemplificando imagens editadas e histograma aferindo as variáveis: Área Total, Área FAS ligante e Densidade.

4.10. Armazenamento dos resultados

Os valores aferidos para cada imagem foram catalogados em planilha do programa Excel do Microsoft Office 2007®, registrando as variáveis em cada coluna da planilha: 1) Identificação do grupo (G1 ou G2), da lâmina (L1 a L28) e número da foto da micrografia (1 a 7), p. ex.: G1L4 6 (grupo 1, lâmina 4, foto 6); 2) Área total em estudo, em *pixels*; 3) Área FAS ligante positiva, em *pixels*; 4) Percentual de área FAS ligante positiva em relação à área total; Densidade óptica media em escala de escurecimento; e densidade óptica mediana em escala de escurecimento.

Execução de 7 aferições em cada imagem, registrando a média de porcentagens e densidade óptica das áreas FAS ligante positivas.

4.11. Estudo Estatístico

Análise comparativa na expressão de FAS ligante com uso das variáveis porcentagem e densidade óptica da área FAS ligante positiva entre os grupos G1 e G2 e demais subgrupos (G1E1, G1E2, G1E3, G1E4, G2E1, G2E2, G2E3 e G2E4). Teste de Mann-Whitney, com a mediana das variáveis porcentagem e densidade óptica da área FAS ligane, utilizado em comparações, considerando-se resultado significativo quando p<0,05 com intervalo de confiança de 95%.

5. RESULTADOS

Foram aferidos valores para as variáveis Área FAS ligante e Densidade Optica de FAS ligante, conforme quadro abaixo. (Tabela 1, página 34)

	G	1	G2		
	Área FAS +	Densidade	Área FAS +	Densidade	
Subgrupos	(%)	(0 a 250)	(%)	(0 a 250)	
E1	18,73	156,81	25,15	127,73	
E2	26,02	142,03	26,40	141,45	
E3	4,82	155,23	12,75	142,89	
E4	26,77	149,65	34,09	141,02	

Tabela 1. Expressão de FAS ligante em área e densidade óptica em grupos e sub-grupos.

Área FAS += área percentual em coloração marrom; Densidade= valor numérico em escala de escurecimento da cor cinza após conversão da coloração para escala de cinza de 0 (preto) a 250 (branco).

Ocorreu aumento da mediana das porcentagens de área de expressão FAS ligante positiva do Grupo 2 em comparação ao Grupo 1 (G1= 20,56% x G2= 27,66%) estatisticamente significante (p= 0,0195), Teste de Mann-Witney. (Tabela 2, página 34)

Tabela 2: Expressão de FAS ligante em área percentual.

	Grupo 1 (n= 28)	Grupo 2 (n= 28)	*p (<0,05)
Mediana	20,56	27,66	*0,0195

Teste de Mann-Whitney.

A mediana da densidade óptica da expressão FAS ligante do Grupo 2 comparada ao Grupo 1 foi maior (G1= 151 x G2= 140,31) estatisticamente significante (teste de Mann-Whitney, p= 0,0010) (Tabela 3, página 34).

Tabela 3. Densidade óptica da Área FAS ligante.

	Grupo 1 (n=28)	Grupo 2 (n=28)	*p (<0,05)
Mediana	151.69	140.31	*0,0010

Teste de Mann-Whitney.

Evidencia-se aumento significativo da mediana da porcentagem da área expressão FAS ligante positiva nos subgrupos E1 e E3 de G2 em relação aos subgrupos E1 e E3 de G1 (G1E1= 18,73% x G2E1= 25,15% e p=0,0175; G1E3= 4,82% x G2E1=12,75% e p=0,0238), Nos subgrupos E2 e E4 não houve diferença significativa (G1E2=26,02% x G2E2= 27,4% e p= 0,2826; G1E4= 26,77% x G2E4= 34,09% e p= 0,3274), Teste de Mann-Witney. (Tabela 4, página 36)

As medianas da densidade óptica da expressão FAS ligante dos subgrupos E1 e E3 foram significativamente maiores em G1 em comparação a G2 (G1E1= 156,81 x G2E1= 127,73, p=0,0009; G1E3=155,23 x G2E3=142,89, p= 0,01690). Em E2 e E4 não houve diferença significativa (G1E2= 142,03 x G2E2= 141,45 e p= 0,3274; G1E4= 149,64 x G2E4= 141,02 e p=0.0899). (Tabela 4, página 35)

Foram encontradas diferenças estatisticamente significantes (p<0,05) em E1 e E3, para ambas variáveis e relacionadas a aumento da Área FAS ligante percentual e escurecimento da coloração marrom, representado por diminuição do valor numérico em escala de cinza. (Tabela 4, página 35)

Grupos		G1 (n=28)		G2 (n=28)		
Subgrupos		Mediana	DP	Mediana	DP	*p (<0,05)
E1 (n= 7)	Área (%)	18,73	9,51	25,15	6,20	*0,0175
	Densidade	156,81	5,07	127,73	12,08	*0,0009
E2 (n= 7)	Área (%)	26,02	13,53	26,40	15,73	0,2826
	Densidade	142,03	14,82	141,45	15,81	0,3274
E3 (n= 7)	Área (%)	4,82	8,42	12,75	11,19	*0,0238
	Densidade	155,23	6,89	142,89	11,11	*0,0169
E4 (n= 7)	Área (%)	26,77	11,95	34,09	8,10	0,3274
	Densidade	149,65	18,32	141,02	4,68	0,0899

Tabela 4. Expressão de FAS ligante em área e densidade óptica em grupos e sub-grupos.

Teste de Mann-Witney.

6. DISCUSSÃO

Os resultados obtidos no presente experimento são estatisticamente significantes, com amostra em conformidade para as variáveis porcentagem e densidade da área FAS ligante positiva, demonstrando aumento da expressão deste biomarcador no Grupo estudo, utilizando o teste de Mann-Whitney.

A captura e processamento de imagem assistido por computador permitiu estudo quantitativo da expressão imuno-histoquímica resultando em precisão na análise estatística, evitando limitações pertinentes a estudo qualitativo envolvendo subjetividade na interpretação de coloração, e a conversão permite estabelecer valores numéricos para análise estatística. (LEHR; MANKOFF et al, 1997; LEHR; VAN DER LOOS et al, 1999; MATKOWSKYJ et al, 2000; PHAM et al, 2007; DE MATOS, 2006).

O estresse oxidativo do azoximetano demonstrou ser capaz de aumentar a expressão de FAS ligante na mucosa gástrica no presente estudo. Estudo celular prévio *in vitro* já demonstrou a necessidade da presença de FAS ligante para iniciar apoptose em mucosa gástrica de ratos (HOUGHTON et al, 2000). Estudo anterior demonstrou relação entre diferentes fenótipos de câncer gástrico e expressão de FAS e FAS ligante, expressão aumentada em tecido tumoral comparado ao normal e dosagem de FAS ligante sérico aumentado em pacientes portadores de câncer gástrico, confirmando a atividade de FAS ligante em mecanismos regulatórios da apoptose na mucosa gástrica justificando utilização como biomarcador (ZHAO et al, 2005; LI et al, 2010; BERGMAN et al, 2010). Carcinogênese gástrica em ratos também foi obtida com azoximetano em estudos experimentais somente quando associada a radioterapia (KASHIWABARA et al, 2005), enquanto que estudo experimental de longa duração com azoximetano não demonstrou formação de tumores no estomago em ratos (KOBAEK-LARSEN et al, 2004).

O aumento da mediana da porcentagem da área FAS LIGANTE positiva e diminuição da mediana significantes em G2, é resultados condizente com aumento da expressão de FAS ligante, uma vez que a diminuição da densidade aferida pelo software Photoshop é inversamente proporcional a intensidade da coloração marrom (expressão de FAS ligante), por convenção da escala numérica utilizada, onde a cor branca assume valor 250 e a cor preta zero.

O aumento da expressão de FAS ligante não ocorreu uniformemente avaliando-se os subgrupos. O aumento significativo no grupo estudo em E1 e E3 não teve a mesma associação temporal com as administrações da primeira e segunda dose de AOM.

O conhecimento recente sobre a expressão de FAS ligante em modelos de estresse oxidativo não elucida totalmente os mecanismo de regulação e ativação de apoptose. Informações existentes são baseadas em estudos *in vitro*, modelos teóricos a partir de informações pontuais, impossibilitando a determinação do significado objetivo do aumento da expressão de FAS ligante em modelo de estresse oxidativo pelo azoximetano em ratos encontrado no presente experimento.

7. CONCLUSÃO

A expressão de FAS ligante aumentou em mucosa gástrica com administração de azoximetano.

Evidenciado aumento da expressão de FAS ligante na semana 3, 3 horas após primeira adminstração de AOM, e na semana 5.

8. REFERÊNCIAS

Bergman MP, Délios MM. Cytotoxic T-Cells in H.pilory- related gastric autoimmunity and gastric limphoma. *Journal of Biomedicine and Biothecnology*. 2010, Vols. Volume 2010. Article ID 104918, 10 pages.

Bireme. DeCS - Descritores em Saúde. *BVS - Biblioteca Virtual em Saúde.* Online. Citado em: 06 de setembro de 2011 http://decs.bvs.br/cgibin/wxis1660.exe/decsserver/

Bennett MW, O'Connell J, O'Sullivan GC, Roche D, Brady C, Collins JK, Shanahan F. Expression of Fas ligand by human gastric adenocarcinomas: a potencial mechanism of immune escape in stomach cancer. *Gut.* 1998, Vols. 44: 156-162.

Borinstein SC, Conerly M, Dzieciatkowski S, Biswas S, Kay M. Aberrant DNS methilatinon occurs in colon neoplasm arising in the azoximethan cancer colon model. *Molecular Carcinogenesis.* January, 2010, Vols. 49 (1): 94-103.

Boroumand-Noughabi S, Sima HR, Ghaffarzadehgan K, Jafarzadeh M, Raziee HR, Hosseinezad H. Soluble Fas might serve as a diagnostic tool for gastric adenocarcinoma. *BMC Cancer.* 10:275, 2010.

Bredesen, Dale E., Mehlen, Patrick e Rabizadeh, Sharooz. Apoptosis and dependence receptors: A molecular basis for celular addiction. *Physiological Reviews.* 2004, Vols. 84: 411-430.

De acordo com a NBR 14724 (2005).

Referências formatadas conforme metodologia proposta por Zárate P, Andrade SMO, Aydos RD. Diretrizes para elaboração de Teses e Dissertações. 2ª Ed. Programa de Pós Graduação em Saúde e Desenvolvimento na Região Centro-Oeste. UFMS; 2011.

Bussuan LAM, Fagundes DJ, Marks G, Bussuan PM, Teruya R. The role of FAS ligand proteina in the oxidative stress induced by azoxymethane on crypt colon of rats. *Acta Cirurgica Brasileira*. 2010, Vol. 25 (5).

De Matos LL, Stabenow E, Tavares MR, Ferraz AR, Capelozzi VL, Pinhal MAS. Immunohistochemistry quantification by a digital computer-assisted method compared to semiquantitative analysis. Clinical Sciences. 2006; 61(5): 417-24.

Gold LS. Director. The Carcinogenic Potency Database (CPDB). *The Carcinogenic Potency Project.* [Online] University of Californcia. [Citado em: 01 de março de 2011.] http://potency.berkeley.edu/chempages/AZOXYMETHANE.html

Houghton J, Macera-Bloch LS, Harrison L, Kim KH, Korah RM. Tumor necrosis factor alpha and Interleukin 1beta up-regulate gastric mucosal Fas Antigen Expression in Helicobacter pylori infection. *Infection and Immunity.* 2000, Vols. 68, 3: 1189-1195.

Kashiwabara S, Kashimoto N, Uesaka T, Wakabayashi K, Kamiya K, Watanabe H. Tumor induction by azoxymethane (AOM) and 2-amino-1methi-I6-phenylimidazo[4,5b] pyridine (PhIP) in F44 rat gastric mucosa featuring intestinal metaplasia caused by X-irradiation. *Journal Experimental Cancer Research.* 2005, Vols. 24,2: 305-312.

Kobaek-Larsen M, Klaus F, Ritske-Hoitinga J. Secondary effects induced by the colon carcinogen azoxymethan in BDIX rats. *Acta Pathologica, Microbiologica et Immunologica Scandinavica.* 2004, Vols. 112: 319-29.

Lehr H, Mankoff DA, Corwin D, Santeusanio G, Gown AM. Application of Photoshopbased Image Analysis to Quantification of Hormone Receptor Expression in Breast Cancer. *The Journal of Histochemistry & Cytochemistry*. 1997, Vols. Volume 45(11): 1559–1565. Lehr H, Van der Loos CM, Teeling P, Gown AM. Complete Chromogen Separation and Analysis in Double Immunohistochemical Stains Using Photoshop-based Image Analysis. *The Journal of Histochemistry & Cytochemistry*. 1999, Vols. Volume 47(1): 119–125.

Liang Q, Li Z, Chen G, Lai Z, Wang B, Huang J. Prognostic value of serum soluble Fas in patients with locally advanced unressectable rectal cancer receiving concurrente chemoradiotherapy. *Journan of Zhejiang University.* 2010, Vols. 11 (12): 912 -917.

Li H, Cai X, Fan X, Moquin B, Stoicov C, Houghton JM. Fas Ag-FAS LIGANTE coupling leads to ERK1/2-mediated proliferation of gastric mucosal cells. *Am J Physiol Gastrointest Liver Physiol.* 2008, Vol. 294, 263-275.

Li Qi, Peng J, Li X, Liu T, Liang Q, Zhang G. Clinical significance of Fas and FAS ligante protein expression in gastric carcinoma and local lymph node tissues. *World J Gastroenterol.* 16(10): 1274-1278, 2010 March.

Marks G, Aydos RD, Fagundes DJ, Pontes ERJC, Takita L, Amaral EGAS, et al. Modulaçao do fator de crescimento beta2 (TGFbeta2) pelo inositol hexafosfato na carcinogenese colônica em ratos. *Acta Cirurgica Brasileira.* 21 suplemento 4: , 2006.

Marks G, Fagundes DJ, Ynouye CM, Pontes ERJC, Takita LC, Amaral EGS. Appoptotic efectsof inositol hexaphosphate on biomarker Itpr3 in induced colon rats carcinogenesis. *Acta Cirurgica Brasileira.* 2008, Vol. 23 (2).

Matkowskyj KA, Schonfeld D, Benya RV. Quantitative immunohistochemistry by measuring cumulative signal strength using commercially available software

Photoshop and Matlab. The journal of histochemistry 7 citohistochemistry. 48:303-311, 2000.

Matsumoto, Hiromu e Higa, Harry. Studies on Methilazoxymethanol, the Aglycone of Cycasine: Methilation of Nucleic acids in vitro. *Biochem. J.* 1966, Vols. 95: 13c - 14c.

Pham N, Morrison A, Schwock J, Aviel-Ronen S, lakovlev V, Tsao M et al. Quantitative image analysis of immunohistochemical stains using a CMYK color model. Diagnostic Pathology. Fevereiro, 2007. www.diagnosticpathology.org/content/2/1/8.

Strasser A, Jost P, Nagata S. The many roles of FAS receptor sinaling in the immune system. *Immunity.* 30 (2): 180-192, 2009.

Suda, Takashi e Nagata, Shiguekazu. Purification and Characterization of the FAS ligand that induces apoptosis. *J. Expe. Med. Rockffeler Universit Press.* 1994, Vols. 179; 873-879.

Swann JB, Smyth MJ. Immune surveillance of tumors. *The Journal of Clinical Investigation.* 2007, Vol. 117, 5; 1137-1146.

Zárate P, Andrade SMO, Aydos RD. Diretrizes para elaboração de teses e dissertações. Programa de Pós Graduação em Saúde e Desenvolvimento na Região Centro-Oeste. UFMS, 2011.

Zhao X, Gu S, Tian H, Quan P, Pan B. Clinical significance of expression of apoptotic signal proteins in gastric carcinoma tissue. *World Journal of Gastroenterology.* July, 2005, Vols. 11 (25): 3846-3849.

9. APÊNDICES

Os resultado obtidos com a leitura das lâminas foram armazenados em planilha do software Microsof Excel® (Figura 1, página 43).

(9 - (214) =	and the second se	PLANILHA LEITURA LAMI	NAS [Modo	de Compatibilidad	de] - Microsoft Excel		With the Party		- 0 ×
V	Iníc	io Inserir Layo	ut da Página Fórmulas	Dados Revisão Exibição							@ _ ® X
A Calibri * 11 A A Feedback Geral Feedback Feed								∑ AutoSoma + Preencher + ⊘ Limpar + Edu	ssificar Localizar e litrar * Selecionar *		
						Celulas	Edig	30			
	Δ	B	с. С	D		F			F		6
1	Lamina	Area total (pixels)	Area FASL positiva (pixels)	Porcentagem area FASL positiva	Densidade o	a area positiva (r	media)	Densidade da	area positiva (mediana)		
2	G1L1 1	264409	3110	1,18			141,42		100,	06	
3	G1L1 2	251039	8492	3.38			141.91		116.	92	1
4	G1L1 3	277927	9346	3,36			135,4		80,	62	
5	G1L1 4	273822	9467	3,46			144,96		91	1,3	
6	G1L1 5	272110	15262	5,61			145,65		123,	66	
7	G1L1 6	270134	48084	17,80			199,08		124,	14	
8	G1L1 7	307200	20315	6,61			147,04		124,	86	
9	G1L2 1	307200	104564	4 3 <mark>4</mark> ,04		159,82 135			76		
10	G1L2 2	282583	34779	12,31			155,61	155,61 133,5			
11	G1L2 3	307200	51093	16,63			181,64		128,	51	
12	G1L2 4	276709	69806	5 25,23			150,23	136,69		69	
13	G1L2 5	260817	100471	. 38,52			175,29		130,	66	
14	G1L2 6	266082	5432	2,04			154,44		113,	58	
15	G1L2 7	269648	6414	2,38			157,04		130,	71	
16	G1L3 1	263758	9341	3,54			146,75		113,	28	
17	G1L3 2	263807	12964	4,91			154,89		109,	57	
18	G1L3 3	263761	12814	4,86		158,17 112,			99		
19	G1L3 4	263739	2794	1,06			140,69		114,	75	
20	G1L3 5	263874	3840	1,45			161,73		127,	91	
21	G1L3 6	263155	4597	1,75			154,01		97,	92	
22	G1L3 7	256515	4498	1,75			156,13		123,	75	
23	G1L4 1	263831	. 21427	8,12			173,32		121,	96	
24	G1L4 2	263821	. 65436	24,80			147,34		140,	24	
25	G1L4 3	263765	14651	5,55			151,74		129,	92	
26	G1L4 4	263871	94620	35,86			159,91		139,	56	
27	G1L4 5	263729	22044	8,36			154,21		123,	43	
28	G1L4 6	263733	15537	5,89			155,98		132,	78	
14	4 > > F	Plan1 / Plan2 para	estatistica 🥂					OBL			► I
Pr	onto									•••• 90% •••	
6	1		👬 🙆 🛞	📧 🛞 🔿 🔝					1 10	PT 🔺 🟴 🖬 🌗	³⁾ 26/03/2011

Figura 1. Imagem ilustrativa da área de trabalho do programa Microsoft Excel® e tabulação de registros.

A mediana da porcentagem de área FAS ligante positiva foi maior no Grupo 2 em comparação ao Grupo 1 (G2=27,66 x G1=20,56), com significância estatística, p= 0,0195 e intervalo de confiança de 95% (Figura 2, página 46).

Figura 2: Mediana e quartis da Área FAS- ligante positiva. Teste de Mann-Whitney.

Os valores do primeiro quartil e terceiro quartil do Grupo 2 foram maiores que em G1 (G2=20,46 x G1=6,99; G2=34,22 x G1=27,11, respectivamente). O desvio interquartílico foi maior em G1 que em G2 (20,12 x 13,76, respectivamente). A média aritmética de G2 foi maior que G1 (26,28 x 19,21). O desvio padrão de G1 foi maior mas próximo ao de G2 (G1= 12,98 x G2= 11,35). O coeficiente de variação de G1 foi maior que G2, ambos maiores que 20% (G1= 67,59 x G2=43,20). (Tabela 1, página 46)

Grupo 1 (n= 28)	Grupo 2 (n= 28)
6,99	20,46
27,11	34,22
20,12	13,76
19,21	26,28
12,98	11,35
67,59	43,20
	Grupo 1 (n= 28) 6,99 27,11 20,12 19,21 12,98 67,59

Tabela 1: Área FAS ligante positiva distribuída por grupos.

As medianas das porcentagens de Área FAS ligante positivas foram maiores em subgrupos G2 comparadas com G1 em E1 e E3 (G2E1=25,15 x G1E1=18,73; G2E3= 12,75 x G1E3= 4,82; ambas com p<0.05) e não apresentaram diferença em subgrupos E2 e E4 (G1E2= 26,02 x G2E2= 27,40; G1E4= 26,77 x G2E4= 34,09). (Tabela 2, página 45 e Figura 3, página 45)

Figura 3. Medianas e Quartis da Área FAS ligante positiva por grupo e subgrupos. A= Eutanásia 1; B= Eutanásia 2; C= Eutanásia 3; D= Eutanásia 4.

Tabela 2. Medianas da porcentagem de área expressão FAS LIGANTE por Grupos e subgrupos. Teste de Mann Whitney.

	Mediana				
-	G1	G2	р		
E1	18,73	25,15	0,0175		
E2	26,02	27,40	0,2826		
E3	4,82	12,75	0,0238		
E4	26,77	34,09	0,3274		

A mediana da Densidade Óptica de G2 foi menor que G2 (G2= 140,31 x G1= 151,69), significando coloração marrom mais intensa em escala de cinza em G2, com significância estatística. Figura 4, página 46)

Figura 4. Gráfico tipo Boxplot da densidade óptica mediana da Area FAS LIGANTE positiva. Teste de Mann Witney.

A média da Densidade óptica de G2 foi menor que G1 (G2= 137,87 x G1=148,35), significando coloração marrom mais intensa em escala de cinza em G2, estatisticamente significante. (Tabela 3, página 46 e Figura 5, página 47)

		Grupo 1 (n=28)	Grupo 2 (n=28)	p (unilateral)
Média		148,35	137,87	0,0024
Variância		179,57	177,37	
Coeficiente	de	9,03	9,66	
Variação (%)				
One de liberde de		+ 0.00		

Tabela 3. Teste t não emparelhado para densidade óptica.

Graus de liberdade= 54,00, t= 2,93.

O primeiro quartil da densidade óptica foi maior em G1 que em G2 (145,06 e 129,38, respectivamente), assim como o terceiro quartil (157,08 e 145,69, respectivamente). Os desvios-padrões foram: G1=13,4 e G2= 1,82. Os coeficientes de variação foram: G1= 9,03 e G2= 9,66. (Tabela 4, página 47)

Tabela 4. Dados estatísticos descritivos da densidade óptic	a.
---	----

	Grupo 1 (n=28)	Grupo 2 (n=28)
Primeiro Quartil	145,06	129,38
Terceiro Quartil	157,08	145,69
Desvio Padrão	13,40	13,82
Coeficiente de Variação (%)	9,03	9,66

As medianas das Densidades ópticas foram maiores em subgrupos G1 comparadas com G2 em E1 e E3 (G1E1=156,81 x G2E1=127,73; G1E3= 155,23 x G2E3= 142,89; ambas com p<0.05) e não apresentaram diferença em subgrupos E2 e E4 (G1E2= 142,03 x G2E2= 141,45; G1E4= 149,65 x G2E4= 141,02). (Tabela 5, página 48 e Figura 6, página 48)

	G1	G2	Р
E1	156,81	127,73	0,0009
E2	142,03	141,45	0,3274
E3	155,23	142,89	0,01690
E4	149,65	141,02	0,0899

Tabela 5. Medianas densidades ópticas dos grupos e subgrupos. Teste de Mann-whitney.

Figura 6. Dados estatísticos e gráficos da mediana e quartis distribuídos por grupos e subgrupos correspondentes. A= Eutanásia 1; B=Eutanásia 2; C=Eutanásia 3; C= Eutanásia 4.

Foi realizada aferição da área total em pixels (área total de interesse para estudo, correspondente a mucosa em micrografia de um campo de aumento 400x tendo como limite inferior a serosa), Area FAS ligante em pixels (área de coloração marrom isolada com utilização do Software Adobe Photoshop®, correspondente a área FAS ligante positiva), Area FAS ligante em porcentagem (relação percentual entre Area FAS ligante em pixels e Area Total em pixels), Densidade óptica media (média dos valores em escala 0 a 250, correspondente a Area FAS ligante positiva convertida para coloração tons de Cinza) e Densidade Optica Mediana (mediana dos valores em escala 0 a 250, correspondente a Area FAS LIGANTE positiva convertida para coloração tons de Cinza).

Lâmina	Área	Área	Área	Densidade	Densidade
	Total	FAS LIGANTE	FAS LIGANTE	(média)	(mediana)
	(pixels)	(pixels)	(%)		
G1L1 1	264409	3110	1,18	141,42	100,06
G1L1 2	251039	8492	3,38	141,91	116,92
G1L1 3	277927	9346	3,36	135,4	80,62
G1L1 4	273822	9467	3,46	144,96	91,3
G1L1 5	272110	15262	5,61	145,65	123,66
G1L1 6	270134	48084	17,80	199,08	124,14
G1L1 7	307200	20315	6,61	147,04	124,86
G1L2 1	307200	104564	34,04	159,82	135,76
G1L2 2	282583	34779	12,31	155,61	133,59
G1L2 3	307200	51093	16,63	181,64	128,51
G1L2 4	276709	69806	25,23	150,23	136,69
G1L2 5	260817	100471	38,52	175,29	130,66
G1L2 6	266082	5432	2,04	154,44	113,58
G1L2 7	269648	6414	2,38	157,04	130,71
G1L3 1	263758	9341	3,54	146,75	113,28
G1L3 2	263807	12964	4,91	154,89	109,57
G1L3 3	263761	12814	4,86	158,17	112,99
G1L3 4	263739	2794	1,06	140,69	114,75
G1L3 6	263155	4597	1,75	154,01	97,92
G1L3 7	256515	4498	1,75	156,13	123,75
G1L4 1	263831	21427	8,12	173,32	121,96
G1L3 5	263874	3840	1,45	161,73	127,91

Figura 7. Quadro de resultados da expressão de FAS ligante.

Lâmina	Área	Área	Área	Densidade	Densidade
	Total	FAS LIGANTE	FAS LIGANTE	(média)	(mediana)
	(pixels)	(pixels)	(%)		
G1L4 2	263821	65436	24,80	147,34	140,24
G1L4 3	263765	14651	5,55	151,74	129,92
G1L4 4	263871	94620	35,86	159,91	139,56
G1L4 5	263729	22044	8,36	154,21	123,43
G1L4 6	263733	15537	5,89	155,98	132,78
G1L4 7	263876	20153	7,64	155,2	106,23
G1L5 1	234900	167345	71,24	148,49	128,46
G1L5 2	220734	83663	37,90	159,44	157,39
G1L5 3	263352	79259	30,10	156,47	110,82
G1L5 4	293632	9074	3,09	148,89	119
G1L5 5	267279	14434	5,40	140,62	133,28
G1L5 6	263415	5797	2,20	143,75	129,2
G1L5 7	267277	125609	47,00	153,29	111,9
G1L6 1	258065	131180	50,83	161,65	136,98
G1L6 2	270314	84948	31,43	166,99	136,59
G1L6 3	262610	58563	22,30	166,92	116,88
G1L6 4	265002	36641	13,83	163,35	128,28
G1L6 5	256475	26454	10,31	140,33	126,47
G1L6 6	252751	65228	25,81	173,1	135,28
G1L6 7	265613	39690	14,94	165,89	130,37
G1L7 1	263721	20970	7,95	157,3	153,36
G1L7 2	260913	106919	40,98	154,99	142,52
G1L7 3	270154	71374	26,42	163,53	144,97
G1L7 4	272307	87552	32,15	165,13	156,03
G1L7 5	272351	20975	7,70	146,22	139,53
G1L7 6	273580	26196	9,58	155,42	155,85
G1L7 7	273542	87840	32,11	164,93	130,83
G1L8 2	278741	81446	29,22	159,87	136,52
G1L8 3	278008	105579	37,98	161,6	130
G1L8 4	224004	58858	26,28	158,68	153,02
G1L8 5	243635	107378	44,07	147,6	131,11
G1L8 6	261503	32078	12,27	128,04	153,35
G1L8 7	222700	58767	26,39	158,67	147,75
G1L9 1	277771	39979	14,39	142,12	163,61
G1L9 2	282786	5842	2,07	134,51	140,6
G1L8 1	270623	147749	54,60	148,45	138,37

Lâmina	Área	Área	Área	Densidade	Densidade
	Total	FAS LIGANTE	FAS LIGANTE	(média)	(mediana)
	(pixels)	(pixels)	(%)		
G1L9 3	282832	2090	0,74	124,61	154,48
G1L9 4	282956	22089	7,81	158,82	180,69
G1L9 5	277677	4772	1,72	138,46	177,62
G1L9 6	282781	1212	0,43	160,41	164,55
G1L9 7	294993	5284	1,79	135,25	137,61
G1L10 1	294368	46741	15,88	163,62	154,01
G1L10 2	294108	42963	14,61	165,32	145,74
G1L10 3	295057	5521	1,87	153,79	132,82
G1L10 4	295003	55305	18,75	169,86	151,3
G1L10 5	293142	5852	2,00	133,01	137,4
G1L10 6	280971	7343	2,61	138,97	168,47
G1L10 7	286106	10521	3,68	153,57	134,82
G1L11 1	272451	110996	40,74	123,56	107,72
G1L11 2	283366	94329	33,29	117,98	119,89
G1L11 3	260242	67834	26,07	124,32	128,35
G1L11 4	268923	95525	35,52	123,42	145,9
G1L11 5	287001	117396	40,90	118,04	133,63
G1L11 6	283006	115887	40,95	120,54	115,63
G1L11 7	273456	109761	40,14	117,74	118,94
G1L12 1	280697	86381	30,77	137,01	125,04
G1L12 2	281512	103619	36,81	131,93	110,3
G1L12 3	278043	85809	30,86	123,87	118,03
G1L12 5	260943	99395	38,09	131,49	121,16
G1L12 6	284223	120710	42,47	130,29	117,91
G1L12 7	284155	106292	37,41	125,76	135,09
G1L13 1	287778	55865	19,41	132,16	126,66
G1L13 2	265249	32503	12,25	118,38	122,66
G1L13 3	282435	64743	22,92	134,84	155,61
G1L13 4	283612	80142	28,26	126,73	115,27
G1L13 5	282493	83963	29,72	126,7	107,38
G1L13 6	281063	36874	13,12	131,4	124,25
G1L13 7	283594	160094	56,45	155,26	116,53
G1L14 1	283093	14397	5,09	169,13	147,6
G1L14 2	263933	118836	45,03	160,18	161,19
G1L14 3	282671	14273	5,05	164,13	129,98
G1L12 4	281272	79674	28,33	107,55	105,42

Lâmina	Área	Área	Área	Densidade	Densidade
	Total	FAS LIGANTE	FAS LIGANTE	(média)	(mediana)
	(pixels)	(pixels)	(%)		
G1L14 4	278980	19322	6,93	160,25	156,67
G1L14 5	287134	72985	25,42	135,4	169,61
G1L14 6	285175	1054	0,37	158,31	148,28
G1L14 7	282305	15742	5,58	169,25	150,41
G1L15 1	279293	26873	9,62	145,99	143,86
G1L15 2	282907	4774	1,69	145,75	155,33
G1L15 3	282439	37634	13,32	168,13	138,92
G1L15 4	287558	112346	39,07	152,55	172,82
G1L15 5	287667	205656	71,49	167,23	149,24
G1L15 6	282337	14644	5,19	129,74	140,59
G1L15 7	283026	17731	6,26	128,28	131,16
G1L16 1	283923	29265	10,31	169,9	150,86
G1L16 2	280267	11082	3,95	160,98	158,08
G1L16 3	279768	9617	3,44	163,8	175,48
G1L16 4	278146	121588	43,71	167,83	170,81
G1L16 5	267461	171698	64,20	164,17	135,87
G1L16 6	243432	23447	9,63	156,06	151,32
G1L16 7	267502	15914	5,95	145,98	187,38
G1L17 1	285393	2991	1,05	150,47	169,73
G1L17 2	281304	2076	0,74	146,63	158,32
G1L17 3	277637	10237	3,69	170,04	144,7
G1L17 4	285981	4998	1,75	154,47	146,88
G1L17 5	281422	1536	0,55	155,02	181,85
G1L17 6	288074	7531	2,61	163,25	164,46
G1L17 7	288150	2991	1,04	150,47	171,63
G1L18 1	288189	1223	0,42	128,89	145,85
G1L18 2	262233	601	0,23	135,54	145,6
G1L18 3	270118	3521	1,30	148,62	138,05
G1L18 4	286984	5462	1,90	169,25	143,33
G1L18 5	287681	7193	2,50	186,02	147,73
G1L18 6	287646	6464	2,25	184,43	147,21
G1L18 7	288741	12001	4,16	152,52	132,43
G1L19 1	283453	10310	3,64	143,12	142,97
G1L19 2	287754	17267	6,00	160,37	149,13
G1L19 3	276391	10205	3,69	147,02	137,19
G1L19 4	287024	5324	1,85	147,26	134,85

Lâmina	Área	Área	Área	Densidade	Densidade
	Total	FAS LIGANTE	FAS LIGANTE	(média)	(mediana)
	(pixels)	(pixels)	(%)		
G1L19 5	287271	8110	2,82	168,19	131,67
G1L19 6	288388	6156	2,13	156,98	141,95
G1L19 7	287555	8219	2,86	163,67	151,22
G1L20 1	287842	23800	8,27	127,84	104,55
G1L20 2	288289	14990	5,20	148	110,93
G1L20 3	287775	14641	5,09	131,1	136,05
G1L20 4	286646	29195	10,19	142,47	155,67
G1L20 5	280937	30768	10,95	167,01	152,32
G1L20 6	287320	7725	2,69	142,7	114,99
G1L20 7	287396	25923	9,02	138,36	158,49
G1L21 1	287093	4182	1,46	132,04	159,2
G1L21 2	288206	26008	9,02	159	133,7
G1L21 3	288280	9397	3,26	157,98	132,02
G1L21 4	284041	16686	5,87	149,4	137,46
G1L21 5	287210	1716	0,60	139,72	130,61
G1L21 6	287673	14390	5,00	139,6	149,45
G1L21 7	282448	24046	8,51	143,69	134,71
G1L22 1	288313	30862	10,70	115,85	153,45
G1L22 2	288331	29819	10,34	117,24	137,36
G1L22 3	288882	84041	29,09	138,92	137,16
G1L22 4	298812	95745	32,04	137,42	141,83
G1L22 5	288815	104602	36,22	134,65	147,4
G1L22 6	289982	89437	30,84	138,07	131,22
G1L22 7	286497	103140	36,00	134,56	138,7
G1L23 1	289152	123649	42,76	160,61	148,99
G1L23 2	289622	116138	40,10	150,21	139,86
G1L23 3	289571	104907	36,23	143,09	142,01
G1L23 4	273363	86224	31,54	147,28	148,25
G1L23 5	288803	125668	43,51	157,33	142,95
G1L23 6	280807	110583	39,38	145,88	138,48
G1L23 7	286108	101439	35,45	141,97	151,16
G1L24 1	286542	7782	2,72	145,78	137,76
G1L24 2	286374	10110	3,53	161,93	135,88
G1L24 3	286392	10110	3,53	161,91	130,47
G1L24 4	286452	13766	4,81	161,24	129,68
G1L24 5	286497	10169	3,55	168,28	128,67

Lâmina	Área	Área	Área	Densidade	Densidade
	Total	FAS LIGANTE	FAS LIGANTE	(média)	(mediana)
	(pixels)	(pixels)	(%)		
G1L24 6	286484	60312	21,05	150,07	134,71
G1L24 7	269125	33820	12,57	171,61	136,08
G1L25 1	286534	1002	0,35	129,94	135,92
G1L25 2	286123	99534	34,79	154,76	143,41
G1L25 3	286436	188384	65,77	159,1	135,69
G1L25 4	285516	193147	67,65	173,34	127,17
G1L25 5	277629	2682	0,97	130,84	134,13
G1L25 6	286408	16271	5,68	154,33	132,21
G1L25 7	286474	5941	2,07	145,23	138,06
G1L26 1	286517	105439	36,80	153,95	136,44
G1L26 2	286453	104595	36,51	164,19	147,08
G1L26 3	286372	93370	32,60	153,64	143,46
G1L26 4	286390	124464	43,46	163,28	145,83
G1L26 5	286583	136194	47,52	155,6	147,97
G1L26 6	286559	166439	58,08	158,24	145,86
G1L26 7	286516	136922	47,79	145,59	152,1
G1L27 1	289114	129425	44,77	155,99	151,24
G1L27 2	289821	107233	37,00	155,43	142,76
G1L27 3	289377	97440	33,67	151,72	138,53
G1L27 4	289322	96423	33,33	147,82	143,39
G1L27 5	289634	113198	39,08	158,54	140,53
G1L27 6	289499	109895	37,96	147,8	141,93
G1L27 7	289260	108017	37,34	143,43	142,39
G1L28 1	289327	84430	29,18	93,08	136,19
G1L28 2	289949	121580	41,93	118,61	130,8
G1L28 3	289871	139068	47,98	109,13	138,04
G1L28 4	289116	50915	17,61	106,22	141,25
G1L28 4	289427	57536	19,88	116,37	139,94
G1L28 6	289355	44869	15,51	109,76	142,66
G1L28 7	279099	42797	15,33	101,12	138,66
G2L1 1	285699	68775	24,07	100,06	90
G2L1 2	289136	90788	31,40	116,92	111
G2L1 3	284795	24109	8,47	80,62	77
G2L1 4	281086	27293	9,71	91,3	85
G2L1 5	288708	67008	23,21	123,66	117
G2L1 6	288391	68567	23,78	124,14	121

Lâmina	Área	Área	Área	Densidade	Densidade
	Total	FAS LIGANTE	FAS LIGANTE	(média)	(mediana)
	(pixels)	(pixels)	(%)		
G2L1 7	285690	75519	26,43	124,86	119
G2L2 1	282227	134583	47,69	135,76	124
G2L2 2	288785	94399	32,69	133,59	124
G2L2 3	289302	72878	25,19	128,51	128
G2L2 4	289731	86652	29,91	136,69	131
G2L2 5	289446	58479	20,20	130,66	128
G2L2 6	289831	86228	29,75	113,58	114
G2L2 7	289465	57365	19,82	130,71	129
G2L3 1	286510	81806	28,55	113,28	109
G2L3 2	268963	55314	20,57	109,57	110
G2L3 3	283335	55477	19,58	112,99	114
G2L3 4	283358	73578	25,97	114,75	115
G2L3 5	266804	108998	40,85	127,91	125
G2L3 6	279670	25934	9,27	97,92	96
G2L3 7	286149	89483	31,27	123,75	116
G2L4 1	278577	52218	18,74	121,96	116
G2L4 2	284953	119563	41,96	140,24	140
G2L4 3	286192	121105	42,32	129,92	130
G2L4 4	286302	96599	33,74	139,56	140
G2L4 5	286307	85075	29,71	123,43	124
G2L4 6	285794	158375	55,42	132,78	134
G2L4 7	252233	78804	31,24	106,23	107
G2L5 1	286401	53948	18,84	128,46	130
G2L5 2	286469	92087	32,15	157,39	160
G2L5 3	275190	15483	5,63	110,82	110
G2L5 4	290086	27365	9,43	119	119
G2L5 5	286215	106340	37,15	133,28	136
G2L5 6	286613	64663	22,56	129,2	131
G2L5 7	286617	18131	6,33	111,9	114
G2L6 1	286335	189825	66,29	136,98	136
G2L6 2	285804	138735	48,54	136,59	138
G2L6 3	269033	47367	17,61	116,88	118
G2L6 4	263904	29452	11,16	128,28	123
G2L6 6	270795	97644	36,06	135,28	137
G2L6 7	268959	68109	25,32	130,37	123
G2L7 1	286204	56386	19,70	153,36	153

Lâmina	Área	Área	Área	Densidade	Densidade
	Total	FAS LIGANTE	FAS LIGANTE	(média)	(mediana)
	(pixels)	(pixels)	(%)		
G2L6 5	284669	64885	22,79	126,47	127
G2L7 2	281820	86971	30,86	142,52	144
G2L7 3	282318	58966	20,89	144,97	147
G2L7 4	281991	32268	11,44	156,03	157
G2L7 5	274900	65065	23,67	139,53	141
G2L7 6	285745	127247	44,53	155,85	157
G2L7 7	288437	61369	21,28	130,83	133
G2L8 1	286538	90299	31,51	138,37	141
G2L8 2	286464	27445	9,58	136,52	134
G2L8 3	285448	87604	30,69	130	131
G2L8 4	286568	110557	38,58	153,02	152
G2L8 5	282052	58040	20,58	131,11	132
G2L8 6	282870	95430	33,74	153,35	153
G2L8 7	282307	76487	27,09	147,75	148
G2L9 1	286417	224376	78,34	163,61	164
G2L9 2	286383	75383	26,32	140,6	142
G2L9 3	286530	21872	7,63	154,48	155
G2L9 4	286474	10537	3,68	180,69	182
G2L9 5	286430	8057	2,81	177,62	179
G2L9 6	282042	228096	80,87	164,55	164
G2L9 7	286616	97724	34,10	137,61	138
G2L10 1	286305	5534	1,93	154,01	151
G2L10 2	286341	1455	0,51	145,74	147
G2L10 3	286300	771	0,27	132,82	133
G2L10 4	286512	20100	7,02	151,3	150
G2L10 5	286113	1853	0,65	137,4	134
G2L10 6	286082	5332	1,86	168,47	172
G2L10 7	286566	832	0,29	134,82	131
G2L11 1	286650	98867	34,49	107,72	108
G2L11 2	286639	111975	39,06	119,89	119
G2L11 3	272140	118545	43,56	128,35	124
G2L11 4	263737	185211	70,23	145,9	150
G2L11 5	286556	162363	56,66	133,63	138
G2L11 6	272602	92708	34,01	115,63	118
G2L11 7	279142	151113	54,13	118,94	121
G2L12 1	286372	109586	38,27	125,04	113

Lâmina	Área	Área	Área	Densidade	Densidade
	Total	FAS LIGANTE	FAS LIGANTE	(média)	(mediana)
	(pixels)	(pixels)	(%)		
G2L12 2	286429	98789	34,49	110,3	111
G2L12 3	264300	84782	32,08	118,03	118
G2L12 4	278259	93164	33,48	105,42	106
G2L12 5	282468	117036	41,43	121,16	122
G2L12 6	261050	87856	33,65	117,91	119
G2L12 7	279862	150346	53,72	135,09	137
G2L13 1	286111	61552	21,51	126,66	128
G2L13 2	286528	92340	32,23	122,66	123
G2L13 3	280983	100264	35,68	155,61	146
G2L13 4	286477	89137	31,11	115,27	116
G2L13 5	286501	66293	23,14	107,38	109
G2L13 6	286417	49296	17,21	124,25	124
G2L13 7	266177	59913	22,51	116,53	116
G2L14 1	285872	55891	19,55	147,6	149
G2L14 2	285254	67462	23,65	161,19	162
G2L14 3	286554	11446	3,99	129,98	125
G2L14 4	286582	14325	5,00	156,67	162
G2L14 5	286526	35508	12,39	169,61	170
G2L14 6	286480	24143	8,43	148,28	149
G2L14 7	286361	4884	1,71	150,41	151
G2L15 1	273550	8969	3,28	143,86	141
G2L15 2	280429	12277	4,38	155,33	158
G2L15 3	258635	100664	38,92	138,92	141
G2L15 4	281314	24980	8,88	172,82	170
G2L15 5	256080	59810	23,36	149,24	144
G2L15 6	277148	1344	0,48	140,59	135
G2L15 7	286442	1398	0,49	131,16	127
G2L16 1	285992	28452	9,95	150,86	149
G2L16 2	284414	1825	0,64	158,08	155
G2L16 3	286419	3729	1,30	175,48	177
G2L16 4	278982	54226	19,44	170,81	169
G2L16 5	269614	10334	3,83	135,87	136
G2L16 6	274479	28942	10,54	151,32	152
G2L16 7	286247	12889	4,50	187,38	186
G2L17 1	286153	81795	28,58	169,73	168
G2L17 2	282388	35478	12,56	158,32	156

Lâmina	Área	Área	Área	Densidade	Densidade
	Total	FAS LIGANTE	FAS LIGANTE	(média)	(mediana)
	(pixels)	(pixels)	(%)		
G2L17 3	286489	11809	4,12	144,7	138
G2L17 4	286567	13908	4,85	146,88	142
G2L17 5	286342	35163	12,28	181,85	179
G2L17 6	286360	22641	7,91	164,46	162
G2L17 7	286117	24892	8,70	171,63	169
G2L18 1	286434	124879	43,60	145,85	147
G2L18 2	285827	108491	37,96	145,6	147
G2L18 3	286234	95737	33,45	138,05	139
G2L18 4	286410	99354	34,69	143,33	145
G2L18 5	286017	66796	23,35	147,73	149
G2L18 6	286338	59624	20,82	147,21	149
G2L18 7	286615	26236	9,15	132,43	133
G2L19 1	286614	224568	78,35	142,97	141
G2L19 2	286381	84082	29,36	149,13	149
G2L19 3	281694	87810	31,17	137,19	137
G2L19 4	285624	42988	15,05	134,85	135
G2L19 5	286175	50207	17,54	131,67	132
G2L19 6	284813	105924	37,19	141,95	143
G2L19 7	286201	116445	40,69	151,22	153
G2L20 1	285584	57177	20,02	104,55	105
G2L20 2	286496	22602	7,89	110,93	109
G2L20 3	285746	31767	11,12	136,05	137
G2L20 4	286536	68099	23,77	155,67	158
G2L20 5	286500	28882	10,08	152,32	155
G2L20 6	286370	5027	1,76	114,99	116
G2L20 7	286417	41904	14,63	158,49	161
G2L21 1	285949	72233	25,26	159,2	161
G2L21 2	286288	38703	13,52	133,7	134
G2L21 3	285259	54562	19,13	132,02	133
G2L21 4	278253	120863	43,44	137,46	140
G2L21 5	286200	58852	20,56	130,61	131
G2L21 6	286479	117699	41,08	149,45	151
G2L21 7	286620	93231	32,53	134,71	135
G2L22 1	286015	115197	40,28	153,45	154
G2L22 2	286640	88849	31,00	137,36	137
G2L22 3	285633	108597	38,02	137,16	137

Lâmina	Área	Área	Área	Densidade	Densidade
	Total	FAS LIGANTE	FAS LIGANTE	(média)	(mediana)
	(pixels)	(pixels)	(%)		
G2L22 4	286471	93454	32,62	141,83	142
G2L22 5	286300	132547	46,30	147,4	148
G2L22 6	279191	105560	37,81	131,22	131
G2L22 7	285063	82203	28,84	138,7	139
G2L23 1	286550	95462	33,31	148,99	149
G2L23 2	286641	93793	32,72	139,86	141
G2L23 3	278332	85840	30,84	142,01	142
G2L23 4	286369	72408	25,28	148,25	149
G2L23 5	271572	73439	27,04	142,95	143
G2L23 6	286111	52113	18,21	138,48	138
G2L23 7	286125	91559	32,00	151,16	151
G2L24 1	286558	58645	20,47	137,76	138
G2L24 2	286566	65475	22,85	135,88	137
G2L24 3	286322	52683	18,40	130,47	132
G2L24 4	286235	77338	27,02	129,68	130
G2L24 5	286646	45428	15,85	128,67	129
G2L24 6	286456	75646	26,41	134,71	135
G2L24 7	272404	43543	15,98	136,08	137
G2L25 1	271323	69927	25,77	135,92	136
G2L25 2	285135	68895	24,16	143,41	144
G2L25 3	274296	87263	31,81	135,69	136
G2L25 4	284973	110620	38,82	127,17	127
G2L25 5	284720	132859	46,66	134,13	128
G2L25 6	286576	120560	42,07	132,21	132
G2L25 7	286446	84046	29,34	138,06	139
G2L26 1	265461	133032	50,11	136,44	136
G2L26 2	286563	143484	50,07	147,08	147
G2L26 3	286669	106017	36,98	143,46	143
G2L26 4	286652	122068	42,58	145,83	146
G2L26 5	286663	140495	49,01	147,97	148
G2L26 6	286572	122349	42,69	145,86	146
G2L26 7	286537	153126	53,44	152,1	152
G2L27 1	286531	156706	54,69	151,24	152
G2L27 2	286484	77858	27,18	142,76	143
G2L27 3	286364	91823	32,07	138,53	138
G2L27 4	286305	116338	40,63	143,39	143

Lâmina	Área	Área	Área	Densidade	Densidade
	Total	FAS LIGANTE	FAS LIGANTE	(média)	(mediana)
	(pixels)	(pixels)	(%)		
G2L27 5	286490	95080	33,19	140,53	141
G2L27 6	286446	102533	35,79	141,93	142
G2L27 7	285887	53396	18,68	142,39	142
G2L28 1	286564	69959	24,41	136,19	136
G2L28 2	286548	71780	25,05	130,8	131
G2L28 3	286629	91077	31,78	138,04	138
G2L28 4	286620	86099	30,04	141,25	141
G2L28 4	286452	70212	24,51	139,94	140
G2L28 6	286668	82330	28,72	142,66	142
G2L28 7	286503	70882	24,74	138,66	138

10.1 APROVAÇÃO ÉTICA

CERTIJICADO

Certificamos que o Protocolo nº. 68/2004 do Mestrando **Fábio Kanomata**, sob a Orientação do Prof. Celso Massachi Inouye, para uso de animais em experimentação, referente ao projeto de pesquisa "Estudar a apoptose em mucosa gástrica na carninogênese e com uso de hexafosfato de inositol, em ratos", está de acordo com os princípios éticos adotados pelo Colégio Brasileiro de Experimentação Animal (COBEA), com a legislação vigente e demais disposições da ética em investigação que envolvem diretamente os animais e foi aprovado pela COMISSÃO DE ÉTICA NO USO DE ANIMAIS/CEUA/UFMS, em reunião de 12 de novembro de 2004.

Campo Grande (MS), 16 de novembro de 2004.

Dr^a Maria Araújo Teixeira Presidente da CEUA

Prof Joice Stein

Vice-Presidente da CEUA