
UNIVERSIDADE FEDERAL DE GOIÁS
INSTITUTO DE INFORMÁTICA

WALID ABDALA RFAEI JRADI

Application of GPU Computing to Some
Urban Traffic Problems

Goiânia
2016

WALID ABDALA RFAEI JRADI

Application of GPU Computing to Some
Urban Traffic Problems

Tese apresentada ao Programa de Pós–Graduação do Insti-
tuto de Informática da Universidade Federal de Goiás, como
requisito parcial para obtenção do título de Doutor em Com-
putação.

Área de concentração: Ciência da Computação.

Orientador: Prof. Hugo Alexandre Dantas do Nascimento

Co-Orientador: Prof. Wellington Santos Martins

Goiânia
2016

Ficha de identificação da obra elaborada pelo autor, através do
Programa de Geração Automática do Sistema de Bibliotecas da UFG.

CDU 004

Jradi, Walid
 Application of GPU Computing to Some Urban Traffic Problems
[manuscrito] / Walid Jradi. - 2016.
 CXCII, 192 f.: il.

 Orientador: Prof. Dr. Hugo Nascimento; co-orientador Dr.
Wellington Martins.
 Tese (Doutorado) - Universidade Federal de Goiás, Instituto de
Informática (INF), Programa de Pós-Graduação em Ciência da
Computação, Goiânia, 2016.
 Bibliografia. Apêndice.
 Inclui gráfico, tabelas, algoritmos, lista de figuras, lista de tabelas.

 1. Urban Traffic. 2. Macroscopic Traffic Allocation. 3. Parallel
Computing. 4. GPU. I. Nascimento, Hugo, orient. II. Título.

Todos os direitos reservados. É proibida a reprodução total ou parcial do
trabalho sem autorização da universidade, do autor e do orientador(a).

Walid Abdala Rfaei Jradi

Walid Abdala Rfaei Jradi received his bachelor degree in Data Processing
from the Instituto Unificado de Ensino Superior (IUESO) in 2005 and his
master degree in Computer Science in 2008. During his graduation, he devel-
oped a study on modeling and simulation of sewage and rainwater collector
networks. He also developed studies on the traveling salesman problem to op-
timize a system for the distribution of goods for a transportation company. In
his master degree, he proposed and developed a Web-Based traffic simulator
suited to the way traffic behaves in Brazilian urban road networks. During his
Ph.D., in addition to the study here presented, he also worked on problems
related to two-dimensional guillotine cutting, as well as acting in the develop-
ment of the PET-Gyn software version 2.0.

To the authentic seekers of the truth that, even on their tireless search, still find
time to laugh and marvel of this crazy journey we call life.

Acknowledgments

To God, for the gift of life, and for allowing me to continue this trip.
To my family. The unconditional support of my parents, Abdala and Inaam, my

brothers Tarek and Hanan and my brother in law Eduardo was the cornerstone of this
achievement, and is the light that guides me upon my darkest days.

To my beloved grandmother, who unfortunately did not live long enough to
witness this achievement, but never doubted that I would be able to accomplish this work.
Rest in peace, because you were the best grandmother that anyone could wish for.

To Professor Hugo Nascimento, guide of this work. The fact that he believed that
I would be able to complete this project, even when I doubted, reveals a nobility of spirit
hard to find.

To my co-advisor, Professor Wellington Martins, for the patience and willingness
to solve all my questions, even the seemingly unjustified ones.

To the friends who I had conquered and the new ones along the way, especially
Elisângela Dias, Halley Gondim, Luciana Berretta, Márcia Cappelle, Márcio Duarte,
Roussian Gaioso, Rafael Quirino, Jesmmer Alves and Wanderley Alencar, always so-
licitous to help me at any time. To all, my sincere gratitude.

To Professors Humberto Longo, Bryon Hall, Diane Castonguay and Les Foulds.
Adapting the famous phrase, “If I rise so high it is by standing on the shoulders of giants”.

To Professor Cláudio Maia, who extended his hand in a crucial moment of the
work. It’s amazing how the opinion of someone a lot cleverer than me can be helpful.

To CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for
providing a PhD scholaship that supported the present research. And to FAPEG (Fundação
de Amparo à Pesquisa do Estado de Goiás), for the financial resources necessary for the
development of PET-Gyn, version 2.0.

To Wilk Araújo. His friendship and care were of fundamental importance to
overcome my physical limitations.

And to Fabrizzio Soares. Without his encouragement, it would not be possible to
engage in this insane adventure that today is complete.

To all, my most sincere “Thank you”.

Never lose hope, even facing the worst sorrows of your life. From the
darkest clouds clean and refreshing water drops.

Chinese Proverb,
Unknown author.

Resumo

Jradi, Walid Abdala Rfaei. Application of GPU Computing to Some Urban
Traffic Problems. Goiânia, 2016. 192p. Tese de Doutorado Relatório de Gradu-
ação. Instituto de Informática, Universidade Federal de Goiás.

O presente trabalho estuda e propõe algoritmos e implementações paralelas baseadas
em GPU para o problema de alocação macroscópica de tráfego urbano em redes de
grande porte, promovendo uma investigação aprofundada de cada sub-problema que deve
ser resolvido de forma eficiente durante o processo de atribuição de tráfego. Entre as
principais contribuições deste trabalho, estão: 1) o primeiro algoritmo baseado em GPU
para a enumeração de ciclos sem corda; 2) um novo algoritmo de caminho mínimo
paralelo que tira vantagem de algumas propriedades comuns das redes de tráfego urbano;
Um refinamento na implementação de redução paralela proposta por um dos líderes
no mercado de GPU, o que resultou em uma aceleração de 2,8x em relação à sua
versão original; 3) e, finalmente, um algoritmo paralelo para o problema de alocação
macroscópica de tráfego, 39x mais rápido do que a abordagem equivalente sequencial
quando aplicado a redes de larga escala.
O objetivo principal desta tese é de contribuir para a expansão do software PET-Gyn, pro-
pondo estruturas de dados de GPU eficientes e algoritmos paralelos para uma resolução
mais rápida de dois problemas bem conhecidos na literatura: O Problema de Alocação

de Tráfego e a Enumeração de Ciclos sem Corda. Quando aplicados a conjuntos de en-
trada difíceis, os experimentos realizados mostraram uma clara vantagem dos algoritmos
paralelos sobre suas versões sequenciais.

Palavras–chave

Tráfego Urbano, Alocação Macroscópica de Tráfego, Computação Paralela,
GPU.

Abstract

Jradi, Walid Abdala Rfaei. Application of GPU Computing to Some Urban
Traffic Problems. Goiânia, 2016. 192p. PhD. Thesis. Instituto de Informática,
Universidade Federal de Goiás.

The present work studies and proposes GPU-based parallel algorithms and implementa-
tions for the problem of macroscopic assignment of urban traffic on large-scale networks,
promoting an in-depth investigation on each sub-problem that must be efficiently solved
during the traffic assignment process. Among the main contributions of this work, there
are: 1) the first GPU-based algorithm for the enumeration of chordless cycles; 2) a new
parallel GPU-based shortest path algorithm that takes advantage of some common prop-
erties of urban traffic networks; a refinement in the parallel reduction implementation
proposed by one of the leaders in the GPU market, which resulted in a 2.8x speedup rel-
ative to its original version; and finally, 3) a parallel algorithm for the macroscopic traffic
assignment problem, 39x faster than the equivalent sequential approach when applied to
large scale networks.
The main goal of this thesis is to contribute to the extension of the PET-Gyn software,
proposing efficient GPU data structures and parallel algorithms for a faster resolution of
two well known problems in the literature: The Traffic Assignment Problem (TAP) and
the Enumeration of Chordless Cycles. When applied to difficult input sets, the performed
experiments showed a clear advantage of the parallel algorithms over their sequential
versions.

Keywords

Urban Traffic, Macroscopic Traffic Assignment, Parallel Computing, GPU.

Contents

List of Figures 12

List of Tables 14

List of Algorithms 16

1 Introduction 18
1.1 Motivations 18
1.2 Aims 20
1.3 Research Methodology 21
1.4 Contributions 22
1.5 Organization of the Thesis 22

2 Urban Traffic Simulation Models 23
2.1 Background 24

2.1.1 Microscopic Models 24
2.1.2 Mesoscopic Models 26
2.1.3 Macroscopic Models 26

2.2 Details on Macroscopic Models 27
2.2.1 Basic Definitions 27
2.2.2 User Equilibrium and System Optimization 28
2.2.3 Beckmann’s Model 29
2.2.4 Nesterov & de Palma Model 30

2.3 General Remarks 31

3 Parallel Computing and the GPU 33
3.1 Background 33

3.1.1 Amdahl’s Law 35
3.1.2 Gustafson’s Law 37
3.1.3 Flynn’s Taxonomy 39
3.1.4 SIMD Machines 40

3.2 A General Overview on Modern GPUs 41
3.2.1 Good GPU Programming Strategies 45
3.2.2 Tools for GPU Programming 48

3.3 Advanced Parallel Techniques 49
3.3.1 Loop Unrolling 49
3.3.2 Persistent Threads 51
3.3.3 Thread Divergence 52

3.4 General Remarks 54

4 Parallelism and the Traffic Assignment Problem 55
4.1 Microscopic and Mesoscopic Simulations 55

4.1.1 Distributed Simulation 55
4.1.2 Dealing with the Network Partition Problem 59

Test Environment 60
Results 60

4.2 Macroscopic Simulations 63
4.2.1 Real Time Macroscopic Simulations 64

System Evaluation 64
4.3 Traffic Simulation on GPUs 67
4.4 General Remarks 69

5 A GPU-Based Algorithm for Enumerating All Chordless Cycles in Graphs 70
5.1 Background 70
5.2 Mathematical Definitions 73

5.2.1 The Sequential Approach 75
5.3 The Proposed GPU Algorithm 76

5.3.1 Data Structures 77
5.3.2 First Stage 79
5.3.3 Second Stage 80

5.4 Computational Experiments 83
5.4.1 Analysis of the results 84

5.5 General Remarks 87

6 A Fast and Generic GPU-Based Parallel Reduction Implementation 89
6.1 Background 89
6.2 Parallel Reduction in GPUs 91

6.2.1 Mark Harris’ Work 92
6.2.2 Justin Luitjens’ Work 96
6.2.3 Bryan Catanzaro’s Work 97

6.3 The New Approach 100
6.4 Computational Experiments 102
6.5 General Remarks 104

7 A GPU-Based Algorithm for Finding Shortest Paths in Urban Traffic Graphs 106
7.1 Background 106

7.1.1 Point to Point (P2P) 108
7.1.2 Single Source 109
7.1.3 Many to Many and All Pairs 110

Limitations 111
7.1.4 Classic Algorithms for the SSSP Problem 112

The Standard Dijkstra Algorithm 112
The Standard Bellman-Ford-Moore Algorithm 114

7.1.5 Parallel Algorithms for the SSSP Problem 115
7.1.6 Overview of the Strategies 123

7.2 SSSP and its Suitability for GPU Processing in Urban Traffic Assignment Problems 124
7.2.1 A Study on Dijkstra’s Priority Queue Behavior 125

7.3 The Proposed GPU Dijkstra Algorithm 130

7.3.1 Data Structures 131
7.3.2 First Stage 132
7.3.3 Second Stage 133
7.3.4 Third Stage 135
7.3.5 Complexity Analysis 137

7.4 Computational Experiments 138
7.4.1 Analysis of the Results 140

7.5 General Remarks 141

8 GPU Computing Applied to the Traffic Assignment Problem 142
8.1 Background 142

8.1.1 The Arc Types and its ta Functions 143
8.1.2 Methods for Determining the Equilibrium Point in Transportation Networks 147

8.2 Profiling Analysis 150
8.3 A GPU-Based Traffic Assignment Implementation 153
8.4 Computational Experiments 154

8.4.1 Analysis of the Results 157
8.5 General Remarks 158

9 Conclusions 159
9.1 Future Work 160

Bibliography 161

A Parallel Computing Models 183
A.1 The PRAM Model 183

List of Figures

1.1 Hierarchy between NDP and TAP. 19

3.1 5-stage pipeline of a RISC machine. 34
3.2 5-stage pipeline on a superescalar processor. 35
3.3 Maximum speedup under Amdahl’s law. 37
3.4 Fixed size model for Speedup = 1

s+ p
N

. 38
3.5 Scaled size model for Speedup = s+N · p. 38
3.6 Flynn’s Taxonomy for computer systems. 39
3.7 Flynn-Johnson’s Taxonomy for MIMD machines. 40
3.8 Processing Flow on a SIMD Machine. 41
3.9 Simplified representation of CPU and GPU communication scheme. 42
3.10 GPU Processing Flow. 43
3.11 Differences between CPU and GPU internal architectures. 44
3.12 High level view of a Streaming Multiprocessor – SM. 45
3.13 High level vision of a GPU architecture. 46
3.14 AMD Stream Processor. 46

4.1 Longitudinal parallel cut of an urban road network. 56
4.2 Parallel Microscopic Traffic Simulation Architecture. 56
4.3 Simulation execution times according to the number of CPUs. 58
4.4 Simulation execution times according to synchronization interval. 58
4.5 Simulation execution times under diverse demand values. 58
4.6 Non-uniform domain decomposition. 59
4.7 Graphic of the evolution of the workload according to the number of

computing nodes. 61
4.8 Workload in road sub-regions, varying with simulation time, produced by

the conventional algorithm. 62
4.9 Workload in road sub-regions, varying with simulation time, produced by

the new algorithm. 62
4.10 Parallel speedup of two methods. 63
4.11 Parallel efficiency of two methods. 63
4.12 Macroscopic Real Time Simulation System. 65
4.13 Hypercube with ndim=4. 66

5.1 Simple representation of Goiânia downtown network, Goiás, Brasil. 71
5.2 Transforming a food web graph into a niche-overlap graph. 72
5.3 Compact representation of a graph. 78
5.4 Solution Space, where each vertex occupies just one bit. 78
5.5 C6: A graph where paralelism is not feasible 85

5.6 Sizes of T and C for four graphs. 86

6.1 Parallel reduction – associative reduction tree. 91
6.2 Parallel reduction using the shuffle instruction (extracted from [166]). 97
6.3 Parallel reduction – first stage, step 1. 99
6.4 Parallel reduction – first stage, step 2. 99
6.5 Parallel reduction – first stage, step 3. 99
6.6 Parallel reduction – first stage, step 4. 100
6.7 Parallel reduction – second stage, single step. 100
6.8 Chart of the parallel reduction execution times. 103
6.9 Chart of the parallel reduction speedup. 104

7.1 Shortest paths in a graph. 107
7.2 Intersections and their respective outdegrees for a small region of the city

of Goiânia, Goiás, Brazil. 126
7.3 Chart of the graph outdegree distribution for the Pennsylvania network. 128
7.4 Chart of the graph outdegree distribution for the Texas network. 128
7.5 Chart of the graph outdegree distribution for the California network. 128
7.6 Sequential Dijkstra: heap behavior on the graph representing the Pennsyl-

vania network. 129
7.7 Sequential Dijkstra: heap behavior on the graph representing the Texas

network. 130
7.8 Sequential Dijkstra: heap behavior on the graph representing the Califor-

nia network. 130
7.9 Allocating Dijkstra’s priority queue on local memory. 131
7.10 Distributing Dijkstra’s priority queue on streaming multiprocessors. 132
7.11 All SMs analyze the same vertex u. 133
7.12 Parallel writing in the priority queue. 134
7.13 Writing in chunks of Q – First block of active SMs. 134
7.14 Writing in chunks of Q – Second block of active SMs. 134
7.15 Writing in chunks of Q – Third block of active SMs. 135
7.16 Writing in chunks of Q – Fourth block of active SMs. 135
7.17 Removing the smallest element from chunk of Q. 138
7.18 Parallel speedup according to road network. 140

8.1 Arc cost function: considering flows in preferred ways. 146
8.2 Arc cost function: roundabout flows. 146
8.3 Macroscopic traffic allocation: flow assignment through the shortest paths. 148
8.4 Method of feasible directions: Golden Ratio. 150
8.5 Method of feasible directions: Fibonacci Search. 151

A.1 H-PRAM macro structure. 188
A.2 QRQW-PRAM Macro Structure. 191
A.3 BROADCAST of an instruction in three phases. 192

List of Tables

3.1 Equivalence between OpenCL and CUDA terms 47

4.1 Evolution of the workload according to the number of computing nodes. 61
4.2 Simulation execution times with 29 processors (adapted from [46]). 66
4.3 Simulation execution times with 210 processors (adapted from [46]). 67

5.1 Average running time to enumerate all chordless cycles on niche overlap
graphs and on other well known graphs. 85

6.1 Performance for parallel reduction of 222 integer elements (extracted
from [123]). 96

6.2 Parallel reduction execution times. New approach compared against
Catanzaro’s original code. 103

6.3 Parallel reduction execution times – new approach compared against
Harris’ code. 104

7.1 Sequential Dijkstra: priority queue management operation costs. 110
7.2 Parallel Methods for SSSP. 123
7.3 Table of the graph outdegree distribution for the Pennsylvania network. 126
7.4 Table of the graph outdegree distribution for the Texas network. 127
7.5 Table of the graph outdegree distribution for the California network. 127
7.6 Parallel Dijkstra: complexity analysis. 138
7.7 Dijkstra: Sequential and Parallel Execution Times 139

8.1 Example of an O-D matrix with 3 demands. 149
8.2 Sequential execution times for each road network 152
8.3 Most time consuming methods. 152
8.4 Sequential and parallel execution times for the road network of New York

City 154
8.5 Sequential and parallel execution times for the road network of New York

City 154
8.6 Sequential and parallel execution times for the road network of Colorado 155
8.7 Sequential and parallel execution times for the road network of Florida 155
8.8 Sequential and parallel execution times for the road network of Pennsylvania155
8.9 Sequential and parallel execution times for the road network of Northwest

USA 156
8.10 Sequential and parallel execution times for the road network of Texas 156
8.11 Sequential and parallel execution times for the road network of Northeast

USA 156

8.12 Sequential and parallel execution times for the road network of California
and Nevada 157

8.13 Sequential and parallel execution times for the road network of California 157

List of Algorithms

3.1 TribonacciSequence() 36

5.1 SequentialChordlessCycles(G) 75
5.2 FindInitialTripletsParallel(G) 80
5.3 ExpandChordlessPathsParallel(G, `) 81
5.4 HostProcess(G, `) 83

6.1 Summation(A) 90

7.1 DijkstraAlgorithm(G, s) 114
7.2 BellmanFordMooreAlgorithm(G, s) 115
7.3 ParallelDi jkstra(G,s) 136

Listings

3.1 Multiplying elements in a vector 50
3.2 Unrolling the multiply routine 50
3.3 First example of divergent condicional “if-then-else” 53
3.4 Second example of divergent condicional “if-then-else” 53
3.5 Third example of divergence: variable size loop 53
6.1 Parallel reduction – interleaved addressing with divergent branching (ker-

nel 1) 93
6.2 Parallel reduction – interleaved addressing with bank conflicts (kernel 2) 93
6.3 Parallel reduction – sequential addressing (kernel 3) 94
6.4 Parallel reduction – first add during global load (kernel 4) 94
6.5 Parallel reduction – warp reduce 95
6.6 Parallel reduction – unroll last warp (kernel 5) 95
6.7 Parallel reduction – completely unrolled and with multiple elements per

thread (kernel 7) 96
6.8 Two-stage parallel reduction of Catanzaro – stage 1 98
6.9 Unrolling the step 1 101
6.10 Algebraic “if-then-else” 102
6.11 Avoiding Divergences 102

CHAPTER 1
Introduction

1.1 Motivations

Road traffic in large Brazilian cities is, in most urban centers, in a chaotic
state. The phenomenon occurs mainly due to poor design of the road network, when
compared to the number of vehicles that travel on public roads. It is also worsened by the
constantly growing need for displacement of people and goods, which mostly have origin
in economic activities, social interaction and recreation.

This constant increase, coupled with the chronic lack of adequate government
policies for the sector inexorably lead to the deterioration of the space in the road network
available for the flow of vehicles, multiplying the bottlenecks and the time required for
the completion of travel.

According to a report from IPEA – Instituto de Pesquisa Econômica Aplicada, or
Institute for Applied Economic Research in english – the delay of drivers stuck in traffic
jams results in estimated economic losses of R$ 26.8 billion/year just in the city of São
Paulo [84]: “After all, there are estimates pointing that people waste two to three hours a

day in traffic. This means that in the course of a month they spent at least two days in the

bus or car” (translated from portuguese).
In their daily activities traffic engineers use, among other tools, mathematical

models and computer simulations in order to predict driver behavior and estimate the
impact of possible changes in the road network structure. Such simulation systems are
valuable tools for the design and evaluation of transportation networks.

However, in real urban scenarios, it is often hard to ensure that changes1 in the
road network structure will effectively contribute to the improvement of traffic, under the
considered aspects. The analysis and evaluation of projects that change the road network
infrastructure should be made carefully and based on supporting data.

1Such as: reversal in the vehicles direction on a street, permission and/or prohibition of conversions
in certain directions, opening/closing times of traffic lights, parking deny/permission, creation/removal of
roundabouts, open/close/enlarge roads, creation of bridges, tunnels, etc.

1.1 Motivations 19

A field of study called Network Design Problem (NDP) arose from this need. Its
objective is to determine (among previously identified amendments, usually proposed by
traffic engineers) which changes in the network infrastructure can provide the best result,
when a number of aspects for analysis is considered and therefore have to be implemented.

In order to predict how urban traffic will behave according to the proposed net-
work changes without having to actually implement them, usually a computer simulation
called Traffic Assignment (a resolution of an instance of a Traffic Assignment Problem

(TAP)) may be performed using a model of the modified network. With this supporting
data, it is possible to assess whether the planned interventions are beneficial and should be
implemented, or should instead be discarded. The way these two activities are connected
is illustrated in Figure 1.1.

Figure 1.1: Hierarchy between NDP and TAP.

The computational implementation of a traffic simulator is a process that can
be accomplished under several distinct mathematical approaches and, depending on the
choice, it becomes less or more financiall and computationally costly. The level of detail
of the simulation is the determining factor of these costs. There are essentially three major
levels of detail: microscopic, mesoscopic and macroscopic which are described in detail
in Chapters 2 and 8.

Encouraged by the growing interest in providing tools that aid traffic engineers
in this decision-making processes, since 2006 the Federal University of Goiás (UFG)
through its Informatics Institute and its Mathematics and Statistics Institute has developed
a web-based urban traffic simulator called PET-Gyn [141]2. It employs a macroscopic
mathematical approach to estimate vehicle flows that is suitable to the Brazilian reality,
when compared with aproaches used abroad. Such a system was submitted to experts

2The adopted nomenclature – PET-Gyn – is an acronym for Traffic Equilibrium Problem (or Problema
de Equilíbrio de Tráfego, in Portuguese) applied to the city of Goiânia, Goiás, Brazil, whose international
aeronautical acronym is GYN

1.2 Aims 20

who praised the initiative of developing technologies for this area, quite lacking in our
country. They also acclaimed the importance of releasing the system on-line, allowing
collaborative modeling, simulation and analysis of networks by traffic planners.

In subsequent years, PET-Gyn was used as a framework for other analysis tools,
which focused on aspects not covered by the original research [36, 67, 78, 85, 99, 111,
112, 113]. This proved the robustness of the developed architecture and motivated the
continuation of its development, now under a broader perspective and embracing new
problems related to the area.

Therefore, an entire redesign of the system started in 2013, aiming at updating
the PET-Gyn graphical user interface and also at making the software more flexible for
incluiding new pieces of research, with its first 2.0 version been completed in March 2016.

One of PET-Gyn’s key aspects is to provide traffic engineers with a supporting
tool to help the analysis and evaluation of projects that change the road network infras-
tructure. However, given the restrictions in the computational power of the equipments
usually available to traffic agencies, it is currently not feasible to carry out such restruc-
turing analysis in large road networks (i.e., comprising avenues, vehicles, traffic signal
units, etc.) of significant region of a metropolitan area. These involve several alternating
phases of modification of the road network and subsequent resolution of a TAP until a
valid and economically feasible proposal for improving the traffic is found.

One alternative to overcome the aforementioned issue is the use of parallel
computing, since this technique increases the processing power of commercially available
computers, therefore allowing the expansion of both the size of the problem in focus and
the level of detail to be analyzed.

Nowadays, on individual machines (not interconnected by a local area network)
such computational power can be achieved in two ways: by the use of computers equipped
with multi-core microprocessors and the use of new, programmable and powerful video
cards, known as Graphic Processing Units – GPUs.

Most approaches that deal with parallel traffic allocation focuses on micro and
mesoscopic models, naturally quite expensive in computational terms. Unfortunatelly
very little research has been conducted on parallelism in macroscopic models when
applied to large road networks. There is also no GPU-based approaches for urban traffic
macroscopic modeling.

1.2 Aims

In this thesis we study and propose parallel approaches based on GPUs for the
analysis of urban traffic conditions. We focus specifically on two topics:

1.3 Research Methodology 21

• The fast enumeration of chordless cycles in graphs, since the study of these
structures can help traffic planners to identify regions of the urban traffic network
that are poorly connected and, hence, can act as barriers to movement;

• The Traffic Assignment Problem (TAP), that briefly refers to the assignment of vehi-
cles on the road network according to its structural settings, as well as information
about traffic volumes. A traffic assignment method allows the understanding of how
travel demands become traffic flows in a network. This is very important for per-
ceiving the causes of traffic congestions and of other traffic costs in some areas and
for evaluating changes in the network that can alleviate these problems.

For the first problem, a GPU parallel method is implemented based on a new
sequential approach described by Dias et al. [74]. Here, both execution time and memory
space metrics are considered since, in this case, the memory consumption is critical due
to the extremely fast way the number of chordless cycles grows with the increase of the
size of the input graph.

For the second problem, a number of steps that composes a classical sequential
traffic assignment method are studied and equivalent parallel algorithms using GPUs are
designed in order to identify the best structures – of data and flow control – for improving
their performance. We start with two sub-problems common in those steps, which are the
execution of a reduction operation and computing shortest paths.

Despite considering memory space usage in the chordless cycle problem, the
main performance metric in the present thesis is execution time. We assume that the
amount of memory available in current GPUs3 does not represent a limitation to the
solution of the problem under study, if the correct data structures are chosen.

1.3 Research Methodology

In order to achieve the goals proposed by the study, the following steps have been
specified:

1. Performing a literature review on parallel computing and GPU technology, among
other relevant studies related to these topics;

2. Carrying out a literature review on traffic engineering and the models of traffic
assignment (TAP), as well as parallel and distributed approaches used in this field
of study;

3Commercial GPUs offer specialized memories that, in many cases, reach the level of several gigabytes.
Models with 1GB, 2GB and 4GB are usual, reaching 32GB in models considered state of the art. In addition,
there is the possibility of using multiple cards together, bringing the total memory available to the order of
hundreds of gigabytes.

1.4 Contributions 22

3. Conceiving, designing and implementing GPU-based parallel algorithms for each
step of the TAP based on a well established sequential method;

4. Evaluating the implemented parallel algorithms for TAP;
5. Conceiving, designing and implementing a GPU-based parallel algorithm for the

fast enumeration of chordless cycles in graphs;
6. Testing, reviewing and evaluating the implemented enumeration algorithm.

1.4 Contributions

The main contributions of the thesis are:

• The first GPU-based algorithm for the enumeration of chordless cycles;
• A refinement of the parallel reduction implementation proposed by one of the

leaders in the GPU market, which resulted in a 2.8x speedup relative to its original
version;

• A new parallel GPU-based shortest path algorithm that takes advantage of some
common properties of urban traffic networks;

• A parallel algorithm for the macroscopic traffic assignment problem and an imple-
mentation that is 39x faster than the sequential equivalent approach when applied
to large scale networks.

1.5 Organization of the Thesis

The remainder of this work is organized as follows: Chapter 2 provides a litera-
ture review of the basic concepts of urban traffic modeling. Chapter 3 summarizes basic
concepts about parallel computing and the current state of tools and techniques for GPU
programming. Chapter 4 describes some parallel systems for traffic simulation. Chapter 5
presents a GPU parallel method to enumerate all chordless cycles in a given graph. Chap-
ter 6 shows a platform-independent and fast strategy to perform parallel reductions on
programmable video devices. Chapter 7 depicts an efficient way to solve the single source
shortest path problem on GPUs for urban traffic networks. Chapter 8 details the main con-
cepts of macroscopic urban traffic assignment, the associated mathematical modeling and
the implemented GPU parallel system. Finally, Chapter 9 draws the conclusions, the main
contributions of the present thesis and proposals for future work.

CHAPTER 2
Urban Traffic Simulation Models

According to Cascetta [38], a Transportation System can be defined as a com-
bination of elements and their interactions, which produce both travel demands and the
provision of transport services to meet those demands. Such a definition is quite general
and can be applied in different contexts. In general, Transportation Engineering deals
with the design and evaluation of projects of transportation systems.

Traffic Engineering, in turn, is a specialization of Transportation Engineering,
whose objectives are to plan – to define goals, steps, deadlines and means – the geometric
design of roads and how they will relate to other means of transportation and the traffic
operations in the road network as well. Traffic Engineering should always have the basic
premises to guarantee a safe, efficient and convenient movement of people and goods at
acceptable costs [198].

The aspect that distinguishes Traffic Engineering and differentiates it from other
areas of Engineering is that it deals with issues that do not rely solely on physical agents,
but often must also consider the behavior of drivers and pedestrians and their interactions
with the surrounding environment.

While it may seem that the work of the authorities responsable for traffic is
simple – because at a first glance they just have to increase network capacity in order
to improve it – this is not always true. A famous example is given by the Braess Paradox.
According to it, it is possible (though unlikely) that “to increase the network capacity,

creating a direct connection between two initial paths (a third way), has the effect of

increasing the length of time for all system users” [95], i.e., travel time will be higher
than before the construction of the new road.

This little obvious phenomenon could be observed in practice in the cities of
New York (United States) and Stuttgart (Germany). In 1990, the 42nd avenue of the city
of New York was closed for the Earth Day and, despite predictions that it would create
chaos, the traffic at that area actually improved [152]. The opposite occurred in Stuttgart:
a new avenue was built in downtown and the traffic worsened significantly. The expected
benefits were only achieved after a crossing avenue had been closed to traffic [19].

Having made these considerations, Traffic Engineering is characterized as a

2.1 Background 24

multidisciplinary field of knowledge. Ideally, a study team should be composed by civil,
structural and traffic engineers, landscape architects, urban planners, sociologists, urban
geographers, economists, mathematicians (applied Mathematics), lawyers and market
analysts [56].

This chapter describes and details the main mathematical models for urban traffic
simulation and the assignment of vehicle flows on the road network. It is organized as fol-
lows: Section 2.1 lists the main models of traffic assignment. Section 2.1.1 provides some
details on how the microscopic models operate and its computational costs. Section 2.1.2
briefly describes the mesoscopic models. Section 2.1.3 presents the macroscopic models
and why they were chosen for use in this work. Section 2.2 gives some details on the
macroscopic models, its basic definitions and the two main macroscopic models available
in literature. Finally, Section 2.3 presents some general remarks about the present chapter.

2.1 Background

According to Ortuzar and Willumsen [191], a model can be understood as a
simplified representation of a part of the real world, which seeks to focus on several
elements considered important to the analysis, under a certain point of view. Thus, the
modeling of traffic tries to describe its behavior using computational and mathematical
resources, in order to better understand their problems or predict future behavior.

Traffic modeling is based on a hypothesis that, although imperfect, a model is
useful since it corresponds to the majority of urban flows, especially at peak times: It is
assumed that every driver is familiar with the road network and wants to minimize its own
travel time (cost). It is also assumed that the displacement demand is fixed.

A myriad of traffic models can be found in the literature that try to reproduce the
reality according to different approaches. These models, however, have many points in
common, allowing their classification under some aspects. One of these is the road flow

representation levels (also called aggregation levels), according to which, models can be
categorized into micro, meso or macroscopic [62, 161], as described next.

2.1.1 Microscopic Models

Microscopic models simulate in detail the individual behavior of each vehicle
such as acceleration, braking, lane change, etc., as well the consequences of each individ-
ual action in relation to the other vehicles. They operate stochastically (randomly gener-
ating various simulation parameters) and require a large computational effort and a large
amount of data [106, 161]. Among the proposals that can be classified as microscopic a

2.1 Background 25

number of methods can be cited, which are based on: Car-Following, Cellular Automata,
Monte Carlo, Discrete Events and Continuous-Time Simulation.

Despite the high development and maintaining costs and the running difficulties
of microscopic models [161], there is a considerable amount of academic and commercial
applications that implement them, including systems such as AIMSUN2, DRACULA,
CORSIM, SimTraffic, VISSIM, among others. A detailed description of these systems,
a brief history as well as a comparative table of their main features can be found
in [162, 205, 209].

More recently, efforts have been made toward an even greater separation of the
elements involved in the traffic, considering individual behavior of drivers (with detailed
modeling of perception, decisions and mistakes committed) and vehicles. This approach
is called nanoscopic [6, 72, 153, 195].

Thanks to the microscopic model’s inherent philosophy – which aims to estimate
the real-time behavior of the vehicles traveling on the road network – and to the extent
that the behavioral models are improved – with more and more aspects of the actual traffic
being considered in the simulation environment – the computational complexity also rises
significantly. Despite the steady increase in the processing power of modern personal
computers, such a kind of simulation remains computationally expensive, limiting the
maximum size of the network that can be simulated on a PC – even using parallel
computing on a multi-processor machine – in reasonable time [243].

Trying to circumvent such limitations, software designers and engineers usually
make use of distributed computing – be it on a local network or in a Wide Area Network

(WAN) – in order to achieve efficient simulation of large areas and high volumes of
vehicles [165, 243].

However, other implementation and execution problems arise when distributing
the work between different nodes (or participants) of a network [164] because the
algorithms and communication structures must be adapted for distributed environments.
The first and most obvious difficulty is the extra layer of code that must be created for
communication and synchronization between the network nodes. Taking into account
that the communication environment is considerably slower than internal computer data
traffic [77, 202], its use should be minimized.

Another problem appears when splitting the computation through nodes of a net-
work. This task implies that the traffic system should be partitioned into roughly equiva-
lent complexity subsystems to ensure a homogeneous workload among the participants.
If this is not possible, the simulation performance can be severely degraded [220].

The partition process should also ensure that the division into subsystems occurs
only in regions where there is no strong interaction between the avenue segments (i.e.,
it does not occur in the direct vicinity of path crossings), a task which is not always

2.1 Background 26

trivial [83].
A less obvious – but not less important – impediment to the adoption of this

solution is that many traffic agencies are not able to afford the high implementation and
maintenance costs of a network exclusively dedicated to simulation and study of urban
traffic.

2.1.2 Mesoscopic Models

Mesoscopic models are deterministic models that describe the system entities
with a large number of details, but treat their activities and interactions (for example, a
lane change) with much less precision when compared to microscopic models [24, 34,
161]. These models do not consider individual vehicles as elements of traffic, but the
platoons they create during their displacement, according to the momentary interruptions
in flows due to traffic lights. The mesoscopic models are quite useful, e.g., in the definition
of traffic lights synchronization policies.

There are several computer programs and studies that implement hybrid models,
combining micro and mesoscopic simulations, thanks to the proximity between them,
such as the studies of Burghout et al. [32, 33, 34, 35], Yang et al. [251], Vilaró et al. [239]
e Mammar et al. [168], among others.

2.1.3 Macroscopic Models

Macroscopic models treat traffic as a single entity in the form of an equilibrium
system, describing it through relationships between flow, density and speed [62]. These
models generally represent the traffic streams as a continuous fluid flowing in a similar
way to liquids, basing its theoretical formulation upon the laws of hydrodynamics [200,
232].

They are the less expensive in computational and implementation terms, but are
also the most inaccurate. Because of this imprecision, their use is traditionally justified
when [106, 161]:

• the calculation result is not sensitive to microscopic details;
• the scale of the simulation does not allow the execution of microscopic models, due

to their high execution time; and
• resources and time available for the construction of the application are limited.

On the other hand, it has been observed that the uncertainties involved in the data
survey of road flows make the concern for accuracy less relevant when searching for the
optimal solution [5]. This has caused the macroscopic models to grow in popularity to

2.2 Details on Macroscopic Models 27

the point that they are now widely used in simulations of urban traffic. Thus, the present
study chooses a macroscopic model as the traffic assignment model.

2.2 Details on Macroscopic Models

A road network is a simplified representation of an existing road mesh struc-
ture [199]. To measure the behavior of vehicles on a road network, it has to be submited
to a traffic circulation, being such activity called traffic assignment or traffic allocation.
In this process, some simplifying assumptions are made about road traffic:

• the vast majority of drivers travels from a source to a destination;
• the vast majority of drivers knows the local geography and what possible paths are

the most economical at that time1.

The macroscopic assignment models have as input data, besides the urban road
network structure, rules for route selection, as well as a set of demands that specify the
amount of traffic between origin-destination [87] pairs. As output data, these models
generate the averages of vehicle flow and travel time on each road.

Next we present the basic formal definitions of macroscopic modeling and how
the traffic assignment process is computed.

2.2.1 Basic Definitions

Be the road network G = (V,E), where V is a set of nodes (intersections) and E

is a set of directed arcs (streets or avenues). Each arc a ∈ E has a length (in meters) ca, a
number of traffic lanes2 fa and a free speed3 va.

A demand di, j ∈V ,di, j > 0 corresponds to the number of vehicles that intend to
move from i to j, respectively origin and destination nodes in the road network G. When
the source and destination points are implied, the demand is represented only by d.

A vector (D) of demands of vehicles between origins and destinations (OD) in
G is considered to be known. This vector usually contains demands for a certain period of
the day.

1This assumption may not be entirely correct in some cases. However, it is not a complicating element
of the computational model, since it is possible to associate a maximum free speed slightly smaller than the
true one for a little-known urban way. This minimizes the use of these routes by the shortest path algorithms,
effectively simulating the fact that they are not well known.

2The width of the street/avenue lane is measured without parked vehicles. Each 3.5 meters in width
corresponds to a lane.

3Average speed maintained by the drivers in a situation of completely free road or with small flow – in
km/h.

2.2 Details on Macroscopic Models 28

A flow xa in arc a is the amount of vehicles that travel along it during a certain
period of time. The network flow XG is given by XG =

⋃
a∈E

xa. When computed, XG is

considered viable if it meets the total demand (D).
Xd represents the demand’s flow d ∈ D , with Xd ∈ R |E|. In other words, Xd

consists of all arc flows of the network necessary to meet the specific demand d, including
the null flows.

The arc cost, represented by ta, is the average travel time of the vehicles using
this arc. Such a cost is given by latency functions based on the previous parameters (ca,
fa and va) and on the amount of vehicle flow through a street/avenue. As usually a road
network is composed of several kinds of streets and avenues, for each kind there is a
specific arc cost function.

The traffic network time TG is the vector of times ta required to travel at all arcs
a ∈ E, with TG ∈ R |E| and TG = ∑

a∈E
ta.

The road network state is given by SG =< XG,TG > and the traffic total cost is
given by CG = ∑

a∈E
ta ∗ xa.

The Traffic Assignment Problem (TAP), therefore, consists of, given G, functions
for ta and D, to find a feasible flow X∗ such that any feasible flow X is worse than X∗.

2.2.2 User Equilibrium and System Optimization

The first suggestion of considering the urban traffic as a system in equilibrium
was made in 1924 by Frank Knight [150]. Later, in 1952, Wardrop [244] established
two principles using this concept in order to formalize the notion of urban traffic in an
equilibrium condition: the Wardrop’s Principles.

According to his definitions, under equilibrium the traffic generally tries to reach
one of the following two status [126]:

• User Equilibrium (UE): Here, the traffic conforms to the Wardrop’s First Prin-

ciple [244]. This principle states that, under equilibrium conditions, traffic in con-
gested networks self-organizes so that all used routes between a source and desti-
nation pair have minimal cost, while all unused routes have higher costs than those
ones. Drivers individually choose their faster routes, and the system enters in equi-
librium when no vehicle can improve its own travel time through an individual route
change;

• System Optimization (SO): Wardrop also proposed an alternative form of traffic
assignment in a transportation system, known as Wardrop’s Second Principle [244].
In this state the transportion system is arranged (probably by an all-powerful central
intelligence) in a way that the sum of the travel times of all drivers is the smallest
possible.

2.2 Details on Macroscopic Models 29

The UE condition tries to reproduce the actual drivers’ behavior while SO depicts
an ideal behavior, in which the traffic system is globally optimized, sometimes to the
detriment of individual drivers’ interest. The Traffic Equilibrium Problems (TEP) [57]
that focus on a traffic assignment under the UE and SO conditions are called, respectively,
TEP-UE and TEP-SO.

The price of anarchy – term formally introduced in [154] – is a relationship
between the solutions for TEP-UE and TEP-SO. The comparison of these two solutions
indicates how far from ideal the network under analysis is, indicating the intrinsic level of
inefficiency of the current road network, also being an estimate of the impact of individual
drivers decisions on the whole system [47].

2.2.3 Beckmann’s Model

Beckmann et al. [11] were the first ones to present a mathematical model4 to
compute both TEP-UE and TEP-SO. Since then, their approach became the de facto

macroscopic model [25, 47, 181]. In their model, the central point is the formulation of
latency functions (in the present study, the average travel time ta) for each street/avenue
of the road network under analysis.

These functions (which must meet the requeriments of convexity, continuity,
monotonic increase and strictly positive) have to be defined in such a way that, as more
vehicles simultaneously use the arc, its latency also increases proportionally, making it
progressively less attractive and forcing users to choose alternative routes [47].

Mathematically, this is a minimization problem whose objective function is
nonlinear but convex, in which there are no restrictions regarding the flow in the arcs.
Here, the natural restrictions on the capacity of each street/avenue to receive vehicles
are implicit, being the result of its own latency function. Further details about this
minimization problem and the objective functions can be found in Chapter 8.

In the original model, it is assumed that the time to travel an arc a of the road
system depends only on the vehicles flow on a itself. However, when considering arcs
whose travel time are influenced by other arcs (for example, non-preferred avenues, where
drivers must wait their turn before continuing its journey) this assumption does not reflect
the reality. Other factors than the flow on a itself often have a decisive influence on the
travel time (these factors are detailed in Section 8.1.1).

4Their mathematical model is presented in detail in Section 8.1.

2.2 Details on Macroscopic Models 30

2.2.4 Nesterov & de Palma Model

More recently, Nesterov and de Palma proposed an alternative model [65, 66,
186] to solve the TEP (UE and SO), which has some fundamental characteristics that
differentiate it from Beckmann’s model:

• Constraints on the arc’s capacity are explicitly defined and are not a direct conse-
quence of the latency functions as in Beckmann’s model;

• Wardrop’s First Principle is the result of loosening complementary restriction
conditions of the associated convex optimization problem. Specifically, the model
allows latency functions to be discontinuous and unbounded on a finite feasible
interval;

• The travel time of each arc is computed using Lagrange Multipliers [10, 14, 44] of
the capacity’s constraints.

Formally, the model considers a road network G = (N,A), where N is the set of
nodes (intersections or zones) and A the set of arcs (streets, avenues, etc.). Each arc a ∈ A

has a capacity qa, i. e., the maximum amount of cars that can travel through it in a given
period of time and a free travel time t̄a, which represents the time required to travel the
arc at the maximum allowed speed.

According to the definition, qa can never be violated and, while there is available
capacity to allocate the traffic agents, there is no reduction in the travel speed of vehicles.
Upon reaching the limit of capacity qa, congestion and delays can then occur. Formally:

Theorem 2.1 Be (f, t) a traffic assignment. Then (f, t) must meet the following conditions:

• The total flow fa in an arc a should never exceed the arc’s capacity: fa ≤ qa;

• Below the capacity limit, the travel time ta of any arc a ∈ A is equal to its free travel

time ta. Upon reaching the capacity limit, the travel time can be set to any value

greater than or equal to ta, i.e.:

i f fa < qa then ta = ta;

i f fa = qa then ta ≥ ta;

The total travel time is defined as ∑
a∈A

fa · ta. As pointed out in Section 2.2.2,

under the SO condition, drivers are managed by an all-powerful central intelligence,
which always seeks to minimize the total travel time by assigning a specific route to
each driver in the network, ignoring the fact that this probably does not meet individual

2.3 General Remarks 31

interests. According to Nesterov and de Palma, computing a traffic assignment under the
SO condition (NdP-SO) corresponds to solving the following minimization problem:

(NdP−SO)min f ,h ∑
a∈A

fa · ta

sub ject to fa = ∑
k∈OD

hk
a ≤ qa ∀ a ∈ A

Ehk = δk ∀ k ∈ OD

hk ≥ 0 ∀ k ∈ OD

where

• OD ⊂ V ×V represents the set of fixed origins and destinations for every demand
d ∈D;

• dk > 0, k ∈ OD is the number of vehicles moving from origin to destination of k

during a certain period of time;
• hk ∈ R|A| represents the flow of the OD pair k ∈ OD and, hence, f = ∑

k∈OD
hk.

and

Eu,a =


−1 if u is the tail of arc a,
1 if u is the head of arc a,
0 otherwise.

δk,u =


−dk if u is the origin of OD pair k,
dk if u is the destination of OD pair k,
0 otherwise.

A detailed comparison between Beckmann’s et al. and Nesterov & de Palma
models is available in [47].

Although Beckmann’s model dates back to 1956, is still the most widely used
model for the macroscopic traffic assignment [8, 13, 155, 219, 238]. And, since 2003,
the UFG group of traffic studies have used it in the macroscopic urban traffic allocation
process. For these reasons, Beckmann’s model is used as the basis for the simulation
employed in this work, and its implementation is presented in detail in Chapter 8.

2.3 General Remarks

The present chapter depicted the basic concepts of urban traffic simulation and
the models available for studying the traffic assignment problem. It also provided a more
detailed description of the macroscopic model and presented two well known proposals
for this kind of traffic assignment.

2.3 General Remarks 32

The concepts presented here and discussed in further detail in Chapter 8 are of
fundamental importance for understanding how a macroscopic traffic assignment can be
achieved. These concepts ultimatelly guided the parallel algorithmic strategies adopted
throughout the current thesis.

CHAPTER 3
Parallel Computing and the GPU

This chapter presents the basic terminology and some important concepts of par-
allel computing, as well as a detailed description of the technologies behind the new
GPUs (Graphics Processing Units). It is organized as follows: Section 3.1 presents some
basic concepts of parallel computing. Section 3.2 gives a general vision of modern GPUs,
depicts some good GPU programming strategies and tools for GPU programming. Sec-
tion 3.3 details some advanced techniques used in this work to better explore parallelism.
Finally, Section 3.4 gives some general remarks about the main concepts presented in the
chapter.

3.1 Background

Parallel computing is a technique in which multiple instructions are simulta-
neously executed using different processing units, according to the idea that a complex
and/or large problem can be “broken” into smaller sub-problems and these, in turn, can
be solved simultaneously [218].

Unlike sequential computing, where the Von Neumann execution model [240] is
the only well-established one, in parallel computing there is no consensus about the best
execution model, with a miriad of proposals that have emerged in the last decades. As the
study of these models is outside the scope of this thesis, only the best known (PRAM)
is presented in more detail in Appendix A. Campbell [37] and Hartenstein [124] present
surveys about the most important ones.

Although for a long time there has been a strong skepticism about the real
benefits of parallel computing, especially due to Amdahl’s law [4], after the 1988’s article
by Gustafson [117], interest in the subject has risen and, currently, hardware and software

manufacturers spend huge efforts trying to explore this technology. In the frantic race
to determine who has the fastest supercomputer, all the more powerful computers around
the world make use of thousands of multi-core processors running in parallel and, in some
cases, aided by hundreds or thousands of the new, programmable GPUs (see Section 3.2).

3.1 Background 34

Basically there are four different types of parallel computing: bit-level,
instruction-level, data and task parallelism. They are briefly described next:

• Bit-Level Parallelism – Starting in the 70’s, with the introduction of VLSI chip
manufacturing technology (very large scale integration), advances in computer
architectures were achieved by increasing the length of the words that the micro-
processor can handle in each clock cycle. By increasing word size (i.e., number
of bits that form it) the amount of instructions that the microprocessor needs to
perform when processing variables that exceed this size is reduced.
As a simple example, consider the steps that an 8-bit processor must follow when
instructed to add two 16-bit integers. In this case, it first adds the low order 8 bits
of the two numbers, then it adds the 8 bits of high order using an “add-with-carry”
instruction and the transport bit (carry bit) from the initial addition. Thus, an 8-bit
processor must perform two steps to complete the operation, while a 16-bit can
complete it in one step.

• Instruction Level Parallelism – A computer program is nothing more than a stream
of instructions executed by a microprocessor. In many situations these instructions
can be rearranged and grouped so as to be executed in parallel without affecting
the final result of the program. Advances in this area were the focus of the micro-
processor industry between the mid-80s and 90s.
Modern processors have an instruction pipeline1 with several stages. Each stage
in the pipeline corresponds to a different action the processor executes in the
instruction at that stage. In other words, a processor with N pipeline stages may
have up to N instructions in different stages to complete. See Figure 3.1.

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB

i

t

Figure 3.1: A 5-stage pipeline of a RISC machine. IF = Instruction
Fetch, ID = Instruction Decode, EX = Execute, MEM
= Memory Access, WB = Register Write Back.

In addition to the pipeline, some processors are able to execute more than one
instruction at a time. They are known as superscalar processors (see Figure 3.2).
Instructions can be grouped only if there is no data dependency between them.

1Pipelining: hardware design technique where the processor is able to execute more than one instruction
at a time, without waiting for a instruction to finish before starting the next one.

3.1 Background 35

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WBt

i

Figure 3.2: A 5-stage pipeline on a superescalar processor, able to
handle two instructions per clock cycle. There can be
two instructions on each pipeline stage, with up to 10
instructions (the highlighted column) being simultane-
ously executed.

• Data-Level Parallelism – This type of parallelism explores the concurrence that
emerges from the application of a similar (but not necessarily identical) sequence of
operations to multiple elements of a data structure [94] and is typically implemented
by a repeating loop. For example, “add 4 to all elements of this vector” or “increase

by 30% the salary of all employees with five or more years of formal contract”. It
is often found in programs that work with large volumes of data.
However, there are situations that prevent a loop to be parallelized. If the data
being processed has values that depend on previous iterations, then the technique
cannot be applied. For example, the pseudo-code presented in Algorithm 3.1, which
computes the k-th term of Tribonacci sequence [79], can not be parallelized because
value depends on n1,n2 and n3 and these are calculated in each iteration of the loop.

• task level parallelism – Here, different instruction sequences may be executed
simultaneously, either on the same or distinct data sets, in contrast to data-parallel
level, where a similar calculation is performed on different sets of data. The
latest multi-core processors from AMD, ARM and Intel can perform this type of
parallelism.

3.1.1 Amdahl’s Law

In 1967, the computer architect Gene Amdahl [4] established a law that, for a
long time, was extensively used as a way to measure the maximum speedup2 that could

2Value that measures how faster a parallel program is, when compared to the corresponding sequential
version.

3.1 Background 36

Algorithm 3.1: TribonacciSequence()

Input: K > 3
Output: k-th term of Tribonacci sequence.

1 n1← 1
2 n2← 1
3 n3← 2
4 idx← 3
5 while idx < K do
6 idx← idx+1
7 value← n1 +n2 +n3
8 n1← n2
9 n2← n3

10 n3← value
11 end
12 return value

be achieved when programs run on parallel processors versus only one processor, since
the size of the problem to be solved remains the same when the algorithm is parallelized.

In a synthetic way, the law states that the achievable performance gains that can
be obtained when parallelizing a program3 are limited by its inherently sequential part.

The law can be formalized as follows: let “s” be the fraction of the program to
be sequentially executed and let “p = 1-s” be the parallelizable fraction, with 0 ≤ s ≤ 1.
The achievable speedup by a parallel computer equipped with “N” processors is

S =
1

s+ p
N

To illustrate this phenomenon assume that, for a given problem size, 18% of
the program must necessarily be executed sequentially (for example, connecting to the
database, environment initialization, etc.), while the remaining 82% is dedicated to solve
the problem and this part is parallelizable. Amdahl’s law says that the speedup that can be
achieved when parallelizing on a machine with, let’s say, 16 processors is:

S =
1

0.18+ 1−0.18
16

≈ 4.32

and the maximum achievable speedup would be:

lim
N→∞

1
0.18+ 1−0.18

N

≈ 5.56

3Any program, no matter how complex it may be, will always have pieces of code that are inherently
sequential.

3.1 Background 37

Due to Amdahl’s law, for a long time there was a lot of pessimism about the
usefulness of massively parallel computing. Even if the serial fraction “s” of the problem
is very small and the amount of processors grows indefinitely (N → ∞), the law says
that the maximum speedup that can be achieved is only 1

s . Figure 3.3 illustrates the
phenomenon for N = 1024: The speedup drops dramatically even for very small serial
fractions [117].

Figure 3.3: Maximum speedup under Amdahl’s law (extracted
from [117]).

3.1.2 Gustafson’s Law

In 1988, John L. Gustafson published an article [117] questioning the validity
of Amdahl’s law. The author argues that there is a flaw on it: the assumption that “p”
is independent of “N”, which practically never happens. It is unusual to get a fixed-size
problem and try to solve it with a certain variable amount of processors, except perhaps
in the academic world. In practice, the problem size grows along with the number of

processors. Given more computational power, the problem usually grows to make use of
such power. Consequently, it is more realistic to assume that the runtime is constant, not
the problem size.

He also states in his article that the parallelizable is the part of the program
that grows, following the size of the problem. Program tasks such as startup, bottlenecks
in communication, among others composing “s” do not grow (or grow slowly) with the
problem. This means that, in a first analysis, the amount of work that can be performed in
parallel varies linearly with the number of processors.

3.1 Background 38

In a parallel system with “N” processors, using respectively “ssseeerrr” and “pppaaarrr” to
represent the time spent in serial and parallel parts, then a single processor will require
a ser + par ×N time to complete the task. Assuming that ser + par = 1 for algebraic
simplicity, this leads to an alternative to Amdahl’s law suggested by E. Barsis [117]:

Scaled speedup =
(ser + par×N)

ser + par

= (ser + par×N)

= (ser +(1− ser)×N)

= N + ser−N× ser

= N +(1−N)× ser

As it can be seen in the equation, it is much easier to get a significant performance
increase with parallelism than Amdahl’s law suggests. Figures 3.4 and 3.5 illustrate and
summarize these two arguments.

Time = 1

s p

1 N

Time = s + p/N

 Run on serial processor

 Run on parallel processor

Figure 3.4: Fixed size model for Speedup = 1
s+ p

N
(extracted

from [117]).

Figure 3.5: Scaled size model for Speedup = s+N · p (extracted
from [117]).

3.1 Background 39

3.1.3 Flynn’s Taxonomy

In 1966, Flynn et al. [89, 194, 203] proposed a classification for computer
systems – which ended up becoming the standard and is still widely used to this day –
based on the idea of instruction flows and data flows to be simultaneously processed. This
classification divides computers into four classes considering the number of instruction
streams (single or multiple) and data streams (single or multiple), categorized as:

• Single-Instruction Single-Data Streams (SISD): von Neumann machines, purely
sequential, are classified in this category;

• Single-Instruction Multiple-Data Streams (SIMD): defines parallel machines that
have a single control unit and where all processors execute the same instruction on
different data sets synchronously and in lock-step;

• Multiple-Instruction Single-Data Streams (MISD): in this category, the same set
of data is handled by processors executing different instruction streams. In practice
there are no viable MISD machines. However, some authors consider that there are
machines that can be classified as MISD [80];

• Multiple-Instruction Multiple-Data Streams (MIMD): unlike SIMD machines,
MIMD have a control unit for each processor and are able, therefore, to execute
different instructions at different datasets.

Figure 3.6: Flynn’s Taxonomy for computer systems.

In 1988, Johnson [139] proposed a division in the classification of MIMD
machines, based on memory structures (global or distributed) and the communication
and synchronization mechanisms (shared variables or message passing), as shown in
Figure 3.7.

According to the memory structure and the ways of communication and synchro-
nization, the MIMD architecture can be divided in:

• Global Memory Shared Variable (GMSV): multiprocessor systems with shared
memory and considered tightly coupled;

3.1 Background 40

• Distributed Memory Shared Variable (DMSV): implement distributed memory
combined with programming through shared variables. Also known as systems with
distributed shared memory;

• Distributed Memory Message Passing (DMMP): multicomputer systems with dis-
tributed memory and considered loosely coupled;

• Global Memory Message Passing (GMMP): machines with shared global memory
and where the processors communicate through message passing. They are little
used in practice [194].

Figure 3.7: Flynn-Johnson’s Taxonomy for MIMD machines.

Next, more details about the SIMD class are presented, as it is related to the
hardware architecture that is the focus of this thesis.

3.1.4 SIMD Machines

Processing units in parallel computers can operate both under the supervision
of a central controller and in an independent manner [114]. Machines built under SIMD

philosophy fit into the first category. This central controller, in turn, is responsible for
retrieving and interpreting the program instructions, whether sequential or parallel. It is
the task of the central controller to identify data structures and processing instructions
that can be parallelized and to transfer them to the processor set (see Figure 3.8).
When identifying any control flow or calculation that can not be parallelized, the central
controller handles the data to be processed.

The history of SIMD machines dates back to 1962, with the ILLIAC IV [61,
130, 169] project. It was the first large scale multi-processed machine, consisting of 64
processing units. The project ended up abandoned due to high costs and low performance,
taking with it the SIMD concept. It was only in 1985 that Dannis Hillis ressurected
the SIMD architecture with his “Connection Machine” [129], consisting of 65,536 1-
bit processors [143]. More recently, SIMD concept variants found fertile ground in
co-processing units like MMX of Intel/AMD processors, in digital signal processing

3.2 A General Overview on Modern GPUs 41

chips (DSP) and on SSE technology (Streaming SIMD Extensions) also implemented
on Intel/AMD processors [114]. The SSE provides a set of instructions that perform the
same operation in one or more sets of data.

Figure 3.8: Processing Flow on a SIMD Machine.

Current GPUs are not strictly SIMD machines, but operate in a pretty similar
way. They actually have strengthened the SIMD concept with the ability of multithread-
ing, creating a new execution model called Simple Instruction, Multiple Threads – SIMT.

In this model, a set of “p” processing elements seems to execute much more
than “p” tasks. This can be accomplished by letting “p” to run multiple “work-items” (or
“threads”) which, by its turn, execute in a lock-step analogously to SIMD [171].

The SIMT execution model was firstly introduced by NVidia in the G80
GPU [163]. AMD released the R600 GPU chip under the same philosophy a short time
later [131].

GPUs also operate under the Simple Program, Multiple Data – SPMD concept.
Here, each GPU’s processor executes the same program, but every processor can pos-
sibly handle a different amount of data or take slightly different paths during program
execution, breaking the lock-step rigid imposition of the SIMD model.

3.2 A General Overview on Modern GPUs

The Graphics Processing Units are micro-processors dedicated to perform oper-
ations related to 2D and 3D graphics applications. Among these applications, CAD, CAM,
games and graphical user interface can be cited. Thanks to their highly parallelized and
specialized architecture, they are much more efficient in handling graphics than general
purpose CPUs, which are especially designed for the execution of sequential code.

In essence, a GPU consists of several units specialized in performing floating
point operations, massively used in the graphic functions of rendering algorithms. The
large ammount of these execution units, working in parallel, is what allows the high
computational power of such processors [42, 55].

3.2 A General Overview on Modern GPUs 42

Currently, GPUs can be used not only to process graphic data but also as math
co-processors, running algorithms traditionally managed by CPU, the so called “General-

Purpose Programming on Graphics Processing Units (GPGPU)”. Traditionally they
are found in an independent device called video board which communicates with the
central processing unit through the PCI Express bus (see Figure 3.9 for a simplified
representation) [249]. However, since the launch of the AMD Accelerated Processing
Units (APUs), NVidia Tegra4 and Iris Graphics (Intel), GPUs can also be found as an
integrant part of the CPU. In the latter case, CPU and GPU share the same memory space.

Figure 3.9: Simplified representation of CPU and GPU communi-
cation scheme.

When CPU and GPU are two autonomous devices, processing data and code to
be executed need both to be sent from CPU (the host) to GPU (the device) through the
PCI Express Bus. Once the computation is completed, the resulting data is sent back to
the CPU’s main memory, as depicted in Figure 3.10.

It is worth remembering that CPUs and GPUs have evolved independently. While
the first was developed to answer the requests as fast as possible – i.e., to minimize latency
– the second have as ancestors 3D graphics accelerators and whose main goal was the
maximization of delivered data per time unit. There is not a common ancestor in their
family trees or a missing link that unites them [125].

Since the goal of a CPU is to work with the lowest latency possible, it has in its
internal design several optimizations aimed exclusively at minimizing the response time
to any requests, such as [90]: large amount of space dedicated to the control unit instead of
ALUs in order to refine reorder execution, provide instruction parallelism and minimize
interruptions in pipeline; multiple cache levels to cover latency; and branch prediction for
conditional jumps.

GPUs, on the other hand, try to deliver the largest possible amount of data
per time unit – i.e., to maximize the throughput. To achieve this, in their project more
transistors are devoted to data processing rather than data caching and flow control [98].
Figure 3.11 depicts the differences between the two philosophies.

4Processors based on ARM’s architecture, such as the SoCs (system-on-a-chip) used in smartphones,
tablets and PDAs.

3.2 A General Overview on Modern GPUs 43

Figure 3.10: GPU Processing Flow.

From a high level point of view, modern GPUs are conceived based on three key
features [179, p. 11–14]:

1. Stream Processor – SP. Also known as CUDA core in NVidia’s nomenclature5 and
Processing Elements – PE, they are execution – or computing – units able to run
algorithms with high efficiency and in synchrony with other SPs.
The programs running on SPs are called kernels and a work-item is one of a
collection of instances of a kernel, being executed by one or more SPs. Each work-
item has identifiers able to distinguish it uniquely within the group of work-items
in a SM (local identifier) and globally among all work-items (global identifier).
The two main parts of a SP are the Arithmetic Logic Unit – ALU and the Floating

Point Unit – FPU. Each SP has access to a small, but extremely fast, memory for
its private use;

2. Streaming Multiprocessor – SM. SPs do not operate independently. They are
grouped in tightly coupled multiprocessor blocks called Streaming Multiprocessors.
SMs not only group the SPs, they also provide a way of communication through
a shared memory mechanism. The work-items executed by the SPs are grouped
in wave-fronts and the work-items inside a wave-front execute the programs in a
SIMD style; otherwise they work in a SPMD fashion. In the present thesis, we

5See Table 3.1 for an equivalence list between OpenCL and CUDA terms.

3.2 A General Overview on Modern GPUs 44

Figure 3.11: Differences between CPU and GPU internal architec-
tures.

define MaxSMSize as the maximum number of work-items every SM can handle
simultaneously. See Figure 3.12;

3. Memory Hierarchy. According to OpenCL specifications there are four types of
memory in a GPU [235]. They are briefly described next:

• Global – Available to all SPs for read/write. It is the only way processors
grouped in different SMs can communicate and, in advanced models, it can
reach the amount of tens of gigabytes. It is the device’s main memory and,
despite the large space available, it is considered slow when compared to
memories in other hierarchies;

• Constant – As well as the global memory, this kind of memory is available
to all SPs and is physically located in the device’s main memory6. However,
it can be used more efficiently than the first one if the executing units are
equipped with hardware that supports constant memory cache;

• Local – Can be read or written by all SPs inside a SM. It’s usually available
at a much smaller amount than the global memory, ranging in each SM from
16KB in the most basic models up to 64KB in high-end models, being the
second fastest in GPU memory hierarchy;

• Private – Memory that can be used only within each SP during the execution
of the program; they correspond to GPU’s registers and, usually, have an
access time 6 to 10 times faster than local memory.

The Figures 3.12 and 3.13 give a general overview on how all this elements are
combined to form a graphic processing unit.

6Although, on the CPU side, this kind of memory can be read/write, on a GPU it is always read-only,
cached and with its size usually around 64kb per SM. When compared to global memory, it is somewhat
closer to the processor and much faster to access. It is, however, slightly slower than local memory.

3.2 A General Overview on Modern GPUs 45

Figure 3.12: High level view of a Streaming Multiprocessor – SM.

From the point of view of the internal organization, each lane of hardware of
each SIMD Streaming Multiprocessor – SM (in [125], Hennessy and Patterson present
further details about the internal organization of GPUs) is virtualized in large batches
of work-items, called wave-fronts. Each wave-front is composed of 64 work-items (32
threads in the CUDA warps) and this number, in turn, is a multiple of the length of each
lane.

All work-items within a wave-front operate in SIMD model, executing the same
instruction coordinated by a central clock. Multiple wave-fronts, in turn, are combined
into larger structures, called work-groups, where the running work-items can communi-
cate and share data through a local (shared) memory. Finally, multiple work-groups can
be queued via hardware to run on each SM.

It is worth a short comment here about the way SPs operate in AMD GPUs based
on HD2000 architectures and later ones. Since then, each functional unit is arranged as a
5-way superscalar shader processor. That means that each SP is able to manage 5 scalar
floating point instructions per clock cycle and one of them (the fat one in Figure 3.14) can
handle transcendental7 functions.

3.2.1 Good GPU Programming Strategies

Based on the way modern GPUs are organized, some strategies are essential to
extract the maximum performance of the programs running on them:

7A function that does not satisfy a polinomial equation whose coefficients are themselves polynomials.
Trigonometric, exponential and logarithmic are examples of that kind of functions.

3.2 A General Overview on Modern GPUs 46

Figure 3.13: High level vision of a GPU architecture.

Figure 3.14: AMD Stream Processor.

• The use of the local memory should be maximized since, as stated before, it is the
second fastest in GPUs’ memory hierarchy. It was designed in order to allow high
speed access in a massively parallel way. Despite the small size, its efficient use is
one of the key aspects for the implementation of fast programs on these devices;

• Design the algorithms in order to avoid bank conflicts when writing to local
memory. In the GPU, the memory circuits of the local memory are arranged in
the form of banks of the same size that can be accessed simultaneously in a
single transaction. Each bank is organized in groups of 32 bytes (integers or single
precision floats) in a way that each consecutive word is stored on a different bank.
When a wave-front carries out a write transaction in this memory and the writing
operation is performed in different banks, the transaction can be carried out in
parallel. In contrast, when work-items in the same wave-front try to perform a

3.2 A General Overview on Modern GPUs 47

Table 3.1: Equivalence between OpenCL and CUDA terms

OpenCL CUDA

Device GPU
Streaming Multiprocessor (SM) Compute Unit (CU)
Processing Element (PE) Scalar Core
Stream Processor (SP) CUDA Core
Global Memory Global Memory
Local Memory (per SM) Shared Memory (per CU)
Private Memory Local Memory
kernel kernel
work-group block
work-item thread

writing access in the same bank, the operation cannot be done in parallel and the
GPU serializes the process, leading to a performance bottleneck known as shared

memory bank conflict;
• The use of the global memory must be minimized. Although being available in large

amounts, it has an access time a few orders of magnitude higher than local memory,
and its constant use (read and/or write) will severely degrade the application’s
performance;

• If access to global memory is necessary, such access should be performed in a
coalesced form. A coalesced memory access or memory coalescing is the technique
of combining multiple memory accesses into a single transaction, speeding up the
read/write operations. For example, if a group of 64 work-items (a wave-front)
needs to access a sequence of 256 successive bytes (64 integers or single precision
floats) this can be done by the hardware in one single transaction. On the other hand
any non-sequential, sparse or misaligned access to global memory will potentially
downgrade the speedup. In short: consecutive work-items should always try to
access consecutive memory locations;

• Work-items should be kept busy as much as possible doing some useful processing.
Reading data from global memory, performing a simple operation and then writing
the result back to global memory is not a smart way to use the GPU resources. See
Section 3.3.2 for further details;

• Communication between CPU and GPU should be avoided to the maximum.
Since they are distinct devices, all communication among them must be performed
through the PCI Express bus, a much slower medium than the ones available within
the GPU device. Ideally, all necessary data should be sent to the GPU only at the
beginning of the computation and read by the CPU at the end;

• The use of conditional branches (like “else”, “switch-case”, etc) should be mini-

3.2 A General Overview on Modern GPUs 48

mized. Work-items inside a wave-front must follow the same execution flow, run-
ning exactly the same instruction at the same time (i.e., under the SIMD model).
During execution of a program, if a conditional statement like an “if-then-else” is
reached, the GPU will have to run the “true” part (then) first, deactivating all work-
items that go to the “false” part (else) and invert the situation after finishing the
“true” part. As it will be discussed later, in Section 3.3.3, when this situation hap-
pens, the two branches of the conditional statements are not executed in parallel,
but in a serial fashion, which can result in a significant and undesirable performance
loss.

3.2.2 Tools for GPU Programming

The purpose of this section is to describe the current state of the various
programming tools for GPUs, as well to briefly depict some of their capabilities.

• DirectCompute – Part of the DirectX collection of APIs since version 10, it was
released by Microsoft in late 2009 [176]. Despite being hardware independent, it
is designed specifically for machines running Windows (Vista and newer releases),
which ultimately limits the scope of software developed under the platform.

• Compute Unified Device Architecture (CUDA) – It is NVIDIA’s parallel comput-
ing architecture that allows the exploration of the power of GeForce, ION, Quadro,
Tegra and Tesla GPU(s) for general purpose computing, as well as games. Using it,
software developers, scientists and researchers can process video and images, com-
putational biology and chemistry, fluid dynamics simulation, reconstruction of CT
images, seismic analysis and ray tracing, among other applications.
Programs to be executed by NVidia GPUs must be written in “C for CUDA” (regular
C/C++ code with NVIDIA extensions and certain restrictions) and compiled by
the NVidia compiler (nvcc). Software tools like Mathematica and MatLab provide
native support for CUDA, while third-party bindings allow the use of CUDA in
Python, Perl, Fortran, Java, Ruby, Lua, MATLAB and IDL. Currently, CUDA also
allows code to be written in OpenCL.

• APARAPI – A Parallel API – It is an API launched by AMD in October 2010
and released under the GPL in September 2011. It can be used to make compatible
programs – written in Java – to execute directly on AMD GPUs, without having to
re-write the code in OpenCL or CUDA. Without any user intervention, APARAPI
analyzes the program sources and checks the availability of a compatible GPU. If
any video device is available, the data will be transparently sent to such a device
using OpenCL. If a compatible GPU is not available, the API automatically tries to
run the code in multiple CPUs, in order to get the maximum available performance.

3.3 Advanced Parallel Techniques 49

Java developers can now program the GPU without knowing CUDA or OpenCL,
thus avoiding steep learning curves and new training in GPGPU languages.

• Open Computing Language (OpenCL) – It is an open standard originally defined
by Apple and now maintained by the Khronos Group, for generic use of parallel
computing in heterogeneous environments, such as CPUs, GPUs, CELL Broadband
Engines, NPUs (Network Processing Unit), etc. It comprises an API (used to
manage OpenCL entities, such as kernels, environments, computing devices, and
others) and a language based on C, for writing kernels (programs that run on
entities), offering the same features of CUDA and DirectCompute.
An OpenCL platform (host) is composed of one or more computing devices, such as
a GPU. Each computing device comprises computing units which, in turn, consists
of processing elements.

The present thesis adopts the Khronos Group OpenCL terminology and program-
ming model throughout the text. Table 3.1 presents an equivalence list between OpenCL
and CUDA terms.

3.3 Advanced Parallel Techniques

This section details some advanced techniques to further explore parallelism and
that were extensively used in the present work.

3.3.1 Loop Unrolling

Loop Unrolling (also known as Loop Unwinding and Loop Unfolding) is an
optimization technique – performed by the compiler or manually by the programmer –
applicable to certain kinds of loops in order to reduce (or even prevent) the occurrence
of execution branches and minimize the cost of instructions for controlling the loop [1,
91, 132, 216]. Its goal is to optimize the program’s execution speed at the expense of
increasing the size of the generated code (space-time tradeoff). It is easily applicable
to loops where the number of executions is previously known, like routines of vector
manipulation where the number of elements is fixed.

Basically the technique consists in the reuse of the sequence of instructions being
executed within the loop, so as to include more of an iteration of the code every time the
loop is repeated, reducing the amount of these repetitions.

This reuse is done by manually replicating the code inside the loop a certain
amount of times or through the “#pragma unroll n”8 positioned immediately before the

8A directive pragma is a language construct that provides additional information to the compiler,

3.3 Advanced Parallel Techniques 50

beginning of the loop. The number of times the loop is unrolled is called Unrolling Factor

and, with the pragma directive, it is given by the parameter “n”.
It is worth noting that with the pragma directive we leave the decisions of how the

loop should be unrolled to the compiler, which may lead to a not so optimized resulting
code. In the experiments performed as part of this thesis, the best results were always
achieved using manual loop unrolling, reason why this strategy has been chosen in the
current work.

As an example, consider the C code shown in Listing 3.1, which simply multi-
plies the elements of an array by its index (ai← ai · i). In this example, we call L the loop

size and F its unrolling factor. L here is equal to 100.

Listing 3.1: Multiplying elements in a vector

f o r (i n t i = 0 ; i < 100 ; i ++) {
a [i] = a [i] * i ;

}

It’s possible to significantly improve the execution speed of this algorithm by
unrolling it, as shown in Listing 3.2.

Listing 3.2: Unrolling the multiply routine

f o r (i n t i = 0 ; i < 100 ; i += 3) {
a [i] = a [i]* i ;
a [i +1] = a [i + 1] * (i + 1) ;
a [i +2] = a [i + 2] * (i + 2) ;

}

The two extra lines of code and the “i += 3” in Listing 3.2 performs the desired
three-fold (F = 3) manual loop unrolling.

As it can be seen, the L
F ratio does not necessarily need to be an integer. If it

admits a remainder, the compiler can (since the number of iterations is previously known
at compile time) add extra code to the end of the unrolled generated code in order to
ensure its correctness.

Unrolling, when applicable, offers several advantages over non-unrolled code.
Besides the decrease in the number of iterations, an increase occurs in the amount of work
done each time through the loop. This also open ways for the exploration of parallelism
by the compiler in machines with multiple execution units, since each instruction within
the loop can be handled by an independent thread.

specifying how to process its input. This additional information usually is beyond what is conveyed in
the language itself.

3.3 Advanced Parallel Techniques 51

However, these are only the most easily perceivable benefits. Agner Fog [91]
listed several others, as well as some observations about when this technique should
be avoided. Such factors (advantages and disadvantages) must be considered by the
programmer when deciding to use loop unrolling or not.

3.3.2 Persistent Threads

Since the launch of the first programmable GPUs and with all its basic architec-
ture inspired by the SIMD model, the “Single Instruction Multiple Thread” (SIMT) and
“Single Program Multiple Data” (SPMD) paradigms have become standards de facto.
Both seek to hide the details of the underlying hardware where the code runs, attempting
to facilitate the painful task of development [116].

Gupta et al. [116] argue that the usage of these “traditional” paradigms greatly
limits the actions of the programmer, because all control of the execution flow is in the
power of the scheduler’s video card. This programming style, which delegates all the
decisions to the scheduler, is called by the authors as “non-PT”, or “non-Persistent”.

It requires that the software developer abstracts units of work to virtual work-
items. Since the number of wave-fronts to create is based on the number of virtual work-
items, during a kernel launch usually there are several hundreds of even thousands more
wave-fronts to be executed than the amount of physical processing elements to assign
them to.

Such scheduling of wave-fronts is performed by the scheduler and the program-
mer has no means to interfere in the process, e.g., how, where, when and in which order

the work-groups will be assigned.
Gupta et al. claim that, while these abstractions reduce the effort for new

developers in the GPGPU field, they also create obstacles for experienced programmers,
who normally face problems for which workload is inherently irregular, therefore making
it much more difficult to efficiently parallelize when compared to problems whose parallel
solution is more regular.

According to Gupta et al., this uncovers a serious drawback of the current SPMD
programming style, which is not able to ensure order, location and timing. It also does
not allow the software developer to regulate these three parameters without completely
avoiding the GPU scheduler.

Thus, to overcome these limitations, developers have been using a programming
style called Persistent Threads (“PT”), whose low level of abstraction allows performance
gains by directly controlling the scheduling of work-groups. And although this style
has been in use for some time, only in 2012 it was formally introduced, described

3.3 Advanced Parallel Techniques 52

and analyzed by Gupta et al. [116]. They also list several problems when adopting the
traditional style.

Basically, what the PT style change is the lifetime of a work-item [183], by letting
it keep running longer and giving it much more work than in the traditional “non-PT”
style [227]. This is done circumscribing the logic kernel (or part of it) in a loop, so this
loop remains running while there are items to be processed.

Briefly, from the point of view of the developer, all work-items are active while
the kernel is running. As a direct consequence of PT, a kernel should be triggered using
only the amount of work-items that can be executed concurrently by each Streaming
Multiprocessor. All these actions will prevent constant return of control to the host and
the cost of new kernel invocations [183].

Gupta et al. acknowledge, however, that the technique of Persistent Threads is
not a panacea, and its use should be carefully evaluated [116]. In particular, the technique
fits well when the amount of memory accesses is limited (i.e., few reading/writing to
global memory and a large volume of computation) and the problem being solved has not
many initial input elements or the growth in the number of elements in the input set is
fairly limited. Beyond these conditions, the traditional non-PT style tends to outperform
the PT style.

3.3.3 Thread Divergence

Current GPUs are able to deliver massive computational power at a reasonably
low cost. However, due to the way they are constructed (see Section 3.2), some obstacles
must be overcome for the effective use of such power. One of the main and hardest
obstacles to avoid is the presence of conditional statements [253] potentially leading to
branches in the execution flow of the various work-items [121].

By default, GPUs try to run all the work-items inside the wave-fronts in the
SIMD model. However, if the code being executed has conditional statements that
lead to divergences in program flow, the divergent work-items will be stalled and its
execution will only happen after the non-stalled work-items have completed their runs,
which ultimately compromises the desired speedup. This phenomenon is called Thread

Divergence [40, 121, 182, 253].
The two program excerpts presented in Listing 3.3 and Listing 3.4 (adapted

from [121]) are examples of this phenomenon.

3.3 Advanced Parallel Techniques 53

Listing 3.3: First example of divergent condicional “if-then-else”

i n t t i d = g e t _ l o c a l _ i d (0) ;
i f (a [t i d] > y) {
++x ;

} e l s e {
−−x ;

}

Listing 3.4: Second example of divergent condicional “if-then-

else”

i n t s m a l l e s t V a l u e (i n t a , i n t b)
i f (a < b) {

re turn a ;
} e l s e {

re turn b ;
}

Analyzing the code available in Listing 3.3, if the condition becomes true for at
least one of the work-items and the code “++x” is triggered, then all the work-items within
a wave-front must pass “++x”, regardless of the fact that this code is actually executed or
not. If the average probability of the condition “if” being evaluated as true is relatively
low, this will result in a very poor use of the wave-front elements, since most of them will
not do useful work. Even in the average case, 50% of work-items will be “idle” during this
phase of the program, resulting in GPU resource waste [121]. Something similar happens
with the code presented in 3.4.

Now consider the routine presented in Listing 3.5.

Listing 3.5: Third example of divergence: variable size loop

i n t n = g e t _ g l o b a l _ i d (0) ;
f o r (i n t i = 0 ; i < n ; i ++) {

/ / Do s o m e t h i n g ;

}

In this case, the “for” loop will be executed “n” times and the value of “n”,
in turn, is dependent on the global identifier of each work-item. As such identifiers can
potentially take very high values, the work-items with a small “n” should wait for those
with larger workloads, negatively impacting the performance of the whole algorithm.

All this happens because each work-item in a wave-front needs to be executed in
SIMD model and, if this is not possible, the only thing the GPU can do is to serialize the

3.4 General Remarks 54

entire process and, in the case of code 3.5, the faster work-items must wait for the slower
ones before continuing their own execution.

Trying to circumvent this problem, some strategies have been proposed in
order to minimize or even eliminate the effects of such phenomena. Among them, we
cite [40, 98, 121, 172, 182, 253].

This phenomena emerged during the implementation of some of the algorithms
presented in the current study, such as the evaluation of the arc cost (Section 8.1.1) or
during the enumeration of chordless cycles (Section 5.3). Wherefore it became necessary
to develop a method to prevent flow divergence, which could ultimately compromise
the performance of such a step of computation. The method is detailed at the end of
Section 6.3.

3.4 General Remarks

The concepts presented in this chapter about parallel computing and how GPUs
operate are of fundamental importance for understanding the algorithmic choices made
throughout the entire work.

In particular, Section 3.2 presented and detailed the internal organization of
GPUs, their main elements and their memory hierarchy, emphasizing that the intelligent
use of this hierarchy is one of the key aspects of an efficient use of GPUs architectures.

Still in the line of a good use of GPU resources, strategies consolidated in the
literature were presented, as well as some advanced parallel techniques.

CHAPTER 4
Parallelism and the Traffic Assignment Problem

As noted in Chapter 1, urban traffic simulators are computationally very demand-
ing, especially if the choice falls on micro or mesoscopic models. This phenomenon, how-
ever, is also observed when using macroscopic models with large road networks. For all
these cases, the simulations can benefit from the use of parallel computing, which al-
lows to achieve a level of performance and precision – in terms of execution time, size of
the networks and amount of traffic details being simulated – not reachable by traditional
sequential computing.

This chapter describes some traffic simulation systems implemented using par-
allel approaches in all their nuances, that is, using multiprocessor hardware, distributed
in computer clusters and the latest, making use of GPUs. Since both urban traffic and
parallel computing are very broad areas of study, the systems mentioned here only focus
on some of their aspects. They were divided according to the adopted simulation philos-
ophy in terms of level of detail (microscopic, mesoscopic and macroscopic) for a better
classification.

For a review of some basic concepts related to the study of urban traffic, please
refer to Chapter 2.

4.1 Microscopic and Mesoscopic Simulations

This section presents some works describing the use of parallel computing in
traffic simulation systems using microscopic and mesoscopic models.

4.1.1 Distributed Simulation

Dai, Zhang and Zhang [59] present a framework1 for distributed microscopic and
mesoscopic simulations, called PMTS – Parallel Microscopic Traffic Simulation.

1Software abstraction layer, with the aim of uniting common code between various development
projects, providing generic resources for applications.

4.1 Microscopic and Mesoscopic Simulations 56

Using this framework they built a system for distributed processing using a local
high-speed network of computer nodes. The basic idea of parallelism is to divide the
simulation of a large urban road mesh in small sub-meshes, each one assigned to a node
of the computational network. In the example presented in the article, the simulation
area is longitudinally divided into four interconnected portions and, therefore, feasible
to be processed in clusters of two or four machines. Figure 4.1 illustrates the partitioning
process.

Figure 4.1: Longitudinal parallel cut of an urban road network
(extracted from [59]).

Once partitioned, each sub-network is sent to the responsible node, which takes
care of all aspects of simulation, from the behavior of vehicles to the changes in traffic
lights, among others. At each processing node, the simulation is performed based on a
three layer software architecture: simulation management, object oriented description and
data exchange layer. Figure 4.2 depicts the architecture.

Figure 4.2: Parallel Microscopic Traffic Simulation Architecture
(extracted from [59]).

4.1 Microscopic and Mesoscopic Simulations 57

The management layer handles all the logic of simulation and also manages user
commands such as pause, resume, export the status of the simulation, etc.

In the description layer, all components of urban traffic – cars, avenues, traffic
lights, intersections, etc – are specified using object-orientation.

The data exchange layer sends and receives data, synchronizing the nodes of
the distributed system, using a (Message Passing Interface – MPI) standard. During the
simulation, when a vehicle is about to cross the border between two sub-meshes, MPI
sends the data of such a vehicle to the processing node responsible for the destination
sub-mesh.

In the tests carried out to evaluate the system’s performance, the simulation envi-
ronment consisted of a cluster of 6 computers, each one with a 2.6 GHz single-core CPU
and 1GB of RAM memory, connected via a 100 Mbits Ethernet. The operating system
installed on each machine was the Fedora Linux. The urban region in question covered an
area of the city of Shanghai, China, with 56,948 streets and 41,689 intersections.

Three experiments were defined in order to measure the scalability, linearity and
data flow capacity of the architecture:

• Vehicles demands were set to a fixed value and system performance was tested by
varying the amount of participant nodes. For this, a fixed demand with 600,000
vehicles and a synchronization interval of 5 seconds were defined. Tests were
performed with the number of nodes ranging between 1 and 6. The computation
and communication times are illustrated in Figure 4.3;

• Performance was measured by varying the synchronization interval. In this experi-
ment the number of participant nodes and the demand values (again with 600,000
vehicles) were fixed. Figure 4.4 displays the results. As can be seen, increasing the
communication interval – by reducing the amount of times this operation is per-
formed – leads to a performance enhancement, but not substantially. The authors
concluded that increasing the interval between synchronizations is not a good strat-
egy to achieve performance gains.

• Performance was again measured by varying the demand values, but fixing the
number of nodes and the synchronization interval (set to 5 seconds). The demand
ranged between 360,000 and 720,000 vehicles. As can be seen in Figure 4.5, the
computation and communication times grow almost linearly in relation to the size
of the demand.

4.1 Microscopic and Mesoscopic Simulations 58

Figure 4.3: Execution times according to the number of CPUs
(adapted from [59]).

Figure 4.4: Execution times according to synchronization interval
(adapted from [59]).

Figure 4.5: Execution times under diverse demand values (adapted
from [59]).

4.1 Microscopic and Mesoscopic Simulations 59

4.1.2 Dealing with the Network Partition Problem

Dali, Feng and Xinxin [245] focus on one of the central problems of parallel
computing: to ensure that the division of the tasks – also called partition or decomposition
– leads to highly uniform workloads to the processors involved in the computation.
Figure 4.6 illustrates a bad division of the study area, where CPUs 1 and 3 receive little
work, while CPU 4 is overloaded.

Figure 4.6: Non-uniform domain decomposition (extracted
from [245]).

An uniform partition of the road network is a fundamental pre-requisite for
efficient parallel simulation, since the simulation as a whole depends on the slower
processor (the one with the greatest workload). A decomposition is considered effective
if it meets two requirements:

1. The workload is well balanced between processors;
2. The time consumed in the communication process is small.

Dali, Feng and Xinxin also argue that another determining factor for good perfor-
mance of the algorithm is the workload (number of vehicles) traveling on a street/avenue
during the simulation process. This workload depends not only on length of the avenue
or its geographical location but also on the traffic density (d). The most extensive roads
tend to have less workload if d is small. Traditional partitioning methods – based on the
length of the avenue as its initial weight during the decomposition process – lead to an
irregular division of workload between computational processors and hence to a lower
performance of the simulation.

In their proposal, Dali Feng and Xinxin suggest not to employ the length of
street/avenue as a measure of the initial weight, but previously estimate the workload
that each road will receive and use that value for the partitioning method. This value is

4.1 Microscopic and Mesoscopic Simulations 60

calculated based on two pre-known data: the origin-destination (OD) demand matrix and
the routes chosen by the drivers.

Using such information, the workload of each street/avenue is used as a weight
for a recursive bisection method that partitions the road network into sections with
workloads roughly equivalent.

To measure the efficiency of the proposed method, two experiments were done:

1. A comparative analysis of the workload when applying the new method and the
conventional one. To measure the improvement in load balancing, the efficiency
measure R = Wmin

Wmax
was defined, where Wmin and Wmax correspond respectively, to

the smallest and largest workload in the sub-regions. The closer to 1, the better the
balance;

2. Parallel performance experiments, using the speedup and efficiency as indicators.

Test Environment

The evaluation of the proposed method was carried out with a KD-50-I high-
performance computer as the experimental platform. Among the reasons for choosing this
computer, the authors highlighted the fact that it is formed by 336 Loongson-2F CPUs,
had low cost, low power consumption, small footprint and the advantage of running only
free software, which ensured its constant updating. It is also worth mentioning that the
same machine had been successfully used in other traffic studies.

Results

All simulations were performed for half an hour using the same O-D matrix. Ta-
ble 4.1 shows the comparative results between the traditional and the proposed methods,
with several CPU nodes; Figure 4.7 displays the performance curves of the two methods.

4.1 Microscopic and Mesoscopic Simulations 61

Worker
Computing

Nodes
Load Balance Efficiency

Conventional Algorithm Improved Algorithm

2 0.83 0.97

4 0.66 0.80

6 0.27 0.74

8 0.26 0.64

16 0.12 0.51

24 0.09 0.45

32 0.07 0.36

40 0.04 0.33

48 0.03 0.30

56 0.05 0.16

Table 4.1: Evolution of the workload according to the number of
computing nodes (extracted from [245]).

Figure 4.7: Graphic of the evolution of the workload according to
the number of computing nodes (adapted from [245]).

It can be seen from Figure 4.7 that the efficiency of the proposed algorithm
is closer to one than the traditional method, which means that its resulting workload is
evenly distributed. Although this value decreases as the number of CPU nodes increases,
it happens more slowly and evenly, always keeping ahead of the conventional method.

Figures 4.8 and 4.9 show the workloads of different road sub-regions, when split
into 6 CPUs. They show that the greatest workload obtained by the new method is about

4.1 Microscopic and Mesoscopic Simulations 62

200 vehicles smaller than that achieved by the traditional method, thus better distributing
the traffic simulation. The algorithm is more centered around 800 vehicles per CPU (test
satisfactory average) while the conventional one is more dispersed.

Figure 4.8: Workload in road sub-regions, varying with simula-
tion time, produced by the conventional algorithm (ex-
tracted from [245]).

Figure 4.9: Workload in road sub-regions, varying with simula-
tion time, produced by the new algorithm (extracted
from [245]).

Once shown that the new method provides better load balancing – one of the
essential requirements for an efficient parallelization – the authors went on to analyze
application performance by using, for this, the following measures:

• Speedup – defined as T1
Tp

,

• Efficiency: Defined as T1
p∗Tp

;

where T1 is the time for simulation with only one processor and Tp is the
simulation time using p processors. Figures 4.10 and 4.11 display the results in terms
of speedup and efficiency, respectively.

4.2 Macroscopic Simulations 63

Figure 4.10: Parallel speedup of two methods (extracted
from [245]).

Figure 4.11: Parallel efficiency of two methods (extracted
from [245]).

It is clear from the figures that the computation times, in both methods, are lower
when parallel techniques are used.

Under the speedup and efficiency points of view, the algorithm performance is
superior using the new partitioning method, when compared to the traditional one. With 8
CPUs, in the experiments carried out the performance of the parallel simulation became
10.87% higher. Regarding the speedup, the maximum achieved value was 4.136, while
the conventional method reached 4.125. This value stabilized around 48 processors and
could not be improved because of the rising of communication costs.

4.2 Macroscopic Simulations

Although there is a considerable number of parallel approaches to traffic simula-
tion based on microscopic and mesoscopic models, the same can not be said about macro-

4.2 Macroscopic Simulations 64

scopic models, which suffer from a serious lack of studies and systems implemented that
use these models. Next is presented a brief description of the most significant work in this
area that we discovered during the course of this work.

4.2.1 Real Time Macroscopic Simulations

Chronopoulos and Johnston [46] present a parallel mechanism able to generate
macroscopic simulations and predict the traffic conditions in real time using a nCUBE2
parallel computer. The authors argue that these predictions can be used for real-time traffic
control and drivers guidance.

The nCUBE2 is a MIMD parallel computer with a hypercube topology with
distributed memory and communication through message passing. With ndim being a
positive integer, in a hypercube there are p = 2ndim processors, labeled 0,1, ..., p−1. Two
processors Pj1 and Pj2 are directly connected if the binary representation of j1 and j2
differs in exactly one bit. Each edge in a graph of a hypercube is a direct link between two
processors. Figure 4.13 displays a graph of a hypercube with ndim = 4.

The architecture of the proposed system is shown in Figure 4.12. It consists of
the parallel computer system, a data handling system (DHS), a simulation program and
two interface devices.

The DHS manages the data structures, the storage of traffic measurement infor-
mation and physical characteristics of the road network. For this, it can use a database
system. The simulation program is the software that implements the macroscopic model
in the parallel computer. The interface devices are computing network devices that take
care of sending and receiving data for the parallel simulation system.

System Evaluation

Tests with a system implementing the architecture simulated two hours of traffic
in a region of the US city of Minneapolis and showed a clear superiority when compared
to a sequential algorithm. While the parallel approach was able to complete the simulation
in just 5.25 seconds, the sequential one needed 141 seconds for its completion. That is, a
speedup of almost 27 times was achieved.

In the tests the authors used, as performance metric, the runtime, also called
total execution time (etime) which is formed by:

1. Time for data input (itime) – time needed by the first processor for reading the
data from the hard disk and sending them to all other processors;

2. Computation Time (ctime) – time spent by the algorithm to perform the traffic
simulation;

4.2 Macroscopic Simulations 65

Figure 4.12: Architecture of the Macroscopic Real Time Simula-
tion System (adapted from [46]).

3. Time for data output (otime) – time to collect the data from all processors by the
first processor and to write the results back to the hard drive;

Tables 4.2 and 4.3 display the results of the parallel run times (in seconds)
showing that, in settings with a higher number of processors, about 16% of them remain
idle. This occurs because the road network is divided into segments (areas) of equal sizes
and each segment is then mapped to a processor. Since there are more processors than
segments, the phenomenon becomes evident.

4.2 Macroscopic Simulations 66

Figure 4.13: Hypercube with ndim=4 (extracted from [46]).

Ndim Used Procs Max. Procs etime itime ctime otime

9 425 512 5.250 0.80 4.06 0.44

8 213 256 5.493 0.73 4.39 0.40

7 107 128 6.133 0.73 5.03 0.39

6 61 64 7.166 0.72 6.07 0.38

5 31 32 9.539 0.71 8.40 0.44

4 16 16 13.745 0.71 12.65 0.40

3 8 8 22.438 0.70 21.32 0.41

2 4 4 39.900 0.72 38.66 0.52

1 2 2 72.906 0.70 71.81 0.40

0 1 1 141.012 0.67 139.94 0.40

Table 4.2: Simulation execution times with 29 processors (adapted
from [46]).

4.3 Traffic Simulation on GPUs 67

Ndim Used Procs Max. Procs etime itime ctime otime

10 851 1024 9.563 0.90 8.12 0.63

9 426 512 10.070 0.80 8.76 0.56

8 213 256 11.312 0.79 10.05 0.50

7 122 128 13.497 0.80 11.97 0.74

6 61 64 17.790 0.76 16.63 0.41

5 32 32 26.319 0.76 25.11 0.46

4 16 16 43.829 0.75 42.61 0.47

3 8 8 77.829 0.76 76.66 0.42

2 4 4 146.508 0.74 145.37 0.40

1 2 2 281.571 0.81 280.33 0.43

0 1 1 554.444 0.71 553.33 0.40

Table 4.3: Simulation execution times with 210 processors (adapted
from [46]).

The experiments proved that the achieved speedup is large enough to justify the
use of the developed parallel mechanism as part of a real-time traffic control system.

The maximum speedup was achieved in configurations with more processors.
However, once this maximum is reached, the parallel efficiency decreases with the
increase in the number of processors. According to the authors, this is inevitable due
to the problem size, small when compared to the number of CPUs. If the problem size is
expanded, the parallel computing efficiency will probably continue to increase.

4.3 Traffic Simulation on GPUs

Although this is a relatively recent research area, there are already some works
related to traffic simulation with the use of GPUs. This section discusses some of them.

Shen, Wang and Zhu

In [223], Shen, Wang and Zhu present a GPU implementation of an agent-based
traffic microsimulation, aiming at the optimization of signaled intersections.

In agent-based modeling (ABM), a system is modeled as a set of independent and
interacting entities called agents, each one able to take decisions autonomously. Agents
individually evaluate their own situation and make decisions based on a collection of
pre-established rules [22]. In turn, a multi-agent system (MAS) refers to a computerized
simulation formed by multiple interacting agents.

4.3 Traffic Simulation on GPUs 68

In their implementation, Shen, Wang and Zhu use a GPU parallel genetic
algorithm for solving the traffic signal timing optimization problem. After presenting the
problem formulation and the overall implementation, the authors test their approach in a
road network with four signaled intersections.

The experiments, performed using a PC equipped with one AMD Athlon TM
64 X2 Dual Core processor 4000+ and an NVIDIA GeForce GTX470 GPU, showed a
speedup of 195x when compared to its equivalent sequential version.

The authors acknowledge, however, that in order to perform a more realistic
evaluation of the proposed strategy, the work must be extended to larger scale road
networks.

Sano and Fukuta

In [215], Sano and Fukuta describe a GPU-based multi-agent system framework
for large-scale traffic simulations.

The authors point that, in order to improve the reproducibility of real situations,
the agents involved in a micro-simulation should respond to dynamic and unpredictable
environmental events, such as disasters or sudden climate changes.

To achieve this, agents should be programmed to react to such environmental
changes and it is important that, even with this programming, the simulation is still able
to run in reasonable time.

Making these considerations, Sano and Fukuta present a GPGPU-based frame-
work that allows to easily perform large scale simulations, accelerating not only the sim-
ulation itself, but also the code that has to be implemented in order that agents could
respond in real-time to dynamic environmental changes.

After presenting the details of the proposed framework, the authors perform
some evaluations of the processing performance to validate its potential scalability, using
different GPUs.

For that, an OpenCL-based implementation of the framework was employed. In
the experiments, they used a map consisting of 12 nodes and 22 links. The number of
agents using the road network ranged from 1 to 2048.

The experiments proved the scalability of the proposed framework, since as
the number of agents increased, the time of the equivalent sequential algorithm grew
vertiginously faster than its parallel counterpart.

4.4 General Remarks 69

4.4 General Remarks

This chapter has briefly explored how parallelism has been applied to urban
traffic simulations. As can be observed, the great majority of approaches focus on micro
and mesoscopic simulations, which are naturally very computationally demanding.

In all systems presented, the proposed parallelism usually focuses on the division
of a large road network into smaller sub-regions, each one assigned to one processor.
There is no mention of the use of parallel approaches to the internal routines of the
simulation.

During the performed bibliographic review, there was a great difficulty in iden-
tifying scientific works and implemented systems that employed parallelism for macro-
scopic approaches. Only one system was found, and this dates back to the end of the 90’s.
Nothing related to macroscopic simulation on GPUs was found, demonstrating the lack
of research in this area. This opens space for new proposals that explore parallelism in
such context, as the one developed and described in the present work.

The next chapters investigate computational problems that occur in the study of
urban traffic conditions and propose GPU-based parallel algorithms to solve them.

CHAPTER 5
A GPU-Based Algorithm for Enumerating All
Chordless Cycles in Graphs

Paths and cycles are among the most important and fundamental structures in
the study of graphs, and their discovery and/or enumeration becomes essential to solve
many computational problems in areas such as optimization (see Chapter 7), concurrent
operating systems (for detection of deadlocks) [224, p. 333–337], bioinformatics (an
Eulerian path approach is used to reassembly DNA sequences from their fragments) [197],
CMOS circuit design (used to search for an optimal gate ordering) [211], information
retrieval, natural language processing [20, 71, 81, 82, 136], identification of regions in
urban traffic networks that are poorly connected [207] and many others.

The remainder of this chapter is organized as follows. Section 5.1 presents pre-
liminary definitions. Section 5.2 presents the ideas that underpin the sequential algorithm
described by Dias et al. [74]. The proposed parallel algorithm is introduced in Section 5.3.
Section 5.4 describes the experimental tests and the results produced by the new algo-
rithm. Conclusion and future work are discussed in Section 5.5.

5.1 Background

Consider a finite undirected simple graph G = (V,E), with n = |V | and m = |E|.
A chordless cycle C is an induced subgraph that is a cycle, i.e., apart from the edges
of C that form a cycle, E does not contain any other edges that join vertices of C. The
graph presented in Figure 5.1, representing a small region of Goiânia downtown network,
highlight three of such structures.

Sequential and parallel algorithms for the problem of determining if a graph
contains a chordless cycle with k ≥ 4 vertices, for some fixed cycle of length k, were
proposed by Chandrasekharan et al. [41]. They presented a sequential algorithm where
a cycle Cl , l ≥ k, can be found in O(m2 · nk−4) time and a parallel algorithm adopting
the CRCW PRAM model (see Appendix A) that demands O(logn) time using (m2 ·nk−4)

5.1 Background 71

Figure 5.1: Simple representation of Goiânia downtown network,
Goiás, Brasil.

processors. However, finding just one cycle of length greater than or equal to a fixed value
k is easier than enumerating all chordless cycles in a graph G.

In general, the enumeration of particular subgraphs of a given graph belongs to
the complexity class P -complete, whose resolution is as hard as the resolution of problems
in the N P -complete class [23, 237]. Although there are exact sequential algorithms to
solve problems in such a class, they become impractical in cases when the number of
structures to enumerate grows exponentially with the size of the graph. This suggests the
use of approximation methods (like heuristics and meta-heuristics) or parallel computing.
Such approaches do not reduce the complexity of printing the final enumeration, but seek
to reduce the construction time of the solution set, either through the relaxation of listing
rules (the first option), or the use of multiple execution units (the latter).

A large amount of sequential algorithms have been proposed for enumerating
graph structures such as cycles [17, 206, 214, 247], circuits [18, 229], paths [118, 206],
trees [145, 206] and cliques [167, 233]. These tasks are usually hard to deal with, since
many classes of graphs present the aforementioned problem. Nevertheless, enumeration
is necessary in the resolution process of several practical problems. In particular, the
enumeration of chordless cycles is useful in some important areas, including:

• Identification of weakly coupled regions of urban road networks [144, 207]. Usu-
ally, during the occurrence of an unpredictable phenomena (like large-scale car col-
lisions and/or interdictions of urban areas due to floods or earthquakes) there are
some network regions in which traffic becomes unfeasible, because traffic can not
be re-routed. Chordless cycles represent such regions (called here network holes),

5.1 Background 72

and their identification and study allow traffic managers to define preventive and/or
corrective actions in order to deal with such exceptional situations, minimizing their
impacts on the transit;

• Prediction of nuclear magnetic resonance chemical shift values [217, 236]. In
chemistry, graphs representing chemical structures usually have a large number of
cycles (called rings) and their distribution and size patterns are essential information
that directly affect important physical properties and their chemical and biological
reactivity;

• Study of ecological networks with the aim of identifying predators that compete

for the same prey [73, 226]. Here, a directed food web graph is transformed into
a niche overlap graph to represent the competition between species. The lack of
chordless cycles in this latter graph means that the species can be rearranged along
a single hierarchy. In the example depicted in Figure 5.2, since Great Kiskadee and
Nightingale prey the same animal (small frogs), in the niche-overlap graph they are
connected by an edge.

Great Kiskadee

Nightingale

Bat

Snake

Predators

Spider

Frog

Butterfly

Centipede

Mango

Preys

Great Kiskadee Nightingale

BatSnake

Figure 5.2: Transforming a food web graph into a niche-overlap
graph.

To the best of our knowledge, the fastest sequential algorithm for enumerating
all chordless cycles in any undirected simple graph developed until 2012 was the one
proposed by Sokhn et al. [226]. The general principle of this algorithm is to use vertex
ordering and to expand paths from each vertex using a depth-first search (DFS) strategy.
This approach has the disadvantage of finding each chordless cycle twice. Unfortunately,
the authors did not present its complexity analysis.

In 2013 Dias et al. presented a new sequential algorithm for enumerating all
chordless cycles [74]. That algorithm finds each chordless cycle just once in O(n+m)

time for each chordless cycle and is significantly faster than Sokhn et al.’s method.
In 2014, Uno and Satoh [236] presented another sequential algorithm for the

same problem. However, their method also repeats chordless cycles in the output. Actu-

5.2 Mathematical Definitions 73

ally, each chordless cycle appears as many times as its length, leading to the time com-
plexity of O(n · (n+m)) for finding each one of them.

In another study, Ferreira et al. [86] presented algorithms for listing all C
chordless cycles and st-paths in undirected graphs in Õ(m+n ·C) time.

Although the algorithm developed by Dias et al. [74] is able to enumerate
all chordless cycles without repetition and, in terms of execution speed, surpasses all
other chordless cycle enumeration algorithms known to us, it still takes a considerable
processing time when applied to some classes of complex graphs and to graphs whose
chordless cycles grow exponentially in graph size.

Again, as far as we know, a previous practical parallel algorithm for the problem
of enumerating all chordless cycles in an undirected graph does not exist. In this chapter,
we make a first step towards filling this gap in the literature by presenting a GPU-
based parallel chordless cycle enumeration algorithm that is fast when applied to difficult
graphs.

5.2 Mathematical Definitions

We now present some mathematical definitions that support our approach to
enumerate all chordless cycles of a graph. For further details, see Dias et al [74].

Let G = (V,E) be a finite undirected simple graph with vertex set V and edge set
E. Let n = |V |, m = |E|, Ad j(x) = {y ∈V | (x,y) ∈ E} be the set of neighbors of a vertex
x ∈V and Ad j[x] = {x}∪Ad j(x) be the closed neighborhood of x.

A simple path is a finite sequence of vertices 〈v1,v2, . . . ,vk〉 such that (vi,vi+1) ∈
E and no vertex appears repeated in the sequence, that is, vi 6= v j, for i, j ∈ {1, . . . ,k−1}
and i 6= j. A cycle is a simple path 〈v1,v2, . . . ,vk〉 such that (vk,v1)∈ E. We denote a cycle
with k vertices by Ck. A chord of a path (cycle) is an edge between two vertices of the
path (cycle), that is not part of it. A path (cycle) without chords is called a chordless path

(chordless cycle).
The minimum and maximum degrees, among all vertices of G, are denoted by

δ(G) and ∆(G) (or simply δ and ∆), respectively. The degree of a particular vertex v ∈V

is denoted by dG(v). The subgraph induced by the subset V −X , for X ⊆V (V −{u}, for
u ∈V), is denoted by G−X (G−u). The degree of a particular vertex v ∈V is denoted by
dG(v).

An ordering of the vertices of G can be defined by a bijection ` : V →
{1,2, . . . ,n}. We call this bijection a vertex labeling.

Note that, if G has a cycle C with k vertices, then it can be represented in 2 · k
ways, in clockwise or counterclockwise and by all its possible rotations, expressed as

5.2 Mathematical Definitions 74

〈vi−1,vi,vi+1, . . . ,vk,v1,v2, . . . ,vi−2〉 and 〈vi+1,vi,vi−1, . . . ,v2,v1,vk, . . . ,vi+2〉. However,
if we impose the following constraints:

1. the labeling of the second vertex of the cycle has to be smaller than the labeling of
all other vertices (`(v2) = min{`(vi) | i = 1, . . . ,k});

2. the labeling of the first vertex of the cycle has to be smaller than the labeling of
third vertex (`(v1)< `(v3)).

then any cycle can be defined in a unique way. The proof for this statement is simple. Let
vi be the vertex of the cycle with the smallest labeling. The representation of the cycle can
be rotated until vi becomes the second vertex in the sequence. Now there are two possible
representations for that cycle, clockwise and counterclockwise. Since the neighbors of vi

in the cycle are vi−1 and vi+1, exactly one of these possibilities satisfies condition 2.
In the approach introduced by Dias et al. [74], a vertex labeling is characterized

by a particular bijection ` : V (G)→ {1, . . . ,n} called degree labeling. It is constructed
over a sequence of subgraphs of G, starting with G1 = G. For i≥ 1, the (i+1)th subgraph
is defined as Gi+1 = Gi−ui, for a chosen ui ∈V (Gi) such that dGi(ui) = δ(Gi). Given this
sequence, the degree labeling is defined as `(ui) = i for each i.

A triplet is defined as a sequence of three vertices that can initiate a chordless
path of length greater than three, already following the two aforementioned constraints.
Let T (G) denote the set of all initial valid triplets of G, that is, T (G) = {〈x,u,y〉 | x,u,y ∈
V with x,y ∈ Ad j(u), `(u)< `(x)< `(y) and (x,y) /∈ E}. The above labeling scheme and
the way of formally defining the triplets enable the algorithm proposed by Dias et al. [74]
to find every chordless cycle only once and to begin with a smaller initial set of chordless
paths, which significantly reduces the search space. Because of the degree labeling, if G

is a tree then there are no possible triplets (T (G) = ∅). For other types of graphs many
triplets may exist, even for distinct paths of the same cycle. As detailed in [74], an upper
bound for the initial search space size is given by |T (G)| ≤ (∆−1)·m

2 .
Given a chordless path p = 〈v1,v2, . . . ,vk〉 and a vertex v ∈ Ad j(vk), v 6= vk−1,

exactly one of the following occurs:

1. 〈p,v〉= 〈v1,v2, . . . ,vk,v〉 is a chordless path;
2. there exists i ∈ {1, . . . ,k−1} such that p = 〈vi,vi+1, . . . ,vk,v〉 is a chordless cycle.

Since v∈ Ad j(vk), v 6= vk−1 and p is a chordless path, then 〈p,v〉 is a simple path
that extends p. Suppose that 〈p,v〉 is not a chordless path, that is, there is i∈ {1, . . . ,k−1}
such that (v,vi) ∈ E. Choosing i∗ the biggest index i with this property, we have the
mentioned chordless cycle. Case 1 states that path 〈p,v〉 is an expandable chordless path.

5.2 Mathematical Definitions 75

Case 2, with i∗ 6= 1, states that path 〈p,v〉 has a chord1 or, with i∗ = 1, then 〈p,v〉 is a
desired chordless cycle.

5.2.1 The Sequential Approach

The sequential algorithm for the enumeration of chordless cycles of Dias et
al., whose pseudo-code is presented in Algorithm 5.1, is briefly described here in order
to promote the understanding of the proposed parallel approach. Further detail and
experimental results can be found in [74].

A degree labeling is initially calculated for the input graph G (Line 1). Then, the
set T (G) of initial valid triplets (Line 2) is computed. The set C of cycles is initialized
(Line 3) with all triangles (which are also chordless) and the set T (G) is assigned to a set
T of expandable paths (Line 4).

Next, starting with the initial triplets, a DFS strategy is used for incrementally
creating and expanding the set of chordless paths, until each one becomes a chordless
cycle or is simply discarded. An expanded path 〈p,v〉 is dropped when the addition of v

to p results in a chord or when the restriction `(v)> `(v2) is violated.

1Obviously, 〈vi∗ ,vi∗+1, . . . ,vk,v〉 for i∗ is also a chordless cycle. But it will be discarded at the enumera-
tion process, since it appears in the expansion of another path p.

Algorithm 5.1: SequentialChordlessCycles(G)
DegreeLabeling
Input: Graph G.
Output: Set C of all chordless cycles of G.

1 perform DegreeLabeling(G);

2 T (G)←{〈x,u,y〉 | x,u,y ∈V : x,y ∈ Ad j(u);`(u)< `(x)< `(y) and (x,y) /∈ E};
3 C←{〈x,u,y〉 | x,u,y ∈V : x,y ∈ Ad j(u);`(u)< `(x)< `(y) and (x,y) ∈ E};
4 T ← T (G);

5 while (T 6=∅) do
6 p← 〈v1,v2, . . . ,vk〉 ∈ T ;
7 T ← T −{p};
8 foreach v ∈ Ad j(vk) do
9 if ((`(v)> `(v2)) and (v /∈ Ad j(vi), i ∈ {2, . . . ,k−1})) then

10 if v ∈ Ad j(v1) then
11 C←C∪{〈p,v〉};
12 else
13 T ← T ∪{〈p,v〉};

14 return C.

5.3 The Proposed GPU Algorithm 76

In Lines 9 and 10, the expansion of a path 〈v1,v2, . . . ,vk〉 by the addition of a
neighbor v of vk is verified and may result in one of three cases:

1. a chordless cycle; or
2. another expandable path; or
3. a chord in the current path or a path that does not respect the labeling constraints.

In case 1, the newly found chordless cycle is added to the set C (Line 11); in
case 2, the expanded path is added to the set T (Line 13); in case 3, the path is discarded.
The same process is repeated until the set T becomes empty.

Due to the initial conditions of the triplets and the way in which the search is
performed, the algorithm finds all chordless cycles and yet avoids rotations of the same
solution (two or more cycles with the same structure but that start at different vertices).
This provides a faster execution.

Dias et al. [74] presented another version of their method that uses a specialized
breadth-first search (BFS). It has some properties that ease the complexity analysis of the
algorithm, but adds an overhead to the total computation time.

A possible strategy for the parallelization of Algorithm 5.1 is the expansion
of multiple chordless paths through the simultaneous checking of the feasibility of
augmenting every path in T with each neighbor of its last vertex. This is adopted in the
current thesis and the details are described next.

5.3 The Proposed GPU Algorithm

In this section, we present our parallel algorithm for the problem of chordless
cycle enumeration. The adopted approach was to split Algorithm 5.1 into two stages and
define a parallel strategy for each.

The first stage involves the construction of sets C and T (G) (Lines 2–4 of Algo-
rithm 5.1). The second stage takes each path 〈v1,v2, . . . ,vk〉 in T (G), that characterizes a
chordless path, and tries to expand it by adding a neighbor v to the last vertex (Lines 5–
13).

The computation of the degree labeling (Line 1 of Algorithm 5.1) was not
parallelized. Due to its inherent sequential nature and to the low impact in the processing
time of the algorithm, this step was kept sequential as a preprocessing task and the
resulting labels were used in the later parallel stages.

The proposed parallel algorithm was mapped to a GPU architecture, which
follows the basic concepts presented in Chapter 3. In the next section, problems with the
data structures of the sequential algorithm are discussed and new data structures for the
parallel approach are presented. After that, details of the two parallel stages are described.

5.3 The Proposed GPU Algorithm 77

5.3.1 Data Structures

Usually, graphs are represented by adjacency matrices or adjacency lists. Al-
though an adjacency matrix enables the verification of connectivity between two vertices
in constant time, it has three primary issues:

• for sparse graphs, it wastes a significant amount of memory space;
• due to the large space occupied, it is not possible to allocate the entire matrix

in the fast, but small, GPU SM’s local memory. Even in advanced models, this
memory does not exceed 64KB. A simple graph containing just 256 vertices would
be enough to fill up this memory (256 ·256 ·1 byte = 65536 bytes) with such a data
structure;

• exclusively using the GPU’s global memory leads to poor performance of the
algorithm, because its access time is much higher than that of the SM’s local
memory (see Section 3.2 for a general overview on modern GPUs).

Consequently, the use of adjacency lists, which allows a more compact graph
representation, is justifiable. However, the variable size of each vertex list still does not
provide an efficient implementation with GPUs.

To overcome such problems, we used an adapted version2, with three vectors Ve,
Ee and Lv, of the compact graph representation proposed by Harish and Narayanan [122].
Vector Ve is associated with the vertices of a graph G = (V,E). A Ve index is the original
vertex identification and the corresponding vector content indicates the position of its
first neighbor in the adjacency vector Ee. Since the graph is undirected, it is necessary
to represent each edge (i, j) ∈ E in the adjacency lists of both i and j. So, |Ee| = 2 · |E|.
Vector Lv stores the degree labels associated with each vertex of G.

If the lists of adjacent vertices are kept sorted in Ee, a binary search can be used
to check, in time O(log∆), whether two vertices are adjacent.

Based in graph presented in the Figure 5.1, this compact representation is
illustrated in Figure 5.3. Using 2 bytes for an adjacency index, the representation takes
only (|V |+ |E|) ·2 ·2 bytes. This is small enough to store graphs of several sizes, specially
if they are sparse, as the urban traffic networks, in the fast local memory of each SM in
the majority of GPUs currently available. The search time for listing the neighbors of a
vertex in this data structure is O(∆), even for dense graphs.

To allow the efficient storage of partial and complete solutions (chordless paths
and chordless cycles, respectively), a map of bits was employed. A single bit is enough
to indicate whether a vertex belongs to a solution because it is not important to store the
vertices in the order that they occur in the chordless paths or cycles. This map is defined

2The original version contains only the vectors Ve and Ee. Our adapted version includes the vector Lv.

5.3 The Proposed GPU Algorithm 78

0 2 5 7 . . . 145 148Ve

0 1 2 14 . . . 41 42Lv

0 1 2 3 · · · n − 2 n − 1

1 3 0 2 4 1 5 0 4 6 7 . . .Ee
0 1 2 3 4 5 6 7 8 9 10 · · · m − 2 m − 1

Figure 5.3: Compact representation of a graph.

by a bi-dimensional matrix S that contains a row for each chordless path or cycle and
n columns of bits, one for each vertex of the graph. The number of bytes necessary for
encoding each column is dn

8e. Vertex v j belongs to path or cycle i if, and only if, bit j of
row i is 1. Despite the fact that such bitmap does not provide the vertex order in any cycle,
it depicts unambiguously each chordless path or cycle in G. Besides the small required
space, this data structure enables the addition of a vertex to a solution by a simple bitwise
operation, what is computationally inexpensive.

In Fig. 5.4, row 0 contains a combination of bits that represent a chordless cycle
in a graph G with n≤ 24. In this case a path or cycle storage requires only 3 bytes.

However, with this matrix, it is not possible to identify neither the latest vertex
added to a chordless path, nor its initial or second vertex. These vertices are essential
to the algorithm. The last vertex is used for expanding the path, while the initial vertex
facilitates a check whether the path forms a chordless cycle, and the second vertex is part
of a labeling condition check.

To circumvent this problem, three auxiliary vectors, V1,V2 and VL, are used.
Vectors V1 and V2 store the first and the second vertex of the paths, respectively, and
the contents of their cells never change once they are set. VL stores the last vertex added
to the chordless paths. Its content is updated whenever a path is expanded. The sizes of
S,V1,V2 and VL have to be sufficiently large to contain information about all chordless

Figure 5.4: Solution Space, where each vertex occupies just one
bit.

5.3 The Proposed GPU Algorithm 79

paths that are being processed at any moment.
When the number of rows in each vector or matrix equals the number of

chordless paths, these data structures can potentially require a large memory space. Thus,
they are kept in the global memory of the GPU. Further, as we describe in Section 5.3.3,
these data structures are replicated in order to speed up the processing of chordless paths.

5.3.2 First Stage

The first stage involves the parallelization of Lines 2 to 4 of Algorithm 5.1,
which compute the sets C and T (G). Our parallel approach for this stage is condenssed in
Algorithm 5.2. It consists of starting M = (|V | ·∆2(G)) parallel threads in the GPU. Each
thread j uses its unique global identifier gId(j) to compute the indices of a triplet 〈x,u,y〉
in the compact graph representation (Lines 2 to 4 of Algorithm 5.2):

iu←
⌊

gId(j)
∆2

⌋
, (5-1)

ix←

⌊
gId(j)− iu ·∆2

∆

⌋
, (5-2)

iy←gId(j) mod ∆, (5-3)

where iu is the index of vertex u in the vector Ve; ix and iy are relative indices of x and y in
the vector Ee. Index iu ranges from 0 to |V |−1, and ix and iy range from 0 to ∆−1.

Values ix and iy are used to determine two neighbors of the vertex u. They have
to be added to the value Ve[iu] in order to obtain absolute indices in Ee. However, ix
and iy should be employed only if they refer to valid neighbors (that is, if they are
less than or equal to the number of adjacent vertices of u). Such analysis is carried
out in Algorithm 5.2 in Lines 5 to 10. The functions neighborsLowerBound(u) and
neighborsU pperBound(u) return, respectively, the absolute indices of the first and of the
last neighbors of u in Ee, enabling validation of the indices ix and iy (Lines 8–9). These two
lines use an expression evaluation strategy for avoiding a conditional (if) command when
setting the values of x and y. This is faster and most appropriate to the GPU architecture
than regular conditional statements.

Finally, with valid vertices u, x and y, each thread tests the label condition
`(u) < `(x) < `(y) and continue to be executed only if this label condition is satisfied.
The algorithm also checks whether or not x is a neighbor of y and, if so, the triplet 〈x,u,y〉
is added to the set C. Otherwise, the triplet is added to the set T (G).

Lines 2 to 12 of Algorithm 5.2 require constant time, while Line 13 is O(∆).
Lines 14 and 16 require serialization in the index calculation of the last used position in

5.3 The Proposed GPU Algorithm 80

Algorithm 5.2: FindInitialTripletsParallel(G)

Input: Compact representation of an undirected simple graph G = (V,E).
Output: Sets C and T (G).

1 for each thread j, j = 0, . . . , |V | ·∆2−1 do in parallel
2 iu←

⌊
j

∆2

⌋
;

3 ix←
⌊

j−iu·∆2

∆

⌋
;

4 iy← j mod ∆;
5 k1← neighborsLowerBound(u);
6 k2← neighborsU pperBound(u);
7 u← iu;
8 x← (−1) · (ix > (k2− k1))+(Ee[k1 + ix]) · (ix ≤ (k2− k1));
9 y← (−1) · (iy > (k2− k1))+(Ee[k1 + iy]) · (iy ≤ (k2− k1));

10 if ((x 6=−1) and (y 6=−1)) then
11 `(x)← Lv(x); `(u)← Lv(u); `(y)← Lv(y);
12 if ((`(u)< `(x)) and (`(x)< `(y))) then
13 if x ∈ Ad j(y) then
14 C←C∪{〈x,u,y〉};
15 else
16 T (G)← T (G)∪{〈x,u,y〉};

order to write 〈x,u,y〉 into C or T (G) at the right position. In the worst case, O(|V | ·∆2)

threads may try to perform such writing operations simultaneously, but the experiments
carried out show that this rarely occurs, even with large graphs. Moreover, this serial-
ization is much faster than other computations performed by the algorithm since it only
reserves a free memory position to write a chordless path or cycle. The writing operation,
by itself, is done in parallel.

The total time complexity of Algorithm 5.2 is O(∆)+O(|V |+∆2), where the
second term is due to the serialization and has a low hidden constant.

5.3.3 Second Stage

The second stage of our approach, described in Algorithm 5.3, parallelizes
Lines 5 to 13 of Algorithm 5.1. It uses all the processors of the GPU in parallel for
evaluating the possibility of expanding the chordless paths computed in Stage 1 (and
saved in T (G)).

This is done by allocating a thread for every processor and making each thread
consider the feasibility of expanding a chordless path p = 〈v1, . . . ,vt〉 with one of the
possible ∆ neighbors of its latest vertex (vt). If the number of processing elements

5.3 The Proposed GPU Algorithm 81

(|SM| ·MaxSMSize)3 is greater than or equal to |T | ·∆, then all possible expansions for
every path p are analyzed in parallel in one single execution of lines 5 – 15. Otherwise,
some threads will repeat this work for the other non-analyzed combinations of paths and
∆ neighbors, as controlled by the “while” loop in Line 4.

Lines 5 and 6 of Algorithm 5.3 define which chordless path p will be processed
by thread j. Lines 7 to 10 specify the neighbor v of vk. If vk has less than ∆ neighbors,
then there will be some exceeding threads. Such threads satisfy the condition v = −1, in
Line 11, and nothing needs to be done. Finally, Lines 12 to 15 perform a task according
to two cases that are similar to what we have in Stage 1:

Algorithm 5.3: ExpandChordlessPathsParallel(G, `)

Input: Compact representation of an undirected simple graph G = (V,E) and list `
of labels.

Output: Sets T and C of chordless paths and cycles.

1 gSize← |SM| ·MaxSMSize;
2 for each thread j, j = 0, . . . ,gSize−1, do in parallel
3 Pos← j;
4 while (Pos < |T | ·∆) do
5 ip←

⌊
Pos
∆

⌋
;

6 p← getCurrentPath(T, ip);
7 k1← neighborsLowerBound(vt);
8 k2← neighborsU pperBound(vt);
9 iv← Pos mod ∆;

10 v←−1 · (iv > (k2− k1))+(E[k1 + iv]) · (iv ≤ (k2− k1));
11 if (v 6=−1) and (v /∈ p) and (Lv(v)> Lv(v2)) then
12 if (v ∈ Ad j(v1)) and (v /∈ Ad j(vi), i ∈ {2, . . . ,k−1}) then
13 C←C∪{〈p,v〉};
14 if (v /∈ Ad j(vi), i ∈ {1, . . . ,k−1}) then
15 T ′← T ′∪{〈p,v〉};

16 Pos← Pos+gSize;

1. If v is adjacent to v1 but not to other vertices in 〈v2, . . . ,vk−1〉, 〈p,v〉 is a cycle and
is added to C;

2. If v is adjacent only to vk, 〈p,u〉 is a new expanded path and is saved in a new
solution map T ′.

3As pointed out in Section 3.2, MaxSMSize is the maximum number of work-items every SM can handle
simultaneously.

5.3 The Proposed GPU Algorithm 82

Some implementation details of our algorithm are now explained. Firstly, every
extended path 〈p,v〉 is added to T ′ instead of to T . We do that because it is faster to build
a new data structure (for holding the extended chordless paths) than having to update
T . In the latter case, it would be necessary to remove 〈p〉 from T in addition to adding
〈p,u〉 to this set. Secondly, we use the concept of persistent threads [116] to perform the
work when there are more combinations of |T | paths versus ∆ neighbors than parallel
processors. As explained before, the loop at Line 4 does this job, by iterating the analysis
for a new combination of path and neighbor vertex.

When the processing of all threads terminates, they have to be restarted for
working on the new set T . This task is carried out by a host process, running on the
CPU, that replaces T by the recently created T ′, and launches all threads again. Note,
however, that we do not implement the stop condition in the host as a check T ′ 6=∅. This
would lead to constant communication between CPU and GPU, significantly degrading
the performance of the algorithm. Instead, it is preferable to use a simpler approach,
which has shown to be faster: to restart all threads |V | − 3 times. This number of steps
is sufficient, since every chordless path is increased with a new vertex of V , moved to the
set C or simply discarded, at each iteration of the host loop. Besides, no path or cycle can
have more than |V | vertices. Algorithm 5.4 illustrates the host process. It performs Stage
1 and Stage 2 of our approach.

In Algorithm 5.3, the loop at line 4 iterates at most d |T |·∆
|SM|·MaxSMSizee times. Line 5

and Lines 7 to 11 require constant time. Line 6 copies a chordless path from the GPU
global memory to a private thread memory. Since d |V |8 e bytes are necessary to store the
path, this line takes time O(|V |). Lines 12 and 14 have time complexity O(k · log(∆)) for
a given chordless path p and neighbor v under analysis, because it has to perform O(k)

adjacency checks (k ≤ |V |), each one of them requiring O(log∆) verifications. Lines 13
and 15 are O(1) in theory, but they depend implicitly on synchronized written operations
on C and T , similarly to what happens with Lines 14 and 16 of Algorithm 5.2. In the worst
case, |SM| ·MaxSMSize threads would try to access one of these sets at the same time.

Therefore, the total worst-case time complexity of Algorithm 5.3, as a single
thread execution of Line 4 at Algorithm 5.4, is d |T |·∆

|SM|·MaxSMSizee · (O(k · log∆)+O(|SM| ·

MaxSMSize)) = O
(
|T |·∆·k·log∆

|SM|·MaxSMSize

)
+ O(|T | ·∆).

We note that term k is the index of the latest vertex of a path p in T and also
gives the size of this path. All parallel work-items work with paths of the same size.
Furthermore, the size of the paths increases by one at every iteration i of the for loop of
Algorithm 5.4. Actually, k = i+2. The second part of the time complexity, O(|T | ·∆), is
due to the serialization process.

Hence, Algorithm 5.4 has time complexity ∑
|V−3|
i=1 O

(
|Ti|·∆·ki·log∆

|SM|·MaxSMSize +O
(
|Ti| ·∆

))
,

where |Ti| is the size of the set of chordless paths in iteration i and ki = i+ 2. Although

5.4 Computational Experiments 83

Algorithm 5.4: HostProcess(G, `)

Input: Compact representation of an undirected simple graph G = (V,E) and a list
` of labels.

Output: Set C of chordless cycles.

1 Create the data structures V , Ee, V1, V2, VL, L, C, T and T ′

2 Run Algorithm 5.2;
3 for i = 1,2, . . . , |V |−3 do
4 Run Algorithm 5.3;
5 Wait all threads to finish;
6 T ← T ′;

7 Return C

such a complexity seems high, the hidden constant for the serialization steps is very low
and many threads fall in the case where neither C nor T are updated. Another aspect
to note is that |Ti| is not necessarily the same over all iterations of the loop “for” in
Algorithm 5.4. So, the amount of computation performed can vary in each iteration. This
will be illustrated in Section 5.4.

Regarding the space complexity, it is not possible to make a prediction about the
amount of space that will be used as the number of cordless cycles is potentially large for
certain classes of graphs.

5.4 Computational Experiments

Both parallel and sequential algorithms were coded in the C++ language
and compiled using a GNU compiler (g++ version 4.8.2 with parameters “-O3
-mcmodel=medium -m64 -g -W -Wall”). The parallel algorithm used OpenCL 1.2 with
the AMD Software Development Kit 2.9.1. All experiments were performed on a com-
puter with an AMD FX-9590 Black Edition Octa Core CPU, with clock ranging from
4.7GHz to 5.0GHz, 32GB of RAM, runnning Ubuntu 14.04 64-bits operating system.
The computer had a Radeon SAPPHIRE R9 290X Tri-X OC GPU video card, with 4GB
of memory. The architecture of such a video card provides 2816 stream processing units
and an enhanced engine clock of up to 1040Mhz. Its memory is clocked at 1300MHz
(5.2GHz effectively).

In order to evaluate the benefits of the parallel algorithm over the sequential one,
in terms of processing time to enumerate all chordless cycles, we performed experiments
with 23 graphs, divided into three groups.

The first group consists of ten graphs presented in well known databases of
ecological studies [49]. These graphs, which have already been considered by Sokhn

5.4 Computational Experiments 84

et al. [226] represent food webs. For the application of such graphs in the current
experiments, it was necessary to transform them into undirected niche overlap graphs.
This was done using the definitions provided by Wilson and Watkins [248].

The second group consists of modified graphs of the urban traffic network of
the cities of Sioux Falls (North Dakota, USA [157]), Kochi (Japan [204]) and part of the
downtown area of the city of Goiânia, the capital of the state of Goiás, in Brazil. All streets
and roads were modeled as undirected edges for the aim of finding chordless cycles.

Finally, the last group contains graphs representing a cycle, a wheel, bipartite
graphs and some grid graphs.

Table 5.1 presents details of each graph. It shows the name of the graph, the
numbers n and m of vertices and edges, respectively, and the maximum vertex degree. The
remaining columns contain information produced by the algorithms. Column C3 displays
the number of cycles of length three. They are found at the first stage of the sequential
and the parallel algorithms. Column #clc provides the number of chordless cycles with
length greater than three. The total number of chordless cycles in each graph is the sum
of the values in these two columns.

The sequential and parallel algorithms were run ten times for each graph. The
average running times of the ten executions are presented in the table in milliseconds.
Column Tseq displays the average processing times of the sequential algorithm. The next
two columns are the average times related to the parallel GPU algorithm. The first column
(Tpar_proc) contains only the processing time spent by the GPU kernels at the first and
second stages, plus the time for the sequential degree labeling preprocessing; the second
column (Tpar_total) has the total time of the parallel code; this includes the processing time
(Tpar_proc) plus the communication time between the host and the GPU in order to transfer
the graph structure and the solution set C. The last column of Table 5.1 is the speedup of
the parallel algorithm over the sequential algorithm (given by Tseq

Tpar_total
).

5.4.1 Analysis of the results

The benefits of the parallel algorithm over the sequential one depend on the
nature of the graph. As we can see, the speedup is, in general, proportional to the number
of chordless cycles, with speedups ranging from 12× to 153× for the most complex cases
(with |C| ≥ 100.000). When the graph does not have many chordless cycles, the sequential
algorithm runs faster than the parallel GPU code.

An example where parallelism can not be efficiently applied is shown in Fig-
ure 5.5. In this graph, after the labeling step, the only initial triplet is given by 1→ 0→ 5.
At each step of the expansion stage there will be only one neighbor of last vertex to be

5.4 Computational Experiments 85

Name nnn mmm ∆∆∆ CCC333 #clc TTT seq TTT par_proc TTT par_total Speedup
CrystalD 24 86 14 293 0 0.333 0.182 0.622 0.536
ChesUpper 37 85 15 167 0 0.370 0.160 0.656 0.564
Narragan 35 168 22 586 0 0.548 0.197 0.709 0.773
Chesapeake 39 90 11 157 0 0.150 0.188 0.700 0.214
Michigan 39 175 27 587 0 0.614 0.197 0.698 0.879
Mondego 46 206 24 886 0 0.725 0.207 0.773 0.938
Cypwet 71 842 46 8946 0 6.417 0.258 0.892 7.196
Everglades 69 1214 56 15627 710 12.407 0.388 1.478 8.395
Mangrovedry 97 2132 80 30659 27426 102.475 1.822 6.510 15.741
Floridabay 128 3249 98 62389 85976 366.495 2.518 15.095 24.279
Goiânia 43 75 4 5 9311 39.594 0.216 3.081 12.849
SiouxFalls 24 76 5 2 176 1.339 1.138 1.812 0.739
Kochi 140 200 7 16 1820137 291811.6 1230.032 9366.160 31.16
C100 100 100 2 0 1 0.149 0.165 0.770 0.193
Wheel 100 101 200 100 100 1 0.225 0.778 1.229 0.183
K8,8 16 64 8 0 784 0.473 0.197 0.599 0.790
K50,50 100 2500 50 0 1500625 600.661 4.867 10.391 57.805
Grid 4×10 40 66 4 0 1823 15.430 0.185 1.993 7.742
Grid 5×6 30 49 4 0 749 2.610 0.167 1.249 2.090
Grid 5×10 50 85 4 0 52620 199.132 1.982 12.718 15.658
Grid 6×6 36 60 4 0 3436 7.889 0.203 1.570 5.025
Grid 6×10 60 104 4 0 800139 2906.009 6.284 18.989 153.034
Grid 7×10 70 123 4 0 8136453 36955.470 54.840 286.212 129.119
Grid 8×10a 80 142 4 0 71535910 427091.02 4655.147 8697.081 49.107

aDue to high memory consumption for storing set T when processing Grid 8×10, both the sequential
and parallel algorithms were modified to not store the chordless cycles, but only to count them.

Table 5.1: Average running time to enumerate all chordless cy-
cles on niche overlap graphs and on other well known
graphs. Times Tseq, Tpar_proc and Tpar_total are presented
in milliseconds.

analyzed and, therefore, only a single chordless path will be expanded. Thus, just one
work-item will do useful work, while all others will remain idle.

0 1

2

34

5

Figure 5.5: C6: A graph where paralelism is not feasible

Note, however, that in almost all worst cases (when the speedup was less than 1,
indicating a better performance by the sequential algorithm), the most expensive activity

5.4 Computational Experiments 86

in the parallel algorithm was the data communication between the host and the GPU
device, given by Tpar_total − Tpar_proc. So, when considering only the GPU kernel time
(column Tpar_proc), the parallel algorithm is very competitive. Moreover, the parallel
algorithm executed in less than 0.002 seconds for all non-competitive cases.

It is useful to see, as well, the evolution of sets C and T in size during the
execution of the two stages of the parallel algorithm. This gives a hint about the amount of
computation performed by the parallel threads over time, and how much synchronization
was necessary for writing on the data structures that hold such sets. Figure 5.6 shows
this evolution for the graphs Floridabay, Mangrovedry, Grid 7×10 and Goiânia. The blue
(darker) line in each chart represents the size of set T at each call of the kernels; the red
(lighter) line shows the change on the size of set C. The X axis represents the results of
both stages and also implies the size of all paths in the current set T . Step 1 in the chart
refers to the result of the first stage of the GPU algorithm. The next steps, on the right, are
related to the output of each iteration (kernel call) of the second stage.

Figure 5.6: Sizes of T and C for four graphs.

Both C and T sets are initialized by the first stage of the parallel algorithm.
As the algorithm procedes through the second stage, new chordless paths are created by
extending smaller paths with adjacent vertices and the set T size increases. In this case,
more synchronization for writing in T and C occurs. Later, the expansion of some paths
result in chordless cycles (that are then added to C) or in cycles with chords (that are
discarded). The overall process ends up giving a wave shape to the evolution chart of T

and a less steeply increasing curve to the evolution chart of C.
A curious case was the graph Mangrovedry. Many chordless cycles of size three

(around 30.000) were found at the first stage of the parallel algorithm. The second stage of
the algorithm performed only seven steps (similarly to graph Floridabay), which resulted

5.5 General Remarks 87

in cycles with at most 9 vertices (recall that all initial chordless paths have length 3 and
grow at most one vertex at each iteration of the second stage). Interestingly, the size of T

did not change rapidly and stayed always below |C|, but C doubled in size.
Regarding processing time, even with a very high peak in the size of T , as far

as graph Grid 7×10 is concerned, with 14 million chordless paths, the performance of
the parallel algorithm was much superior to that of the sequential one (with a speedup of
≈ 129× for that case).

5.5 General Remarks

This chapter presented a parallel algorithm for GPUs to enumerate all chordless
cycles of a given simple, undirected graph. The algorithm is based on a previous work
done in collaboration with the author of this thesis, which resulted in an already fast se-
quential algorithm for the same problem. The parallel algorithm works in two stages and
takes advantage of the GPU architecture. A compact data structure for graph represen-
tation, distinct types of memories and the persistent thread technique were employed to
allow more efficient usage of the GPU memory and the processing units.

Experiments were carried out with several graphs and they showed that the
benefits of the parallel algorithm depend on there being a large number of the chordless
cycles and chordless paths in the input graph. For graphs with more than 100000 chordless
cycles or paths, the speedup of the parallel algorithm over the sequential one was between
≈ 12 and 153. The cases for which the parallel algorithm was worse (took longer than the
sequential algorithm) were the ones with very few chordless cycles. For those base cases,
our implementation still took less than 0.002 seconds to find all the chordless cycles and
most of the exceeding time was spent in data transfer between the CPU and the GPU.

As far as we know, this is the first parallel GPU-based algorithm for the problem
of enumerating all chordless cycles reported in the open literature. Note, however, that
memory size on a GPU is still a limiting factor since the data structures cannot be larger
than the maximum supported structure size. Such hardware constraints limit the size of
the problems and solutions that can be dealt with by the GPUs. Thus, as future work, one
could develop a new data transportation protocol between the ordinary RAM memory and
the GPU memory in order to open space when necessary and allow the enumeration of
chordless cycles for much larger graphs. Another future work would be to devise a parallel
algorithm for computing the degree labeling. Deleting a vertex during such a computation
can lead to a major change in the graph (the decrease of one unit of the degree of every
adjacent vertex), indicating that the labeling process has an inherent sequential nature.
However, it is possible to update the degree of all vertices in parallel in constant time
using n ·∆ processors. Then, the smallest degree can be found through a parallel reduction

5.5 General Remarks 88

in time O(log(n)) with n threads. Repeating this process n−1 times provides the desirable
result with total time O(n · log(n)).

CHAPTER 6
A Fast and Generic GPU-Based Parallel
Reduction Implementation

Reduction operations are extensively employed in many computational prob-
lems. A reduction consists of, given a finite set of numeric elements, combining into a
single value all elements in that set, using for this a combiner function (also known as
associative operator) like addition, multiplication or finding the largest/smallest element,
among others. A parallel reduction, in turn, is the reduction operation concurrently per-
formed when multiple execution units are available.

Widely used as a basic subroutine for a number of algorithms such as Counting
Sort [51], Stream Compaction [16], Golden Section and Fibonacci Methods [148] and
Radix Sort [51, Chapter 8.3], parallel reduction is also extensively employed in the present
thesis. It appears in two steps of the macroscopic assignment algorithm described in
Chapter 8, including a shortest path method presented in Chapter 7.

The current chapter, hence, reports an investigation on this subject and depicts a
GPU-based parallel approach for it. Employing techniques like Loop Unrolling, Persistent

Threads and Algebraic Expressions to avoid thread divergence, the presented approach
was able to achieve a 2.8x speedup when compared to [39] and performance equivalent
to the best strategy proposed by [123], using a generic, simple and easily portable code.

Experiments conducted to evaluate the approach show that the strategy is able to
perform efficiently in AMD and NVidia’s hardware, as well as in OpenCL and CUDA.

The remainder of this chapter is structured as follows. Section 6.1 presents the
basic definitions of the problem. Section 6.2 briefly describes the techniques currently in
use. Section 6.3 explains our approach. Section 6.4 details the experimental environment
and the results. Finally, Section 6.5 gives general remarks about the presented strategy.

6.1 Background

Formally, a reduction can be defined as follows [194]: Given a set X with n

values, X = {x0,x1, ...,xn−1}, compute x0⊗ x1⊗ ...⊗ xn−1. The associative operator ⊗

6.1 Background 90

can be (but is not limited to) any one of the set {+,×,∧,∨,⊕,∩,∪,max,min}.

Algorithm 6.1: Summation(A)
Input: A set A = {a1,a2, . . . ,an} of numeric elements
Output: The sum of all elements
accumulator← 0
for i← 1 to n do

accumulator← accumulator+ai

return accumulator

Consider the pseudo code shown in Algorithm 6.1. At first glance, it seems that
the algorithm is inherently sequential, since the variable accumulator depends on the
value computed in the previous step, preventing any attempt of parallelization. However,
it is possible to avoid this problem by making use of two basic properties of addition and
multiplication operations: Associativity and Commutativity1.

• Associativity means that, given three or more numbers, they can be linked in any
order without changing the final result. Taking the sum as an example, it’s possible
to do a1 +a2 and, then, add a3, and the result will be the same as doing a3 +a2 and
then adding a1. Formally, we have (a1 +a2)+a3 ≡ a1 +(a2 +a3);

• Commutativity ensures that no matter the order in which an operation on two
numbers a1 and a2 is performed, the result will always be the same. Formally, for
multiplication, we have a1 ·a2 ≡ a2 ·a1.

Considering that the order in which the elements are combined does not affect
the final result2, 3, these two properties can be used, dividing the problem into smaller
subproblems and these, in turn, solved in parallel. After solving each subproblem, the

1Other two properties, Neutral Element and Closeness, guarantee, respectively, that any number added
to zero results in the number itself, and when we add/multiply two or more numbers within the same set
(natural, for example), the result will always be a number within the same set.

2Although, mathematically, this is true for numbers in any set, in computational terms things are a
little more complicated. For instance, these properties hold for the set of integers, but the same does not
happen for the floating point numbers due to the inherent imprecision that arises when combining (adding,
multiplying, etc.) numbers with different exponents, which leads to the absorption of the lower bits during
the combine operation. As an example, mathematically the result of (1.5+ 450− 450) is always the same,
no matter the order the terms are added, whereas the floating point computed value can result in 0 or 1.5,
depending on the sequence in which operations are performed [68, 109, 128, 177].

3Note that, although this is a complicating factor when a large numerical precision is necessary, it did
not actually preclude its application in the golden ratio method (see Section 8.1.2) in GPU because, in
the performed experiments, the accumulated error using single-precision floats did not exceed 10−5 when
compared to its equivalent sequential version running on the CPU using double precision floats. On the other
hand, if such precision becomes necessary, the problem could be greatly minimized by adopting the use of
double-precision floating points (which potentially can decrease the application performance for certain
GPU models) or using some strategies to reduce truncation errors, like the one proposed by Kahan [142],
among others.

6.2 Parallel Reduction in GPUs 91

partial results are combined to produce the final result. Figure 6.1 illustrates the process
using the associative operator “+” in an array with 16 elements.

Figure 6.1: Parallel reduction – associative reduction tree.

6.2 Parallel Reduction in GPUs

Since the arrival of programmable GPUs, some strategies to accelerate the
reduction operation on such devices have been proposed. The two most well known
are those described by Mark Harris [123] and Bryan Catanzaro [39]. Most recently,
Justin Luitjens [166] presented some improvements to the strategies described in [123].
Unfortunately, the strategies adopted by [123] and [166], although very efficient, are
limited to hardware and software provided by NVidia, restricting their use.

On the other hand, the proposal of Catanzaro [39] is based on the open standard
OpenCL [115], adopted by a myriad of manufacturers, what makes it portable. Neverthe-
less, the code presented in [39] also has a weakeness, as it does not adopt some strategies
that could significantly improve its performance.

This section details how the associative and commutative properties can be
used to implement efficient parallel reductions on GPUs. As highlighted at the end of
Section 6.1, the basic idea is to “split” the problem into smaller pieces and solve them in
parallel. However, the execution environment (GPU hardware) imposes some restrictions
that must be considered to maximize the speedup. Therefore, the details of how GPUs are
organized (see Section 3.2) will dictate the choices from now on.

The approaches of Harris [123] and Catanzaro [39] to deal with reductions in
GPUs operate in a pretty similar way, using a tree-based structure.

6.2 Parallel Reduction in GPUs 92

One of the aspects to be considered is the number of elements in the collection
(vector) in which the reduction will be applied. If this amount is sufficiently small and
can be stored in the local memory of each SM, then the reduction becomes quite simple.
In [39], Catanzaro presents some strategies for this case and conducts performance
comparisons between them. Then, after describing how reductions can be efficiently
performed in small sets, Catanzaro shifts his focus to the cases in which a large volume
of data must be handled. Three strategies are presented and a winner, called “Two-Stage

Parallel Reduction”, is elected. Harris [123] deals only with parallel reduction in large
datasets.

Our approach is mainly based on a proposal from Catanzaro [39]. Therefore, a
more detailed description of it is presented. First, however, we also give an explanation
of the strategies by Harris [123] and Luitjens [166], since some ideas for speeding up the
computation came from them. Hence, unlike the rest of the thesis, here their original code
is presented, and not just the pseudo code.

6.2.1 Mark Harris’ Work

The work presented by Harris [123] focuses on techniques for performing
reductions of large data volumes. The author shows, through successive versions of the
same algorithm, how bad decisions or an incorrect way of mapping the problem to the
target platform can negatively impact the application performance.

Problems like shared memory bank conflict, lack of communication between
thread blocks (making it impossible for a kernel to reduce a large array at once) and highly
divergent warps are addressed. Starting with a naive version, step by step improvements
are described, reaching an implementation 30x faster than the first one. Next, we show
how the author achieved such speedups.

Harris performed experiments using a G80 GPU. This video card has a 384-bit
memory interface, with a 900 MHz DDR memory, which leads to a theoretic 384∗1800

8 =

86.4GB/s of memory bandwidth4. All tests were conducted using a vector with 222 (4M)
integer values.

In the first version of the reduction (Kernel 1), whose source code was extracted
from [123] and is presented in Listing 6.1, Harris points out some issues: the test in line 11
leads to highly divergent work-items in a wave-front, in addition to the fact that the %
operator is very slow. Due to such issues, this version has very poor performance: 8.054ms
of execution time and only 2.083GB/s of memory bandwidth being used.

4Memory bandwidth basically determines how fast is the memory. Usually, it is measured in gigabytes
per second (GB/s). The more bandwidth of the memory and the more it is explored by the running program,
the faster the computation.

6.2 Parallel Reduction in GPUs 93

Listing 6.1: Parallel reduction – interleaved addressing with diver-

gent branching (kernel 1)

1 _ _ g l o b a l _ _ void r e d u c e 0 (i n t * g _ i d a t a , i n t * g _ o d a t a) {
2 e x t er n _ _ s h a r e d _ _ i n t s d a t a [] ;
3 / / Each t h r e a d l o a d s one e l e m e n t from g l o b a l t o s har ed mem
4 unsigned i n t t i d = t h r e a d I d x . x ;
5 unsigned i n t i = b l o c k I d x . x* blockDim . x + t h r e a d I d x . x ;
6 s d a t a [t i d] = g _ i d a t a [i] ;
7 _ _ s y n c t h r e a d s () ;
8
9 / / Do r e d u c t i o n i n sh ar ed mem

10 f o r (unsigned i n t s =1; s < blockDim . x ; s *= 2) {
11 i f (t i d % (2* s) == 0) {
12 s d a t a [t i d] += s d a t a [t i d + s] ;
13 }
14 _ _ s y n c t h r e a d s () ;
15 }
16 / / W r i t e r e s u l t f o r t h i s b l o c k t o g l o b a l mem
17 i f (t i d == 0) g _ o d a t a [b l o c k I d x . x] = s d a t a [0] ;
18 }

Overcoming this problem is quite simple: it is sufficient to replace the divergent
branch in inner loop (lines 10 – lines 12 of Listing 6.1) with a strided index which leads
to a non-divergent branch (Kernel 2). Listing 6.2 shows the modified code.

Listing 6.2: Parallel reduction – interleaved addressing with bank

conflicts (kernel 2)

1 f o r (unsigned i n t s =1 ; s < blockDim . x ; s *= 2) {
2 i n t i n d e x = 2 * s * t i d ;
3 i f (i n d e x < blockDim . x) {
4 s d a t a [i n d e x] += s d a t a [i n d e x + s] ;
5 }
6 _ _ s y n c t h r e a d s () ;
7 }

With this modification the performance of the program improves: now it exce-
cutes in 3.456ms and uses 4.854GB/s of memory bandwidth.

This solution, however, does not solve another problem: the local (shared)
memory bank conflict (see Section 3.2.1) that arises when using this kind of memory
access pattern. To solve the indicated issue, Harris replaces the strided indexing in the
inner loop (lines 1 – lines 4 of Listing 6.2) with a reversed loop and a work-item-id based
index. Listing 6.3 presents the new version of the code (Kernel 3).

6.2 Parallel Reduction in GPUs 94

Listing 6.3: Parallel reduction – sequential addressing (kernel 3)

1 f o r (unsigned i n t s = blockDim . x / 2 ; s > 0 ; s >> = 1) {
2 i f (t i d < s) {
3 s d a t a [t i d] += s d a t a [t i d + s] ;
4 }
5 _ _ s y n c t h r e a d s () ;
6 }

Kernel 3 excecutes in 1.722ms and uses 9.741GB/s of memory bandwidth.
Note, however, that the code presented in Listing 6.3 still has problems to be

solved. Due to command “s = blockDim.x/2” in line 1 and to the “if (tid < s)” in line 2,
half of the work-items are idle on the first loop iteration, which is certainly a waste of
computational resources. To overcome this problem, Harris suggests to halve the number
of wave-fronts (line 5 of Listing 6.1) and to replace the single load (line 6) at the begining
of the reduction by two loads. The modified version (Kernel 4) can be seen in Listing 6.4.

Listing 6.4: Parallel reduction – first add during global load (ker-

nel 4)

1 / / Per form f i r s t l e v e l o f r e d u c t i o n ,
2 / / r e a d i n g from g l o b a l memory and w r i t i n g t o s har ed memory
3 unsigned i n t t i d = t h r e a d I d x . x ;
4 unsigned i n t i = b l o c k I d x . x * (blockDim . x *2) + t h r e a d I d x . x ;
5 s d a t a [t i d] = g _ i d a t a [i] + g _ i d a t a [i +blockDim . x] ;
6 _ _ s y n c t h r e a d s () ;

With this modification, the code is excecuted in 0.965ms and it utilizes
17.377GB/s of memory bandwidth.

The next strategy is to use the loop unrolling technique. As pointed out by the
author, while the reduction proceeds, the amount of “active” work-items (i.e., the ones
doing useful work) decreases and, when s≤ 32, only one wavefront remains5.

According to the way GPUs are internally organized (see Section 3.2), all work-
items are SIMD synchronous within a wave-front. This means that, when s ≤ 32 (or 64,
for some GPUs) the work-items don’t need to be synchronized and the command “if (tid
< s)” in line 2 of Listing 6.3 is no longer necessary because it doesn’t save any work.
Having made this considerations, Harris unrolls the last 6 iterations of the inner loop,
adding a new function called “warpReduce”. The improved code (Kernel 5) is presented
in Listings 6.5 and 6.6.

564 work-items in the AMD’s hardware.

6.2 Parallel Reduction in GPUs 95

Listing 6.5: Parallel reduction – warp reduce

1 _ _ d e v i c e _ _ void warpReduce (v o l a t i l e i n t * s d a t a , i n t t i d) {
2 s d a t a [t i d] += s d a t a [t i d + 3 2] ;
3 s d a t a [t i d] += s d a t a [t i d + 1 6] ;
4 s d a t a [t i d] += s d a t a [t i d + 8] ;
5 s d a t a [t i d] += s d a t a [t i d + 4] ;
6 s d a t a [t i d] += s d a t a [t i d + 2] ;
7 s d a t a [t i d] += s d a t a [t i d + 1] ;
8 }

Listing 6.6: Parallel reduction – unroll last warp (kernel 5)

1 / / i n n e r loop
2 f o r (unsigned i n t s=blockDim . x / 2 ; s > 3 2 ; s >> =1) {
3 i f (t i d < s)
4 { s d a t a [t i d] += s d a t a [t i d + s] ; }
5 _ _ s y n c t h r e a d s () ;
6 }
7 i f (t i d < 32) warpReduce (s d a t a , t i d) ;

This version runs in 0.563ms and the memory bandwidth usage now reaches
31.289GB/s.

In the next step of code improving, Harris recalls that CUDA supports C++
template parameters on device and host functions. This allows the specification of the
block size6 as a function template parameter. Since the changes in code performed in this
step are relatively large, they will not be presented here. For details about the adapted
code, please see [123]. The improved version (Kernel 6) executes in 0.381ms and uses
43.996GB/s of memory bandwidth.

In the last step of code optimization, sequential and parallel reductions are
combined. Here, each work-item loads and sums multiple elements in a tree-based
reduction in shared memory. To this, the load and add of two elements (Lines 3 – 6 of
Listing 6.4) are replaced by a “while” loop to add as many elements as necessary. The
modified version (Kernel 7) of the begining of the reduction is shown in Listing 6.7.

6Local size in OpenCL nomenclature.

6.2 Parallel Reduction in GPUs 96

Listing 6.7: Parallel reduction – completely unrolled and with mul-

tiple elements per thread (kernel 7)

1 unsigned i n t t i d = t h r e a d I d x . x ;
2 unsigned i n t i = b l o c k I d x . x * (b l o c k S i z e *2) + t h r e a d I d x . x ;
3 unsigned i n t g r i d S i z e = b l o c k S i z e *2* gridDim . x ;
4 s d a t a [t i d] = 0 ;
5 whi le (i < n) {
6 s d a t a [t i d] += g _ i d a t a [i] + g _ i d a t a [i + b l o c k S i z e] ;
7 i += g r i d S i z e ;
8 }
9 _ _ s y n c t h r e a d s () ;

As a result of all these optimizations, the final version of the code runs in
0.268ms and the memory bandwidth usage reaches 62.671GB/s. All these improvements
are summarized in Table 6.1.

Time
(ms)

Memory
Bandwidth

(GB/s)

Step
speedup

Cummulative
speedup

Kernel 1: interleaved addressing with di-
vergent branching

8.054 2.083

Kernel 2: interleaved addressing with
bank conflicts

3.456 4.854 2.33x 2.33x

Kernel 3: sequential addressing 1.722 9.741 2.01x 4.68x
Kernel 4: first add during global load 0.965 17.377 1.78x 8.34x
Kernel 5: unroll last warp 0.536 31.289 1.8x 15.01x
Kernel 6: completely unrolled 0.381 43.996 1.41x 21.16x
Kernel 7: multiple elements per thread 0.268 62.671 1.42x 30.04x

Table 6.1: Performance for parallel reduction of 222 integer ele-
ments (extracted from [123]).

6.2.2 Justin Luitjens’ Work

In [166] Luitjens shows how a new feature of the NVidia’s Kepler (and newer)
GPU architecture can be used to make reductions even faster when compared to the
strategies presented in [123]: the shuffle (SHFL) instruction.

Usually, work-items inside the same SM use the local (shared) memory when
they need to communicate (exchange information). This involves a three-step process:
writing the data to local memory, perform a synchronization barrier and then read the
data back from local memory. The Kepler and newer architectures implement the shuffle

instruction, which enables a work-item to directly read private data from another work-

6.2 Parallel Reduction in GPUs 97

item in the same wave-front. According to the author, there are four main advantages in
using this instruction:

• It ultimately allows work-items inside a wave-front to collectively exchange or
broadcast data;

• It replaces the three-step process by a single instruction, effectively increasing the
bandwidth and decreasing the latency;

• It does not use the local memory at all;
• A sync barrier is implicit in the instruction and, hence, a synchronization step inside

a workgroup is not necessary.

Figure 6.2 shows how this instruction can be used to build a reduction tree. As
pointed out by Luitjens, this figure only includes the arrows for the work-items actually
doing useful work. All work-items are indeed shifting values even though these values are
not necessary in the reduction process.

Figure 6.2: Parallel reduction using the shuffle instruction (ex-
tracted from [166]).

Using this instruction, several versions of the reduction were proposed, imple-
mented and compared. However, although Luitjens states that the adopted strategies lead
to faster reductions than those described by Harris [123], no comparative studies between
the two approaches were conducted.

6.2.3 Bryan Catanzaro’s Work

Now, we describe Catanzaro’s two-stage parallel reduction approach for large
datasets, as presented in [39].

The technique is based on dividing the data set in p pieces (or “chunks”), where
p is large enough to keep all GPU cores busy. It is also necessary to limit the number of
work-items to the maximum amount that the GPU can handle in total without having to
switch between them (from now on, that maximum will be called GS – or global size).
Each chunk is then processed by a work-group.

6.2 Parallel Reduction in GPUs 98

Since the sum operation has the properties of associativity and commutativity,
each work-item can perform its own reduction sequentially and intercalary with the others.
A work-item takes, as the starting point, its global identifier and accumulates, in a private
variable, its partial sum, skipping GS positions at every step in the vector stored in the
GPU’s global memory.

After having completed a pass through the data set, the work-items in each
workgroup write the result of their own reduction in a scrap vector located in local/shared
memory which, in turn, will also be reduced in parallel. At the end of the process, each
working group will have its own scrap containing, in its position 0, the result of the
reduction so far. This partial result is then copied to another vector, this time stored in the
GPU global memory, which size must be equal to |SM|. The first stage is then complete.
Its source code, extracted from [39], is presented in Listing 6.8.

Listing 6.8: Two-stage parallel reduction of Catanzaro – stage 1

1 _ _ k e r n e l void r e d u c e (_ _ g l o b a l f l o a t * b u f f e r ,
2 _ _ l o c a l f l o a t * s c r a t c h ,
3 _ _ c o n s t i n t l e n g t h ,
4 _ _ g l o b a l f l o a t * r e s u l t) {
5
6 i n t g l o b a l _ i n d e x = g e t _ g l o b a l _ i d (0) ;
7 f l o a t a c c u m u l a t o r = INFINITY ;
8 / / Loop s e q u e n t i a l l y ove r chunks o f i n p u t v e c t o r
9 whi le (g l o b a l _ i n d e x < l e n g t h) {

10 f l o a t e l e m e n t = b u f f e r [g l o b a l _ i n d e x] ;
11 a c c u m u l a t o r = (a c c u m u l a t o r < e l e m e n t) ? a c c u m u l a t o r : e l e m e n t ;
12 g l o b a l _ i n d e x += g e t _ g l o b a l _ s i z e (0) ;
13 }
14 i n t l o c a l _ i n d e x = g e t _ l o c a l _ i d (0) ;
15 s c r a t c h [l o c a l _ i n d e x] = a c c u m u l a t o r ;
16 b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
17 / / Per form p a r a l l e l r e d u c t i o n
18 f o r (i n t o f f s e t = g e t _ l o c a l _ s i z e (0) / 2 ; o f f s e t >0 ; o f f s e t = o f f s e t / 2) {
19 i f (l o c a l _ i n d e x < o f f s e t) {
20 f l o a t o t h e r = s c r a t c h [l o c a l _ i n d e x + o f f s e t] ;
21 f l o a t mine = s c r a t c h [l o c a l _ i n d e x] ;
22 s c r a t c h [l o c a l _ i n d e x] = (mine < o t h e r) ? mine : o t h e r ;
23 }
24 b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
25 }
26 i f (l o c a l _ i n d e x == 0) {
27 r e s u l t [g e t _ g r o u p _ i d (0)] = s c r a t c h [0] ;
28 }
29 }

6.2 Parallel Reduction in GPUs 99

The second stage is simpler. Since now there is a vector with |SM| elements in
the global memory – with the result of a partial sum in each position – just the first |SM|
work-items of the first SM copy their corresponding value to an array allocated in local
memory. Then the work-items perform a new parallel sum of the elements in the vector.
After copying the value in position 0 back to global memory, the reduction is finally
complete.

Figures 6.3 to 6.7 illustrate these two stages, assuming the presence of two SMs
on the GPU, each one able to run four work-items.

Figure 6.3: Parallel reduction – first stage, step 1.

Figure 6.4: Parallel reduction – first stage, step 2.

Figure 6.5: Parallel reduction – first stage, step 3.

6.3 The New Approach 100

Figure 6.6: Parallel reduction – first stage, step 4.

Figure 6.7: Parallel reduction – second stage, single step.

6.3 The New Approach

The improvements proposed in our work focus on Steps 1 and 3 of the first stage
of the reduction presented in Section 6.2.3. The improvements employ the same strategies
proposed by Harris [123] to increase the performance of the approach originally presented
by Catanzaro [39] but with appropriately chosen interventions.

In step 1 of the original implementation (Lines 9 – 12 of Listing 6.8), the vector
in global memory containing the data to be reduced is entirely traversed by work-items,
each one performing its own reduction.

This step already uses the “Persistent-Thread” strategy, but its performance can
be improved by adopting loop unrolling (see Section 3.3.1). As it can be seen, instead
of doing the unroll when the data is in local memory, as proposed by Harris [123]
(Listings 6.5 and 6.6 of Section 6.2.1), our improvement performs the unroll in the global
memory.

6.3 The New Approach 101

The code presented in Listing 6.9 shows the modified loop, assuming an un-
rolling factor (F) equal to 4, iGlobalID as the work-item global identifier and iLength as
the number of elements to be reduced.

Listing 6.9: Unrolling the step 1

1 f o r (i P o s = i G l o b a l I D * i U n r o l l i n g F a c t o r ; i P o s < i L e n g t h ;
2 i P o s += i G l o b a l S i z e * i U n r o l l i n g F a c t o r)
3 {
4 i 0 = i P o s ; i 1 = i P o s +1; i 2 = i P o s +2; i 3 = i P o s +3;
5 a c c u m u l a t o r +=
6 ((i0 < i L e n g t h) * (a V e c t o r [i 0]) +
7 (i1 < i L e n g t h) * (a V e c t o r [i 1]) +
8 (i2 < i L e n g t h) * (a V e c t o r [i 2]) +
9 (i3 < i L e n g t h) * (a V e c t o r [i 3])) ;

10 }

A special attention must be given to how the data is brought from the global
memory (aVector) to the private memory (accumulator), through the use of algebraic
expressions that prevent reading from invalid memory locations, thus avoiding the usage
of “ifs” and potential divergences in the execution flow. The expression in < iLength

expands to integers 1 or 0 whether it is, respectively, true or false. In the first case
(in < iLength)∗ (aVector[in]) is interpreted as (1)∗ (aVector[in]), adding the value stored
in location in to the partial sum (accumulator). In the second case, the expression is
interpreted as (0) ∗ (aVector[0]), ensuring that – regardless of the data stored in the
first position of the vector – value 0 is added to accumulator, keeping the partial sum
correctness.

At the begining of Step 3, the resulting values of the previous sums are already
stored in the local memory of the SMs. Then, each SM performs its own local reduction
with its work-items.

In the solutions presented by Harris [123] and Catanzaro [39], in this step all
work-items are kept synchronized through the use of barriers. However, with minor
conceptual changes, it is possible to completely eliminate the overhead caused by the
barriers, not only in the last 6 iterations of the loop, as proposed by Harris [123].

Our strategy is to use algebraic expressions to keep all the work-items in the same
execution step, maintaining its desired behaviour and algorithm correctness.

Consider the highly divergent code presented in Listing 3.4 (Section 3.3.3).
Using a simple algebraic expression, it can be rewriten in order to completely eliminate
the conditional statement and still return the right result of the comparison, as can be seen
in Listing 6.10.

6.4 Computational Experiments 102

Listing 6.10: Algebraic “if-then-else”

1 i n t s m a l l e s t V a l u e (i n t a , i n t b) {
2 re turn (a < b) * a + (a >= b) * b ;
3 }

Note that the two boolean operations ((a < b) and (a >= b)) are mutually
exclusive, being interpreted internally by the compiler as 0 (false) or 1 (true). So, assuming
that a is smaller than b, the result of the algebraic operation is (1) * a + (0) * b which,
ultimately, will return only the value of a.

The same strategy can be applied to lines 18 to 24 of Listing 6.8, that represent
the third step of the first stage. The new code is shown in Listing 6.11, where iLocalSize

stores the number of active local work-items and iLI represents the work-item’s local
identifier.

Listing 6.11: Avoiding Divergences

1 f o r (i P o s = i L o c a l S i z e / 2 ; i P o s > 0 ; i P o s >>= 1)
2 {
3 bFlag = i L I < i P o s ;
4 s c r a t c h [i L I] += (bF lag) * (s c r a t c h [i L I + (bF lag)* i P o s]) ;
5 }

Here, in each iteration of the loop, iPos is divided by 2 (iPos > > = 1) and bFlag

is expanded to either 1 or 0, thus reducing by half the number of work-items doing a
useful job. If, for the current work-item, the expression iLI < iPos becomes true, then the
expression in the last line will be interpreted as scratch[iLI]+ = (1)∗ (scratch[iLI+(1)∗
iPos]), ensuring that the value stored in position iLI + iPos will be added to the value in
position iLI. On the other hand, if the expression becomes false, it will be interpreted as
scratch[iLI]+ = (0) ∗ (scratch[iLI +(0) ∗ iPos]), ensuring that the value in position iLI

will not be considered. Since all work-items are always in the same step of computation –
doing exactly the same job (useful or not), independently of being in the same wavefront
– sync barriers are unnecessary.

6.4 Computational Experiments

Table 6.2 and Figures 6.8 and 6.9 represent the performance gains achieved
against the algorithm described in [39], where F = 1 is the runtime of the original code.
The machine used in the tests was the same one presented in Section 5.4.

All tests were run on two vectors, one of integers and one of single precision
floating points, containing 5533214 elements. There were no measurable differences

6.4 Computational Experiments 103

between the two vector types.
The times listed in Table 6.2 were obtained with the OpenCL profiler CodeXL,

version 2.0.12400.0, and are the averages of five consecutive executions for each F.
As can be seen, these results show that the version of the algorithm with F = 8

reached a speedup pretty close to 2.8x, when compared with the proposal of [39]. It may
also be noted that such speedup stabilizes around this value (F = 16 provided just over
1.5% gain when compared to F = 8).

F Time (ms) Speedup Memory Bandwidth (GB/s) Bandwidth Usage (%)
1 0.249780 1 88.6094002722 26.63
2 0.173930 1.4360949807 127.2515149773 38.24
3 0.139260 1.7936234382 158.9318971708 47.76
4 0.127700 1.955990603 173.3191542678 52.08
5 0.113930 2.1923988414 194.2671464935 58.37
6 0.100810 2.4777303839 219.5502033528 65.97
7 0.093740 2.6646042245 236.1089822914 70.95
8 0.089490 2.7911498491 247.3221142027 74.32

16 0.088160 2.8332577132 251.0532667877 75.44

Table 6.2: Parallel reduction execution times. New approach com-
pared against Catanzaro’s original code.

Figure 6.8: Chart of the parallel reduction execution times.

The same code was implemented in CUDA and tests were performed against the
Kernel 7 of Harris presented in Section 6.2.1. The GPU used in the experiments was a
Tesla C2075 with 6GB of memory. The architecture of such a video card provides 448
CUDA cores, a GPU clock of 575MHz and a shader clock of 1150Mhz. Its memory is
clocked at 750MHz (3.0GHz effective).

The experiments employed the same two vectors containing 5533214 elements
(integers and single precision floating points). Several values of the unrolling factor (F)

6.5 General Remarks 104

Figure 6.9: Chart of the parallel reduction speedup.

were used in order to find the optimal value for such a video board. It was determined
that up to F = 6 the performance gains were substantial and, with F ≥ 8, the gains were
very discrete. According to this, all experiments were conducted using F = 8. Table 6.3
presents the running time (in milliseconds) of both approaches and the percentage of
performance (given by the formula 100∗Tnew

Tk7
).

Time – Kernel 7 Time – New Approach % of Performance
0.17766 ms 0.17867 ms 99.4

Table 6.3: Parallel reduction execution times – new approach (with
unrolling factor equals to 8) compared against Harris’
code.

6.5 General Remarks

Reduction operations are widely employed in many computational problems.
This chapter showed how such operations can be performed in a parallel fashion using
graphics processing units and detailed the main approaches for them nowadays.

All parallel reduction techniques currently in use suffer from some basic issues.
Several only reach their peak performance by employing proprietary strategies and/or
technologies, what ends up limiting their use to the platform for which they were
designed. Others, though generic, do not adopt certain procedures that could increase
their performance without loss of generality.

The strategy presented here combines the best of both worlds: It is generic
enough to be used with both CUDA and OpenCL and can run on hardware of the two
major GPU manufacturers with minimal changes, just being adapted to the particularities

6.5 General Remarks 105

of each platform. The implemented code, besides simpler, offered a performance equiva-
lent to the best strategy described by Harris [123].

A good performance of this routine is essential for the efficient execution of the
macroscopic urban traffic assignment algorithm described in Chapter 8, since it is used
on two occasions: in the computation of shortest paths and in the golden ratio method.

CHAPTER 7
A GPU-Based Algorithm for Finding Shortest
Paths in Urban Traffic Graphs

As mentioned in Chapter 5, paths are one of the most important and studied
structures in graph theory. Its description usually can be found in the first sections of any
book on the subject, and a miriad of problems involving paths can be found in literature:
routing of telephone and nertwork traffic, navigation through a maze, layout design of
printed circuit boards [192], etc. Among them, the problem of efficiently finding the
shortest path(s) is one of key importance, either by itself or as a subproblem in more
complex tasks.

Thereby, the current chapter presents a study on this problem and proposes a
GPU-based parallel approach for it. It is compared with sequential and parallel methods
for large graphs. Later, in Chapter 8, the approach discussed here is used as a key step of
a more complex algorithm, focused on macroscopic assignment of urban traffic.

The chapter is organized as follows: Section 7.1 presents some basic definitions
related to the problem, its four variants, classic algorithms to solve the single source
shortest path problem (SSSP) and some parallel algorithms for SSSP. Section 7.2 explains
why SSSP is suitable for GPU processing in large urban scenarios and conducts a study on
Dijkstra’s priority queue behavior. Section 7.3 details the proposed GPU-based Dijkstra
algorithm. Section 7.4 describes the experimental tests and the results produced by the
new algorithm. General remarks are presented in Section 7.5.

7.1 Background

Extending the definitions in Section 5.2, given a graph G = (V,E) with n = |V |
and m = |E|, a path in G from a vertex s to a vertex t is a sequence of vertices alternated
with edges in the form p = 〈v1,(v1,v2),v2, . . . ,(vk−1,vk),vk〉, where v1,v2, . . . ,vk ∈ V ,
(vi,vi+1) ∈ E for i = 1,2, . . . ,k−1, v1 = s and vk = t. If G does not have multiple edges
(two edges in E with the same end points) or if the edges are implied, then p can be
written in a more compact way as a sequence of only its vertices.

7.1 Background 107

A path is called simple if it does not repeat any vertex. If G is a directed graph
then a path p in G is formed by directed edges and p is called an oriented path.

Under a formal definition, a weighted graph G consists of a set V of vertices, a
set E of edges and a cost function1 w : E → R. Given two vertices s, t in V , the shortest
path algorithm finds the path p between s and t with smallest [51]:

w(p) =
k−1
∑

i=1
w(vi,vi+1)

Figure 7.1 shows a simple graph with the corresponding edge weights and depicts
some shortest paths.

Four variants of the shortest path problem (SSP) can be found:

• Point to Point (P2P): Given s, t ∈ V , respectively source and target vertices of a
graph G, the goal is to find a shortest path from s to t;

• Single Source: Given s ∈ V , compute all shortest paths starting in s to all other
vertices of G;

• Many to Many: For two given sets of vertices S,T ⊂ V compute the shortest path
between all pairs of vertices (s, t) ∈ S×T ;

• All Pairs: The same as Many to Many, but with S = T =V .

Figure 7.1: The shortest path between A→ E is A→ B→C→ E,
with its cost equals to 18. Between D→ A, the shortest
path is D→ B→ A, costing 10.

In the next sections the details of the four variants of the SPP, as well as an
analysis of several parallel algorithms for the single source shortest path (SSSP) problem
are presented.

1The present study deals only with arcs with non-negative weights, i.e., w : E→ R∗+

7.1 Background 108

7.1.1 Point to Point (P2P)

The search for the shortest path between two distinct points of a graph is known
as the “Point to Point” (or P2P) problem. Formally it is defined as: given a strongly
connected2 graph G, oriented or not, with weighted edges and two distinct vertices,
respectively source s and target t, find all the shortest paths from s to t.

This problem can be solved by a modified version of the Dijkstra’s algo-
rithm [75], where the search ends when the target vertex is reached. This, however, does
not alter the time complexity of Dijkstra in the worst case, closely related to how its
priority queue is managed, ranging from the use of:

• highly expensive structures (like unordered arrays) to
• efficient structures (like binary heaps [137] and Fibonacci heaps [97]).

It is worth noting that, even with the use of the best data structures, in many real
applications the shortest path algorithm must be executed a significant number of times
and on large graphs, which makes its use impractical if techniques for its acceleration are
not employed.

Such acceleration techniques can be used individually or in combination. Details
about some of them can be found in [9, 58, 184, 101]. Regardless of how they are used,
they all have one thing in common: divide the original problem in two stages, named
“preprocessing” and “search”.

The preprocessing stage receives a directed graph G, as previously defined, and
produces some auxiliary data structure that aims to make the next stage (search) more
efficient.

The content of the auxiliary data produced is heavily dependent on the method
used. It can range from the use of information about the graph geometric structure,
decomposition based on some hierarchy (also known as graph partitioning), landmark
distances or the modification of the underlying graph structure [101, 108, 212, 242].

Even though all of these approaches have their merits, they also have drawbacks
that limit their use. For example, in the partitioning strategy the graph is divided into
multiple “chunks” of approximately the same size in a way that there are few interactions
(edges) between them. The main difficulty here is that the partitioning problem belongs
to the NP-Complete class, which requires the use of heuristic methods [201, 246].

On the other hand, restrictions about the time spent on the preprocessing phase
depend on the application itself. If the graph is static (or rarely changes), more time can
be spent in this stage, otherwise there will be a significant restriction on its utilization. A

2The formal definition talks about a connected graph, but this work sticks to the case of strongly
connected graphs. That is, those in which there is at least one path between any two distinct vertices.

7.1 Background 109

classic study in the field [187, p.-40–41], [221] points out that the preprocessing can take
several hours for a quite simple problem of handling a railway network operating schedule
and, therefore, it is only performed twice a year, since the structure of the network in
question varies only every winter/summer. Hence, its use is justified in this context.

The search phase is the traditional processing applied to the data structure
produced in the preceding step, and identifies the solution.

However, in the PET-GYN software, one of the primary goals is to propose
changes to the structure of the road network and then to evaluate its consequences, i.e., to
solve a Network Design Problem (NDP). This activity is performed very often by traffic
engineers in their planning activities and a preprocessing stage that consumes several
hours makes its use impractical in real scenarios.

7.1.2 Single Source

The two best-known algorithms for solving this problem were proposed by
Bellman-Ford [12] and Dijkstra [75]. The former is more generic, since it is able of
handling graphs with negative edge weights, but it is scarcely used because of its high
asymptotic computational complexity, O(n ·m). On the other hand, Dijkstra’s algorithm
is only applicable on graphs with no negative edge weights, but it has a smaller asymptotic
time complexity.

Although Djikstra’s algorithm belongs to the class of “greedy algorithms”, it
is guaranteed to always find the optimal solution. This is possible thanks to the use of a
contrivance: during the computation, it maintains and uses a set of vertices, called priority

queue, to guide the greedy search toward the optimal solution.
Defining s as a root vertex, Dijkstra’s algorithm grows a shortest path tree

holding the tentative distances (i.e., the smallest so far) to all other vertices. At each step,
the vertex with the smallest distance to s is dequeued and marked as already processed (or
settled), that is, its minimum distance to s has been found and, therefore, it doesn’t need
to be reprocessed.

As briefly mentioned in Section 7.1.1, the algorithm runtime is intrinsically
linked to the way the priority queue is handled, since at every step of shortest path
building, it must be scanned in order to locate the element with the smallest distance.
If the queue is kept sorted by priority (distance), the cost of this location and removal is
greatly reduced. However, it is important to note that the process of keeping it ordered also
incurs in a certain cost. The cost of these two processes (locate/extract the minimum and
keep the queue ordered) is what must be minimized, which is achieved through the use of
efficient data structures. Table 7.1 lists the time complexity for several proposals [149].

7.1 Background 110

Here, the total column depicts the time complexity of Dijkstra’s algorithm according to
the used data structure.

Data structure insert delete-min find-min decrease-key total

Unordered array O(1) O(n) O(n) O(1) O(n2)
Binary heap [137] O(logn) O(logn) O(1) O(logn) O((n+m) · logn)
Binomial heap [241] O(1) O(logn) O(1) O(logn) O((n+m) · logn)
d-ary heap [138] O(logd(n)) O(d · logd n) O(d · logd n) O(logd n) O(m · logm/n n)
Fibonacci heap [97] O(1) O(logn) O(1) O(1) O(n · logn+m)
Strict Fibonacci heap [28] O(1) O(logn) O(1) O(1) O(n · logn+m)
Relaxed heap [76] O(1) O(logn) O(1) O(1) O(n · logn+m)
Brodal queue [27] O(1) O(logn) O(1) O(1) O(n · logn+m)
Pairing queue [133] O(1) O(logn) O(1) O(logn) O(n · logn+m)
Rank-Pairing queue [119] O(1) O(logn) O(1) O(1) O(n · logn+m)

Table 7.1: Sequential Dijkstra: priority queue management opera-
tion costs.

In relation to how a graph G can be stored, the best data structure depends on
the problem in focus. If one is dealing with not so large graphs, an adjacency matrix may
be suitable, despite its O(n · n) memory consumption. The checking for the presence or
the absence of a specific edge can be done in constant time (O(1)), but to iterate over all
edges is a slow process. Adjacency lists, on the other hand, only use memory in proportion
to the number of vertices and edges, or O(n+m) [51], which potentially can save much
of memory space if the graph is sparse3. It is fast to iterate over all edges but finding the
presence or absence of a specific edge – which can be done in O(log(∆)) using a binary
search if the adjacency list is ordered, where ∆ represents the maximum degree of G – is
slightly slower than with the adjacency matrix.

7.1.3 Many to Many and All Pairs

Here, the problem can be described as: given two sets of vertices S,T ⊂ V

compute the shortest path between all pairs of vertices (s, t) ∈ S×T . It is called “Many to
Many Shortest Path Problem” and, if S = T =V , then the problem is known as “All Pairs
Shortest Paths” (or APSP).

3In graph theory, the distinction between dense and sparse graphs is quite vague, varying with the author
and with the context. Roughly speaking, a graph can be defined as dense if the number of edges is close to
its maximum value and sparse if it has few edges. West [246] says that a graph is sparse if m≤Θ(nk), where
1 < k < 2. Lee and Streinu [158] defines that a graph is (k, l)−sparse if every subset of n′ ≤ n vertices spans
at most k ·n′− l edges. Nešetril and Mendez [185] defined two classes of dense graphs: the ones for which
there exists a threshold t such that every complete graph appears as a t-subdivision in a subgraph of a graph
belongs to the somewhere dense class. Otherwise, if such a threshold does not exist, the class is nowhere
dense.

7.1 Background 111

One way to solve it is simply running Djikstra’s algorithm for all vertices
in S, as demonstrated by [100, 190, 201]. However, there are proposals for its direct
resolution [88, 99, 151, 213].

Limitations

Sometimes, when solving this kind of problem, it is not necessary to build the set
of shortest paths itself, but just keeping the distances between the vertices. In this case,
only one matrix that stores the distances will be needed.

However, in cases when both pieces of information (distances and shortest
paths) are required, this leads inevitably to the use of two matrices: one to represent the
calculated distances between all pairs of vertices of G and another to hold the predecessors
of each vertex in every path (s, t) ∈ S×T . In the case of real road networks, which are
highly sparse in general, this results not only in a huge waste of memory (to store the
graph) but also the impossibility of its use if the cardinality of the set V is large, because
the space occupied in memory would be expressed by the double of that cardinality (for
distances and predecessors).

Since the aim of the algorithm presented in Chapter 8 is to describe an efficient
way to run macroscopic traffic assignment in very large networks using GPUs, the “Many
to Many” and the “All Pairs” approaches cannot be applied due to its huge memory
consumption.

Just as an example to illustrate the problem, let’s take the California road
network, which has a total of 1965206 vertices. Every vertex identifier – used in the
predecessors matrix – will need 4 bytes for its storage, and another 4 bytes will be needed
to hold an edge weight, used in the distances matrix. This will lead to a memory usage of
2 ·4 ·1965206 ·1965206 = 30,896,276,979,488 bytes, or ≈ 31 petabytes only to handle
these two matrix data structures, which may be considered impractical.

Thereby, it is necessary to look for alternatives that do not use this huge amount
of memory. A workaround would be to perform n SSSP separate calculations, which can
be achieved using the algorithms described in Section 7.1.2, and that consume a smaller
amount of memory (O(n)) to store the results in each execution4. The results can then be
saved in another memory (in the main CPU RAM or in secondary storage) and the space
already allocated on the GPU may be reused for the new calculations.

In fact, this alternative is very interesting and can be effectively used in traffic
assignment algorithms, as described further in the thesis.

4For simplicity reasons, the present work is not considering for analysis the size of the problem input,
but only the size of the result.

7.1 Background 112

Another aspect that is worth mentioning is that, in general, when dealing with
the urban Traffic Assignment Problem (TAP) it is often not necessary to know the shortest
path between all pairs of vertices, just between some points of the road network defined
by sets of source (S) and destination (T) vertices, with |S| · |T | � n2. Thus, the idea of
only performing |S| SSSP calculations appears as a natural solution to this problem. As it
will be shown later, other TAP characteristics make this process even easier and reinforce
the use of SSSP algorithms.

7.1.4 Classic Algorithms for the SSSP Problem

The standard SSSP algorithms are based on a labeling process and can be
categorized into two groups according to the way the tentative distance is updated: label-

setting and label-correcting, where throughout successive iterations a shortest path tree is
built and improved until no further improvements are possible [252].

The methods based on the label-setting determine, in each iteration, a permanent
(not subject to changes) distance label for only one vertex at a time. The label-correcting
methods, on the other hand, change the distance label of every vertex several times and
only after the final step they all become permanent [178]. For a good explanation about
both groups, please refer to the works of Bogdanov and Trevisan [21] and Zhan and
Noon [252].

The best known algorithm that uses the label-setting strategy is the one proposed
by Dijkstra. Assuming that vs f is the current vertex in the search frontier, at each step
the method applies the scanning operation5 to all vertices neighboring vs f until either the
target vertex is reached and defined as settled (for the P2P problem) or until all vertices
have been scanned and labeled as permanent (the SSSP variant).

The Standard Dijkstra Algorithm

The standard Dijkstra approach (pseudo code shown in Algorithm 7.1) is based
on an iterative labeling process (see Section 7.1.5). For each vertex v ∈ V , it maintains
a tentative distance label ϕ(v) and a minimum distance d(v), where ϕ(v) represents an
upper bound on d(v) and refers to the value of the smallest path from the starting vertex
s to v found so far. As can be seen in lines 1 to 4 of Algorithm 7.1, it initially sets
ϕ(v)← ∞,∀ v 6= s and ϕ(s)← 0.

As pointed out in Section 7.1.2, the algorithm also maintains other two sets of
vertices: Q = {v1,v2, . . . ,vk}, k≤ |V |, used to guide the greedy search toward the optimal

5Also known as relaxing process, where the algorithm verifies if the tentative distance to the vertices
neighboring vs f can be improved.

7.1 Background 113

solution, called priority queue, and π(v), storing the predecessor of v in the shortest path.
Initially, the only element in Q is s (line 5) and π(v)← @,∀ v ∈V (line 3).

In the next steps, the labeling process repeatedly selects and extracts a vertex
“vs f ” from Q where ϕ(vs f) ≤ ϕ(vq),∀ vq ∈ Q (lines 6 to 8) and vs f is then marked as
settled, i.e. its minimum distance to s has been found and, therefore, d(vs f)← ϕ(vs f).
Then, vertex vs f becomes the new search frontier.

Finally, each va ∈ Ad j(vs f) is checked to verify if d(vs f)+w(vs f ,va) < ϕ(va)

(lines 6 to 8). If the condition holds, then ϕ(va)← d(vs f)+w(vs f ,va) and π(va)← vs f . In
the last step (line 14), the algorithm inserts va in Q.

During the labeling process, each vertex v ∈ V may be in one of the following
states:

• unreached: the vertex has not been inserted in Q and, therefore, ϕ(v) = ∞;
• labeled: the vertex was checked at least once during the neighbor relaxing process

and now belongs to Q. It can also be called queued or candidate;
• settled: the minimum distance from s to v has been found and v was removed from

Q.

A direct consequence of dealing only with non-negative weighted edges is that
every vertex visited during the relaxing process will be in a non-decreasing distance
from its predecessor vertex. Hence, the smallest Dijkstra’s time complexity (O(n · logn+

m)) presented in Table 7.1 is the best possible upper-bound when methods based on
comparison of values are employed.

This happens because any hypothetic SSSP algorithm with O(n · logn) time will
violate the Ω(n · logn) lower-bound for comparison-based sorting methods [51, 174]6.

6Although this is true for generic graphs, there are some classes of graphs (like planar [234] or with
separator decomposition [48]) for which more efficient algorithms are known. In [230] and [231], Thorup
presents two algorithms for solving the SSSP problem with O(n+m) time and space complexity for the
special case of undirected graphs with integer weights. Unlike Dijkstra, which visits vertices in the order of
increasing distance, his proposal is to traverse a component tree. Algorithms with linear average time for
uniformly distributed edge weights were presented in [107, 175].

7.1 Background 114

Algorithm 7.1: DijkstraAlgorithm(G, s)
Input: Non-negative weighted connected simple graph G = (V, E), a starting vertex

s and a set w : E→ R+ of edge weights.
Output: Two sets: ϕ (distances) and π (predecessors).

1 foreach v ∈V (G) do
2 ϕ(v)← ∞;
3 π(v)← @;

4 ϕ(s)← 0;
5 Q← s;

6 while Q 6=∅ do
7 u← extractMin(Q);
8 Q← Q−{u};

9 foreach va ∈ Ad j(u) do
10 dist← ϕ(u)+w(u,va);
11 if dist < ϕ(va) then
12 ϕ(va)← dist;
13 π(va)← u;
14 Q← Q∪{va};

The Standard Bellman-Ford-Moore Algorithm

The Bellman-Ford method is a well-known label-correcting algorithm for the
SSSP problem, and allows, as aforementioned, edges with negative weights. A curious
fact about it is that around the same time a different researcher, Edward Moore, published
an equivalent strategy in another article, and for this reason it is also known as Bellman-
Ford-Moore (BFM) algorithm.

Bellman-Ford-Moore’s approach is based on an iterative label-correcting pro-
cess shown in Algorithm 7.2. It performs a linear number of repetitions (line 5) over the
entire input graph (line 7), therefore ending in a polynomial time of O(n ·m).

Its basic implementation has some similarities with Dijkstra’s algorithm. During
the initialization process, it sets ϕ(v)← ∞,∀ v 6= s and ϕ(s)← 0. In the relaxing process,
it updates sets ϕ(v), d(v) and π(v) in an analogous way.

After initilization, in the relaxing process (lines 7 – 12), all edges (v,u) ∈ E are
verified to check if the constraint d(u)≤ d(v)+w(v,u) is respected. If it is violated, then
d(u)← d(v)+w(v,u) and π(u)← v. The process repeats |V | times or until no edge has
been relaxed. In any case, when the algorithm ends it will have either solved the problem
or will have a proof that the problem has no solution (lines 15 – 17).

7.1 Background 115

Algorithm 7.2: BellmanFordMooreAlgorithm(G, s)
Input: Weighted connected simple graph G = (V, E), a starting vertex s and a set

w : E→ R of edge weights.
Output: Two sets: d (distances) and π (predecessors).

1 foreach v ∈V (G) do
2 d(v)← ∞;
3 π(v)← @;

4 d(s)← 0;

5 for i← 1 to |V (G)| do
6 relaxed← f alse;
7 foreach (v,u) ∈ E(G) do
8 dist← d(v)+w(v,u);
9 if dist < d(u) then

10 d(u)← dist;
11 π(u)← v;
12 relaxed← true;

13 if relaxed = f alse then
14 exit the loop;

15 foreach (v,u) ∈ E(G) do
16 if d(u)> d(v)+w(v,u) then
17 return false;

18 return true;

7.1.5 Parallel Algorithms for the SSSP Problem

Researchers in the SPP area have continuously strived to develop more efficient
strategies than those already created. The literature is abundant in algorithmic solutions
to this problem. Although the existing proposals are very different among themselves, at
the end, they can be classified into three main groups:

1. The ones that identify new properties or structures in the graph and in the problem
that allow building methods with smaller asymptotic complexity;

2. The ones that compress the graph in order to reduce the size of the problem instance;
and

3. Those that explore computational parallelism.

We focus now on the third group. Furthermore, there are two main approaches
to implement parallelization in the standard SSSP algorithms. The first one parallelizes

7.1 Background 116

the intrinsic operations performed by the algorithm itself. The second approach splits
the graph in sub-graphs and simultaneously applies the sequential algorithm to each sub-
graph [228, 225]. In this thesis, only the first approach was investigated.

Regarding suitability for parallelization, the two most well-known sequential
algorithms for SSSP (see Section 7.1.4) have their drawbacks. The standard Dijkstra,
despite its low complexity, has an inherent sequential nature, since only one vertex
is processed in each iteration. On the other hand, BFM allows a more direct parallel
approach since it processes all edges in each iteration, repeatedly updating the vertices’
smallest distance until the final distances are found. But this has a high computational
cost.

All strategies presented next try to, somehow, overcome these limitations. They
are applied to directed graphs and have their strengths and weaknesses, which are
summarized in Table 7.2. Some evaluations of parallel methods for undirected graphs
are available in [225]. A more comprehensive and detailed listing of parallel algorithms
for the SSSP is available in [173].

Crauser et al.

In the strategy depicted in [53], the authors split Dijkstra’s sequential approach
into a number of phases, such that the operations within a phase can be done in parallel.
Parallelism is achieved by extracting of more than one vertex from the priority queue Q

at each iteration and relaxing their outgoing edges also in parallel. The difficulty lies in
how to identify the set of vertices that can be simultaneously removed without affecting
the algorithm’s correctness. They present some criteria for how to construct such a set:

• The first criteria, called OUT-version, finds a threshold L with the weights of the
outgoing edges, defined as L = min

∀ v ∈ Q
{ϕ(v)+w(v,u)|(v,u) ∈ Ad j(v)}. Using this

threshold, the algorithm defines as settled and removes from Q all vertices with
ϕ(v)≤ L. It also relaxes all their outgoing edges;

• The second criteria, called IN-version, computes two thresholds: M = min
∀ v ∈ Q

{ϕ(v)}

and another one with the weights of the incoming edges, defined as i(v) = {ϕ(v)−
min{w(u,v),(u,v) ∈ Inc(v)}}. All vertices in Q that satisfy the condition i(v)≤M

can be safely defined as settled and removed from Q. As in the first criteria, the
algorithm also relaxes all their outgoing edges;

• Finally, the IN-OUT-version applies both criteria in conjunction.

In their implementation, a global array is employed to maintain ϕ(v), ∀ v ∈ V ,
i.e., the tentative distance of all vertices. Every processing unit handles a subset S⊂V of
randomly assigned vertices and has two sequential priority queues.

7.1 Background 117

The first priority queue stores ϕ(v), for ∀ v ∈ S, and the second one stores the
addition of ϕ(v) and its minimum outgoing edge weight. In order to accelerate this step,
in a pre-processing phase the outgoing edge with the minimum weight for every vertex is
determined.

Next, the authors show how these variants can be efficiently implemented on
an arbitrary-write CRCW PRAM. The tests were performed on random directed graphs
under the model G(n, d

n), where n represents the number of vertices in the graph and
each possible edge is included with probability n

d . Furthermore, the edge weights were
uniformly distributed in [0,1].

The performed experiments showed that the OUT-version was able to find the so-
lution in 2.5

√
n phases. A refined IN-OUT-version (using an alternative implementation

based on a parallel priority queue) needs about 6.0 3
√

n phases on average. Other experi-
ments were performed and presented varying levels of optimization, according to the used
version and the graph type.

Brodal et al.

As shown in Section 7.1.2, the running time of Dijkstra’s algorithm is intrinsi-
cally linked to the way the priority queue Q is managed and the use of adequate data
structures can significantly improve the performance.

In the works presented in [29, 30], Brodal et al. show two different ways to
efficiently handle the elements of Q in parallel. The first way speeds up the queue
operations that deal with a single element in Q using a small, limited number of processing
units. The second method adds to Q the support of simultaneous vertices insertion and
simultaneous removal of the smallest elements (the vertices with smallest distances).
In both cases, a data structure representing a parallel priority queue able to perform its
internal operations (insert, update, etc.) in O(1) time is employed.

A new parallel alternative to Dijkstra’s algorithm is presented using this data
structure. In their implementation, they represent the graphs as adjacency lists and
keep these lists sorted using their weights, making possible in constant time both the
determination of the vertex with minimum distance and the addition (in parallel) of an
arbitrary amount of vertices to the data structure. The update distance operation can also
be performed in parallel.

To support this data structure, a processor pipeline is employed, where each
processing unit receives the data produced by its predecessor, performs a constant time
merge operation and selects the data to be sent to the next processing element. They also
defined that each vertex v ∈V has a dedicated processing element.

In their implementation, two sets that make use of this data structure have been
defined: the first one, S, represents the list of vertices already defined as settled (i.e.,

7.1 Background 118

those ones whose shortest path have been found), and S′ = {{Ad j(v), ∀ v ∈ S}−S} is a
collection of neighbors of vertices in S, excluding the ones in S.

Besides that, among the processing elements assigned to vertices in S, one will
randomly be elected as a master processor. The algorithm will not finish until the master
processor determines that the priority queue is empty.

Four operations are defined for this data structure:

• INIT – initialization the data structure;
• EJECT – removal of the element with minimum weight from S and sending it to

the master processor;
• EXTEND – consists of assigning a fixed weight to a vertex and adding it to S. The

processor assigned to this vertex becomes the new master processor;
• EMPTY – only performed by the master processor, consists of checking the empty-

ness of S.

The authors claim that, under their technique and if O(m·logn
n) processors are

available, Dijkstra’s algorithm can be implemented to run in O(n) time and O(m · logn)

work complexity on a CREW PRAM.

Martín et al.

The idea behind the parallelization method proposed by Martín et al. [170] is
that the standard Dijkstra implementation only deals with a unique vertex vs f in the
search frontier, even when several tentative distances ϕ(v) in Q coincide with the current
minimum. When this happens, the algorithm randomly chooses one of them to compose
the new frontier. As a consequence, it will take several iterations to settle each one up and
remove it from Q.

Therefore, instead of having a simple frontier, in the proposed implementation
they design the Dijkstra’s Algorithm Adapted to Compound Frontiers (DA2CF), able to
handle a set F of frontier vertices. Although in this new approach the same three basic
operations of the standard version are performed, they need to be adapted in order to
handle the compound frontiers:

• Relax: Consists of updating the shortest path estimate for all vertices in Q using
the elements in F . Therefore, the value ϕ(u)← min{ϕ(u),d(v)+w(v,u), ∀ (v ∈
F,u ∈ Q)} must be computed, which can be performed in parallel if a processing
element is assigned to each (v∈ F,u∈Q). However, it should be noted that this can
lead to inconsistencies if two vertices v1,v2 ∈ F concurrently try to update the same

7.1 Background 119

vertex u ∈ Q. In order to prevent this, in their implementation the authors adopt an
atomicMin instruction7, which may potentially serialize the whole operation;

• Minimum: involves finding the minimum estimate value (called mssp) in Q. In this
step they used an adapted version of the reduce3 method described in [123] (see
Chapter 6 for further details);

• Update: it updates the set Q, removing vertices wit distance estimate ϕ(u) = mssp.
The removed vertices will form the new set F .

Arranz et al.

The work presented in [189] by Arranz et al. adapts the Crauser’s algorithm [53]
to GPU architectures and performs experimental comparisons with both CPU and GPU
implementations of Martín et al. [170].

In their implementation, two types of graph representations were employed:
adjacency lists and matrices. Besides the basic structures to hold nodes, edges and the
respective weights, three other vectors were defined:

• U – Stores in U [v] whether the node v belongs to the unsettled set;
• F – Defines if F [v] is a node in the frontier set;
• δ – Stores in δ[v] the tentative distance from the source to node v.

Arranz et al. performed experiments evidentiating speedups varying from 13x
to 220x when compared to CPU times and a performance improvement up to 17% with
respect to the GPU-Martín et al. algorithms. Among its drawbacks, the following ones
can be cited:

• The best speedups were achieved using the matrix representation, which precludes
the use of this method in larger graphs;

• The sets U and F are entirely allocated in global memory, which ultimately leads
to a misaligned access pattern during the relaxation step, downgrading the desired
speedup;

• Each processor relaxes all neighbors of its starting vertex. If the vertices have a
very irregular outdegree distribution, this will induce an irregular workload for each
work-item in the relaxation step; and

7Ultimately, the employment of this atomic instruction prevents its use if two sets of values (ϕ(v) and
π(v), see Section 7.1.4) need to be updated in the step of computation. Moreover, there are only atomic
instructions in hardware for simple types like integers. Its not possible to implement atomic instructions in
hardware to more complex types of data, such as floats and, if these instructions are needed, they must be
emulated via software.

7.1 Background 120

• Since the expanded search frontier manages more than one vertex at the same time,
during the relaxation step two or more work-items can relax the same neighboring
vertex simultaneously. Therefore, to ensure that the minimum tentative distance is
written, the use of an atomicMin is required, serializing the process.

Meyer & Sanders

In [173], Meyer & Sanders propose a parallel version of a label-correcting algo-
rithm for the SSSP problem called ∆-stepping, where an ordered list of eligible vertices
with their respective tentative distances is held in a collection of buckets, representing
priority ranges of size ∆ (the bucket width), and where each element in the bucket can be
processed in parallel.

The basic supporting idea of the presented algorithm is a weakening in the total
ordering of the elements in the priority queue Q, only employing an array B of buckets8

such that B[i] maintains just the vertices {v ∈V,v is queued and ϕ(v) ∈ [i ·∆,(i+1) ·∆]},
in the ith iteration (or phase).

Using the ∆ parameter, they also introduced the concepts of light and heavy

edges, where the light edges are the ones where the condition {(v,u) ∈ E : w(v,u) ≤ ∆}
holds and the heavy edges is the set where the condition {(v,u) ∈ E : w(v,u) > ∆} is
satisfied.

In each phase, every vertex in B[i] is removed and all light outgoing edges are
relaxed, potentially introducing new vertices in B[i]. It is worth note that if a vertex v is
removed from the current bucket without its definitive distance, in some next step of the
same phase it will be surely reintroduced in B[i], which ensures the correct computation
of its minimum distance – in fact, if ∆ = ∞, then the proposed algorithm will become the
standard Bellman-Ford.

The remaining set of heavy edges is entirely relaxed only once, when the current
bucket gets empty, what assures that their corresponding starting vertices are marked as
settled and that the minimum distance to each v ∈ B[i] was found.

Under this strategy, the parallelism is now straightforward, by simultaneously
removing all vertices in B[i], relaxing their outgoing edges where {(v∈B[i],u∈Ad j(v))∈
E : w(v,u)≤ ∆} and, finally, relaxing all heavy edges where w(v,u) ∈ E > ∆.

As pointed in the conducted experiments, the performance of the presented
strategy is strongly dependent on the choice of the value of ∆, which offers a trade-
off between too many node reintroductions in the current bucket and too many bucket
traversals [225]. The challenge here, therefore, is to find a value of ∆ that fits well between
these two extremes.

8In the conducted experiments, buckets were implemented as doubly linked lists.

7.1 Background 121

Papaefthymiou & Rodrigue

In [193], Papaefthymiou & Rodrigue explore the fact that, under the Bellman-
Ford-Moore approach, edges can be relaxed in an arbitrary order without affecting
the algorithm correctness. In their parallel strategy, they do not adopt a dynamic load
balancing of the data; instead, all the information to be processed is distributed once (in a
highly uniform way) to the processors at the beginning of the computation.

For each vertex v ∈ V , the partitioning process tries to keep all neighboring
vertices u ∈ Ad j(v) on the same processor. Data is distributed into P chunks of roughly
the same size – where P is the number of processor – and assigning a chunk to each
processor.

The experiments performed showed that the proposed algorithm achieves better
results on dense graphs than on sparse ones, specially when the proportion E

V exceeds 25

or 26. For extremely sparse graphs, where E ≈ V , the algorithm performance was poor,
probably due to the little work processors could perform between the synchronization/-
communication steps.

Hajela & Pandey

In [120] Hajela & Pandey propose two parallel versions of the BFM algorithm,
one to compute the SSSP and a modified version to solve the APSP problem.

As pointed in their work, since the kth value of d(v) depends on the value
computed in the kth−1 iteration, its not possible to get rid of (parallelize) the outer loop
(line 5 of Algorithm 7.2). Therefore, all possible parallelism relies in the relaxing process
(lines 7 – 12), where two levels are possible:

1. In the kth iteration, the values of d(v1) and d(v2) do not depend on each other for
any v1,v2 ∈V ;

2. For all v ∈V , dth−1(v)+w(v,u) can be computed in parallel.

Their strategy is highly dependent on the matrix representation of the graph
which, ultimately, prevents its application to larger datasets (see Section 7.1.3). Despite
this limitation, the experiments performed by Hajela & Pandey on random graphs showed
speedups varying from 13.8x to 18.5x, when compared to the standard sequential version.

Jeong et al.

The GPU parallel strategy for BFM presented in [135] by Jeong et al. launches
multiple threads, one for each e ∈ E, and concurrently updates the shortest path informa-
tion instead of sequentialy computing every minimum distance. For this, a GPU kernel

repeatedly relaxes the associated edge until the shortest paths are found.

7.1 Background 122

In the experiments performed, the authors did not provide any significant infor-
mation about the graphs used in the experiments, only the number of vertices of each one.
An implementation made by the author of this thesis, strictly following the directions
provided in the article, did not confirm the alleged results.

Agarwal & Dutta

In [2] Agarwal & Dutta present two GPU parallel algorithms based on BFM. The
first one is quite similar to strategy presented in [135], where in |V | iterations |E| threads
are launched, one for every edge e ∈ |E|, and relax their assigned edge. Since this update
process can potentially lead to race conditions9, to ensure its correctness an atomicMin is
employed.

The second one, called Parallel BFM using Two Flags, uses two vectors of flags,
F1 and F2, in order to relax only those edges which source node was updated in the last
iteration. This reduces the computation time since, at each iteration, just a subset e′ ∈ |E|
needes to be updated.

Both algorithms were implemented by the author of this thesis. Using the second
strategy, the performed experiments showed some improvements over the sequential BFM
and the first parallel implementation. However, it is worth to note that even this strategy
does not beat the standard Dijkstra algorithm, being indicated only in cases where Dijkstra
can not be applied.

Kumar et al.

In [156], Kumar et al. present a modified version of the BFM algorithm using
CUDA that performs well in dense graphs. In the proposed strategy, after each execution
of the outer loop in line 5 of Algorithm 7.2, it is verified whether a solution was already
found and, therefore, the outer loop doest not necessarily have to iteract |V | times.

In the performed experiments, when the strategy is applied to very dense graphs
it takes no more than 20 iterations of the outer loop to find the problem solution, due to this
low diameter property. For graphs that take exactly |V | iterations for SSSP computation,
their algorithm will not get any speedup when compared to the standard implementation.

9A race condition occurs when code running on two or more hardware devices (processors or I/O
elements) have access to shared data and some of them try to write to the same location at the same time.
Since the scheduling algorithm (either software or hardware implemented) can swap between the running
code at any order and time, it becomes impossible to know the order in which the shared data will be
changed. Therefore, the result of the write operation is heavily dependent on the scheduling algorithm. In
other words, all hardware devices are “racing” to access and/or change the shared data.

7.1 Background 123

7.1.6 Overview of the Strategies

All the aforementioned strategies try to explore different types of parallel mech-
anisms to speedup the SSSP resolution and each one has its strengths and weaknesses.
Table 7.2 sumarizes their main aspects.

Algorithm Based on Strategy Strengths & Weaknesses

Crauser et al. Dijkstra Split the algorithm into phases and solve
each one in parallel.

A relatively small number of steps is re-
quired for finding the solution. On the
other hand, the employed dynamic data
structures and the CRCW PRAM model
are not suitable for use in GPUs.

Brodal et al. Dijkstra Adds to Q the support of simultane-
ous vertices insertion and removal of the
smallest elements.

Execution in linear time in a CREW
PRAM machine. But, as in Crauser et al.,
the employed dynamic data structures are
not suitable for use in GPUs.

Martín et al. Dijkstra The expanded frontier is able to handle a
set of vertices.

A real GPU implementation. Among its
drawbacks, the usage of atomic opera-
tions in the update process and the edge
weitghts limited to integer values.

Arranz et al. Dijkstra The expanded frontier is able to handle a
set of vertices.

A real GPU implementation of Crauser et
al. Converge to a solution in a relatively
small number of iterations. The bottle-
neck lies in the constant communication
between CPU and GPU, besides that only
distances are computed, ignoring the pre-
decessors.

Meyer & Sanders BFM An ordered list of eligible vertices is held
in a collection of buckets where each ele-
ment can be processed in parallel.

Good performace for random graphs
with random edge weights. Dynamic data
structures and the PRAM model are not
suitable for use in GPUs. Its performance
is heavily dependent on the value of ∆.

Papaefthymiou &
Rodrigue

BFM Explores the fact that edges can be re-
laxed in an arbitrary order without affect-
ing the algorithm correctness.

Achieves good results on dense graphs.
For extremely sparse graphs the algorithm
performance is pretty bad.

Hajela & Pandey BFM Strategy based on the matrix representa-
tion of the graph.

Speedups varying from 13.8x to 18.5x,
when compared to the standard sequential
version. Strategy highly dependent on the
matrix representation of the graph, pre-
venting its application to larger datasets.

Jeong et al. BFM Launch a GPU thread for each edge and
repeatedly relax all vertices.

The article does not provide further de-
tails on the graphs used in the experi-
ments, only the number of vertices on
each one. An implementation made by the
current author, strictly following the di-
rections provided in the article, did not
confirm the alleged results.

Agarwal & Dutta BFM Uses two vectors of flags in order to relax
only those edges whose source node was
updated in the last iteration.

GPU algorithm that achieved a certain
speedup when compared to a purely se-
quential version. For graphs with edges
with positive weights, the traditional se-
quential version of Dijkstra is still better.

Kumar et al. BFM After each execution of the outer loop, the
algorithm verifies whether a solution was
already found.

Achieves good results on very dense
graphs. Not a real parallel approach, but
just a checking that can also be applied to
the sequential version.

Table 7.2: Parallel Methods for SSSP.

None of the aforementioned strategies efficiently meet the requirements of the
system proposed in Chapter 8, which leads to the need of exploring alternative solutions
to an efficient SSSP resolution. The following sections describe how this goal can be
achieved using GPUs.

7.2 SSSP and its Suitability for GPU Processing in Urban Traffic Assignment Problems 124

7.2 SSSP and its Suitability for GPU Processing in Urban
Traffic Assignment Problems

As briefly mentioned in the beginning of the current chapter, a fast resolution
of the shortest path problem is one of the key steps in the more complex problem of
macroscopic assignment of urban traffic, described in details in Chapter 8. Since the goal
of the strategy presented in that chapter is to efficiently perform the assignment process of
very large networks using GPUs, all shortest paths resolution techniques that demand full
matrix data structures (for holding the travel distances and predecessor vertices) cannot
be considered due to their huge memory consumption (see Section 7.1.3).

SSSP appears then as a natural choice to deal with such a demand, when it is
solved iteratively for each node of the network. However, none of the parallel approaches
described in Section 7.1.5 solves the problem under study here well. This can be seen in
the “Strengths & Weaknesses” column of Table 7.2, and involves basically the following
drawbacks:

• Usage of unrealistic programming models, like PRAM, not applicable to real
machines, especially considering the restrictive architecture of GPUs;

• The need of a huge amount of memory for holding the data structures, what prevents
its usage for larger networks;

• Dependency of dynamic data structures, which are not suitable for GPU program-
ming;

• Exclusive concern with shortest path cost, when the actual paths are another
essential piece of information in the current work;

• Disregard for the memory hierarchy of GPUs, an essential aspect to achieve good
speedups when programming such devices.

In addition to the aforementioned problems, most of the strategies presented in
Section 7.1.5 reach their peak performance on dense graphs. However, since the graphs
considered in this study are directed (digraphs) representing streets and intersections, they
are often quite sparse and have large diameters10. Furthermore, some of the strategies deal
only with integer arc costs, while the traffic assignment algorithms are based on models
that consider non-negative and continuous variables represented as arc costs11.

One should note that, although sparse, urban traffic networks are, in general,
non-planar, due to the existence of bridges, tunnels, underpasses, overpasses, etc in the

10The diameter of a graph G, or diam(G), is the largest distance d(x,y) between any pair of vertices x and
y in the same component of G. Formally, diam(G) = max{d(x,y) : x,y∈V (G), d(x,y)< ∞}. Investigations
on graph theory [208] have shown that sparse graphs usually have large diameters.

11The cost associated to each edge usually represents the travel time or another non-negative value.

7.2 SSSP and its Suitability for GPU Processing in Urban Traffic Assignment Problems 125

road mesh. This means that any SSSP approach that could benefit from planarity does not
have a straightforward visible advantage.

All these drawbacks leave a gap that demands the development of a new parallel
approach for the urban traffic assignment, as presented in the next sections. The study here
focuses on aspects usually ignored by the current literature and where the other shortest-
path methods did not perform well. These aspects helped to design and implement a more
effective strategy for GPU parallelism. They are:

• The GPUs’ memory hierarchy and how it is organized (see Sections 3.2 and 3.2.1)
require an efficient partitioning of the data to be processed in order to minimize the
running time of the algorithms.

• Traffic networks usually have vertices with very few neighbors (small in/out de-
grees12) and have large diameters. Incidently, this leads to a very interesting behav-
ior of the evolution of the priority queue when using the traditional and sequential
Dijkstra algorithm, which highlights possible ways of exploring the memory hier-
archy of the GPU.

The idea for an efficient use of the memory hierarchy is described later, in
Section 7.3. Firstly, the properties of urban traffic networks regarding vertex degrees
and diameters are illustrated and the evolving behavior of Dijkstra’s priority queue is
explained.

7.2.1 A Study on Dijkstra’s Priority Queue Behavior

Usually, when dealing with graphs representing urban road networks, each node
corresponds to a junction (intersection) in the road mesh, and each directed edge (an arc)
to its connecting element, where it can be a street, an avenue, etc.

Because of the way cities are normally built, this creates an interesting and easily
observable phenomenon: all nodes of the road network have a very small number of
neighbors, with the vast majority having four or fewer neighbors, which produces nearly a
grid structure and leads to large diameters in the corresponding graph13. In mathematical
terms, this means that the in/out degrees of each node are almost always very small.

Figure 7.2 illustrates this phenomenon for a small region of the city of Goiânia,
capital of the state of Goiás, Brazil. The numbers highlight some intersections and

12The degree of a vertex v, also called local degree or valency is the number of edges connected to it. For
directed graphs there are two types of degrees, known as indegree (the number of inward directed edges)
and outdegree (the number of outward directed edges).

13Tunnels, bridges, underpasses and other structures can connect distant regions and thus reduce the
diameter of the road network. However, usually a city has a much greater amount of simple components in
a grid form than of those special structures, such as streets and intersections.

7.2 SSSP and its Suitability for GPU Processing in Urban Traffic Assignment Problems 126

their respective outdegrees. Tables 7.3 to 7.5 and Figures 7.3 to 7.5 show the outdegree
frequency distribution for three well-known USA road networks [159]. As can be noted,
more than 99% of the nodes of the road mesh have four or less neighbors.

Figure 7.2: Intersections and their respective outdegrees for a
small region of the city of Goiânia, Goiás, Brazil.

Outdegree Number of nodes Percentage

1 188317 17.30700833%
2 90740 8.33937603%
3 532686 48.95601563%
4 267256 24.56191624%
5 7759 0.71308374%
6 1237 0.11368534%
7 80 0.00735233%
8 13 0.00119475%
9 4 0.00036762%

Total 1088092 100.00%

Table 7.3: Table of the graph outdegree distribution for the Penn-
sylvania network.

7.2 SSSP and its Suitability for GPU Processing in Urban Traffic Assignment Problems 127

Outdegree Number of nodes Percentage

1 251082 18,19544219%
2 115639 8,38014170%
3 699330 50,67913505%
4 307341 22,27242653%
5 5650 0,40944492%
6 808 0,05855425%
7 48 0,00347847%
8 14 0,00101455%
12 5 0,00036234%

Total 1379917 100.00%

Table 7.4: Table of the graph outdegree distribution for the Texas
network.

Outdegree Number of nodes Percentage

1 321027 16,33553938%
2 204754 10,41895862%
3 971276 49,42362277%
4 454208 23,11248795%
5 11847 0,60283757%
6 1917 0,09754703%
7 143 0,00727659%
8 30 0,00152656%
9 1 0,00005089%
10 2 0,00010177%
12 1 0,00005089%

Total 1965206 100.00%

Table 7.5: Table of the graph outdegree distribution for the Cali-
fornia network.

7.2 SSSP and its Suitability for GPU Processing in Urban Traffic Assignment Problems 128

1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6
·105

1.88 ·105

90,740

5.33 ·105

2.67 ·105

7,759 1,237 80 13 4

outdegree

#
of

no
de

s

Figure 7.3: Chart of the graph outdegree distribution for the Penn-
sylvania network.

1 2 3 4 5 6 7 8 12

0

2

4

6

8
·105

2.51 ·105

1.16 ·105

6.99 ·105

3.07 ·105

5,650 808 48 14 5

outdegree

#
of

no
de

s

Figure 7.4: Chart of the graph outdegree distribution for the Texas
network.

1 2 3 4 5 6 7 8 9 10 12

0

0.2

0.4

0.6

0.8

1

·106

3.21 ·105

2.05 ·105

9.71 ·105

4.54 ·105

11,8471,917 143 30 1 2 1

outdegree

#
of

no
de

s

Figure 7.5: Chart of the graph outdegree distribution for the Cali-
fornia network.

7.2 SSSP and its Suitability for GPU Processing in Urban Traffic Assignment Problems 129

As a direct consequence of this phenomenon, when Dijkstra’s algorithm is
applied over such class of graphs, during the relaxing step only a few amount of vertices
will be inserted in the priority queue Q14. Since, on each step, only few elements are
added to Q and the vertex with smallest distance to s is always removed, this means that
the number of elements that Q must hold does not grow in an explosive way, leading to a
“well-behaved” priority queue.

Figures 7.6 to 7.8 depict the behavior of Q for the three aforementioned graphs.
Despite the fact that they have a large amount of components (nodes and edges), the
number of elements in Q never exceeds a tiny percentage of the total number of vertices
of the graph.

This behavior, ultimately, opens the possibility of fully allocating Q in the
small, but very fast, local memory. The following sections describe how this goal can
be achieved.

It is worth a brief note before we continue. All these charts were produced by
running the sequential Dijkstra’s algorithm with the starting node equal to 0. If another
starting node is chosen, the shape of the curves may be different, but it does not invalidate
the analysis made here as the maximum number of elements in Q tends to be very regular.

Figure 7.6: Sequential Dijkstra: heap behavior on the graph rep-
resenting the Pennsylvania network.

14There is also the case where all neighbors of the current vertex don’t have its smallest distance improved
in the current step and, hence, Q is not expanded.

7.3 The Proposed GPU Dijkstra Algorithm 130

Figure 7.7: Sequential Dijkstra: heap behavior on the graph rep-
resenting the Texas network.

Figure 7.8: Sequential Dijkstra: heap behavior on the graph rep-
resenting the California network.

7.3 The Proposed GPU Dijkstra Algorithm

In this section, we present our Dijkstra parallel algorithm. The approach adopted
was to split the standard algorithm into three stages that are performed inside every single
parallel work-item and repeated until the priority queue is empty.

The whole process starts with |SM| ∗MaxSMSize work-items been launched by
the CPU, with |SM| work-items for each SM.

The first stage involves relaxing the neighbors of the current vertex (Lines 9 –
13 of Algorithm 7.1). The second stage takes each relaxed neighbor and inserts it in the
priority queue (Line 14). The third stage locates and extracts the vertex with smallest
distance from the priority queue (Line 7).

The proposed parallel algorithm was mapped to a GPU architecture. In the next
section, a set of data structures needed for the maintenance of the priority queue in the
local memory is presented. After that, the details of the three parallel stages are described.

7.3 The Proposed GPU Dijkstra Algorithm 131

7.3.1 Data Structures

As in Chapter 5, we store our graph using the compact graph representation pro-
posed by Harish and Narayanan [122], only excluding vector Lv, which is not necessary
here.

This is saved in the global GPU memory together with vectors d and π for having
the tentative/definitive distances and the predecessor vertex, respectively.

For the priorty queue, referred as Q, it is important to define first what kind of
information it must hold. As mentioned in Section 7.2, the traditional parallel methods for
SSSP do not consider the actual paths and this information is crucial during the demand
distribution step of the macroscopic traffic assignment algorithm (see Section 8.1.2).

Hence, there is the need to expand the priority queue Q in order to store not
only the distance but also the node identifier, necessarily leading to the use of two data
structures: ϕ to hold the tentative distance and V to maintain the vertex identification,
both held in the local memory of each SM. So, the maximum number of elements that
our expanded priority queue is able to handle is limited by the size in bytes of this local
memory (ψ) divided by the cardinality of |ϕ|+ |V |, or |Q| = ψ

|ϕ|+|V | . Figure 7.9 shows Q

in the local memory.

Figure 7.9: Allocating Dijkstra’s priority queue on local memory.

The problem now is that, even if the number of elements in the priority queue
does not grow significantly, as pointed out in Section 7.2.1, yet the local memory of only
one SM is not able to keep all elements of Q at once. To overcome this, the strategy is to
distribute the priority queue through all SMs of the GPU, where each SM maintains its
own space to store “chunks” of Q, as shown in Figure 7.10.

7.3 The Proposed GPU Dijkstra Algorithm 132

Figure 7.10: Distributing Dijkstra’s priority queue on streaming
multiprocessors. All chunks of Q across the SMs have
the same size, but hold different elements.

7.3.2 First Stage

The first stage of our parallel strategy refers to the relaxation of neighboring
vertices of the frontier vertex u (Lines 9 – 13 of Dijkstra’s sequential version – see
Algorithm 7.1).

In the first execution of the parallel algorithm, vertex u is defined as being the
initial vertex s. In the other cases, this information comes from Stage 3.

For this first stage, every parallel work-item can individually analyze a distinct
neighbor va of u and check if the current distance d(va) from s (the starting vertex) to va,
can be improved. This can be done by looking up d(u), d(va) and the cost W of the edge
(u,va) in the global memory and verifying if d(u)+W < d(va). Since we are dealing with
extremely sparse graphs, only κ work-items are necessary for doing a useful work, where
κ refers to the number of neighbors of u.

Furthermore, as we are working with graphs where κ is significantly smaller than
the amount of work-items inside a SM, it may seem that only the work-items of a single
SM are enough to analyze the neighbors of u in parallel.

However, in our strategy, the first κ work-items of ALL SMs simultaneously
analyzes the same neighbors of u. As illustrated in Figure 7.11, every work-item with
local identifier 0 analyzes the first neighbor of u, every work-item with local identifier
1 analyzes the second neighbor of u, and so on. Therefore, this stage actually involves
|SM| ·MaxSMSize work-items, eventhough only the first κ work-items of each SM will
perform a task.

Then, if there is a possible reduction of d(va) for a neighbor va, every work-item
that analyzed that vertex will update the positions d(va) and π(va) in the global memory.
Note that this may result in |SM| simultaneous writing operations in the same memory
position, but they are not critical as the values to be written are the same.

The reason for this behavior will be clarified with the description of the second
stage of the algorithm but, in short, it keeps work-items in every SM active with useful
information.

7.3 The Proposed GPU Dijkstra Algorithm 133

Figure 7.11: All SMs analyze the same vertex u.

7.3.3 Second Stage

The next task to be performed is writing the information of all relaxed vertices in
the corresponding data structures (π,d,VG and ϕ). The first two, located in global memory,
are updated only by one work-item.

Later, we need to write in the two data structures related to Q in the local
memory: VG and ϕ. At first glance, the adoption of a simplistic strategy seems to solve the
problem: the chunk of Q of the first SM is populated until it is full. Next, the chunk of Q

of the second SM is populated until it becomes full, then move the populating process to
the third SM and so on.

However, this strategy has one main issue that can potentially increase the
computation time: at each step of the algorithm, it is necessary to check the number of
elements in the priority queue and whether this number has reached its maximum value.
Since the inclusion of these elements occurs in a parallel fashion during the neighbor
relaxation step (the first stage), the only two ways to find this amount is through a parallel
reduction or using an atomically incremented variable.

To avoid the adoption of these two procedures, that would lead to an undesirable
overhead in the writing operation, each work-item, when relaxing a vertex, only writes the
information about the relaxed neighbor if its own local identifier is equal to the identifier
of the SM to which the work-item belongs. This implies that the chunk of Q in every SM
will receive at most one new neighbor.

This strategy avoids not only the use of the aforementioned procedures, but also
splits the elements in Q through several SMs, allowing the maintainance of a variable in
the local memory that will be updated in order to store the number of elements in each
SM15. Figure 7.12 illustrates the process.

15An immediate effect of this strategy is that it can only be applied to graph where the value of ∆ (the
biggest graph outdegree) is smaller or equal the number of SMs available on GPU.

7.3 The Proposed GPU Dijkstra Algorithm 134

Figure 7.12: Parallel writing in the priority queue.

A problem arrises when adopting this strategy: if the number of SMs is signif-
icantly higher than the biggest graph outdegree (|SM| � ∆), the chunks of Q associated
with these SMs will never be used, wasting both storage space and processing power.

Solving this problem is relatively simple. Instead of operating only in the SMs
with the lowest index, at each iteration of the algorithm, a circular incremental SM index
is updated and used to shift the sequence of work-items that will write information. This
causes the writing process to “move” between blocks of Q, distributing even more the
chunk populating processing. Figures 7.13 – 7.16 depicts this strategy, assuming that 12
SMs are available in GPU and that the graph max outdegree (∆) is equal to 3.

Figure 7.13: Writing in chunks of Q – First block of active SMs.

Figure 7.14: Writing in chunks of Q – Second block of active SMs.

This expanded distribution process leads to another, less evident, benefit: the
number of elements in each chunk will grow even more slowly, distributing in a more

7.3 The Proposed GPU Dijkstra Algorithm 135

Figure 7.15: Writing in chunks of Q – Third block of active SMs.

Figure 7.16: Writing in chunks of Q – Fourth block of active SMs.

uniform fashion the workload that the work-items should perform in the third stage of the
parallel reduction, as described next.

7.3.4 Third Stage

In this last stage, the next vertex u with smallest tentative distance must be found
(Line 18 of Algorithm 7.3), removed from the corresponding chunk of Q (Line 20) and
used as a new frontier. To do this, the two-stage parallel reduction strategy described
in Chapter 6 is employed, but modified in order to locate the smallest element with
its respective vertex identification, and operating only in the elements already in local
memory. Hence, lines 9 – 16 of Listing 6.8 are not necessary here, significantly decreasing
the execution time of this procedure.

It is worth a short comment on how the global synchronization barrier between
the two stages of parallel reduction (Line 18) is implemented in this stage. Unlike the
strategy presented in Chapter 6, where a global synchronization is performed by CPU,
here the work-items across multiprocessors are kept synchronized through the use of the
mechanism called “GPU Lock-Free Synchronization” described in [250].

As a final note it is important to note that, during the implementation of these
three stages of parallel Dijkstra, only one kernel was employed. The strategy is described
in Algorithm 7.3.

7.3 The Proposed GPU Dijkstra Algorithm 136

Algorithm 7.3: ParallelDi jkstra(G,s)

Input: Compact representation of directed weighted graph G = (V,E), a vector W

of edge weights and a starting node s.
Output: Sets of distances d(v) and predecessors π(v).

1 Define the current node u← s, the tentative distance ϕ(v), the vertex identifier VG,
the work-item local identifier Lid and the SM unique identifier SMid;

2 initialization();
3 ζ← 0;

4 ξ← |SM|
∆

;
5 for each thread j, j = 0, . . . , |SM| ·MaxSMSize−1 do in parallel
6 while |Q| 6= 0 do

// First stage.

7 k1← neighborsLowerBound(u);
8 k2← neighborsU pperBound(u);
9 κ← k2− k1 +1;

10 if Lid < κ then
11 if d(u)+WE < dva then

// Second stage.

12 if (SMid
ξ

= ζ) and (Lid +ξ ·ζ = SMid) then
13 π(va)← u;
14 d(va)← d(u)+WE ;

// Adds the vertex to chunk of Q.

15 VG←VG∪ va;
16 ϕ← ϕ∪ (d(u)+WE);

17 localSyncBarrier;
// Third stage.

18 u← parallelReduction2LocateSmallestElement();
19 globalSyncBarrier;
20 removeSmallestElement(u);
21 ζ← ζ+(−ζ · (ζ = (ξ−1)))+(ζ < (ξ−1));

The initialization process in Line 2 of Algorithm 7.3 makes use of the “Persistent
Threads” and “Loop Unrolling” strategies for populating all vectors with their initial
values (Lines 1 – 4 of Algorithm 7.1). It also sets two private variables for each work-
item. The first one, ζ, which initial value is 0, indicates the current block of active SMs.
The second one, ξ, is the total number of SMs blocks, defined as |SM|

∆
. After each iteration

of the “while” loop in Line 6, the value of ζ is updated by the algebraic expression at

7.3 The Proposed GPU Dijkstra Algorithm 137

Line 21. This is done in this way to avoid the use of conditional instructions.
Lines 7 – 10 ensure that only the first κ work-items of each SM will relax

the κ neighbors of u. The cheking at Line 11 verifies whether the neighbor of u under
analysis by the work-item can be improved. If so, Lines 13 – 14 update the shortest path
information accordingly.

The test in Line 12 assures that only the work-items of the active block of SMs
will insert the relaxed node information in the respective chunk of Q.

Obviously, the present method only works when the maximum outdegree (∆)
of the graph is smaller or equal to |SM| and to MaxSMSize, what is true for most road
networks and GPU hardware.

7.3.5 Complexity Analysis

As can be observed, the algorithm has an initialization step, which can be carried
out in parallel in time n

MaxSMSize·|SM| , where n = |V |. Since MaxSMSize and |SM| are
constants, this implies that the complexity of this step can be expressed by O(n).

The main iteration is performed by loop in Line 6, which involves the location
of the smallest element u in Q, its extracting and the relaxation of its neighbors until all
chunks of Q become empty.

As each work-item operates on one neighbor of u, the relaxation process (Lines 7
– 11 of Algorithm 7.3) of all neighbors of u can be performed in constant time O(1).

Something similar happens when each work-item updates the information about
the relaxed neighbor π(va) and d(va) and then inserts this information in Q (Lines 12
– 16). Considering that all work-items are operating in parallel and have exclusive access
to the associated chunk of Q, this operation can also be performed in constant time O(1).

The next task to be carried out is finding the smallest element. As previously
stated, this operation is performed only in the elements already in local memory. Hence,
the three steps required to find the smallest element can be described as follows:

1. Each work-item find its local minimum in the associated chunk of Q. This operation
takes time |PQchunk|

MaxSMSize ;
2. Next, |MaxSMSize| smallest elements are reduced to one simple value in time

log(MaxSMSize);
3. Finally, |SM| smallest elements are again reduced in order to find the global

minimum. This can be done in time log(|SM|).

The last task to be performed is the removal of smallest element u from the chunk
of Q in which it is located. This can be done by simply copying the values stored in the
last position over the position where u is located and then decreasing the local variable

7.4 Computational Experiments 138

that holds the number of elements in this specific chunk of Q, as illustrated in Figure 7.17.
As can be easily observed, this operation is carried out in constant time – O(1).

Figure 7.17: Removing the smallest element from chunk of Q.

So, the time required by this parallel version of Dijkstra’s algorithm (including
the initialization process, which is performed in n iterations) is upper bounded by two
main steps:

1. The iteration of the “while” loop in Line 6, which requires a number of steps
proportional to the number of elements in Q, which is, in the worst case, n.

2. The time to locate the smallest element.

Therefore, the whole algorithm requires time that is upper bounded by the ex-
pression n ·

(
|PQchunk|
|SP| + log(MaxSMSize)+ log(|SM|)

)
. Table 7.6 summarizes the infor-

mation about all these steps.

Operation Complexity
Initialization O(n)

Relax neighbor O(1)
Insert in priority queue O(1)

Find the smallest element O
(
|PQchunk|

MaxSMSize + log(MaxSMSize)+ log(|SM|)
)

Remove from priority queue O(1)
Iterate over priority queue O(n)

Total O
(

n ·
(
|PQchunk|
|SP| + log(MaxSMSize)+ log(|SM|)

))
Table 7.6: Parallel Dijkstra: complexity analysis.

7.4 Computational Experiments

In order to evaluate the efficiency of the proposed strategy in terms of processing
time to find the shortest paths, a sequential Dijkstra algorithm was implemented in C++
for comparison. The sequential algorithm uses a binary heap because of its ease of
implementation and low overhead in execution time [51].

7.4 Computational Experiments 139

As pointed out by [43], although Fibonacci heaps have a smaller asymptotic
complexity compared to binary heaps, in real applications often binary heaps lead to
algorithms with lower execution times, due to Fibonacci’s large constant factors [60].

The machine used in the tests and the compiler parameters were the same as
those described in Section 5.4.

The experiments were performed on 15 graphs representing large USA road
networks meshes, obtained from the “Stanford Large Network Dataset Collection

(SNAP)” [159] and from the “9th DIMACS implementation challenge – Shortest

Paths” [69].
For each graph, a set of 100 nodes were randomly chosen and then fixed as

starting points. For each node, a sequence of 5 executions were performed and the average
time of these 500 executions (100 nodes · 5 executions) was computed. Table 7.7 shows
information about the graphs and the computational results. The first columns are the
identification of the graphs and their number of vertices and edges. The next columns are
the average time (in seconds) of the sequential Dijkstra algorithm (Tseq), the average time
(in seconds) of the parallel algorithm (Tpar) and the speedup (Tseq

Tpar
).

Graph name |V | |E| Tseq(s) Tpar(s) Speedup

1 New York City 264.346 733.846 0,085 0,00941 9,032
2 San Francisco Bay Area 321.270 800.172 0,099 0,01063 9,317
3 Colorado 435.666 1.057.066 0,139 0,01179 11,786
4 Florida 1.070.376 2.712.798 0,365 0,02110 17,297
5 Pennsylvania 1.088.092 3.083.796 0,437 0,02119 20,627
6 Northwest USA 1.207.945 2.840.208 0,423 0,01949 21,709
7 Texas 1.379.917 3.843.320 0,549 0,02392 22,949
8 Northeast USA 1.524.453 3.897.636 0,561 0,02473 22,684
9 California and Nevada 1.890.815 4.657.742 0,736 0,02537 29,006

10 California 1.965.206 5.533.216 0,904 0,02836 31,875
11 Great Lakes 2.758.119 6.885.658 1,076 0,02944 36,546
12 Eastern USA 3.598.623 8.778.114 1,399 0,03520 39,739
13 Western USA 6.262.104 15.248.146 2,538 0,06265 40,508
14 Central USA 14.081.816 34.292.496 7,329 0,17973 40,779
15 Full USA 23.947.347 58.333.344 10,619 0,25990 40,859

Table 7.7: Dijkstra: Sequential and Parallel Execution Times

7.4 Computational Experiments 140

Figure 7.18: Parallel speedup according to road network.

It is worth remembering that the parallel times shown in Table 7.7 do not consider
the time for copying the generated data back to the CPU. This was done because during
the urban traffic allocation process described in Chapter 8, these data are only used as
support at an intermediate stage in the task of demand allocation. If this copy was needed,
the speedups would be smaller. For this reason, the impact of the copy process was not
taken into account by the present study.

7.4.1 Analysis of the Results

From the results shown in Table 7.7, it can be seen that, as the size of the road
network increases (in number of nodes and arcs), greater benefit is achieved through
the use of GPU parallelism with the described technique. For example, the first line of
Table 7.7 shows that, for the city of New York’s road mesh the advantage of the parallel
algorithm in relation to the sequential one was approximately 9x with respect to its
execution times. On the other hand, in the graph representing the entire North American
road mesh (Full USA) – a lot bigger than the first one – the obtained speedup was close
to 41x.

This clearly shows that GPU scalability is better than CPU scalability, that is,
GPU performance is less affected as the workload assigned to it increases, as stated
by Gustafson’s Law (see Section 3.1.2). Chart 7.18 illustrates the speedup improvement
achieved by the proposed implementation over the sequential version.

It is worh mentioning that, for the traffic assignment process discussed in
Chapter 8, the results of the parallel Dijkstra algorithm are immediately used by another

7.5 General Remarks 141

parallel stage inside the GPU, without having to be transfered to the CPU RAM (thus, the
communication time, Tcom, is null). Therefore, the mentioned speedups are real for our
application.

7.5 General Remarks

This chapter presented the problem of computation of shortest paths in weighted
graphs. The four main variants (P2P, single source, many to many and all pairs) of this
problem were described, being evaluated according to their applicability to real problems.
Advantages and disadvantages of each one were highlighted, demonstrating that for the
present work, the SSSP approach is the most adequate one, due to the lower memory
usage.

Among the two possible algorithms to solve the SSSP, the Dijkstra approach
was selected because of its lower computational time complexity when compared to that
of Bellman-Ford-Moore, taking into account that the costs of the arcs are always positive
in road networks, since they usually represent travel times.

Several parallel approaches to the Dijkstra and Bellman-Ford-Moore algorithms
were evaluated, concluding that none of them were satisfactorily adapted to the problem
under study by the present work. As a result, a thorough analysis of the behavior dynamics
of the Dijkstra priority queue, when applied to representative graphs of road networks,
was conducted. At the end, it was verified that this behavioral dynamics allows the
conception of a new parallel approach for typical road networks. The same strategy can
be used for other sparse graphs with similar structure (close to a grid and with large
diameters).

The performed experiments demonstrated a clear advantage of this new approach
when compared to the sequential version, by efficiently exploiting the GPU resources,
such as memory hierarchy, to deal with the main bottleneck in Dijkstra’s parallelization:
its priority queue.

As will be shown in the next chapter, the computation of shortest paths is one
of the most costly tasks with respect to the runtime required in the macroscopic traffic
allocation process. This is due to the need of solving the SSSP for every source vertex of
the network and for each iteration of the traffic assignment algorithm. Therefore, a fast
parallel Dijkstra algorithm is of much value to the simulation and the study of urban traffic
conditions.

CHAPTER 8
GPU Computing Applied to the Traffic
Assignment Problem

This chapter presents how a macroscopic traffic assignment can be achieved
through the use of Beckman’s model and discusses a GPU-based implementation of
it. It also shows comparative experiments between its sequential and GPU parallel
versions when applied to several large graphs representing road networks. The chapter
is organized as follows: Section 8.1 gives some details about Beckman et al.’s model,
describes the arc cost functions used in the present work and depicts some methods
for determining the equilibrium point in transportation networks. Section 8.2 presents a
profiling analysis of a sequential algorithm and highlights its most time consuming steps.
Section 8.3 explains how the sequential algorithm was adapted in order to explore the
GPU capabilities. Section 8.4 shows the experiments performed and, finally, Section 8.5
draws the conclusions.

8.1 Background

Here we extend the basic definitions given in Section 2.2. The mathematical
modeling of Beckmann et al. [11] considers the Traffic Equilibrium Problem in the
condition of System Optimization (TEP-SO) as a minimization problem, defined as
follows:

minx ∑
a∈E

xa · ta

sub ject to x = Λ · f

d = D · f

f ≥ 0

8.1 Background 143

where

• xa represents the flow in arc a, grouped in vector x;
• ta is the function that describes the time needed to travel arc a, based on its physical

characteristics and current flow. ta must be a convex, continuous, non-negative and
non-decreasing function;

• f is a vector that contains the flows in all paths between origin and destination
nodes;

• d is the vector, presumably known, of demands between source and destination
nodes.

• Λ and D associate arcs, paths and demand for an O-D (origin-destination) pair. A
flow f in paths or x in arcs is considered feasible if the demand d is met;

• The term ∑
a∈E

xa · ta is the total flow time in seconds.

As explained in Section 2.2.2, the TEP-SO aims at finding the ideal flow that
minimizes the total travel time and also fuel consumption, eventhough it may result in a
longer travel time for some individual drivers.

Being Tk = ∑
a∈k

ta the sum of the travel times in the arcs that form a path ρ, that

is, the total travel time from a certain source to a destination, the first Wardrop Principle
can be expressed as Tk(f *)(f − f *) ≥ 0 for all feasible flows f of the O-D pair k. It
can be shown [11, 196] that this corresponds to the optimality conditions of a convex
optimization problem, previously defined as TEP-UE (User Equilibrium) [47]:

minx ∑
a∈E

∫ xa

0
ta dx

sub ject to x = Λ · f

d = D · f

f ≥ 0

8.1.1 The Arc Types and its ta Functions

The central point in Beckman et al. model (Section 2.2.2) is the construction
of one or more functions that describe the average time taken by the vehicles to travel
through a certain portion of road network (ta functions). However, the original model of
Beckmann assumes that the functions should only consider the physical characteristics
and traffic flows in the arc itself (i.e., a separable function), ignoring effects exerted by
vehicle flows in other arcs (i.e., a non-separable function).

8.1 Background 144

An arc cost function τ is said to be separable when the cost of arc a, expressed
by τa, only depends on the existing traffic flow (xa) in this arc. Hence, τa(xa) can be
computed using just the xa value1, that is, flow that travels on the arc a in the considered
time interval.

On the other hand, τa is said as non-separable when it depends on a set of existing
traffic flows on several arcs that form the road network, not just the traffic flow in a itself.
Then τa(ρ) = τa(f0, f1, f2, ..., fn), where ρ is a vector composed of all traffic streams that
are used to compute τa in a given time interval.

Although the original approach of Beckman et al. can be suitable for arcs that
do not interact with other flows, for example free ways, it ends up not being suitable
for those streets/avenues that are actually influenced by the movement of other vehicles.
Among these, non-preferred avenues may be cited, where drivers must wait their turn
before continuing the journey, or those that end on a roundabout.

Therefore, for a better approximation to reality, the ta functions should consider
such influences during the travel time calculation. Next the description of the arc types
and their associated ta function are presented. These functions are improvements over the
ones initially proposed in [64] and later refined in [140, 141]:

• Type 1 (one-way, ending with a traffic light) and Type 2 (two-way, no interaction,
ending with a traffic light):

t1,2 =
3.6∗ ca

va

[
1+

xa

2500∗ fa
+

(
xa

500∗ fa

)3
]
+ s∗

(
3+

3.6∗ ca

va

)
• Type 3 (two-way, with interaction, ending with a traffic light):

t3 =
3.6∗ ca

va

[
1+

3xa + z
8000∗ fa

+

(
xa

900∗ fa

)3

+

(
z

1500∗ fa

)3
]
+ s∗

(
3+

3.6∗ ca

va

)

• Type 4 (one-way, preferential) and Type 5 (divided and preferential):

t4,5 =
3.6∗ ca

va

[
1+

xa

4000∗ fa
+

(
xa

900∗ fa

)3
]

• Type 6 (two-way, with interaction with opposite hand):

t6 =
3.6∗ ca

va

[
1+

3xa + z
14000∗ fa

+

(
xa

900∗ fa

)3

+

(
z

1600∗ fa

)3
]

1An the physical characteristics of the arc a.

8.1 Background 145

• Type 7 (one-way, non-preferential) and Type 8 (divided, non-preferential. y1 and
y2 are preferential flows):

t7,8 =
3.6∗ ca

va

[
1+

xa

2500∗ fa
+

(
xa

900∗ fa

)3
]
+

(
y1

300

)2

+

(
y2

300

)2

• Type 9 (two-way with interaction, non-preferential. y1 and y2 are preferential
flows):

t9 =
3.6∗ ca

va

[
1+

3xa + z
10000∗ fa

+

(
xa

900∗ fa

)3

+

(
z

1600∗ fa

)3
]
+

(
y1

300

)2

+

(
y2

300

)2

• Type 10 (one-way, small loop at final node) and Type 11 (two-way, no interaction,
small loop at final node):

t10,11 =
3.6∗ ca

va

[
1+

xa

3000∗ fa
+

(
xa

1200∗ fa

)3

+

(
w1

1800

)3

+

(
w2

1800

)3

+

(
w3

1800

)3
]

• Type 12 (two-way, with interaction, roundabout at final node):

t12 =
3.6∗ ca

va

[
1+

3xa + z
12000∗ fa

+

(
xa

1200∗ fa

)3

+

(
w1

1800

)3

+

(
w2

1800

)3

+

(
w3

1800

)3

+

(
z

2000∗ fa

)3
]

where

• ca is the length (in meters) of the arc a, representing a portion of the complete
road/street/avenue;

• va is the free speed (i.e., maximum allowed) in km/h of a;
• fa is the number of lanes of a;
• xa is the traffic flow (in one hour) in the arc a;
• z is the traffic flow in the reverse arc, in roads/streets without division between lanes

(in one hour);
• y1 and y2 are the flows in preferential arcs, intersecting the end of arc a, in one hour.

See Figure 8.1 for an illustration;
• w1, w2 and w3 are clockwise flows intersecting the end of arc of types 10, 11 or 12

(in one hour). See Figure 8.2;

8.1 Background 146

• sa is the traffic light factor. This is a value that represents the delay for traveling the
current arc, and must be estimated to make sa ∗

(
3+ 3.6∗ca

va

)
the average delay time

that a traffic light imposes to the vehicle flows, based on field measurements.

Figure 8.1: Arc cost function: considering flows in preferred ways.

Figure 8.2: Arc cost function: roundabout flows.

8.1 Background 147

8.1.2 Methods for Determining the Equilibrium Point in Transporta-
tion Networks

There are several algorithms that solve the aforementioned problems following
distinct mathematical approaches. Among them, “Gradient Projection” [210, 15] and
“Convex Combination” (also known as Frank-Wolfe (FW) algorithm) [96, 31, 180]
methods can be cited. These two methods are usually labeled as “feasible directions
methods” since their search strategy always points in the direction where some potencial
(viable) solution can be found. However, they use very different ideas to model the
network equilibrium and a detailed comparison between them can be found in [52].

As pointed out by Costodio [52], the natural choice to solve the equilibrium
problem in a transportation network falls on a convex combination method due to its low
memory consumption. Thanks to its efficiency, Sheffi [222, 7], in his book, proposes the
use of this method in an algorithmic solution to model the equilibrium on transportation
networks. Such algorithm, used in our work, involves several steps presented next in detail
and further information about it can also be found in the literature [222, 7, 52]:

• Step 1: Initialization. i← 0. Find a feasible x0 initial flow;
In a first moment, it is possible to assume that there are no vehicles moving around
the road network, only a certain amount of cars that want to travel from a node A to
a node B, ie a demand of flow.
In this case, with the initial flows equal to zero, all ta functions are reduced to the
first term of their equations,

3.6 · ca

va

which is the necessary time (in seconds) to travel arc a in an condition of completely
free road. Using these times as the arc costs (or weights), the shortest paths between
all O− D pairs are computed. This can be done using one of the algorithms
mentioned in Chapter 7.
Once computed the shortest paths, an all-or-nothing demand assignment is per-
formed. In other words, all vehicles that wish to move from one point to another
will follow the shortest path between these two points. Figure 8.3 illustrates the all-
or-nothing assignment for a simple graph with three demands (the corresponding
O-D matrix is shown in Table 8.1). The result of this process is the initial feasible
flow x0.

• Step 2: Update. Calculate t i
a(x

i
a), for ∀ a ∈ E;

With the viable flow xi(i = 0) in hand, the travel times are estimated again. As
now the vehicle flows are non-zero, their travel times will be different from the first
calculation, and other shortest paths are computed for the demands.

8.1 Background 148

• Step 3: Direction find.

With the t i
a times as arc costs, find the shortest paths between all O-D pairs. Next,

apply the same all-or-nothing assignment employed at Step 1 to compute a new set
of arc flows, called here yi (with yi

a for each arc a);
• Step 4: Line search. Find αi ∈ R in [0,1] interval that minimizes the function:

|E|
∑

a=1

∫ xi
a+α(yi

a−xi
a)

0 t i
a(x

i
1,x

i
2, ...,ω, ...,x

i
m)dω for User Equilibrium or

|E|
∑

a=1
xi

a ∗ t i
a(x

i
1,x

i
2, ...,ω, ...,x

i
m) for System Optimization

Methods for this step were described in Section 8.1.2.
• Step 5: Move. Set xi+1← xi +αi(yi− xi);
• Step 6: Convergence test. Check the convergence ε;

If |xi+1− xi|< ε, the algorithm finishes. Otherwise, i← i+1 and back to Step 2.

Figure 8.3: Macroscopic traffic allocation: flow assignment
through the shortest paths.

8.1 Background 149

A B C D E
A 0 75 0 0 100
B 0 0 0 0 0
C 0 0 0 0 0
D 0 0 0 0 50
E 0 0 0 0 0

Table 8.1: Example of an O-D matrix with 3 demands.

Methods for Step 4

As described in Section 2.2.3 and at the begining of Section 8.1, the mathematical
modeling of Beckmann et al. considers TEP-UE and TEP-SO as minimization problems,
which objective functions are nonlinear but convex.

Since the present work makes use of a “Convex Combination” method, the cur-
rent section depicts three techniques for finding the extremum (minimum or maximum)
of unimodal functions, where the objective functions of TEP-UE and TEP-SO are catego-
rized. In all of them, the sustaining ideia is to, starting with a known interval, successively
narrow the range of values inside that interval, where the extremum is known to exist.

Formally, a convex function f(x) is defined as unimodal if, given some m,
it is monotonically decreasing for x ≤ m and monotonically increasing for x ≥ m.
Therefore, the minimum value of f (x) can be found at f (m) and there are no other local
minimums [70]. A concave function can be defined in a similar way.

The possible three techniques that can be used to minimize the objective function
of the TEP-SO/TEP-UE, in Step 4 of the general algorithm, are:

• Golden Ratio – Developed by Kiefer [148], the basic idea of this method is to
determine an interval [a, b] containing the minimum of a function, so that it satisfies
the relation b−a < ε, where ε > 0 is small enough and θ = 1+

√
5

2 ≈ 1.618033988
is the golden ratio, as shown in Figure 8.4.

• Fibonacci – It is a search method also proposed by Kiefer [148], similar to the
golden ratio. The author used the numbers of the Fibonacci sequence to develop
a convex function optimization method and named it as Fibonacci Search [188].
The sequence of Fibonacci numbers is given by the serie Fn = Fn−1 +Fn−2, where
F0 = F1 = 1. Taking Ik as the range of uncertainty after k iterations and I0 the initial
range, we have: Ik =

(
FN−k
FN

)
· I0 where FN is the Fibonacci number (N is an integer

number initially set), and k = 1, 2, ..., N - 1. The discovery process of the points that
determine the uncertainty interval is illustrated in Figure 8.5.

• Dichotomy – This optimization method is characterized by the reduction by half
of the search range at each iteration. Assuming that the desired point belongs to the

8.2 Profiling Analysis 150

Figure 8.4: Method of feasible directions: Golden Ratio.

interval [a, b], the method is based on the existence of a triplet (x1,x3,x5) such that
f (x1)> f (x3)< f (x5) and that the desired point is located at [x1,x5] = [a,b]. To get
x3, the expression x3 =

x1+x5
2 is used. Such a point divides the interval [x1,x5] into

two sub-intervals of equal size: [x1,x3] and [x3,x5]. Next, the points x2 and x4 are
generated, with x2 =

x1+x3
2 and x4 =

x3+x5
2 . The resultant objective values are then

compared. If f (x1) > f (x2) < f (x3), the new triplet will be (x1,x2,x3); otherwise,
its value becomes (x3,x4,x5). The process loops until the interval is smaller than a
previously defined ε.

Novaes [188] compared these methods, considering its precisions according
to the number of evaluations of the objective function, highlighting the superiority of
the Fibonacci and the Golden Ratio methods in comparison to Dichotomy. He points
the Golden Ratio as the best option because of its ease implementation and very close
precision to the Fibonacci Search. Therefore, such method is also adopted in the current
study.

8.2 Profiling Analysis

In order to identify the most problematic (time consuming) parts of the algorithm
described in Section 8.1 of the program during the sequential process of macroscopic
urban traffic assignment, the present study implemented it as a computer program and

8.2 Profiling Analysis 151

Figure 8.5: Method of feasible directions: Fibonacci Search.

conducted a detailed analysis of its execution through the use of a profiler. These
problematic points are the ones that deserve special attention for parallelization.

The sequential program was coded in the C++ language and compiled using a
GNU compiler (g++ version 4.8.2 with parameters “-O3 -mcmodel=medium -m64 -g

-W -Wall”). To generate the necessary code for the profiler, the compiler parameter “-
pg” was also used. With this parameter, during the program execution, detailed profiling
information is created for the GNU GCC Profiling Tool (gprof).

It is important to point out that, with the extra amount of code inserted in the
compiled program for creating profiling information, this usually imposes a considerable
overhead on the final binary code, greatly increasing its runtime. Nevertheless, it is
expected that the overhead is equally distributed over the whole program.

The shortest path algorithm adopted in the program was the one proposed by
Dijkstra, and its priority queue was implementated using a binary heap (see Section 7.1.2
for further details).

To collect the desired profiling information, the first ten graphs of road networks
presented in Table 7.7 were used during the performed experiments. The last five graphs
were not used due to the excessive time needed for their execution and profiling.

Since none of the road networks in the study had certain information necessary
to the calculation of the time to travel through each arc, such as free speed, number of
lanes, etc., this data was randomly defined and then saved in files on disk for later use.

To each road network a set of six O-D matrices N ·N were assigned, with the sizes

8.2 Profiling Analysis 152

of N defined as 1000, 2500, 5000, 7500, 10000 and 15000. To each row of all matrices a
set of 256 randomly generated values was assigned. The matrices were also persisted in
disk, being used later during the program execution.

For all combinations of road networks and O-D matrices, five consecutive
executions of the macroscopic traffic assignment were performed. The machine used in
all tests was the same described in Section 5.4.

After finishing the executions, the generated profiling information was collected
and an average was calculated for each sub-routine of the code.

Table 8.2 shows the execution times (in seconds) for each road network, where
the column “Sim.” is the time of the simulation itself and the column “Total” is the sum
of simulation time plus the time to collect the data for profiling.

Table 8.3 summarizes the profiling results for the most time consuming sub-
routines. The presented percentage was was generated by summing the profiling values
for each combination of road network and O-D matrix and then calculating its average
value.

1000 2500 5000 7500 10000 15000

Sim. Total Sim. Total Sim. Total Sim. Total Sim. Total Sim. Total

New York City 1601 2346 3431 5954 5426 13988 7175 20503 7968 25002 9756 33752

San Francisco Bay Area 1916 2849 4132 7219 6568 16977 8676 24898 9637 30350 11818 40978

Colorado 2540 3862 5610 9793 8917 23095 11763 33842 13081 41246 16042 55697

Florida 6217 9318 13691 23945 21786 56586 28870 83141 31946 101265 39272 136712

Pennsylvania 6231 9376 13896 24334 22107 57433 29268 84504 32443 102847 39916 138936

Northwest USA 7555 11302 14496 28131 23364 68899 31405 99856 34654 126963 40674 168720

Texas 8606 12919 16598 32238 26777 78908 35955 114485 39689 145606 46602 193421

Northeast USA 8197 16330 16097 40303 26181 82339 31259 118300 34727 144589 41398 204538

California and Nevada 10133 20274 19952 49952 32473 102210 38709 146944 43101 179542 51349 253984

California 10598 21329 20933 52563 34154 107506 40684 154597 45280 188907 53989 267267

Table 8.2: Sequential execution times for each road network

Function Time (%) Goal

performDijkstra 44,87 Compute the shortest paths between all O-D
pairs.

assignFlows 26,79 Assign all O-D flows through their shortest
paths.

calcArcTimes 14,27 Compute the cost function of each arc a.

applyGoldenRatioMethod 8,91 Minimize the objective function, using the
“Golden Ratio” method.

Table 8.3: Most time consuming methods.

As can be seen in the results, a set of only 4 tasks consumed almost 95% of the
total program execution time. Other routines, such as initialization of variables, load of

8.3 A GPU-Based Traffic Assignment Implementation 153

the road mesh and internal sub-routines barely exceeded 5% of the total time.
About 75% of the computation time was spent in the tasks of computing the

shortest paths and transforming O-D demands in traffic flows. The results presented in
Table 8.3, therefore, justify the great effort employed in the present study in order to find
efficient parallel solutions to solve these problems, which was done and presented in the
previous chapters.

The next section describes how a GPU-based TAP was implementated.

8.3 A GPU-Based Traffic Assignment Implementation

The parallel implementation for GPU of the traffic allocation algorithm is, in fact,
a substitution of the calls to the existing sub-routines in the sequential implementation
described in this chapter by their respective parallel versions, that is, code able to be
executed in GPUs. Therefore, there is no structural change of the general algorithm. Next,
the implementation details of the overall code, as a host CPU program and of the parallel
GPU subroutines for the main steps are presented.

Step 1: Initialization. i← 0. Find a feasible x0 initial flow;
Making all initial flows equal to zero, |E| work-items are launched in order to
compute the value of t for each arc a. Although the present work employs twelve
different arc cost functions, the implemented code does not allow divergences
in the execution flow thanks to the use of algebraic expressions, as described in
Section 6.3.
Next, using these initial times as the arc costs (or weights), the shortest paths
between all O−D pairs are computed using the approach described in Section 7.3.
Now an all-or-nothing demand assignment is performed, where each work-item
handles one O−D pair. This is the initial feasible flow x0.

Step 2: Update. Using x0, calc new ta times using the same operations described in Step 1;
Step 3: Direction find. Find new shortest paths for all O−D demands and a new feasible

flow y0;
Step 4: Line search. Minimize the desired function (UE or SO, see Section 2.2.2), using the

strategy presented in Section 6.3.
Step 5: Move. Set xi+1← xi +αi(yi− xi);
Step 6: Convergence test.. Copy the value of ρ= |xi+1−xi| back to CPU and check if ρ< ε,

for ε a small tolerated error, then stop. Otherwise, do i← i+1 and go back to Step
2.

8.4 Computational Experiments 154

8.4 Computational Experiments

As well as all the other parallel algorithms previously described, the parallel TAP
was coded in the C++ language, compiled with the same parameters and tested using the
machine described in Section 5.4.

The experiments to measure the performance of these codes used the same data
sets and methodologies described in Section 8.2. Thus, any observed performance gains
are due only to the parallel strategies employed.

The following results were split into individual tables because of the space
occupied by each one. All execution times are presented in seconds. The column “Parallel

(execution)” depicts the time needed by the parallel algorithm to perform the traffic
assignment. The column “Parallel (total)” includes that time plus the time for all data
transfers between CPU and GPU. The speed up is given by the division Time(sequential)

Parallel(total) .

New York City

Demand Matrix Size Sequential Parallel (execution) Parallel (total) Speedup
1000 1601 173.8 174.18 9.19
2500 3431 352.9 353.26 9.71
5000 5426 413.1 413.47 13.12
7500 7175 515.4 515.80 13.91

10000 7968 546.4 546.77 14.57
15000 9756 610.3 610.61 15.98

Table 8.4: Sequential and parallel execution times for the road
network of New York City

San Francisco Bay Area

Demand Matrix Size Sequential Parallel (execution) Parallel (total) Speedup
1000 1916 183.0 183.40 10.45
2500 4132 405.9 406.25 10.17
5000 6568 404.1 404.53 16.24
7500 8676 406.4 406.75 21.33

10000 9637 408.2 408.62 23.58
15000 11818 407.3 407.66 28.99

Table 8.5: Sequential and parallel execution times for the road
network of New York City

8.4 Computational Experiments 155

Colorado

Demand Matrix Size Sequential Parallel (execution) Parallel (total) Speedup
1000 2540 258.3 258.83 9.81
2500 5610 577.4 577.88 9.71
5000 8917 570.6 571.12 15.61
7500 11763 579.9 580.44 20.27

10000 13081 581.5 582.04 22.47
15000 16042 582.6 583.11 27.51

Table 8.6: Sequential and parallel execution times for the road
network of Colorado

Florida

Demand Matrix Size Sequential Parallel (execution) Parallel (total) Speedup
1000 6217 335.3 335.78 18.52
2500 13691 735.5 735.99 18.60
5000 21786 833.8 834.34 26.11
7500 28870 928.5 929.03 31.08

10000 31946 1025.5 1026.06 31.13
15000 39272 1157.5 1158.06 33.91

Table 8.7: Sequential and parallel execution times for the road
network of Florida

Pennsylvania

Demand Matrix Size Sequential Parallel (execution) Parallel (total) Speedup
1000 6231 387.2 387.71 16.07
2500 13896 846.0 846.54 16.41
5000 22107 974.7 975.23 22.67
7500 29268 1068.2 1068.69 27.39

10000 32443 1183.2 1183.76 27.41
15000 39916 1336.5 1337.04 29.85

Table 8.8: Sequential and parallel execution times for the road
network of Pennsylvania

8.4 Computational Experiments 156

Northwest USA

Demand Matrix Size Sequential Parallel (execution) Parallel (total) Speedup
1000 7555 400.5 401.06 18.84
2500 14496 851.5 852.01 17.01
5000 23364 992.5 992.99 23.53
7500 31405 1073.1 1073.64 29.25

10000 34654 1184.9 1185.42 29.23
15000 40674 1352.1 1352.67 30.07

Table 8.9: Sequential and parallel execution times for the road
network of Northwest USA

Texas

Demand Matrix Size Sequential Parallel (execution) Parallel (total) Speedup
1000 8606 405.8 406.37 21.18
2500 16598 854.8 855.30 19.41
5000 26777 1000.1 1000.58 26.76
7500 35955 1073.8 1074.35 33.47

10000 39689 1190.7 1191.26 33.32
15000 46602 1358.3 1358.79 34.30

Table 8.10: Sequential and parallel execution times for the road
network of Texas

Northeast USA

Demand Matrix Size Sequential Parallel (execution) Parallel (total) Speedup
1000 8197 411.1 411.58 19.92
2500 16097 855.2 855.71 18.81
5000 26181 1003.8 1004.31 26.07
7500 31259 1079.8 1080.37 28.93

10000 34727 1195.8 1196.35 29.03
15000 41398 1358.9 1359.44 30.45

Table 8.11: Sequential and parallel execution times for the road
network of Northeast USA

8.4 Computational Experiments 157

California and Nevada

Demand Matrix Size Sequential Parallel (execution) Parallel (total) Speedup
1000 10133 412.6 413.11 24.53
2500 19952 862.2 862.70 23.13
5000 32473 1010.2 1010.73 32.13
7500 38709 1080.0 1080.48 35.83

10000 43101 1204.6 1205.09 35.77
15000 51349 1365.3 1365.80 37.60

Table 8.12: Sequential and parallel execution times for the road
network of California and Nevada

California

Demand Matrix Size Sequential Parallel (execution) Parallel (total) Speedup
1000 10598 414.1 414.64 25.56
2500 20933 867.2 867.71 24.12
5000 34154 1017.3 1017.84 33.56
7500 40684 1080.2 1080.74 37.64

10000 45280 1209.7 1210.24 37.41
15000 53989 1365.3 1365.80 39.53

Table 8.13: Sequential and parallel execution times for the road
network of California

8.4.1 Analysis of the Results

The experiments, carried out in ten road networks of substantial size of USA,
have demonstrated that the set of strategies presented throughout this work is capable of
performing large scale simulations in a reasonable computational time, using equipment
of relatively low cost and easy access.

The experiments also showed the great scalability of GPU algorithms. As the
size of the problem to be solved increases, the speedup raises too, with efficiency gains in
runtime varying from 9 to 39 times. This shows that GPUs are better equipped than CPUs
when it comes to solve parallelizable, large scale problems.

One point to be noted is that, despite the large size of the networks used in the
tests, the communication costs between the two main devices involved (CPU and GPU)
did not constitute an obstacle to the use of the proposed approach, since even in the largest
road network these costs did not exceed 1 second.

The urban networks in these experiments are typical representatives of large
meshes. Although all of them relate to North America, there is no reason to believe that

8.5 General Remarks 158

their general structure is substantially different from the traffic networks of other regions
of the world, which opens space for the broad use of the strategies described here.

8.5 General Remarks

The current chapter showed how a macroscopic traffic assignment process based
on Beckmann’s model can be efficiently performed on GPUs. Firstly, a sequential imple-
mentation of that process was developed, tested and analyzed in order to identify the most
time consuming steps or subroutines.

Then, a GPU-based parallel implementation was presented, which makes inten-
sive use of the parallelism strategies and algorithms discussed in the previous chapters.
Computational experiments with both codes demonstrated the effectiveness and efficiency
of the GPU algorithm implementation in the context of large road networks.

To the best of our knowledge, the present work is the first to propose a complete
parallel implementation of the macroscopic TAP for GPU architectures.

This opens up the possibility of dealing with large-scale simulations by the urban
traffic modeling system under development by the Federal University of Goiás (UFG)
through its Informatics Institute (INF-UFG) and its Mathematics and Statistics Institute
(IME-UFG) called PET-Gyn.

CHAPTER 9
Conclusions

The present thesis studied the use of parallel computing on GPUs for the analysis
and simulation of urban traffic and related problems. This chapter summarizes the main
contributions of the work and presents ideas for further developments in this area.

The main focus of the thesis was on the proposal, development, implementation
and evaluation of parallel algorithms in GPU to solve two well studied problems in the
literature: the Enumeration of Chordless Cycles (holes) in graphs and the macroscopic
Traffic Assignment Problem (TAP).

For each of these problems several difficulties had to be overcome, like specific
limitations of the execution environment (GPU hardware) or the inherent challenges when
dealing with parallel programming, such as concurrent access and load balancing, among
others.

Regarding the enumeration of chordless cycles, the experiments showed mixed
results, proving that the performance of the parallel algorithm when compared to its
sequential version is closely dependent on the structure of the graph used as input. Graphs
with few cycles to be enumerated or low parallelism to be exploited tend to favor the
sequential approach, since the CPU is capable of running sequential code more efficiently.

On the other hand, for graphs with a large amount of such structures to be enu-
merated and/or whose analysis is very complex (those in which the sequential algorithm
has a dense and deep recursion tree), there was a clear advantage of the parallel approach
proposed.

Furthermore, it should be considered that for an effective use of the GPU
capabilities, its hundreds and/or thousands of cores should be busy as much as possible.
This is not possible, for example, in the graph represented by Figure 5.5, where only a
work-item performs useful work, while all the others are idle. This same phenomenon
occurs during the early stages of the enumeration process, where there are few chordless
paths to be analyzed.

Regarding the traffic assignment, two computational problems that have to be
solved as sub-tasks were tackled first. One problem was the parallel reduction. For it, some
improvements have been proposed for already existing solutions. The second problem

9.1 Future Work 160

was the computation of shortest paths. For that, a GPU-based algorithm for SSSP that
works very well for urban traffic networks was devised. Finally, a GPU TAP algorithm
was designed, gathering all strategies and approaches developed up to now.

Experiments with the algorithm showed that, as the problem size grows, its
speedups also increase over its sequencial equivalent, making possible the simulation of
large urban traffic networks.

All stages of this work suggested and reinforced something that is already a
consensus in the area: GPUs were built to solve large and complex problems, not being
suitable for the resolution and/or reduction in execution time of problems considered
simple or trivial.

9.1 Future Work

Although the results presented by the developed parallel algorithms are quite
interesting, several future works can be foreseen and developed from this research, which
are related to the limitations identified during the development of the present thesis,
but that could not be solved or addressed. Next, some of these limitations are briefly
discussed:

• For parallelism in all stages of chordless cycles enumeration, the initial task, which
performs vertex labeling, should not be done sequentially. Although for the problem
at hand this step consumes very little time and does not interfere with the overall
performace of the algorithm, especially taking into account the graphs used in the
experiments, this technique, once parallelized, can help in a faster resolution of
some other problems that heavily depend on it;

• The memory size of current GPUs is a limiting factor for any enumeration algorithm
that has to be executed on those devices, even using compact data structures
for graph and solution representation. Hence, a new data transportation protocol
between the ordinary CPU memory – and some other types of larger memories, if
necessary – and the GPU memory has to be developed in order to open space when
it is needed, therefore allowing the enumeration process for much larger graphs.
Another strategy would be the use of NVLink technology [92];

• The observed behavior in Dijkstra’s priority queue Q when applied to graphs
representing road networks needs a formal mathematical proof that explains this
behavior. The present thesis empirically observed this phenomenon and used it as
basis for the entire allocation of Q in GPU’s local memory, but its demonstration is
still needed;

Bibliography

[1] ABRASH, M. Michael Abrash’s Graphics Programming Black Book, Special

Edition, The Coriolis Group. Inc., Arizona, 1997.

[2] AGARWAL, P.; DUTTA, M. New approach of Bellman Ford algorithm on GPU

using Compute Unified Design Architecture (CUDA). International Journal of

Computer Applications, 110(13), 2015.

[3] AKL, S. G.; GUENTHER, G. R. Broadcasting with Selective Reduction. In: IFIP

Congress’89, p. 515–520, 1989.

[4] AMDAHL, G. M. Validity of the single processor approach to achieving large

scale computing capabilities. In: Proceedings of the April 18-20, 1967, spring

joint computer conference, AFIPS ’67 (Spring), p. 483–485, New York, NY, USA,

1967. ACM.

[5] ARAGÓN, F. R. C.; LEAL, J. E. Alocação de fluxos de passageiros em uma

rede de transporte público de grande porte formulado como um problema de

inequações variacionais. Pesquisa Operacional, 23(2):235–264, Aug. 2003.

[6] ARCHER, J. Developing the Potential of Micro-Simulation Modelling for Traffic

Safety Assessment. 13th International Cooperation on Theories and Concepts in

Traffic Safety - ICTCT - workshop, Corfu, 2000.

[7] AREZKI, Y. V. V. D. A Full Analytical Implementation of the PARTAN/Frank-

Wolf Algorithm for Equilibrium Assignment. Transportation Science, 1(24):58–

62, 1990.

[8] BAR-GERA, H. Traffic assignment by paired alternative segments. Transporta-

tion Research Part B: Methodological, 44(8-9):1022–1046, 2010.

[9] BAUER, R.; DELLING, D.; SANDERS, P.; SCHIEFERDECKER, D.; SCHULTES, D.;

WAGNER, D. Combining Hierarchical and Goal-Directed Speed-up Tech-

niques for Dijkstra’s Algorithm. Journal of Experimental Algorithmics, 15:2.3:2.1–

2.3:2.31, Mar. 2010.

Bibliography 162

[10] BAZARAA, M. S.; SHERALI, H. D.; SHETTY, C. M. Nonlinear Programming:

Theory and Algorithms. John Wiley & Sons, 2013.

[11] BECKMANN, M.; MCGUIRE, C.; WINSTEN, C. Studies in the Economics of

Transportation. Yale University Press, New Haven, Connecticut, 1956.

[12] BELLMAN, R. On a routing problem. Quarterly of Applied Mathematics, p. 87–90,

1958.

[13] BERGOMI, M. Traffic Assignment Problem – The Stochastic User Equilibrium.

Master’s thesis, ETH Zurich, Aug. 2009.

[14] BERTSEKAS, D. P. Nonlinear Programming. Athena Scientific, 2 edition, 1999.

[15] BERTSEKAS, D. P.; GALLAGER, R. G. Data Networks. Prentice-hall, 1987.

[16] BILLETER, M.; OLSSON, O.; ASSARSSON, U. Efficient Stream Compaction on

Wide SIMD Many-Core Architectures. In: Proceedings of the Conference on High

Performance Graphics 2009, HPG ’09, p. 159–166, New York, NY, USA, 2009. ACM.

[17] BIRMELÉ, E.; FERREIRA, R.; GROSSI, R.; MARINO, A.; PISANTI, N.; RIZZI, R.;

SACOMOTO, G. Optimal Listing of Cycles and st-Paths in Undirected Graphs.

In: Proceedings of SODA’13 – Annual ACM-SIAM Symposium on Discrete Algo-

rithms, p. 1884–1896. SIAM, 2013.

[18] BISDORFF, R. On Enumerating Chordless Circuits in Directed Graphs, 2010.

Available at http://sma.uni.lu/bisdorff/ChordlessCircuits/documents/

chordlessCircuits.pdf.

[19] BLOY, K. An Investigation into Some Aspects of Braess Paradox. Technical

report, Vela VKE Consulting Engineers, Oct. 2006.

[20] BLUM, A.; CHAWLA, S. Learning from labeled and unlabeled data using graph

mincuts. In: Proceedings of the Eighteenth International Conference on Machine

Learning, ICML ’01, p. 19–26, San Francisco, CA, USA, 2001. Morgan Kaufmann

Publishers Inc.

[21] BOGDANOV, A.; TREVISAN, L. Average-case complexity. Found. Trends Theor.

Comput. Sci., 2(1):1–106, Oct. 2006.

[22] BONABEAU, E. Agent-based modeling: Methods and techniques for simulating

human systems. Proceedings of the National Academy of Sciences, 99(suppl

3):7280–7287, 2002.

http://sma.uni.lu/bisdorff/ChordlessCircuits/documents/chordlessCircuits.pdf
http://sma.uni.lu/bisdorff/ChordlessCircuits/documents/chordlessCircuits.pdf

Bibliography 163

[23] BONDY, J. A.; MURTY, U. S. R. Graph theory with applications, volume 6.

Macmillan London, 1976.

[24] BOXILL, S. A.; YU, L. An Evaluation of Traffic Simulation Models for Supporting

ITS Development. Technical report, Texas Southern University, Oct. 2000.

[25] BOYCE, D. E.; MAHMASSANI, H. S.; NAGURNEY, A. A retrospective on Beck-

mann, McGuire and Winsten’s Studies in the Economics of Transportation.

Papers in Regional Science, 84(1):85–103, 2005.

[26] BRENT, R. P. The Parallel Evaluation of General Arithmetic Expressions. J.

ACM, 21:201–206, April 1974.

[27] BRODAL, G. S. Worst-case efficient priority queues. In: SODA, volume 96, p.

52–58, 1996.

[28] BRODAL, G. S.; LAGOGIANNIS, G.; TARJAN, R. E. Strict Fibonacci heaps. In:

Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing,

STOC ’12, p. 1177–1184, New York, NY, USA, 2012. ACM.

[29] BRODAL, G. S.; TRÄFF, J. L.; ZAROLIAGIS, C. D. A parallel priority queue with

constant time operations. Journal of Parallel and Distributed Computing, 49(1):4–

21, 1998.

[30] BRODAL, G. S.; TRAFF, J.; ZAROLIAGIS, C. D. A parallel priority data structure

with applications. In: Parallel Processing Symposium, 1997. Proceedings., 11th

International, p. 689–693. IEEE, 1997.

[31] BRUYNOOGHE, M.; GIBERT, A.; SAKOROVITCH, M. Une methode dáffectation

du traffic. In: Fourth International Symposium on the Theory of Traffic Flow,

Karlsruhe, 1968.

[32] BURGHOUT, W.; KOUTSOPOULOS, H.; ANDREASSON, I. A discrete-event meso-

scopic traffic simulation model for hybrid traffic simulation. In: Intelligent Trans-

portation Systems Conference, 2006. ITSC ’06. IEEE, p. 1102–1107, sept. 2006.

[33] BURGHOUT, W.; , J. W. Hybrid Traffic Simulation with Adaptive Signal Control.

Transportation Research Record: Journal of the Transportation Research Board,

1999:191–197, 2007.

[34] BURGHOUT, W. Hybrid Microscopic-Mesoscopic Traffic Simulation. PhD thesis,

Royal Institute of Technology, Stockholm, Sweden, 2004.

Bibliography 164

[35] BURGHOUT, W.; KOUTSOPOULOS, H. N. Hybrid traffic simulation models. In:

Chung, E.; Dumont, A.-G., editors, Transport Simulation – Beyond Traditional Ap-

proaches, chapter 2. 2009.

[36] CALIXTO, I. C. A. C. Proposta de um Método de Estimação de Matrizes

Origem-Destino Baseado em Programação Linear Fuzzy para Redes Viárias

Brasileiras Congestionadas. Master’s thesis, Instituto de Informática – Universi-

dade Federal de Goiás, July 2011.

[37] CAMPBELL, D. K. A survey of models of parallel computation. Report-University

of York Department of Computer Science YCS, 1997.

[38] CASCETTA, E. Transportation Systems Engineering: Theory and Methods.

Springer, 2001.

[39] CATANZARO, B. OpenCL Optimization Case Study: Simple Reduc-

tions. http://developer.amd.com/resources/documentation-articles/articles-

whitepapers/opencl-optimization-case-study-simple-reductions/, Aug. 2010.

published by Advanced Micro Devices. Last accessed in January 05, 2014.

[40] CHAKROUN, I.; MEZMAZ, M.; MELAB, N.; BENDJOUDI, A. Reducing Thread

Divergence in a GPU-Accelerated Branch-and-Bound Algorithm. Concurrency

and Computation: Practice and Experience, 25(8):1121–1136, 2013.

[41] CHANDRASEKHARAN, N.; LASKSHMANAN, V.; MEDIDI, M. Efficient Parallel Algo-

rithms for Finding Chordless Cycles in Graphs. Parallel Process. Lett., 3(2):165–

170, 1993.

[42] CHE, S.; BOYER, M.; MENG, J.; TARJAN, D.; SHEAFFER, J. W.; SKADRON, K. A

Performance Study of General-Purpose Applications on Graphics Processors

Using CUDA. Journal of Parallel and Distributed Computing, 68(10):1370–1380,

2008. General-Purpose Processing using Graphics Processing Units.

[43] CHERKASSKY, B. V.; GOLDBERG, A. V.; RADZIK, T. Shortest paths algorithms:

Theory and experimental evaluation. Mathematical Programming, 73(2):129–

174, 1996.

[44] CHIANG, A. C. Fundamental Methods of Mathematical Economics. McGraw-Hill

Higher Education, 3 edition, Jan. 1984.

[45] CHOW, C. M. BroadCasting with Selective Reduction – An Alternative Imple-

mentation and New Algorithms. Master’s thesis, Department of Computing and

Information Science, Queen’s University, Kingston, Ontario, Nov. 1997.

Bibliography 165

[46] CHRONOPOULOS, A. T.; JOHNSTON, C. M. A Real-Time Traffic Simulation

System. Vehicular Technology, IEEE Transactions on, 47(1):321–331, feb 1998.

[47] CHUDAK, F. A.; ELEUTERIO, V. D. S.; NESTEROV, Y. Static Traffic Assignment

Problem - A comparison between Beckmann (1956) and Nesterov and de

Palma (1998) models. 7th STRC - Swiss Transport Research Conference, Monte

Verità, Ascona, Sep. 2007.

[48] COHEN, E. Efficient parallel shortest-paths in digraphs with a separator

decomposition. In: Proceedings of the fifth annual ACM symposium on Parallel

algorithms and architectures, p. 57–67. ACM, 1993.

[49] COHEN, J. Food Webs and Niche Space. Princeton University Press, 1978.

[50] COLE, R.; ZAJICEK, O. The APRAM: Incorporating Asynchrony into the PRAM

Model. In: SPAA’89 – Proceedings of the First Annual ACM Symposium on Parallel

Algorithms and Architectures, p. 169–178, 1989.

[51] CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos: Teoria

e Prática. Editora Campus, 2 edition, 2002.

[52] COSTODIO, J. Problema de Equilíbrio em Redes de Transporte. Comparação

entre o Método do Gradiente Projetado e o Método das Combinações Con-

vexas. Master’s thesis, Universidade Federal de Santa Catarina, 2003.

[53] CRAUSER, A.; MEHLHORN, K.; MEYER, U.; SANDERS, P. A parallelization of

dijkstra’s shortest path algorithm. In: International Symposium on Mathematical

Foundations of Computer Science, p. 722–731. Springer, 1998.

[54] CULLER, D.; KARP, R.; PATTERSON, D.; SAHAY, A.; SCHAUSER, K. E.; SANTOS,

E.; SUBRAMONIAN, R.; VON EICKEN, T. LogP: Towards a Realistic Model of

Parallel Computation. In: Proceedings of the fourth ACM SIGPLAN symposium on

Principles and practice of parallel programming, PPOPP ’93, p. 1–12, New York, NY,

USA, 1993. ACM.

[55] CULLER, D. E.; GUPTA, A.; SINGH, J. P. Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1st edition, 1997.

[56] DA SILVA, P. C. M. Elementos dos Sistemas de Tráfego. Technical report,

Universidade de Brasília - Faculdade de Tecnologia - Departamento de Engenharia

Civil e Ambiental - Área de Transportes, Mar. 2001.

Bibliography 166

[57] DAFERMOS, S. Traffic equilibrium and variational inequalities. Transportation

science, 14(1):42–54, 1980.

[58] DAI, L. Fast shortest path algorithm for road network and implementation.

Carleton University School of Computer Science COMP, 4905, 2005.

[59] DAI, W.; ZHANG, J.; ZHANG, D. Parallel Simulation of Large-Scale Microscopic

Traffic Networks. In: Advanced Computer Control (ICACC), 2010 2nd International

Conference on, volume 3, p. 22–28, march 2010.

[60] DAVIDSON, A.; BAXTER, S.; GARLAND, M.; OWENS, J. D. Work-efficient parallel

GPU methods for single-source shortest paths. In: Parallel and Distributed

Processing Symposium, 2014 IEEE 28th International, p. 349–359, May 2014.

[61] DAVIS, R. The ILLIAC IV Processing Element. IEEE Transactions on Computers,

18:800–816, 1969.

[62] DE ARAÚJO, D. R. C. Comparação das Simulações de Tráfego dos Modelos

SATURN e DRACULA. Master’s thesis, Universidade Federal do Rio Grande do

Sul, 2003.

[63] DE MENEZES, R. P. Um Estudo Sobre Modelos de Computação Paralela.

Master’s thesis, Departamento de Ciência da Computação – IMECC – UNICAMP,

June 1995.

[64] DE OLIVEIRA, J. L.; SILVA, A. C. D.; HALL, B. R. Planning Brazilian Urban Traffic

with a Geographic Application Software. Brazilian Symposium in Geoinformatics,

Campos do Jordão, p. 1–8, 2003.

[65] DE PALMA, A.; NESTEROV, Y. Optimization Formulations and Static Equilib-

rium in Congested Transportation Networks. CORE Discussion Papers 1998061,

Université catholique de Louvain, Center for Operations Research and Economet-

rics (CORE), July 1998.

[66] DE PALMA, A.; NESTEROV, Y. Stable Dynamics Solutions in Transportation

Systems. Core discussion papers, Université catholique de Louvain, Center for

Operations Research and Econometrics (CORE), 2000.

[67] DE S. ALENCAR, W.; FOULDS, L. R.; DO NASCIMENTO, H. A. D.; HALL., B. R.;

LONGO, H. J. Uma aproximação linear da demanda elástica de viagens em

redes congestionadas de tráfego urbano com custos assimétricos e dados

imprecisos. In: Anais do XLVI Simpósio Brasileiro de Pesquisa Operacional (XLVI

Bibliography 167

SBPO), p. 1800–1811. Sociedade Brasileira de Pesquisa Operacional (SOBRAPO),

SOBRAPO, Nov. 2014.

[68] DEFOUR, D.; COLLANGE, S. Reproducible floating-point atomic addition in

data-parallel environment. In: Computer Science and Information Systems (Fed-

CSIS), 2015 Federated Conference on, p. 721–728, Sept 2015.

[69] DEMETRESCU, C.; GOLDBERG, A.; JOHNSON, D. 9th DIMACS implementation

challenge–shortest paths (2006), 2006.

[70] DHARMADHIKARI, S.; JOGDEO, K. Multivariate unimodality. The Annals of

Statistics, 4(3):607–613, 1976.

[71] DHILLON, I. S. Co-clustering documents and words using bipartite spectral

graph partitioning. In: Proceedings of the Seventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’01, p. 269–274, New

York, NY, USA, 2001. ACM.

[72] DIA, H.; PANWAI, S. Nanoscopic traffic simulation: Enhanced models of driver

behaviour for its and telematics simulations. In: INTERNATIONAL SYMPOSIUM

ON TRANSPORT SIMULATION, 8TH, 2008, SURFERS PARADISE, QUEENS-

LAND, AUSTRALIA, 2008.

[73] DIAS, E. S. Reconhecimento Polinomial de Álgebras Cluster de Tipo Finito.

PhD thesis, Instituto de Informática – Universidade Federal de Goiás, Sep. 2015.

[74] DIAS, E. S.; CASTONGUAY, D.; LONGO, H. J.; JRADI, W. A. R. Efficient Enumer-

ation of All Chordless Cycles in Graphs. CoRR, abs/1309.1051, 2013.

[75] DIJKSTRA, E. W. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.

[76] DRISCOLL, J. R.; GABOW, H. N.; SHRAIRMAN, R.; TARJAN, R. E. Relaxed heaps:

An alternative to Fibonacci heaps with applications to parallel computation.

Commun. ACM, 31(11):1343–1354, Nov. 1988.

[77] D’SOUZA, R. M.; LYSENKO, M.; RAHMANI, K. SugarScape on Steroids: Simu-

lating Over a Million Agents at Interactive Rates. Proceedings of Agent2007,

2007.

[78] DUARTE, D. C. S. LIPSTUD – Um Método de Otimização de Fluxo de Tráfego

Urbano Baseado em Proibição e Permissão de Conversões. Master’s thesis,

Universidade Federal de Goiás, Mar. 2012.

Bibliography 168

[79] DUMITRIU, I. On generalized Tribonacci sequences and additive partitions.

Discrete Mathematics, 219(1-3):65–83, 2000.

[80] EL-REWINI, H.; ABD-EL-BARR, M. Advanced Computer Architecture and Paral-

lel Processing. Wiley Series On Parallel And Distributed Computing. Wiley, 2005.

[81] ERKAN, G. Language model-based document clustering using random walks.

In: Proceedings of the Main Conference on Human Language Technology Confer-

ence of the North American Chapter of the Association of Computational Linguistics,

HLT-NAACL ’06, p. 479–486, Stroudsburg, PA, USA, 2006. Association for Compu-

tational Linguistics.

[82] ERKAN, G.; RADEV, D. R. Lexpagerank: Prestige in multi-document text sum-

marization. In: EMNLP – Conference on Empirical Methods in Natural Language

Processing, Barcelona, Spain, 2004.

[83] ERLEMANN, K.; HARTMANN, D. Parallelization of a Microscopic Traffic Simula-

tion System Using MPI-Java. K. Gürlebeck and C. Könke, July 2006.

[84] EUZÉBIO, R. M. G. L. O Custo do Caos – Prejuízo ao Bolso e ao Meio Ambiente

– Cidades não Suportam mais o Crescimento da Frota de Veículos, Jul. 2012.

IPEA – Instituto de Pesquisa Econômica Aplicada.

[85] FEITOSA, F. C. C. Um Estudo Prático para Contagem Volumétrica Automática

de Veículos Usando Visão Computacional. Master’s thesis, Universidade Federal

de Goiás, sep 2012.

[86] FERREIRA, R.; GROSSI, R.; RIZZI, R.; SACOMOTO, G.; SAGOT, M.-F. Algorithms

- ESA 2014: 22th Annual European Symposium, Wroclaw, Poland, September

8-10, 2014. Proceedings, chapter Amortized Õ(|V|)-Delay Algorithm for Listing

Chordless Cycles in Undirected Graphs, p. 418–429. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2014.

[87] FILHO, J. I. D. O. L. Pós-Avaliação da Previsão de Demanda por Transportes

no Município de Fortaleza. Master’s thesis, Universidade Federal do Ceará, 2003.

[88] FLOYD, R. W. Algorithm 97: Shortest path. Commun. ACM, 5(6):345–, June 1962.

[89] FLYNN, M. J. Some computer organizations and their effectiveness. IEEE Trans.

Comput., 21(9):948–960, Sept. 1972.

[90] FOG, A. The microarchitecture of Intel, AMD and VIA CPUs. An optimization

guide for assembly programmers and compiler makers. Copenhagen University

College of Engineering, 2011.

Bibliography 169

[91] FOG, A. Optimizing Subroutines in Assembly Language: An Optimization

Guide for x86 Platforms. Technical University of Denmark, 2013.

[92] FOLEY, D. NVLink, Pascal and stacked memory: Feeding the appetite for big

data. Nvidia.com, 2014.

[93] FORTUNE, S.; WYLLIE, J. Parallelism in Random Access Machines. In: Pro-

ceedings of the tenth annual ACM symposium on Theory of computing, STOC ’78,

p. 114–118, New York, NY, USA, 1978. ACM.

[94] FOSTER, I. Designing and Building Parallel Programs: Concepts and Tools

for Parallel Software Engineering. Parallel programming / scientific computing.

Addison-Wesley, 1995.

[95] FRANK, M. The Braess Paradox. Mathematical Programming, 1(20):283–302,

Dec. 1981.

[96] FRANK, M.; WOLFE, P. An algorithm for quadratic programming. Naval Re-

search Logistics Quarterly, 3(1-2):95–110, 1956.

[97] FREDMAN, M. L.; TARJAN, R. E. Fibonacci heaps and their uses in improved

network optimization algorithms. J. ACM, 34(3):596–615, July 1987.

[98] FUNG, W. W. L.; SHAM, I.; YUAN, G.; AAMODT, T. Dynamic warp formation and

scheduling for efficient GPU control flow. In: Microarchitecture, 2007. MICRO

2007. 40th Annual IEEE/ACM International Symposium on, p. 407–420, Dec 2007.

[99] GAIOSO, R. R. A.; JRADI, W. A. R.; PAULA, L. C. M.; DE S. ALENCAR, W.;

DO NASCIMENTO, H. A. D.; MARTINS, W. S.; CACERES, E. N. Paralelização do

algoritmo Floyd-Warshall usando GPU. In: Anais do XIV Simpósio em Sistemas

Computacionais (WSCAD-SSC), p. 19–25, Porto de Galinhas, PE, Brazil, oct. 2013.

Sociedade Brasileira de Computação, Editora da SBC.

[100] GAIOSO, R. D. R. A.; OTHERS. Implementações paralelas para os problemas

do fecho transitivo e caminho mínimo APSP na GPU. 2014.

[101] GEISBERGER, R.; SANDERS, P.; SCHULTES, D.; VETTER, C. Exact routing in

large road networks using contraction hierarchies. Transportation Science,

46(3):388–404, 2012.

[102] GIBBONS, P. B. A More Practical PRAM Model. In: Proceedings of the first annual

ACM symposium on Parallel algorithms and architectures, SPAA ’89, p. 158–168,

New York, NY, USA, 1989. ACM.

Bibliography 170

[103] GIBBONS, P. B.; MATIAS, Y. Efficient Low-Contention Parallel Algorithms. J.

Comput. Syst. Sci., 53:417–442, December 1996.

[104] GIBBONS, P. B.; MATIAS, Y.; RAMACHANDRAN, V. Efficient Low-Contention

Parallel Algorithms. In: Proceedings of the sixth annual ACM symposium on

Parallel algorithms and architectures, SPAA ’94, p. 236–247, New York, NY, USA,

1994. ACM.

[105] GIBBONS, P. B.; MATIAS, Y.; RAMACHANDRAN, V. The QRQW PRAM: Accounting

for Contention in Parallel Algorithms. In: Proceedings of the fifth annual ACM-

SIAM symposium on Discrete algorithms, SODA ’94, p. 638–648, Philadelphia, PA,

USA, 1994. Society for Industrial and Applied Mathematics.

[106] GOBBO, A. F. Proposta de Aplicação de Sistemas de Inferência Neuro-Fuzzy

para Otimização de Tráfego. Master’s thesis, Centro Federal de Educação Tec-

nológica do Estado do Paraná, Mar. 2005.

[107] GOLDBERG, A. V. Shortest Path Algorithms: Engineering Aspects, p. 502–513.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[108] GOLDBERG, A. V. Point-to-Point Shortest Path Algorithms with Preprocessing,

p. 88–102. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[109] GOLDBERG, D. What every computer scientist should know about floating-

point arithmetic. ACM Comput. Surv., 23(1):5–48, Mar. 1991.

[110] GOLDMAN, A. Modelos para a Computação Paralela. Escola Regional de Alto

Desempenho, Santa Maria, p. 35 – 66, 2003.

[111] GONDIM, H. W. A. S.; DO NASCIMENTO, H. A. D.; REILLY, D. Visualizing

large scale vehicle traffic network data – a survey of the state-of-the-art.

In: Information Visualization Theory and Applications (IVAPP), 2014 International

Conference on, p. 337–346, Jan 2014.

[112] GONDIM, H. W. A. S.; NASCIMENTO, H. A. D. D.; REILLY, D. Visualizações de

matrizes origem-destino no cenário do tráfego urbano. Workshop on Visual

Analytics, Information Visualization and Scientific Visualization, 6. (WVIS), aug

2014.

[113] GONDIM, H. W.; NASCIMENTO, H. A. D. D.; REILLY, D. OD flows - a visual

representation of origin-destination matrices in urban traffic scenarios. Porto

Alegre, 2015. Workshop on Visual Analytics, Information Visualization and Scientific

Visualization, 6. (WVIS), Sociedade Brasileira de Computação.

Bibliography 171

[114] GRAMA, A.; KARYPIS, G.; KUMAR, V.; GUPTA, A. Introduction to Parallel Com-

puting (2nd Edition). Addison Wesley, 2 edition, January 2003.

[115] GROUP, K. O. W.; OTHERS. The OpenCL specification. version, 1(29):8, 2008.

[116] GUPTA, K.; STUART, J. A.; OWENS, J. D. A Study of Persistent Threads Style

GPU Programming for GPGPU Workloads. In: Innovative Parallel Computing

(InPar), 2012, p. 1–14. IEEE, 2012.

[117] GUSTAFSON, J. L. Reevaluating Amdahl’s Law. Commun. ACM, 31:532–533,

May 1988.

[118] HAAS, R.; HOFFMANN, M. Chordless Paths Through Three Vertices. Theor.

Comput. Sci., 351:360–371, 2006.

[119] HAEUPLER, B.; SEN, S.; TARJAN, R. E. Rank-pairing heaps. SIAM Journal on

Computing, 40(6):1463–1485, 2011.

[120] HAJELA, G.; PANDEY, M. Parallel implementations for solving shortest path

problem using bellman-ford. International Journal of Computer Applications,

95(15), 2014.

[121] HAN, T. D.; ABDELRAHMAN, T. S. Reducing branch divergence in GPU pro-

grams. In: Proceedings of the Fourth Workshop on General Purpose Processing

on Graphics Processing Units, GPGPU-4, p. 3:1–3:8, New York, NY, USA, 2011.

ACM.

[122] HARISH, P.; NARAYANAN, P. Accelerating large graph algorithms on the GPU

using CUDA. In: Proceedings of HiPC ’07, p. 197–208. Springer-Verlag, 2007.

[123] HARRIS, M.; OTHERS. Optimizing Parallel Reduction in CUDA. NVIDIA Devel-

oper Technology, 2, 2007.

[124] HARTENSTEIN, R. A decade of reconfigurable computing: A visionary retro-

spective. In: Proceedings of the Conference on Design, Automation and Test in

Europe, DATE ’01, p. 642–649, Piscataway, NJ, USA, 2001. IEEE Press.

[125] HENNESSY, J.; PATTERSON, D. Computer Architecture: A Quantitative Ap-

proach. Elsevier, 5th edition, 2011.

[126] HENSHER, D. A.; BUTTON, K. J. Handbook of Transport Modelling. Publishing,

Emerald Group, 2002.

Bibliography 172

[127] HEYWOOD, T. H.; RANKA, S. A practical hierarchical model of parallel compu-

tation. The model. Journal of Parallel and Distributed Computing, 16(3):212–232,

1992.

[128] HIGHAM, N. Accuracy and Stability of Numerical Algorithms: Second Edition.

Society for Industrial and Applied Mathematics, 2002.

[129] HILLIS, W. D. The Connection Machine. MIT Press, Cambridge, MA, USA, 1985.

[130] HORD, R. M. The Illiac IV, The First Supercomputer. Computer Science Press,

Inc., Rockville, MD, USA, 1982.

[131] HOUSTON, M. Anatomy of AMD’s TeraScale Graphics Engine.

http://s08.idav.ucdavis.edu/houston-amd-terascale.pdf, Dec. 2008.

[132] HUANG, J. C.; LENG, T. Generalized Loop-Unrolling: a Method for Program

Speed-Up. In: in Proc. IEEE Symp. on Application-Specific Systems and Software

Engineering and Technology, p. 244–248, 1997.

[133] IACONO, J. Improved Upper Bounds for Pairing Heaps, p. 32–45. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2000.

[134] JÁJÁ, J. An introduction to parallel algorithms. Addison Wesley Longman

Publishing Co., Inc., Redwood City, CA, USA, 1992.

[135] JEONG, I.-K.; UDDIN, J.; KANG, M.; KIM, C.-H.; KIM, J.-M. Accelerating a

Bellman–Ford routing algorithm using GPU. In: Frontier and Innovation in Future

Computing and Communications, p. 153–160. Springer, 2014.

[136] JOACHIMS, T.; OTHERS. Transductive learning via spectral graph partitioning.

In: ICML – International Conference on Machine Learning, volume 3, p. 290–297,

2003.

[137] JOHNSON, D. B. Efficient algorithms for shortest paths in sparse networks. J.

ACM, 24(1):1–13, Jan. 1977.

[138] JOHNSON, D. B. Priority queues with update and finding minimum spanning

trees. Information Processing Letters, 4(3):53 – 57, 1975.

[139] JOHNSON, E. E. Completing an MIMD Multiprocessor Taxonomy. ACM

SIGARCH – Special Interest Group on Computer Architecture, 16(3):44–47, June

1988.

Bibliography 173

[140] JRADI, W. A. R. Uma Arquitetura de Software Interativo para Apoio a Decisão

na Modelagem e Análise do Tráfego Urbano. Master’s thesis, Universidade

Federal de Goiás, Oct. 2008.

[141] JRADI, W. A.; DO NASCIMENT, H. A.; LONGO, H.; HALL, B. R. Simulation and

analysis of urban traffic – the architecture of a web-based interactive decision

support system. In: 2009 12th International IEEE Conference on Intelligent

Transportation Systems, p. 1–6. IEEE, 2009.

[142] KAHAN, W. Pracniques: Further remarks on reducing truncation errors. Com-

mun. ACM, 8(1):40–, Jan. 1965.

[143] KAHLE, B. A.; HILLIS, W. D. The Connection Machine model CM-1 architecture.

IEEE Transactions on Systems, Mans, Cybernetics, 19(4):707–713, July 1989.

[144] KAMPS, S. Network holes and traffic congestion. http://www.geos.ed.ac.

uk/~mscgis/05-06/s0565603/, Aug. 2006.

[145] KAPOOR, S.; RAMESH, H. An Algorithm for Enumerating All Spanning Trees of

a Directed Graph. Algorithmica, 27(2):120–130, 2000.

[146] KARP, R. M.; RAMACHANDRAN, V. Parallel Algorithms for Shared-Memory

Machines, p. 869–941. MIT Press, Cambridge, MA, USA, 1990.

[147] KARP, R. M. Parallel Combinatorial Computing. Jan. 1991.

[148] KIEFER, J. C. Sequential Minimax Search for a Maximum. Proc. Am. Math. Soc.,

4:502–506, 1953.

[149] KLEINBERG, J.; TARDOS, E. Algorithm Design. Pearson Education India, 2006.

[150] KNIGHT, F. H. Some fallacies in the interpretation of social cost. The Quarterly

Journal of Economics, p. 582–606, 1924.

[151] KNOPP, S.; SANDERS, P.; SCHULTES, D.; SCHULZ, F.; WAGNER, D. Computing

many-to-many shortest paths using highway hierarchies. In: Proceedings of

the Meeting on Algorithm Engineering & Expermiments, p. 36–45, Philadelphia, PA,

USA, 2007. Society for Industrial and Applied Mathematics.

[152] KOLATA, G. What if They Closed 42nd Street and Nobody Noticed? The New

York Times, Dec. 25, 1990.

[153] KOSKINEN, K.; KOSONEN, I.; LUTTINEN, T.; SCHIROKOFF, A.; LUOMA, J. Develop-

ment of a nanoscopic traffic simulation tool. Advances in transportation studies,

2009(17):89–96, 2009.

http://www.geos.ed.ac.uk/~mscgis/05-06/s0565603/
http://www.geos.ed.ac.uk/~mscgis/05-06/s0565603/

Bibliography 174

[154] KOUTSOUPIAS, E.; PAPADIMITRIOU, C. Worst-Case Equilibria. In: Proceed-

ings of the 16th Annual Conference on Theoretical Aspects of Computer Science,

STACS’99, p. 404–413, Berlin, Heidelberg, 1999. Springer-Verlag.

[155] KUMAR, A.; PEETA, S. Slope-Based Multipath Flow Update Algorithm for Static

User Equilibrium Traffic Assignment Problem. Transportation Research Record:

Journal of the Transportation Research Board, 2196:1–10, 2010.

[156] KUMAR, S.; MISRA, A.; TOMAR, R. S. A modified parallel approach to single

source shortest path problem for massively dense graphs using CUDA. In:

Computer and Communication Technology (ICCCT), 2011 2nd International Confer-

ence on, p. 635–639. IEEE, 2011.

[157] LEBLANC, L. T. An Algorithm for the Discrete Network Design Problem.

Transportation Science, 9(3):183–199, 1975.

[158] LEE, A.; STREINU, I. Pebble game algorithms and sparse graphs. Discrete Math-

ematics, 308(8):1425 – 1437, 2008. Third European Conference on Combinatorics,

Graph Theory and Applications. Third European Conference on Combinatorics.

[159] LESKOVEC, J.; KREVL, A. SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data, June 2014.

[160] LI, M.; YESHA, Y. New lower bounds for parallel computation. In: Proceedings

of the eighteenth annual ACM symposium on Theory of computing, STOC ’86, p.

177–187, New York, NY, USA, 1986. ACM.

[161] LIEBERMAN, E.; RATHI, A. K. Revised Traffic Flow Theory: A State-of-the-Art

Report, chapter 10. National Academy of Sciences, Transportation Research Board,

Committee on Traffic Flow Theory and Characteristics, 2001.

[162] LIEBERMAN, E. B. Brief history of traffic simulation. Traffic and Transportation

Simulation, p. 17, 2014.

[163] LINDHOLM, E.; NICKOLLS, J.; OBERMAN, S.; MONTRYM, J. NVIDIA Tesla: A

unified graphics and computing architecture. IEEE Micro, 28(2):39–55, March

2008.

[164] LIU, H. X.; MA, W. A Distributed Modelling Framework for Large-Scale Micro-

scopic Traffic Simulation. World Review of Intermodal Transportation Research,

2(2/3):127–126, 2009.

http://snap.stanford.edu/data

Bibliography 175

[165] LIU, H. X.; MA, W.; JAYAKRISHNAN, R.; RECKER, W.; LIU, H. X.; MA, W.; JAYAKR-

ISHNAN, R.; RECKER, W. A Distributed Modeling Framework for Large-Scale

Microscopic Traffic Simulation, 2005.

[166] LUITJENS, J. Faster Parallel Reductions on Kepler. White Paper, Feb. 2014.

published by NVidia Inc. Last accessed in July 25, 2014.

[167] MAKINO, K.; UNO, T. New Algorithms for Enumerating All Maximal Cliques.

Lecture Notes in Comput. Sci., SWAT 2004, 3111:260–272, 2004.

[168] MAMMAR, S.; SMAILI, S.; MAMMAR, S.; WEIDMANN, G. A Hybrid Model Based

on a Generic Second Order Model. Transportation Research Board, Jan. 2011.

[169] MARQUET, P.; DUQUENNOY, S.; LE BEUX, S.; MEFTALI, S.; DEKEYSER, J.-L.

Massively parallel processing on a chip. In: Proceedings of the 4th international

conference on Computing frontiers, CF ’07, p. 277–286, New York, NY, USA, 2007.

ACM.

[170] MARTÍN, P. J.; TORRES, R.; GAVILANES, A. Cuda solutions for the sssp problem.

In: International Conference on Computational Science, p. 904–913. Springer, 2009.

[171] MCCOOL, M.; REINDERS, J.; ROBISON, A. Structured Parallel Programming:

Patterns for Efficient Computation. Elsevier Science, 2012.

[172] MENG, J.; TARJAN, D.; SKADRON, K. Dynamic Warp Subdivision for Integrated

Branch and Memory Divergence Tolerance. SIGARCH Comput. Archit. News,

38(3):235–246, June 2010.

[173] MEYER, U.; SANDERS, P. δ-stepping: A parallelizable shortest path algorithm.

Journal of Algorithms, 49(1):114–152, Oct. 2003.

[174] MEYER, U. Design and Analysis of Sequential and Parallel Single-Source

Shortest-Paths Algorithms. PhD thesis, Universitätsbibliothek, 2002.

[175] MEYER, U. Average-case complexity of single-source shortest-paths algo-

rithms: Lower and upper bounds. Journal of Algorithms, 48(1):91–134, 2003.

[176] MICROSOFT. DirectCompute PDC HOL. Dec. 2009.

[177] MULLER, J.; BRISEBARRE, N.; DE DINECHIN, F.; JEANNEROD, C.; LEFÈVRE, V.;

MELQUIOND, G.; REVOL, N.; STEHLÉ, D.; TORRES, S. Handbook of Floating-

Point Arithmetic. Birkhäuser Boston, 2009.

Bibliography 176

[178] Muller-Hannemann, M.; Schirra, S., editors. Algorithm Engineering: Bridging

the Gap Between Algorithm Theory and Practice. Springer-Verlag, Berlin,

Heidelberg, 2010.

[179] MUNSHI, A.; GASTER, B.; MATTSON, T. G.; GINSBURG, D. OpenCL programming

guide. Pearson Education, 2011.

[180] MURCHLAND, J. D. Road network traffic distribution in equilibrium. In: Proceed-

ings of the conference mathematical methods in economic sciences. Oberwolfach

W. Germany, Mathematisches Forschungsinstitut, p. 145–183, 1969.

[181] NAGURNEY, A. Network Economics: A Variational Inequality Approach. Ad-

vances in Computational Economics (Book 10). Springer, 2 edition, Dec. 1998.

[182] NARASIMAN, V.; SHEBANOW, M.; LEE, C. J.; MIFTAKHUTDINOV, R.; MUTLU, O.;

PATT, Y. N. Improving GPU Performance via Large Warps and Two-level

Warp Scheduling. In: Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO-44, p. 308–317, New York, NY, USA,

2011. ACM.

[183] NASRE, R.; BURTSCHER, M.; PINGALI, K. Data-driven versus topology-driven

irregular computations on GPUs. In: Parallel Distributed Processing (IPDPS),

2013 IEEE 27th International Symposium on, p. 463–474, 2013.

[184] NAZARI, S.; MEYBODI, M. R.; SALEHIGH, M. A.; TAGHIPOUR, S. An advanced

algorithm for finding shortest path in car navigation system. In: Intelligent

Networks and Intelligent Systems, 2008. ICINIS ’08. First International Conference

on, p. 671–674, Nov 2008.

[185] NEŠETRIL, J.; OSSONA DE MENDEZ, P. From sparse graphs to nowhere dense

structures: Decompositions, independence, dualities and limits. In: European

Congress of Mathematics, p. 135–165, 2009.

[186] NESTEROV, Y.; DE PALMA, A. Stationary Dynamic Solutions in Congested

Transportation Networks: Summary and Perspectives. Networks and Spatial

Economics, 3:371–395, 2003.

[187] NEVES, P. T. Variações e aplicações do algoritmo de Dijkstra. Master’s thesis,

Instituto de Computação – Universidade de Campinas – UNICAMP, Aug. 2007.

[188] NOVAES, A. G. Métodos de Otimização: Aplicação aos Transportes. Editora

Edgard Blücher, 1978.

Bibliography 177

[189] ORTEGA-ARRANZ, H.; TORRES, Y.; LLANOS, D.; GONZALEZ-ESCRIBANO, A. A

new gpu-based approach to the shortest path problem. In: High performance

computing and simulation (HPCS), 2013 international Conference on, p. 505–511.

IEEE, 2013.

[190] ORTEGA-ARRANZ, H.; TORRES, Y.; LLANOS, D. R.; GONZALEZ-ESCRIBANO, A.

The all-pair shortest-path problem in shared-memory heterogeneous systems.

High-Performance Computing on Complex Environments, p. 283–299, 2013.

[191] ORTÚZAR, J. D. D.; WILLUMSEN, L. G. Modelling Transport. John Wiley and Sons,

3rd edition, 2001.

[192] P. E. HART, N. J. N.; RAPHAEL, B. A formal basis for the heuristic determination

of minimum cost paths. IEEE Transactions on Systems, Science, and Cybernetics,

SSC-4(2):100–107, 1968.

[193] PAPAEFTHYMIOU, M.; RODRIGUE, J. Implementing parallel shortest-paths algo-

rithms. DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-

ence, 30:59–68, 1997.

[194] PARHAMI, B. Introduction to Parallel Processing: Algorithms and Architec-

tures. Plenum series in computer science. Plenum Press, 1999.

[195] PASSOS, L. S.; ROSSETTI, R. J.; KOKKINOGENIS, Z. Towards the next-generation

traffic simulation tools: A first appraisal. In: Information Systems and Technolo-

gies (CISTI), 2011 6th Iberian Conference on, p. 1–6. IEEE, 2011.

[196] PATRIKSSON, M. The Traffic Assignment Problem: Models and Methods. Topics

in Transportation, VSP, Utrecht, The Netherlands, 1994.

[197] PEVZNER, P. A.; TANG, H.; WATERMAN, M. S. An Eulerian path approach to

DNA fragment assembly. Proceedings of the National Academy of Sciences,

98(17):9748–9753, 2001.

[198] PIGNATARO, L. J. Traffic Engineering: Theory and Practice. Prentice-Hall.

Englewood Cliffs, EUA, 1973.

[199] PINTO, A. B.; DIÓGENES, M. C.; LINDAU, L. A. Quantificação dos Impactos

de Pólos Geradores de Tráfego. Universidade Federal do Rio Grande do Sul –

UFRGS, Rio Grande do Sul, 2003.

[200] POYARES, C. N. Critérios para análise dos efeitos de políticas de restrição ao

uso de automóveis em áreas centrais. Master’s thesis, Universidade Federal do

Rio de Janeiro, 2000.

Bibliography 178

[201] PRADHAN, A.; MAHINTHAKUMAR, G. Finding all-pairs shortest path for a large-

scale transportation network using parallel Floyd-Warshall and parallel Dijk-

stra algorithms. Journal of Computing in Civil Engineering, 27(3):263–273, 2012.

[202] QUINN, M. J.; METOYER, R. A.; HUNTER-ZAWORSKI, K. Parallel Implementation

of the Social Forces Model. In: in Proceedings of the Second International

Conference in Pedestrian and Evacuation Dynamics, p. 63–74, 2003.

[203] RAJASEKARAN, S.; REIF, J. Handbook of Parallel Computing: Models, Algo-

rithms and Applications; Electronic Version. Chapman and Hall/CRC Computer

and Information Science Series. Taylor and Francis Ltd, Hoboken, NJ, 2007.

[204] RAMAN, V.; SANKAR, P.; KUMAR, S.; ASOKAN, K.; RAJ, M. Analysis of road

network of the buffer area of Kochi metro rail service using tools of social

network analysis. International Conference on Information Science, July 2014.

[205] RATROUT, N. T.; RAHMAN, S. M. A Comparative Analysis of Currently Used

Microscopic and Macroscopic Traffic Simulation Software. The Arabian Journal

for Science and Engineering, Number 1B, 34:121–133, Apr. 2009.

[206] READ, R.; TARJAN, R. Bounds on Backtrack Algorithms for Listing Cycles,

Paths and Spanning Trees. Networks, 5:237–252, 1975.

[207] REITSMA, F.; ENGEL, S. Searching for 2d spatial network holes. In: International

Conference on Computational Science and Its Applications, p. 1069–1078. Springer,

2004.

[208] RIORDAN, O.; WORMALD, N. The diameter of sparse random graphs. Combina-

torics, Probability and Computing, 19(5-6):835–926, 2010.

[209] ROS, F. J.; MARTINEZ, J. A.; RUIZ, P. M. A survey on modeling and simula-

tion of vehicular networks: Communications, mobility, and tools. Computer

Communications, 43:1–15, 2014.

[210] ROSEN, J. B. The gradient projection method for nonlinear programming. Part

I. Linear constraints. Journal of the Society for Industrial and Applied Mathematics,

8(1):181–217, 1960.

[211] ROY, K. Optimum gate ordering of cmos logic gates using euler path approach:

Some insights and explanations. CIT – Journal of Computing and Information

Technology, 15(1):85–92, 2007.

[212] SANDERS, P.; SCHULTES, D. Highway Hierarchies Hasten Exact Shortest Path

Queries, p. 568–579. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

Bibliography 179

[213] SANDERS, P.; SCHULTES, D. Engineering Highway Hierarchies, p. 804–816.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[214] SANKAR, K.; SARAD, A. V. A Time and Memory Efficient Way to Enumerate

Cycles in a Graph. In: Proceedings of ICIAS – International Conference on

Intelligent and Advanced Systems, p. 498–500. IEEE, 2007.

[215] SANO, Y.; FUKUTA, N. A GPU-based framework for large-scale multi-agent traf-

fic simulations. In: Advanced Applied Informatics (IIAIAAI), 2013 IIAI International

Conference on, p. 262–267, Aug 2013.

[216] SARKAR, V. Optimized Unrolling of Nested Loops. Int. J. Parallel Program.,

29(5):545–581, Oct. 2001.

[217] SATOH, H.; KOSHINO, H.; UNO, T.; KOICHI, S.; IWATA, S.; NAKATA, T. Effective

consideration of ring structures in CAST/CNMR for highly accurate 13C {NMR}

chemical shift prediction. Tetrahedron, 61(31):7431–7437, 2005.

[218] SAUDI, A. B. Parallel Computing – Lecture Notes. Technical report, Universiti

Malaysia Sabah, Apr. 2008.

[219] SAUMTALLY, T.; LEBACQUE, J.-P.; HAJ-SALEM, H. Static Traffic Assignment

with Side Constraints in a Dense Orthotropic Network. Procedia - Social and

Behavioral Sciences, 20(0):465–474, 2011.

[220] SCHEUTZ, M.; SCHERMERHORN, P. Adaptive algorithms for the dynamic distri-

bution and parallel execution of agent-based models. J. Parallel Distrib. Com-

put., 66:1037–1051, August 2006.

[221] SCHULZ, F.; WAGNER, D.; WEIHE, K. Dijkstra’s Algorithm On-Line: An Empir-

ical Case Study from Public Railroad Transport, p. 110–123. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1999.

[222] SHEFFI, Y. Urban Transportation Networks. Prentice-Hall, Englewood Cliffs, NJ,

1985.

[223] SHEN, Z.; WANG, K.; ZHU, F. Agent-based traffic simulation and traffic signal

timing optimization with GPU. In: 2011 14th International IEEE Conference on

Intelligent Transportation Systems (ITSC), p. 145–150, Oct 2011.

[224] SILBERSCHATZ, A.; GALVIN, P. B.; GAGNE, G. Operating System Concepts. Wiley

Publishing, 9th edition, 2013.

Bibliography 180

[225] SINGH, D. P.; KHARE, N. A study of different parallel implementations of single

source shortest path algorithms. International Journal of Computer Applications,

54(10):26–30, September 2012.

[226] SOKHN, N.; BALTENSPERGER, R.; BERSIER, L.-F.; HENNEBERT, J.; ULTES-

NITSCHE, U. Identification of chordless cycle in ecological networks. In: In-

ternational Conference on Complex Sciences, p. 316–324. Springer, 2012.

[227] STEINBERGER, M.; KAINZ, B.; KERBL, B.; HAUSWIESNER, S.; KENZEL, M.;

SCHMALSTIEG, D. Softshell: Dynamic scheduling on GPUs. ACM Trans. Graph.,

31(6):161:1–161:11, Nov. 2012.

[228] TANG, Y.; ZHANG, Y.; CHEN, H. A parallel shortest path algorithm based on

graph-partitioning and iterative correcting. In: High Performance Computing and

Communications, 2008. HPCC’08. 10th IEEE International Conference on, p. 155–

161. IEEE, 2008.

[229] TARJAN, R. E. Enumeration of the Elementary Circuits of a Directed Graph.

SIAM J. Comput., 2(3):211–216, 1973.

[230] THORUP, M. Undirected single source shortest paths in linear time. In:

Foundations of Computer Science, 1997. Proceedings., 38th Annual Symposium

on, p. 12–21, Oct 1997.

[231] THORUP, M. Undirected single-source shortest paths with positive integer

weights in linear time. J. ACM, 46(3):362–394, May 1999.

[232] TOLFO, J. D. Estudo Comparativo de Técnicas de Análise de Desempenho

de Redes Viárias no Entorno de Pólos Geradores de Viagens. Master’s thesis,

COPPE/UFRJ, Feb. 2006.

[233] TOMITA, E.; TANAKA, A.; TAKAHASHI, H. The Worst-case Time Complexity for

Generating All Maximal Cliques and Computational Experiments. Theo. Comp.

Sci., 363:28–42, 2006.

[234] TRÄFF, J. L.; ZAROLIAGIS, C. D. A simple parallel algorithm for the single-

source shortest path problem on planar digraphs. In: International Workshop on

Parallel Algorithms for Irregularly Structured Problems, p. 183–194. Springer, 1996.

[235] TSUCHIYAMA, R.; NAKAMURA, T.; IIZUKA, T.; ASAHARA, A.; MIKI, S. The OpenCL

Programming Book. Fixstars Corporation, 2010.

[236] UNO, T.; SATOH, H. An efficient algorithm for enumerating chordless cycles

and chordless paths. In: Discovery Science, p. 313–324. Springer, 2014.

Bibliography 181

[237] VALIANT, L. The Complexity of Enumeration and Reliability Problems. SIAM

Journal on Computing, 8(3):410–421, 1979.

[238] VAN, A. L. STAQ – Static Traffic Assignment with Queuing, March 2011.

[239] VILARÓ, J. C.; TORDAY, A.; GERODIMOS, A. Combining Mesoscopic and Micro-

scopic Simulation in an Integrated Environment as a Hybrid Solution. Intelli-

gent Transportation Systems Magazine, IEEE, 2(3):25–33, fall 2010.

[240] VON NEUMANN, J.; GODFREY, M. D. First draft of a report on the edvac. IEEE

Annals of the History of Computing, 15(4):27–75, 1993.

[241] VUILLEMIN, J. A data structure for manipulating priority queues. Commun.

ACM, 21(4):309–315, Apr. 1978.

[242] WAGNER, D.; WILLHALM, T. Geometric Speed-Up Techniques for Finding

Shortest Paths in Large Sparse Graphs, p. 776–787. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2003.

[243] WANG, L.; MAO, B.; CHEN, S.; ZHANG, K. A P2P Computational Grid-Based Par-

allel Traffic Micro-Simulation Model for Large Scale Transportation Networks.

Computational Sciences and Optimization, International Joint Conference on, 2:95–

99, 2009.

[244] WARDROP, J. G. Some Theoretical Aspects of Road Traffic Research, volume 1.

Proceedings of Institute of Civil Engineers, 1952.

[245] WEI, D.; CHEN, F.; SUN, X. An Improved Road Network Partition Algorithm

for Parallel Microscopic Traffic Simulation. In: Mechanic Automation and Control

Engineering (MACE), 2010 International Conference on, p. 2777–2782, june 2010.

[246] WEST, D. B.; OTHERS. Introduction to Graph Theory, volume 2. Prentice hall

Upper Saddle River, 2001.

[247] WILD, M. Generating all Cycles, Chordless Cycles, and Hamiltonian Cycles

with the Principle of Exclusion. J. Discrete Algorithms, 6(1):93–102, 2008.

[248] WILSON, R. J.; WATKINS, J. J. Graphs: An Introductory Approach. Wiley,

Michigan University, 1990.

[249] WILT, N. The CUDA Handbook: A Comprehensive Guide to GPU Programming.

Pearson Education, 2013.

Bibliography 182

[250] XIAO, S.; FENG, W.-C. Inter-block GPU communication via fast barrier synchro-

nization. In: Parallel & Distributed Processing (IPDPS), 2010 IEEE International

Symposium on, p. 1–12. IEEE, 2010.

[251] YANG, Q.; MORGAN, D. Hybrid Traffic Simulation Model. Transportation Re-

search Board, Jan. 2006.

[252] ZHAN, F. B.; NOON, C. E. A comparison between label-setting and label-

correcting algorithms for computing one-to-one shortest paths. Journal of

Geographic information and decision analysis, 4(2):1–11, 2000.

[253] ZHANG, E. Z.; JIANG, Y.; GUO, Z.; SHEN, X. Streamlining GPU Applications on

the Fly: Thread Divergence Elimination Through Runtime Thread-data Remap-

ping. In: Proceedings of the 24th ACM International Conference on Supercomput-

ing, ICS ’10, p. 115–126, New York, NY, USA, 2010. ACM.

APPENDIX A
Parallel Computing Models

As previously mentioned (Section 3.1), there are many parallel execution mod-
els. One of the mostly used model is the PRAM, described next with further details.

A.1 The PRAM Model

The Parallel Random Machine was the first proposed model of parallel computa-
tion [93] which enabled the development of algorithms using conventional data structures,
defined as being a parallel extension of RAM model. A PRAM consists of an unlimited
number of identical processors P0,P1, . . ., and also an unlimited global memory – used
both for data storage and for communication between processors –, a set of input records
and a finite program. Each processor has a not limited local memory and some other
attributes, operating synchronously with the other processors.

Although this model is unrealistic in practice [110, 63, 134, 203], so far it
remains a reference in the analysis and comparison of parallel algorithms [146] due to
its several advantages:

• High level of abstraction, allowing the developer to focus on the structure of
the problem and not worrying about details not related to the topic under study
(for example, low-level details like hardware architecture, network topology, etc.).
Every effort is, therefore, concentrated on the development of efficient algorithms,
independently of the execution platform;

• Complexity analysis very similar to the analysis of algorithms in the RAM model,
as only a few additional informations are used related to parallelism. Similarly to
the RAM model, complexity in PRAM is expressed using asymptotic notation.

• Use of previously acquired skills in the development of sequential algorithms.
Thanks to the simplicity of PRAM, Richard M. Karp suggests, in Section 6 of his
article “Parallel Combinatorial Computing” [147] that all development of parallel
algorithms should be divided into two phases: the first consisting of the creation of
PRAM algorithm itself and the second to adapt it to the real target platform. This

Appendix A 184

process is presented as being more appropriate than to develop directly for the real
machine.

Among its drawbacks, the following points may be mentioned [63]:

• Currently it’s not possible to conceive a machine with processors and memory
growing indefinitely. The PRAM model is based on no limitation in the amount of
available memory for programs and data. Although today the 64-bit processors are
already a reality, being able to manage a huge amount of memory, in practice this
memory is not available in sufficient volume, especially in tasks that require the
handling of a very large volume of data;

• The model ignores the complexity of communication between processors. Factors
such as bandwidth, delays and overheads in communication lead to quite different
costs of algorithms, depending on the hardware architecture in use. These costs are
ignored in the PRAM model, but are taken into consideration in LogP [54].

• Unrealistic assumption that all instructions have unity cost. This assumption is
clearly not applicable in real machines: even the simplest primitive operations,
such as addition or multiplication, have completely different costs. Because of
this phenomenon, it is entirely possible that two algorithms developed under the
PRAM model, A and B, when implemented in real machines present a very different
performance from that originally planned. In the theoretical model, A should be
more efficient than B, but in practice the opposite can happen;

• Equity of cost (time access) to any memory location. In real machines, RAM is
not uniform from the point of view of access costs. There is a hierarchy of memory
speed involving registers, various levels of cache, global, non-volatile, etc. Even
within the same level of the hierarchy the more distant the memory module is from
the processor, the longer it takes to access any data contained therein;

• Unlimited word size. Both models (RAM and PRAM) assumes that the processors
are able to manipulate words (instructions and data) of any size, without any
restriction. This does not happen in practice and, when a big word has to be
processed, it must first be “broken” in two or more before it can be manipulated,
which takes several processing cycles, invalidating the fundamental assumption of
unity cost of the models;

• Pipelining. As described in Section 3.1, the pipelining available in all modern pro-
cessor architectures allows the decoding of an instruction while another is running,
greatly improving the performance of the programs, sequential or parallel. Again,
the RAM and PRAM models do not consider this technique in their definitions;

• Synchronism. The PRAM model requires strict synchronization in the execution
of instructions. At each step of the program, all running processors must be at the

Appendix A 185

same instruction. However, various factors – such as different memory access times,
the operating system in use and the fact that different instructions have different
execution times, for example – may lead to an inefficient implementation of the
program, because the faster processors must wait for the slower ones in order to
synchronize and then execute the next instruction of the program;

• Distance between model and architecture. Unlike what happened with the von

Neumann architecture and the RAM model, which ended up becoming the de facto

standard in the world of sequential computing, no model in parallel computing has
established itself as dominant. Several proposals co-exist, each more suitable for
a particular purpose, and the requirements of the PRAM model end up not being
satisfactorily met by any of them.

Brent’s Theorem

Brent’s Theorem [26] states that, in PRAM model, any algorithm that requires
time Tp with p processors can be simulated with q processors in time Tq, where q≤ p and

W
q
≤ Tq ≤

W −Tp

q
+Tp

The demonstration is simple. Let W be the amount of work done by the algorithm
or, in other words, the product of time spent on its execution and the number of performed
transactions. The work W can then be divided into

Tp

∑
i=1

Wi sub-works

where Wi is the work actually performed during step i. If q processors are
available in step i, then this task takes bWi

q c units of time to complete. However, since
Wi ≤ q, then q−Wi processors are idle while the other Wi perform some work. So we can
only say that, in general, step i takes dWi

q e units of time at most. Therefore, we have:

Tp

∑
i=1

Wi

q
≤ Tq ≤

Tp

∑
i=1
dWi

q
e

Since dWi
q e ≤ 1+ Wi−1

q for work Wi, we have that

W
q
≤ Tq ≤

W −Tp

q
+Tp.

Appendix A 186

Concurrent Accesses

When developing algorithms on PRAM model, one must consider the existence
(or not) of concurrent accesses to the same position of the shared memory, that is,
policies to address conflicts of reading/writing should be established. Thus sub-models
that describe how such conflicts should be managed were defined and are presented
next [160, 194, 114]:

• EREW (Exclusive Read Exclusive Write) – this model does not allow read/write
conflicts;

• CREW (Concurrent Read Exclusive Write) – this is the standard model of PRAM.
Several processors can read the same global memory location in the same execution
step, but concurrent write operations are not allowed;

• CRCW (Concurrent Read Concurrent Write) – simultaneous read and write op-
erations are allowed. Since this model leads to the possibility of access conflicts,
several rules have been proposed to solve such conflicts. The most used are [110]:

– Common – all processors making a write access to the same memory location
must write the same value;

– Arbitrary – among multiple processors trying to write in the same memory
location, only one is randomly chosen;

– Priority – among multiple processors trying to write in the same memory
location, the one with the smallest index is chosen;

– Combination – the data to be written follows a treatment rule. Among them,
the maximal value can be chosen, adding them up, etc.

Extensions to PRAM Model

Given that PRAM is a purely theoretical model, not applicable in real machines,
several extension proposals were suggested, trying to somehow eliminate or minimize its
problematic points, described in section A.1. The following is a list of those proposals
and a brief description of each one:

• APRAM (Asynchronous Parallel Random Access Machine [50]) – has been pro-
posed to try to approach the PRAM model to real machines, since most of MIMD
parallel computers available on the market (at that time) were potentially asyn-
chronous. To achieve this goal in this model there is the introduction of explicit
synchronization barriers. There is also a shared global memory which is used as a
mean of asynchronous communication – if a processor needs to communicate with
the other(s), it just writes the value in a memory location, without waiting for a
reading step.

Appendix A 187

In the model, a parallel program is seen as a collection of processes. These, in turn,
are each composed by a sequence of atomic operations1, called events. There are
three types of events: Read event, which is the one that consults the shared memory,
Write event is the one which writes (changes) the shared memory and a Local
event is the one that carries out operations in local memory, either a read/write or a
computation. It is also assumed that reading and writing events are able to access a
block of memory in an atomic operation.
The precedence relation, defined as “run before” and represented by the symbol
“→” exists if, given two events s1 and s2 in the process P, if s1→ s2, then s1 runs
before s2. Or, if an event s2 reads a variable x and s1 is the event that wrote the data;
or if there is an event s3 for which s1→ s3 and s3→ s2. Two separate events, s and
t are called concurrents if s 9 t and t 9 s.
In turn, a computation is defined as a sequence S of events that satisfy the constraint
that, given two events s1 and s2, if s1→ s2, then s1 appears before s2 in S. This leads
to the need of a read/write sequence in order to achieve synchronization.
If a process P1 writes in a memory location and the same position is then overwritten
by a process P2 before any other process read such a position, the event P1 does not
impose any restrictions in the sequence of allowed events.

• H-PRAM – The Hierarchical PRAM [127] is presented in the article “A Practical

Hierarchical Model of Parallel Computation” . One of the authors’ motivations for
the development of the H-PRAM is the difficulty often encountered when trying to
conciliate two aspects when creating a model: simplicity and reflectivity. According
to the article, even though the simplicity is crucial so that the model can be useful
in the real world, it must also allow efficient use of a realistic system of parallel
computing. In other words, a good algorithm developed in the model should be
able to be translated into a good algorithm in the target system. If this happens, it is
said that the model is reflective, which is what H-PRAM offers.
H-PRAM is unique because, unlike other PRAM extensions – which usually change
fundamental characteristics of the original model, quite hindering the use of already
developed algorithms – its proposal is the usage of PRAM as a sub-model, without
modifying any feature of it, using a dynamically configurable PRAMs hierarchy
which can synchronously communicate.
Despite the fact that H-PRAM does not change any characteristic of the original

1An operation is defined as atomic if, during its code execution, a processor has exclusive access (read
or write) to a memory location. This will prevent that any other hardware element (processor or I/O device)
read or write from this memory location until the atomic operation is finished. It implies indivisibility and
irreducibility, so any atomic operation must be performed entirely or, case it fails, all performed operations
must be discarted. Therefore, if two or more processors try to perform atomic operations at the same
memory location, this ultimately will serialize all the read/write operations.

Appendix A 188

PRAM, a new feature was added: a partition function, whose goals are to divide a
task into smaller tasks, which are in turn solved by PRAMs with fewer processors,
and to add a controlled form of asynchronism.
Once the partition function is called, it divides the problem into independent subsets
and assigns a synchronous PRAM to each one. The splitting process can continue
indefinitely, recursively, until the subtasks reach their threshold, where each sub-
task can be solved by only one processor. The Figure A.1 depicts this process [63].

Figure A.1: H-PRAM macro structure.

Tasks being performed at a certain level operate asynchronously; however, the
return to the previous level of the hierarchy is only possible after a synchronization
between all tasks.
The H-PRAM model is divided in two sub-models, these differing in how they
manage concurrent memory accesses:

– Privative H-PRAM – the partition function not only divides the tasks between
processors but does the same with the system’s shared memory, so that each
sub-PRAM has its own private memory block, disjoint from the other private
memories in the various sub-PRAMs sets;

– Shared H-PRAM – no partition is performed in the shared memory. Each
sub-PRAM in the hierarchy has, therefore, access to all available memory.

Since one of the fundamental goals of the H-PRAM model is to be suitable to
real machines, it admits for this two parameters: latency (delay in communication
start between processors) and synchronization cost. These parameters are defined
according to the number of processors in communication and synchronization,
respectively, and their values are specific to the target architecture.

• Phase PRAM: In “A More Practical PRAM Model” [102] the author presents a
new approach, abandoning the rigid synchronization scheme required by PRAM.
Gibbons starts arguing that there are several difficulties when trying to convert
PRAM algorithms for real MIMD machines and making several comments on some
of them. The first refers to the fact that the PRAM model tacitly assume that each

Appendix A 189

processor can access any memory location in unit time, which is not true in real
machines.
The second difficulty appears when it is observed that real MIMD machines
are inherently asynchronous, allowing each processor to execute its own set of
instructions, regardless of what others are doing. On the other hand, PRAM assumes
that all processors execute the same instruction, in rigid steps and controlled by a
single clock.
The author argues that his proposal to abandon the rigid timing imposed by PRAM
leads to a better adaptation to real shared memory MIMD machines. As in the
PRAM, the proposed asynchronous model consists of a set of P processors, each
one with its own local memory and communicating through a global memory.
However, unlike PRAM, each processor can perform a specific set of instructions
and there is not a global clock.
The Phase PRAM extension proposes the adoption of stages, in which each proces-
sor works asynchronously and between each phase (computation), a synchroniza-
tion instruction is used. This instruction, however, is not necessarily performed by
all processors P of the system, but by a subset S such that S⊆ P.
Formally, an instruction (or step) of synchronization in the subset S is a logical point
of computation where each processor p ∈ S waits for others in the sub-set before
continuing with its local program.
Therefore, the program running on each processor consists of a series of instruc-
tions executed independently of the other processors, with the series separated by
synchronizations. Prior to synchronization step, all instructions of all processors in
S must be completed before any processor in S can start the next phase of comput-
ing.
In the Phase PRAM model, the author also provides a family of sub-models,
differing in the types of synchronization, the shared memory access cost and way
of read/write access to a memory location. They are:

– Phase PRAM with subset synchronization – here, multiple disjoint sets can
synchronize independently and in parallel. The synchronization cost in subset
S applies only to processors in S and is proportional to the set size;

– Phase PRAM with all-processors synchronization – multiple and parallel
synchronizations are not allowed. That is, it is only possible to synchronize
all processors involved in computation. Three options are available: the set S

is equal to the set P; the set S is equal to the number of processors allocated
to the program; and the set S corresponds to all active processors running the
program;

– Phase PRAM accounting for a communication latency: the model allows

Appendix A 190

(but does not require) to take into account communication cost with shared
memory. If the cost is considered, the delays are set with fixed size: a global
reading takes time 2 ∗ d and a global writing takes time d. If the value is not
considered, then both read/write takes unit time;

– Phase PRAM concurrent – the model allows or does not allow concurrent
readings and writings.

• QRQW PRAM: The Queue-Read Queue-Write model proposes the inclusion of a
new rule (named queue) for the managment of the concurrent accesses, in addition
to those detailed in Section A.1, allowing that the cost from memory contention to
be taken into account [102, 104, 105, 103, 63].
Basically, the proposal of QRQW PRAM is that any memory location can be read or
written by an undefined number of processors in each step of computing. However,
concurrent access to a given memory location is allowed one at a time.
It is defined as a synchronous model, with shared memory; however, each processor
may have its own local memory. The entire communication process between pro-
cessors is performed using shared memory. Being a synchronous model, between
each computing step, a synchronization process must be performed. Figure A.2 il-
lustrates this model. In essence, all execution in QRQW PRAM consists of a set of
steps, each of which is divided into the following parts:

– Reading: ri cells in shared memory are accessed by processor i;
– Calculation: ci calculations are locally performed by processor i;
– Writing: wi values are written by each processor i, in wi positions of the shared

memory.

Even considering the costs of concurrent memory access, the QRQW PRAM
completely abstracts the implementation aspects in real machines, such as latency
access to shared memory, synchronization cost between processors, non-uniform
time access to data, etc. Nevertheless, the authors show [105] that the model can be
easily emulated in the BSP model.

• BSR (Broadcasting with Selective Reduction) – First proposed by Akl and Guen-
ther [3], it consists of the creation of a new rule to handle memory accesses, in
addition to those defined in Section A.1: the BROADCAST instruction [45].
Such instruction allows all the N processors to write to all M memory locations at
the same time, which is done through the following steps (or phases):

– Broadcast – in this phase, all the N processors write in all M memory
positions. The processor Pi, 1 < i < N package a record containing two fields:
a tag gi and a set of data di; the tag gi will identify the memory locations in
which di should be stored;

Appendix A 191

Figure A.2: QRQW-PRAM Macro Structure.

– Selection – here, after the data is received in each memory location U j,
1 ≤ j ≤M a switch associated with this memory location will select a subset
of di, comparing the value of gi with a threshold value l j, using a selection
rule σ;

– Reduction – Finally, the data received is reduced to a single value using an
associative binary reduction ℜ.

Each one of the three phases is carried out simultaneously by N processors and M
switches in M memory locations. The Figure A.3 depicts the process.
The selection rule, σ, can be any one among the following relational operators:

{<,≤,=,≥,>, 6=}

The reduction rule ℜ can be chosen from any of the following associative operators:

{∑,∏,∧,∨,⊕,∩,∪}

and correspond, respectively, to sum, product, logical and, logical or, exclusive or,
maximum and minimum.

Appendix A 192

Figure A.3: BROADCAST of an instruction in three phases.

