
A Fast and Scalable Feedback-Driven
Scheduler for Datacenter Applications

Mayco Souza Berghetti

Advisor: Prof. Ronaldo Alves Ferreira, Ph.D.

Co-advisor: Prof. Fabŕıcio Barbosa de Carvalho, D.Sc.

College of Computing
Federal University of Mato Grosso do Sul

2025

A Fast and Scalable Feedback-Driven
Scheduler for Datacenter Applications

Mayco Souza Berghetti

Master’s Thesis

Advisor: Prof. Ronaldo Alves Ferreira, Ph.D.

Co-advisor: Prof. Fabŕıcio Barbosa de Carvalho, D.Sc.

College of Computing
Federal University of Mato Grosso do Sul

2025

https://orcid.org/0000-0002-9144-7187
https://orcid.org/0000-0002-3481-4251

Abstract

Microsecond-scale datacenter applications demand strict latency guarantees while

operating under high load and variable service times. This environment often

involves a mix of extremely short and long requests, where short requests—lasting

just a few microseconds—are frequently delayed by longer ones due to Head-of-Line

(HOL) blocking, leading to higher latencies, especially at the tail. However, existing

approaches to mitigate HOL blocking, such as centralized dispatching, fine-grained

preemption, and resource reservation, face fundamental scalability limitations. This

work introduces Synergy, a cooperative, application-aware scheduling system that

uses direct feedback from applications to prioritize short requests, dynamically

adapts scheduling parameters, and avoids unnecessary preemptions. Synergy

adopts a decentralized architecture with distributed queues, job-aware preemption,

and dynamic quantum sizing. By eliminating centralized classification and using

real-time application measurements, Synergy effectively mitigates HOL blocking

without compromising throughput. Synergy outperforms state-of-the-art systems,

achieving up to 43% higher throughput while meeting microsecond-scale service-level

objectives.

Keywords: datacenter, head-of-line blocking, user-level scheduler.

i

“The important thing is not to stop questioning.

Curiosity has its own reason for existing.”

— Albert Einstein

ii

Agradecimentos

Dedico este trabalho à minha mãe do coração, Carolina Berghetti. Suas

palavras de encorajamento, sempre presentes nos momentos mais desafiadores, foram

fundamentais para que eu seguisse em frente com coragem e determinação.

Agradeço, com profundo carinho, à minha esposa, Nadia Tatiane dos Santos

Ojeda, ao meu irmão, Marlon Souza Berghetti, e à minha mãe, Marinete Souza da

Silva Berghetti. O apoio e o incentivo constante de vocês foram essenciais para a

realização desta etapa tão importante da minha vida. Sou sinceramente grato por

estarem ao meu lado em cada passo desta jornada.

Minha sincera gratidão ao Professor Ronaldo Alves Ferreira, meu orientador,

por sua dedicação, paciência e comprometimento ao longo desta jornada acadêmica.

Suas orientações e ensinamentos foram de valor inestimável, contribuindo

significativamente para meu crescimento pessoal e profissional. Graças ao seu

apoio, tive a honra de apresentar parte do nosso trabalho no Simpósio Brasileiro

de Redes de Computadores e Sistemas Distribúıdos (SBRC) em 2024, uma

experiência enriquecedora e marcante. Sou imensamente grato por sua confiança,

disponibilidade e por ser uma fonte de inspiração.

Agradeço profundamente ao Fabŕıcio Barbosa de Carvalho por ter me

acompanhado ao longo desta jornada. Sua orientação atenta, generosidade ao

compartilhar conhecimentos e constante incentivo foram fundamentais para o

desenvolvimento deste trabalho. Sua colaboração teve um impacto significativo no

meu crescimento técnico e acadêmico ao longo do processo.

Estendo também meu agradecimento ao amigo Maximilian Jaderson de Melo,

cuja paciência e disposição em compartilhar seu conhecimento foram essenciais nos

primeiros passos desta caminhada. Sua ajuda inicial fez toda a diferença e sou

profundamente grato por isso.

Expresso minha sincera gratidão aos professores Luciano Paschoal Gaspary

(UFRGS), Nahri Balesdent Moreano (UFMS) e Carlos Alberto da Silva (UFMS)

por gentilmente aceitarem integrar minha banca examinadora e pelas valiosas

contribuições oferecidas, as quais foram fundamentais para o aprimoramento desta

dissertação.

Por fim, agradeço ao Instituto Federal de Mato Grosso do Sul (IFMS) pelo

suporte institucional e pelas condições oferecidas ao longo desta jornada acadêmica.

Agradeço também à Universidade Federal de Mato Grosso do Sul (UFMS) pela

valiosa oportunidade de formação, pelos recursos disponibilizados e pelo ambiente

proṕıcio ao desenvolvimento deste trabalho.

iv

Acknowledgements

I dedicate this work to my heart mother, Carolina Berghetti. Your words of

encouragement, always present during the most challenging moments, were essential

in helping me move forward with courage and determination.

I express my deep affection and gratitude to my wife, Nadia Tatiane dos Santos

Ojeda, my brother, Marlon Souza Berghetti, and my mother, Marinete Souza da

Silva Berghetti. Your unwavering support and constant encouragement were crucial

to the completion of this important chapter in my life. I am truly grateful for having

you by my side every step of the way.

My sincere gratitude goes to Professor Ronaldo Alves Ferreira, my advisor, for

his dedication, patience, and commitment throughout this academic journey. His

guidance and teachings were of immeasurable value, contributing significantly to

my personal and professional growth. Thanks to his support, I had the honor of

presenting part of our work at the Brazilian Symposium on Computer Networks

and Distributed Systems (SBRC) in 2024—an enriching and memorable experience.

I am deeply thankful for his trust, availability, and for being a constant source of

inspiration.

I am also deeply grateful to Fabŕıcio Barbosa de Carvalho for accompanying me

throughout this journey. His attentive guidance, generosity in sharing knowledge,

and continuous encouragement were fundamental to the development of this work.

His collaboration had a significant impact on my technical and academic growth

throughout the process.

I would also like to extend my thanks to my friend Maximilian Jaderson de

Melo, whose patience and willingness to share his knowledge were essential in the

early stages of this journey. His initial support made all the difference, and I am

profoundly thankful for it.

I express my sincere gratitude to Professors Luciano Paschoal Gaspary (UFRGS),

Nahri Balesdent Moreano (UFMS), and Carlos Alberto da Silva (UFMS) for kindly

agreeing to serve on my examination committee and for their valuable contributions,

which were fundamental to the improvement of this dissertation.

Finally, I am grateful to the Federal Institute of Mato Grosso do Sul (IFMS)

for the institutional support and the conditions provided throughout this academic

journey. I also thank the Federal University of Mato Grosso do Sul (UFMS) for the

valuable educational opportunity, the resources made available, and the academic

environment that enabled the development of this work.

vi

List of Acronyms

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

c-FCFS Centralized First Come First Serve

CI Compiler Interrupts

CPU Central Processing Unit

d-FCFS Descentralized First Come First Serve

DARC Dynamic Application-aware Reserved Cores

DMA Direct Memory Access

DPDK Data Plane Development Kit

DRAM Dynamic Random-Access Memory

EAL Environment Abstraction Layer

FCFS First Come First Serve

HOL Blocking Head-of-Line Blocking

I/O Input/Output

IP Internet Protocol

IPC Inter-Processor Communication

IPI Inter-Processor Interrupts

JBSQ Join-Bounded-Shortest-Queue

JIQ Join-Idle-Queue

JSQ Join-Shortest-Queue

kRPS Thousand Request per Second

LLC Last-Level Cache

LLVM Low Level Virtual Machine

MRPS Million Request per Second

MSR Model Specific Register

NAPI New API

NIC Network Interface Card

NUMA Non-Uniform Memory Access

vii

PCI Peripheral Component Interconnect

POSIX Portable Operating System Interface

PS Processor Sharing

RTC Run-to-Completion

RTT Round-Trip Time

SLO Service-Level Objective

SR-IOV Single Root I/O Virtualization

TCP Transmission Control Protocol

TID Thread Identifier

TLS Thread-Local Storage

UDP User Datagram Protocol

UINTR User Interrupts

UITT User-Interrupt Target Table

UPID User Posted-Interrupt Descriptor

VF Virtual Function

viii

List of Algorithms

5.1 Aplication Pseudocode . 39

5.2 Synergy Request Selection . 40

5.3 Timer Core . 43

ix

List of Figures

2.1 Kernel-based vs. Kernel-bypass packet processing 6

2.2 Request distribution strategies . 8

2.3 Load balancing strategies . 10

4.1 Simulation of different overheads to centralized dispatching 31

4.2 HOL Blocking mitigation strategies 32

5.1 Synergy overview . 37

5.2 Request life cycle . 38

5.3 Interrupt delivery path stages . 48

6.1 Results to High workload . 53

6.2 Results to Extrene workload . 55

6.3 Results to ZippyDB workload . 56

6.4 Results to levelDB application . 57

6.5 Breakdown of Synergy’s performance improvements 58

6.6 Synergy’s knobs for adjusting request processing priorities 61

6.7 Synergy’s performance using different interrupt methods 62

6.8 Synergy’s performance with uneven flow distribution across cores . 63

6.9 Synergy multicore scaling capacity 65

x

List of Tables

4.1 Design space comparison . 35

5.1 Overhead for different interrupt methods 49

6.1 Evaluated workloads . 51

xi

Contents

1 Introduction 1

1.1 Main Contributions . 3

1.2 Thesis Organization . 5

2 Background 6

2.1 Kernel and Kernel-Bypass Packet Processing 6

2.2 Request Distribution . 8

2.3 Load Balance Management . 9

2.4 Task Scheduling Models . 11

3 Related Work 15

3.1 Network Protocol Stack . 15

3.2 System Interference . 19

3.3 Head-of-line Blocking . 24

4 Design Space 29

4.1 Motivation . 29

4.2 Request Dispatching and Load Balancing 30

4.3 HOL-Blocking Mitigation . 32

4.4 Application Awareness . 33

4.5 Extra Core and Optimizations . 34

xii

5 Synergy 36

5.1 Design . 36

5.2 Implementation . 45

6 Evaluation 50

6.1 Methodology and Setup . 50

6.2 Synergy vs. Preemptive Systems 52

6.3 Ablation Study . 57

6.4 Multicore Scaling . 64

7 Discussion 66

7.1 Delegating Classification to the Application 66

7.2 Timeliness and Practical Implementation 67

7.3 Benefits of Application Feedback . 68

7.4 Dealing with Multiple Request Types 69

8 Conclusion 70

8.1 Future Work . 71

Bibliography 73

A Publications 82

xiii

Chapter 1

Introduction

Datacenter applications, such as real-time analytics, online gaming, and

social networks, demand response times at microsecond scales to meet strict

service-level objectives (SLOs) [70]. These applications are composed of complex,

latency-sensitive workflows where every microsecond matters [71]. The challenge

lies not only in processing large numbers of concurrent requests but also in ensuring

that even the slightest delays are minimized [1, 19,29].

At microsecond timescales, traditional software architectures struggle to keep

up with the demands of high-throughput, low-latency workloads. Processing

delays are compounded by factors such as contention for CPU cores [50], memory

bandwidth [25], and sudden bursts of requests that introduce queuing and scheduling

inefficiencies [19, 62]. To make matters worse, datacenter workloads often exhibit

service times with high dispersion, where a mix of extremely short and long

requests must coexist [12, 20, 29, 33, 36, 45, 53]. Short requests, taking just a few

microseconds, are often delayed by longer ones—an issue known as Head-of-Line

(HOL) Blocking—leading to higher latencies, especially at the tail [19, 62].

To address the HOL Blocking problem and bound tail latency, recent research has

explored kernel-bypass systems with a variety of scheduling strategies [7, 25, 30, 34,

35,50,53,55,70], including employing centralized dispatchers for load balancing [20,

1

Introduction 2

36, 51], preempting long requests to prioritize short ones [30, 33, 36, 45, 69], and

intra-server resource reservation [20, 21, 51]. Unfortunately, these approaches often

scale poorly and force servers to run at low utilization (e.g., below 40%) to meet

strict SLOs [5].

Each of these strategies faces fundamental limitations that reduce their

effectiveness at scale. Centralized dispatchers [20, 33, 36, 50], despite effectively

distributing load, become bottlenecks under high load, which limits throughput

and causes servers to remain underutilized. Fine-grained preemptive schedulers [33,

36, 69] introduce substantial overhead due to indiscriminate context switching

and interrupt handling. Even optimized variants [33, 45] struggle with workloads

exhibiting high service time variance, leading to poor cache performance and

increased CPU costs. Resource reservation strategies [20] further rely on external

classifiers to distinguish request types, which adds redundant classification effort

and often leads to incorrect predictions when service times depend on dynamic

application states. This situation calls for more nuanced, workload-aware scheduling

approaches.

In datacenters, where enterprises have full control over the application

stack—including the application, operating system, kernel-bypass system, and

application scheduler—there is significant potential to design more cooperative and

effective scheduling mechanisms. This control can provide the scheduler with rich

application-level knowledge—such as request types, service times, and workload

patterns—so it can make more informed and fine-grained decisions. Additionally, the

scheduler can incorporate real-time feedback from the application and measurement

data to adjust scheduling parameters dynamically, allowing it to better meet strict

SLOs, reduce tail latencies, and improve overall resource utilization.

facom-ufms

Introduction 3

1.1 Main Contributions

This work introduces Synergy, a system designed to work in close cooperation

with applications to scale efficiently on multicore architectures while addressing

the fundamental limitations of existing systems. By leveraging direct application

feedback, Synergy enables differentiated treatment of requests based on their

expected service times, allowing it to prioritize short requests and mitigate HOL

Blocking without compromising throughput or scalability. Synergy combines

decentralized scheduling—where requests are distributed across multiple queues and

scheduled independently—with dynamic load balancing and job-aware preemption

to meet microsecond-scale SLOs even under high-load, high-variance conditions

typical of datacenter workloads.

Specifically, Synergy adopts a decentralized dispatcher, where the NIC

(Network Interface Card) distributes requests across multiple queues, each mapped

to a dedicated worker. To handle load imbalances, Synergy employs work

stealing [55], allowing underutilized workers to pull requests from overloaded ones

and dynamically rebalance the load. This mechanism ensures efficient resource

utilization [46] while preserving the benefits of decentralized dispatching. By

eliminating the need for a centralized dispatcher—a well-known source of contention

in prior systems [20,33,36,50]—Synergy avoids a critical bottleneck.

In Synergy, applications classify requests and provide feedback to the

scheduler, enabling differentiated handling of short and long requests. Short

requests run to completion without interruption to minimize latency. Long requests,

by contrast, can be preempted and resumed later to avoid delaying others and

mitigate HOL blocking. Preempted requests are placed in a common wait queue

rather than being reinserted into the original worker’s queue, which allows them

to be redistributed more effectively across workers than with queue-length-based

strategies, such as work stealing alone. This strategy ensures that long requests do

facom-ufms

Introduction 4

not accumulate unevenly and that idle workers can resume deferred computation,

improving overall responsiveness and resource utilization.

In addition to scheduling decisions, Synergy uses application feedback to

compute the scheduling quantum dynamically based on the service times of the

requests and operator-defined parameters. This design eliminates the drawbacks

of a large fixed quantum, which can unnecessarily delay short requests [35, 36, 45],

and offers flexibility to prioritize different request types. Also, Synergy employs

job- and load-aware conditional preemption instead of time-based preemption. This

approach avoids unnecessary context switches when a worker queue is empty, which

minimizes overhead and improves overall performance.

Finally, by delegating request classification to the application, Synergy

eliminates the need for a centralized classifier [20] and supports more flexible and

accurate classification. This approach accounts for scenarios where service times

depend not only on the request type but also on factors such as the specific operations

pipelined within a request [58] or the popularity of a search term [18].

We implement Synergy as a libOS using DPDKDPDK to bypass the Linux

kernel and compare it with Shinjuku [36], Perséphone [20], Concord [33], and Tiny

Quanta [45], which use different techniques to mitigate HOL blocking. Through

application-aware design and several optimizations, Synergy significantly improves

throughput while meeting microsecond-scale latency SLOs. For example, in the

Extreme workload (§6.2), Synergy increases throughput by 24–43% over prior

systems and effectively mitigates HOL blocking up to 81% system load. We

also perform a comprehensive evaluation of Synergy’s internal mechanisms and

behavior under diverse conditions. This evaluation includes an ablation study,

sensitivity experiments with varying configuration parameters, tests under load

imbalance, and evaluations of scalability with an increasing number of cores. The

source code of Synergy and the scripts for reproducing our results are available at

https://github.com/Synergy-repo/synergy.

facom-ufms

https://github.com/Synergy-repo/synergy

Introduction 5

1.2 Thesis Organization

The remainder of this work is organized as follows. Chapter 2 introduces

foundational concepts necessary to fully understand the work. Chapter 3 reviews

the most relevant related work. Chapter 4 analyzes the design space explored by

previous systems and presents the motivation behind the proposal developed in

Chapter 5. Chapter 6 evaluates the proposed approach in comparison to existing

solutions. Chapter 7 explores practical considerations and potential applications of

the proposed feedback technique and provides a summary of its benefits. Finally,

Chapter 8 summarizes the main contributions and concludes the thesis.

facom-ufms

Chapter 2

Background

This chapter briefly overviews the background material necessary to understand

the contributions of this work. Section 2.1 introduces packet processing in

general-purpose operating systems, such as Linux, and presents techniques that

improve processing speed. Section 2.2 describes request distribution strategies.

Section 2.3 explains how to manage load balancing effectively. Finally, Section 2.4

examines different task scheduling models.

2.1 Kernel and Kernel-Bypass Packet Processing

DMA

SyscallInterrupt

Copy

Kernel
Space

User
Space

(a) Kernel-based.

Polling

User
Space

Kernel
Space

(b) Kernel-bypass.

Figure 2.1: Kernel-based vs. Kernel-bypass packet processing.

The interval between the arrival of data at the NIC (Network Interface Card)

and its consumption by the application involves several processing steps [10, 40,

68]. General-purpose operating systems like Linux typically use an interrupt-driven

model for network processing. As illustrated in Figure 2.1a, when a packet arrives,

6

Background 7

the NIC transfers it to main memory via DMA (Direct Memory Access) and raises

an interrupt to notify the CPU. The operating system (OS) then processes the

packet through the protocol stack. OS places the data in the reception queue of the

corresponding socket based on the flow identified in the packet header. When the

application performs a system call such as recv, the OS copies the packet data from

kernel space to a user-space buffer.

Modern versions of Linux introduce optimizations to improve packet processing,

including interrupt coalescence and NAPI (New API) [40]. With interrupt

coalescence, the NIC intentionally delays interrupt generation to batch multiple

incoming packets, thereby reducing interrupt overhead during high traffic. However,

this batching introduces additional latency for the earliest packets in the batch.

NAPI replaces the purely interrupt-driven model with a hybrid approach that

combines interrupts and polling. During high traffic, the system turns off interrupts

and relies on a dedicated CPU core to periodically poll the NIC’s receive queue and

retrieve packets. This polling strategy improves performance and reduces interrupt

handling overhead, although it may waste CPU cycles when traffic is low.

Instead of relying on the traditional kernel-based packet processing model,

many high-performance networking systems adopt a technique known as kernel

bypass, which allows user-space applications to interact directly with hardware (e.g.,

the NIC) [7, 20, 25, 33, 36, 38, 45, 50, 53, 55], as illustrated in Figure 2.1b. These

systems rely on frameworks such as DPDK [31], Netmap [59], and technologies

like SR-IOV (Single Root I/O Virtualization) [53] to bypass the kernel and

implement custom user-level network protocol stacks, thereby enabling low-latency

and high-throughput network I/O.

By moving many traditionally kernel-level functions into user space, these

systems reduce context switches, eliminate data copying between kernel and

user memory, and give applications tighter control over scheduling and resource

allocation. Additionally, full network polling is commonly employed in

facom-ufms

Background 8

high-performance kernel-bypass systems, improving latency and throughput

compared to conventional kernel-based packet processing. For example,

Shenango [50] improves CPU efficiency for many co-located latency-sensitive and

batch applications by combining user-level networking with user-level thread

scheduling. Kernel bypass systems work particularly well for microsecond-scale

applications commonly found in modern datacenters, where even small delays in

packet handling can significantly impact overall latency and system responsiveness.

2.2 Request Distribution

Request distribution strategies fall into two broad categories: centralized and

decentralized models. In the centralized model, the system places all incoming

requests into a single queue and assigns a dedicated core to dispatch these requests

to available workers. Several systems adopt the centralized model by dedicating

a core to perform request distribution between workers [20, 36, 51], as illustrated

in Figure 2.2a. Although centralized dispatching offers better load balancing in

theory [67], it suffers from scalability constraints in practice, particularly due to

contention and synchronization overhead [46].

(a) Centralized. (b) Decentralized.

Figure 2.2: Request distribution strategies.

In contrast, the decentralized model distributes incoming requests across multiple

queues. While this approach introduces additional complexity in maintaining load

balance, it significantly improves scalability by reducing contention and increasing

parallelism. Many systems implement the decentralized model by exploiting

facom-ufms

Background 9

hardware features available in modern Network Interface Cards (NICs) to implement

decentralized dispatching, as depicted in Figure 2.2b. Examples include Receive Side

Scaling (RSS) [61] and Intel Flow Director [52] mechanisms, both of which distribute

network packets across multiple receive queues in the NIC. Recent high-performance

I/O frameworks [7, 25,55] widely adopt these mechanisms.

In the case of RSS, the NIC determines packet distribution by computing a hash

over selected packet header fields, e.g., 5-tuple of the packet. Rather than directly

selecting a queue using the hash, the NIC uses it as an index into an indirection

table stored in hardware. This indirection table maps hash values to receive queues,

allowing flexible assignment of flows and enabling multiple distinct flows to share

the same queue. Some systems dynamically adjust the indirection table at runtime

to mitigate imbalances resulting from uneven flow distribution [3, 13–15].

2.3 Load Balance Management

Balancing the workload between workers ensures more efficient utilization of

available resources, improves overall throughput, and reduces request latency.

Various load-balancing policies can be employed to achieve this goal. Some rely

on real-time knowledge of the system state, while others operate with minimal or no

system awareness. These strategies generally reflect a trade-off between scalability

and balance quality: the more precise the load distribution, the more overhead the

system incurs, which can hinder scalability.

We now discuss the principal load balancing strategies that are most relevant to

this work:

• Join-Idle-Queue (JIQ), illustrated in Figure 2.3a, assigns incoming requests

exclusively to idle workers. It achieves efficient load distribution with minimal

overhead under moderate load, but it depends on tracking real-time worker

availability. Although JIQ distributes load effectively, it scales poorly because

facom-ufms

Background 10

Idle

(a) Join-Idle-Queue

Idle

(b) Join-B-Shortest-Queue

Steal

Idle

(c) Work-stealing

Figure 2.3: Load balancing strategies.

it must continuously track which workers are idle.

• Join-Bounded-Shortest-Queue (JBSQ), illustrated in Figure 2.3b,

dispatches requests to any worker whose queue length is below a predefined

threshold. Compared to JIQ, JBSQ reduces scalability limitations while

offering a moderate load balance. Like JIQ, JBSQ implementations typically

rely on a centralized dispatcher.

• Join-Shortest-Queue (JSQ), illustrated in Figure 2.3b, dispatches requests

to one of the workers with the fewest tasks in their queue. By relaxing the

precision of load information, JSQ improves scalability relative to JIQ and

JBSQ at the cost of slightly less optimal load distribution.

• Work-stealing, illustrated in Figure 2.3c, makes idle workers steal tasks from

busier workers to balance the workload between workers. This technique

avoids centralized coordination and scales well, although it generally yields

less optimal load balance than centralized methods.

Overall, these policies reflect a fundamental trade-off: centralized strategies like

JIQ and JBSQ can provide better load balance but suffer from limited scalability,

while JSQ offers a middle ground by trading some balance precision for improved

scalability. Decentralized approaches like work-stealing prioritize scalability further,

at the cost of even less precise load distribution.

facom-ufms

Background 11

2.4 Task Scheduling Models

Task processing often follows the First-Come-First-Served (FCFS) model, where

workers execute tasks in a run-to-completion (RTC) manner, strictly respecting

their arrival order. When systems combine this execution model with centralized or

decentralized request dispatching, they implement the scheduling policies known

as c-FCFS and d-FCFS, respectively. Another widely used execution model is

Processor Sharing (PS), in which each task runs for a fixed time slice (or quantum)

before yielding the processor to allow another task to execute. According to

queueing theory, FCFS performs best in workloads with low variability in processing

times, whereas PS offers better performance under workloads characterized by high

variability or heavy-tailed distributions [67].

To implement PS, systems must interrupt tasks frequently. Generally-purpose

operating systems typically involve configuring hardware timers, such as the

Advanced Programmable Interrupt Controller (APIC), to generate periodic

interrupts. For instance, before executing a task, the system programs the APIC to

trigger an interrupt after a specific time interval. Upon receiving the interrupt, the

scheduler can preempt the current task and switch to another if needed.

In contrast to traditional kernel-level scheduling, several recent systems move

scheduling decisions to user space [25, 30, 33, 36, 42, 50, 56], aiming to avoid the

costly context switches associated with transitions between user and kernel modes.

User-level schedulers can operate cooperatively, where the application developer

manually inserts yield points in the code. Examples of libraries supporting this

cooperative model include GNU Portable Threads [26], C++ coroutines [16], and

Windows fibers [48]. Alternatively, user-level scheduling can be preemptive, which

requires mechanisms capable of interrupting the currently running task.

Currently, the available mechanisms to support preemption in user space

include: POSIX signals [9, 63], user-level interrupts [30, 42], and, compiler-based

facom-ufms

Background 12

interrupts [33, 45]. The following sections expand on the discussion of these

alternatives.

2.4.1 Signals

POSIX-compliant systems use signals as the primary mechanism for event signaling

and asynchronous communication in user space. Programs can generate signals

programmatically (e.g., via alarm) or explicitly send them between threads or

processes (e.g., using tgkill), which makes signals a viable tool for implementing

user-space task preemption [9, 63].

Although POSIX signals offer a standardized and flexible interface for

handling asynchronous events, they introduce considerable overhead, especially in

latency-sensitive or high-frequency preemption scenarios. Much of this overhead

stems from the need to transition between user and kernel modes. When a thread

receives a signal, the kernel interrupts its execution, saves the processor state, and

invokes a user-defined signal handler. Once the handler completes, the kernel must

restore the thread’s previous context, typically by issuing a sigreturn system call

to resume execution at the point of interruption. Additionally, when delivering a

signal to a process, the kernel must select an appropriate thread as the recipient,

a process that may require inter-core communication and incur further scheduling

overhead.

2.4.2 User Interrupts

User Interrupts (Uintr) [64] are a recent hardware mechanism that enables user-space

applications to send and receive interrupts without kernel involvement, eliminating

system call overhead. Intel’s Sapphire Rapids processors support this feature

through a set of Model Specific Registers (MSRs), as described below.

To receive user interrupts, an interrupt vector must be written to the UINV

facom-ufms

Background 13

register, allowing the processor to differentiate user interrupts from other types.

When a user interrupt occurs, the processor transfers control to a user-space handler,

which the system must preconfigure in the IA32 UINTR HANDLER register. Each

thread that can receive user interrupts maintains a User Posted-Interrupt Descriptor

(UPID), pointed to by the IA32 UINTR PD register. The UPID structure holds key

information, such as the processor APIC ID that the thread is currently running.

To send user interrupts, software uses the SENDUIPI instruction, a new

unprivileged instruction that triggers an interrupt to a designated user-level target.

Each logical processor that can send user interrupts maintains a User-Interrupt

Target Table (UITT), whose base address is stored in the IA32 UINTR TT register.

Each UITT entry corresponds to a receive thread and contains a pointer to the

UPID structure of the target thread. When the SENDUIPI instruction is executed

with a given index, the processor looks up the corresponding UITT entry, retrieves

the UPID of the target, and delivers the interrupt using the local APIC to the

target’s logical processor. The receiving thread will then handle the interrupt using

the handler address stored in IA32 UINTR HANDLER.

By enabling fully user-space interrupt handling, Uintr removes system call

overhead and achieves performance gains of up to 17.3× compared to traditional

asynchronous Inter-Process Communication (IPC) methods [64]. This efficiency has

motivated several recent research efforts that explore the use of Uintr in low-latency

user-level systems [2, 30,35,42].

2.4.3 Compiler Interrupts

Compiler Interrupts (CI) implement a preemption mechanism based on compile-time

instrumentation, where the compiler injects checks into the application code to

determine whether the currently running task should yield the CPU. The compiler

strategically places these yield checks (e.g., at function boundaries), and the

facom-ufms

Background 14

application evaluates them during execution to decide whether a context switch

should occur. Consequently, the frequency of context switching directly depends on

how often the program includes these yield points.

One of the main advantages of CI is its low context-switching overhead. Unlike

asynchronous preemption methods, such as signals, that require the system to save

the full processor state, CI yields control with minimal state saving, entirely in

user space. This design enables high efficiency in systems that require fine-grained

task switching while avoiding the latency and complexity of system calls or signal

handling.

Despite these advantages, CI introduces runtime overhead due to the inserted

yield checks. When placed too frequently, especially within performance-critical

sections such as tight loops, these checks can degrade performance significantly.

For example, developers of the Go programming language reported performance

slowdowns of up to 95% when applying aggressive instrumentation [27]. Therefore,

effective use of CI requires balancing preemption granularity and system

performance by carefully selecting where to place yield points, ideally avoiding the

critical execution paths.

facom-ufms

Chapter 3

Related Work

This chapter reviews the most relevant research related to this work. Section 3.1

presents works that specialize in the network protocol stack. Section 3.2 presents

works that address different types of interference within a server. Finally, Section

3.3 covers works that tackle the problem of Head-of-Line (HOL) blocking. We defer

the comparison of existing approaches with our’s to Chapter 4.

3.1 Network Protocol Stack

The protocol stack forms a fundamental component of any network packet processing

system. General-purpose operating systems typically implement the stack within

the kernel. This design enhances security by isolating applications and simplifies

networked software development. However, it also introduces significant processing

overhead. Several factors contribute to this overhead, including frequent transitions

between user and kernel modes, extensive security checks, and the reliance on large,

generic data structures to manage connection state. Furthermore, kernel stacks

support a broad range of TCP use cases, which reduce cache efficiency and introduce

complex, multi-layered control flows that stall the processor pipeline.

To mitigate these performance bottlenecks, many high-performance systems

15

Related Work 16

bypass the kernel entirely. They use virtualization technologies such as SR-IOV [65]

or user-space frameworks like DPDK [31] to access the NIC directly and implement

custom protocol stacks in user space. Although these approaches offer substantial

performance gains, they often sacrifice security and generality in favor of speed [53].

This section examines systems that optimize the protocol stack to improve

network application performance, exploring trade-offs between throughput, latency,

and safety.

3.1.1 Arrakis

Arrakis [53] is an operating system designed to minimize the overhead along

the application data path by leveraging hardware virtualization technologies.

Traditional applications that rely on the Linux kernel and the POSIX socket API

often suffer from performance limitations due to overhead introduced by kernel

components, such as the protocol stack, scheduling, and packet copying. These

factors prevent applications from fully utilizing the underlying hardware capabilities

in terms of both throughput and latency.

To address this, Arrakis removes the kernel from the application’s data path

and delegates it to the role of a control plane responsible for ensuring isolation and

security across applications. Arrakis bypasses the kernel during packet processing

and eliminates costs associated with kernel scheduling, context switching, and

system calls. Furthermore, implementing the protocol stack in user space enables a

streamlined and efficient version that significantly reduces processing overhead. In

practice, Arrakis achieves up to a 4× reduction in time spent within the protocol

stack compared to Linux.

Arrakis employs SR-IOV [65], a technology originally developed to reduce

virtualization overhead. SR-IOV allows the creation of virtual functions (VFs) on

compatible network devices, with each VF appearing as a distinct PCI device that

facom-ufms

Related Work 17

can be independently assigned, typically to virtual machines. This direct hardware

access eliminates the need for device emulation by a hypervisor. The hypervisor

configures the physical NIC, including creating and managing VFs and setting up

filters for packet (de)multiplexing between virtual entities.

In the context of Arrakis, the system repurposes SR-IOV to assign virtual

functions directly to applications instead of virtual machines. The NIC performs

packet demultiplexing and delivers packets directly to the corresponding application

queues. Arrakis provides two socket interfaces: a standard POSIX-compatible API

and a more efficient native interface. The native interface avoids copying packets

between the user and kernel space, enabling higher performance.

Compared to Linux, Arrakis reduces total packet processing time by up to 8.8×

using the native socket API and by 2.3× using the POSIX API. For real-world

workloads, such as Memcached [47], Arrakis delivers up to a 1.7× throughput

improvement. The system also demonstrates near-linear scalability with increasing

core counts, up to six cores. Beyond this threshold, performance begins to degrade

due to background processes managed by Barrelfish [4], the research operating

system on which Arrakis is built.

3.1.2 mTCP

mTCP [34] introduces a user-level TCP/IP protocol stack designed for scalability

on multicore systems, with a focus on ease of use and implementation. To achieve

high scalability, mTCP applies several optimization techniques, including batch

processing of packets and events, using lightweight, per-core data structures that

avoid sharing between cores, and enforcing stream affinity per core to reduce

synchronization overhead.

mTCP builds upon the PacketShader I/O engine [28] to enable direct access

to the NIC from user space, extending it with a new event-driven API tailored for

facom-ufms

Related Work 18

high-performance networking. It also provides a drop-in replacement for applications

using the POSIX socket API by offering analogous functions—e.g., accept becomes

mtcp accept. For asynchronous event handling, it includes interfaces such as

mtcp epoll.

The mTCP stack runs as a dedicated thread pinned to the same core as the

application thread. Although this architecture introduces some context-switching

overhead, mTCP mitigates the impact through lock-free data structures and

batching mechanisms that amortize processing costs across multiple events.

One of the core challenges addressed by mTCP is scaling the handling of large

numbers of short-lived TCP connections. The Linux kernel suffers from several

bottlenecks in such scenarios. For instance, when a socket queue is shared by

multiple application threads, it introduces contention. Similarly, the global file

descriptor space causes contention, as the kernel must locate the lowest available

file descriptor during socket creation (e.g., via the accept syscall), which becomes

a bottleneck under high concurrency. Additionally, large data structures such as

sk buff introduce memory and cache inefficiencies when handling high packet rates.

Thanks to its architectural design and optimizations, mTCP achieves near-linear

scalability regarding the number of CPU cores. Moreover, porting applications

to mTCP is relatively straightforward: only a small number of code changes are

required for programs already using the POSIX socket API—for example, adapting

lighttpd required modifying only 65 lines of code. Performance evaluations show that

mTCP improves TCP throughput by up to 3.2× compared to the Linux kernel.

3.1.3 TAS

TAS [38] accelerates TCP packet processing for datacenter applications by

separating the handling of common and uncommon cases. TAS processes the

common case, which includes in-order packet delivery, no fragmentation, and rare

facom-ufms

Related Work 19

retransmissions, on a fast path. The system delegates exceptional conditions,

such as timeouts or out-of-order packets, to a slow path. TAS design uses the

observation that most TCP traffic in datacenter environments follows a predictable

and optimized pattern.

TAS consists of three main components that communicate via shared memory:

the fast path, the slow path, and the protocol stack. The system implements the

fast and slow paths as user-space processes pinned to dedicated CPU cores, each

running in a separate thread. This architectural separation enables TAS to scale

independently of the application workload. TAS exposes the protocol stack as a

user-space library compatible with the POSIX socket interface, allowing unmodified

applications to interact seamlessly.

TAS achieves high performance and low latency by isolating common-case

processing in the fast path and bypassing the kernel through direct NIC access.

The system also preserves key properties such as application-level isolation and

scalability. Experimental evaluations show that TAS handles many concurrent TCP

connections with minimal throughput degradation. Furthermore, TAS improves the

tail latency of a key-value store application by 2.3× compared to IX [7], a prior

high-performance TCP stack.

3.2 System Interference

Interference in a computer system occurs when some element of the system limits

the performance of an application. This section covers systems that address different

types of interference.

3.2.1 Arachne

Arachne [56] is a general-purpose user-space thread manager designed to deliver

low latency and high throughput for applications that handle short-lived threads.

facom-ufms

Related Work 20

Many datacenter applications, such as Memcached [47], process requests with

service times under 10 µs. In such scenarios, the high cost of thread creation in

traditional systems, for example, C++ std::thread incurs a creation overhead of

approximately 13.3 µs [56], makes per-request thread creation infeasible.

To mitigate this, applications typically use thread pools that initialize a fixed

number of threads at startup to handle incoming requests. However, when the

application spawns more threads than available cores to it, thread multiplexing

causes contention and increases latency.

Arachne addresses these challenges by assigning exclusive core usage to

applications over longer periods (tens of milliseconds) and dynamically allocating

cores based on workload demands. Applications scale their internal parallelism

according to the number of assigned cores. In addition, Arachne implements an

efficient threading model that supports very short thread lifetimes on the order of

microseconds while delivering performance comparable to hand-written event-driven

code and preserving the simplicity of thread-based programming.

Arachne consists of three core components:

• Core Arbiter: A dedicated process that runs independently from Arachne

applications. It manages core allocation among competing applications based

on requests made through the Arachne runtime. Importantly, it does not

forcibly revoke cores but uses a priority-based scheme to distribute resources

fairly.

• Arachne Runtime: A lightweight thread library used by applications. It

efficiently manages threads and handles load balancing by assigning new

threads to underutilized cores at creation time.

• Core Policy: Allows each application to define how it will use its allocated

cores. For example, an application may reserve a dedicated core for a specific

thread (e.g., a dispatcher), while distributing other threads across remaining

facom-ufms

Related Work 21

cores.

Experimental results show that Arachne improves the 99th percentile latency of

Memcached by up to 40× compared to Linux. These gains stem from exclusive core

usage, which reduces interference from other applications, and Arachne’s lightweight

thread management with minimal load-balancing overhead. When co-deployed with

a compute-intensive workload (e.g., the x264 video encoder), Arachne maintains

Memcached’s low latency.

Similar to systems like Arrakis [53], IX [7], and Shenango [50], Arachne seeks to

combine low latency with efficient resource usage. However, unlike those systems, it

does not rely on kernel-bypass mechanisms or direct NIC access. This design choice

makes Arachne suitable for networked applications and general-purpose workloads

requiring responsive, high-throughput threading on multicore systems.

3.2.2 Shenango

Shenango [50] is a system designed to reconcile efficient CPU utilization with

the stringent latency requirements of network applications with tail latency

Service-Level Objectives (SLOs) in the microsecond range. Unlike traditional

systems that adjust core allocations at millisecond intervals [56], Shenango operates

at a much finer granularity, making decisions every 5 µs. Shenango also uses 5 µs of

queuing delay as an early congestion signal to determine when to allocate additional

CPU cores to an application.

Shenango is composed of two main components: the IOKernel and the

runtime. The IOKernel runs on a dedicated core and manages network I/O for

applications. Shenango also executes a congestion detection algorithm determining

when applications require additional computational resources. The runtime and

application code communicate with the IOKernel via shared memory. Shenango

provides a user-space protocol stack and thread management system, including

facom-ufms

Related Work 22

user-level thread scheduling and work-stealing for load balancing across cores.

Using Shenango, applications configure two CPU core allocations: guaranteed

and burst cores. The system exclusively reserves guaranteed cores, ensuring a

minimum level of performance that it cannot revoke. In contrast, the IOKernel

dynamically allocates burst cores based on detected congestion and can reclaim

them anytime. The runtime may also voluntarily return idle guaranteed cores to

the IOKernel to improve overall CPU utilization.

Shenango’s architecture allows it to efficiently serve a mix of workloads, including

both batch-processing applications and latency-sensitive services, without sacrificing

performance. Its responsiveness and flexible resource management enable better

utilization of modern multicore systems, particularly in datacenter environments.

3.2.3 Caladan

Caladan [25] is a system designed to mitigate application interference while

improving resource utilization. It builds upon Shenango [50] but introduces several

key enhancements. In addition to queuing delay, which Shenango already uses,

Caladan incorporates additional signals to detect load changes and interference.

One of Caladan’s core innovations is its direct path mode, which bypasses the

IOKernel’s packet dispatching. This allows application runtimes to communicate

directly with the NIC using the libibverbs [43] library, reducing processing

overhead. Caladan also includes a custom kernel module called KSCHED, which

implements more efficient scheduling mechanisms than the Linux kernel API (e.g.,

sched setaffinity). This module also collects performance counters from remote

cores, including cache miss rates.

At deployment, applications receive two categories of CPU cores: guaranteed

cores, which the application always has access to, and burst cores, which the system

temporarily assigns based on load. Applications fall into Latency-Critical (LC)

facom-ufms

Related Work 23

and Best-Effort (BE). BE applications operate at a lower priority and only use

burst cores. The system can revoke burst cores from BE applications to reduce

interference or meet the demands of LC applications. Although LC applications

avoid preemption by BE tasks, they can voluntarily release idle cores when

load-balancing mechanisms, based on work stealing, fail to find new work.

Caladan uses queuing delay to identify when an application needs more cores.

Once a need is detected, it considers both the application’s classification (LC

or BE) and additional interference signals to make allocation decisions. These

signals include request processing time, DRAM bandwidth usage (DRAM BW),

and last-level cache (LLC) miss rate.

The first metric helps manage hyper-thread interference by tracking how long a

request runs on a core. If the runtime exceeds a defined threshold, the system asks

the sibling hyper-thread to yield, idling the core. We use DRAM BW and LLC miss

rate in combination to avoid DRAM channel saturation, which can increase memory

access latency. When DRAM usage exceeds a set threshold, the system identifies

the core with the highest LLC miss rate and revokes that core from the BE task,

causing interference. This process continues until DRAM bandwidth usage drops

below the limit.

Compared to Parties [17], a previous system designed to mitigate interference,

Caladan shows similar performance under constant interference. However, it

significantly outperforms Parties when interference is bursty (e.g., due to garbage

collection in BE applications). Caladan also achieves comparable latency to other

kernel-bypass systems [50, 55], and delivers a throughput of 10 million requests per

second. Due to its single-queue dispatch design, this is double that of its predecessor,

Shenango, which is limited to 5 million requests per second.

facom-ufms

Related Work 24

3.3 Head-of-line Blocking

Head-of-line (HOL) blocking occurs when long-lived requests delay short-lived ones

because the latter gets queued behind the former. This section discusses systems

that specifically target this issue.

3.3.1 Shinjuku

Shinjuku [36] leverages hardware virtualization features to implement a user-space

scheduling system capable of preemption at the microsecond scale. Its goal is

to enable fair sharing of CPU resources across requests, preventing long-running

operations from blocking short ones. It is crucial in applications with diverse

service time distributions. For instance, get/set requests in key-value stores like

Memcached [47] typically follow an exponential distribution with low variance, but

background tasks (e.g., garbage collection) can introduce long tails. Search engines

often exhibit heavy-tailed request distributions such as log-normal, Zipf, or Pareto,

while key-value databases like RocksDB [60] experience bimodal distributions,

mixing fast operations (e.g., get/put) with slower ones (e.g., range scans).

Shinjuku extends Dune [6], a kernel module that exposes Intel Virtualization

Technology (VT-x) features, to support Inter-Processor Interrupts (IPIs) used in

preemption. The IPI handling path is heavily optimized, reducing overhead to 1993

cycles, an improvement of 2.1× over the unoptimized 4219-cycle path. Context

switching is also enhanced by modifying the Linux ucontext library, reducing the

cost from 2290 to just 109 cycles.

Shinjuku implements two scheduling policies. The first is a single-queue

policy, where all requests go into a unified queue, and the dispatcher assigns the

head-of-queue request to an available worker. If a request exceeds a predefined time

quantum (typically 5–15 µs), the system preempts it and returns it to the queue. The

facom-ufms

Related Work 25

second policy uses multiple queues, where a network subsystem classifies requests

by type (e.g., get/scan). It assigns each type its queue and a user-defined 99th

percentile latency SLO. The dispatcher selects the queue with the longest waiting

time relative to its SLO. Preempted requests return to their respective queues and

are placed at the head or tail depending on the distribution of their service times:

short-tailed workloads go to the head, while long-tailed or multimodal workloads go

to the tail.

In evaluation, researchers compare Shinjuku with IX [7] and ZygOS [55], both of

which also use Dune. However, only Shinjuku supports preemption to mitigate HOL

blocking. Under synthetic workloads, including fixed-latency (1 µs), exponential

(mean 1 µs), and bimodal (99.5% at 0.5 µs, 0.5% at 500 µs), Shinjuku consistently

delivers the best or near-best performance. In the bimodal case, Shinjuku achieves

5× higher throughput and 50% lower latency, while IX and ZygOS suffer from

head-of-line blocking.

Further experiments using RocksDB [60] evaluate get requests (6 µs) and scans

(240 µs for 1000 entries, 1200 µs for 5000 entries). In the bimodal workload (99.5%

GET, 0.5% SCAN(1000)), Shinjuku again outperforms the others, achieving 6.6×

higher throughput and 88% lower latency. In a more balanced bimodal workload

(50% GET, 50% SCAN(5000)), Shinjuku demonstrates the importance of combining

preemption with multiple-queue scheduling to maintain performance under mixed

loads.

3.3.2 Perséphone

Perséphone [20] is designed to reduce tail latency in datacenter applications that

operate at a microsecond scale and exhibit high service time dispersion (i.e.,

requests have widely varying processing times). Key-value database applications,

for instance, handle multiple request types, each with distinct service time

facom-ufms

Related Work 26

characteristics. In Redis [57], simple get/put requests typically have a service

time of 2 µs [53], whereas more complex scan operations can require hundreds of

microseconds [36].

Such variation in service times can lead to Head-of-Line (HOL) blocking, where

short requests are delayed by long ones, thereby inflating latency. Perséphone uses

the slowdown metric to quantify this effect, which is defined as the ratio of the

total time a request spends in the system to its service time. For example, if a short

request (1 µs) is queued behind a long one (500 µs), its slowdown is (1+500)/1 = 501,

whereas the long request’s slowdown is (500 + 1)/500 = 1.002. This asymmetry

highlights how long requests can severely delay short ones, but not vice versa.

To address this issue, Perséphone introduces a scheduling policy called DARC

(Dynamic Application-aware Reserved Cores), which avoids HOL blocking by

dedicating exclusive CPU cores to short requests. The system profiles each request

type’s service time and uses the average CPU demand under high load conditions

to determine how many cores to reserve. It also monitors queue delays and CPU

demand variation to adjust these reservations dynamically in response to workload

changes.

Requests are classified by type using an external classifier and placed into

corresponding queues. The dispatcher selects requests from these queues and assigns

them to available application cores. Short requests, with minimal impact on long

ones, can execute on any free core, including those reserved. However, long requests

are restricted to non-reserved cores to prevent interference with latency-sensitive

workloads. This cycle stealing mechanism allows short requests to use reserved

resources during bursts temporarily.

Perséphone [20] evaluated workloads with a dispersion of 100× to 1000× between

short and long requests under four policies: DARC, d-FCFS, c-FCFS, and PS.

DARC consistently delivered lower overall slowdown and latency across all scenarios

while reducing peak throughput slightly (by 5%). Under a more stringent SLO,

facom-ufms

Related Work 27

however, Perséphone achieves higher throughput than the other approaches.

3.3.3 Concord

Concord [33] leverages LLVM passes [39] to automatically instrument applications

at compile time by inserting yield points that help mitigate Head-of-Line (HOL)

blocking. Concord’s design is centered around three key components:

• LLVM Passes: Concord instruments application code using LLVM to insert

checks periodically evaluating a preemption flag during request processing.

When the flag is set, the application voluntarily yields the current request.

This mechanism, known as compiler interrupts, offers a low-overhead

alternative to hardware interrupts such as IPIs (Inter-Processor Interrupts).

• JBSQ: Concord employs a dispatcher thread to efficiently distribute

requests between workers using the JBSQ (Join-Bounded-Shortest-Queue)

load-balancing policy. This strategy minimizes contention introduced by the

dispatcher and reduces worker idle time by assigning requests to the least

loaded queues within bounds.

• Dispatcher: Beyond request distribution, the dispatcher can optionally

participate in processing requests, though this is primarily beneficial under

low-load conditions. More importantly, it is responsible for setting the

preemption flags that signal workers to yield, enabling HOL blocking

mitigation through cooperative multitasking.

Experimental results demonstrate that Concord achieves higher throughput than

Shinjuku due to its lightweight preemption mechanism. However, this comes at the

cost of slightly higher tail latency, which is attributable to the characteristics of the

JBSQ policy. For instance, under a High workload, where 50% of requests have a

1 µs service time and the remaining 50% take 100 µs, Concord delivers 20% more

facom-ufms

Related Work 28

throughput than Shinjuku but incurs a slowdown increase of approximately 3× for

the short requests.

3.3.4 Tiny Quanta

Tiny Quanta builds on a design similar to Concord’s, using LLVM passes for

instrumentation. However, unlike Concord, Tiny Quanta inserts probes that use

the timestamp counter register (e.g.,, using rdtsc instruction) to track how long

each request has been executing locally. If the execution time exceeds a predefined

threshold, the worker voluntarily preempts the request. This self-managed approach

removes the need for external coordination to trigger preemption.

Tiny Quanta implements a two-level scheduling mechanism. In the first level, a

dispatcher assigns requests to worker queues using the Join-Shortest-Queue (JSQ)

policy, which reduces contention and improves load balancing. Each worker applies

a processor-sharing policy in the second level, enabling fine-grained control over

request execution time and reducing head-of-line blocking.

Experimental results show that Tiny Quanta outperforms Shinjuku in both

throughput and scalability. Specifically, it achieves 1.33× and 2.6× higher

throughput than Shinjuku under High and Extreme workloads, respectively.

Additionally, thanks to low dispatcher contention and efficient local scheduling, Tiny

Quanta scales up to 12 million requests per second (MRPS) using 16 worker cores

on workloads with low service time dispersion, significantly outperforming Shinjuku,

which scales only up to 2 MRPS under similar conditions.

facom-ufms

Chapter 4

Design Space

This chapter discusses the design space adopted by various systems targeting

datacenter application processing and highlights unexplored optimization

opportunities. By analyzing the common architectural choices, we seek to identify

the trade-offs hindering performance and scalability and set the stage for new design

directions.

4.1 Motivation

Recent advances in networking have led to transmission rates reaching hundreds of

gigabits per second, with terabit links coming soon [11]. Meanwhile, processor speeds

have remained relatively stagnant, making it necessary to scale network applications

across multiple CPU cores. However, building systems that scale efficiently with

core count while maintaining low tail latency remains challenging. Key issues

include ensuring balanced load distribution across cores and preventing long-running

requests from delaying shorter, latency-sensitive ones.

29

Design Space 30

4.2 Request Dispatching and Load Balancing

To address the challenges of scaling datacenter applications on multicore

architectures, both industry systems [24, 49] and academic work [3, 7] rely on

sharding—partitioning application or protocol state (e.g., TCP control blocks) and

assigning each shard to a dedicated core. This strategy, known as share-nothing [55],

is typically combined with Receive-Side Scaling (RSS) [61], where the NIC assigns

incoming packets to queues based on a hash of the packet’s contents (e.g., five-tuple).

Each queue maps to a specific core, ensuring that packets from the same flow are

processed by the same core. The result is a decentralized scheduling policy known

as d-FCFS (Decentralized First-Come, First-Served), where each core independently

processes requests from its own queue to completion.

While d-FCFS supports scalable designs, it suffers from two major limitations.

First, RSS does not always distribute requests evenly, which leads to load

imbalances—some cores become overloaded while others sit idle—resulting in a

non-work-conserving system and increased latencies [3]. Second, long requests can

block short ones even when there are idle workers, a classic HOL blocking issue [20].

To balance the load across workers, several systems adopt variants of Centralized

FCFS (c-FCFS), where all requests are placed in a shared queue and processed

by multiple cores in arrival order [20, 36]. While this approach improves load

distribution, it introduces its own challenges: bursts of long requests can monopolize

all cores, delaying short ones and still causing HOL blocking. Systems like

Shinjuku [36] and Perséphone [20] approximate c-FCFS by using a dedicated

dispatching core that distributes requests to workers via a JIQ (Join Idle Queue)

policy. Tardis [69], though operating with multiple NIC queues, also approximates

c-FCFS by relying on a globally shared queue accessible to all workers.

Although c-FCFS provides theoretically optimal tail latency [67], it suffers from

a scalability bottleneck, as the dispatcher or shared queue becomes a point of

facom-ufms

Design Space 31

0 1 2 3 4 5 6 7 8 9 10 11 12
Throughput (MRPS)

0
1
2
3
4
5
6
7
8
9

10

La
te

nc
y

(u
s)

250
200
150
100
50

Figure 4.1: Simulation of different overheads in nanoseconds to centralized
dispatching. The results show 99.9th latency on a function of load using 1
dispatcher, 14 workers and requests with service time of 1 µs.

contention [25,46].

We extend the simulator provided by [46] to evaluate the scalability limitations

of the c-FCFS policy by modeling a system with one dispatcher and 14 workers.

This configuration reflects real-world deployments that employ c-FCFS [20, 36].

To simulate dispatching overheads, the dispatcher waits for x nanoseconds after

receiving a new request before forwarding it. Figure 4.1 shows the 99.9th percentile

tail latency as a throughput function, using requests with a service time of 1 µs.

The results demonstrate that even a few nanoseconds of dispatching overhead can

significantly impact system throughput and request tail latency.

To reduce this contention, Concord and Tiny Quanta adopt JBSQ

(Join-Bounded-Shortest-Queue) and JSQ (Join-Shortest-Queue) policies, which

reduce dispatcher contention at the cost of increased tail latency. Tardis takes a

different approach: each worker dequeues N requests at a time from the global

queue into a local queue. Smaller values of N improve load balance but increase

contention; larger values reduce contention but worsen balance, making N a tunable

parameter that controls how closely Tardis approximates c-FCFS.

Synergy takes a different approach. It adopts a decentralized dispatching

facom-ufms

Design Space 32

strategy where each worker receives requests directly from its NIC queue, thus

avoiding the scalability issues of c-FCFS. To compensate for the inherent imbalance

of multiple queues, Synergy employs two complementary techniques: work

stealing [46, 55] and a global wait queue for preempted long requests. In workloads

with high service time dispersion, equalizing queue lengths with work stealing is

insufficient. For example, a worker handling a single long request may use more

CPU cycles to process it than one handling many short requests. The global wait

queue enables long requests to be redistributed among workers, improving balance

beyond what static queue assignment with work stealing allows.

4.3 HOL-Blocking Mitigation

?

(a) Core reservation.

quantum

(b) Preemption.

Figure 4.2: HOL Blocking mitigation strategies.

As shown in Figure 4.2, existing systems that address HOL blocking generally

fall into two main categories: core-reservation and preemptive approaches.

Perséphone [20] is a recent system that dedicates cores exclusively to processing

short requests. These reserved cores remain idle when there are no short requests

to process. While this approach reduces overhead for the workers and prevents

long requests from delaying short ones, it shifts complexity to the dispatcher, which

must classify incoming requests and place them in separate queues, turning it into

a potential bottleneck of the system.

Preemptive approaches, such as Shinjuku, Concord, Tardis, and Tiny Quanta,

facom-ufms

Design Space 33

enforce a fixed-time quantum for each request, limiting how long any request can run

uninterrupted. This processor-sharing model is theoretically better for workloads

with high dispersion [67]. However, enforcing it adds overhead. Shinjuku and

Concord rely on dispatchers to interrupt workers—Shinjuku uses virtualization

features to reduce IPI (Inter-Processor Interrupt) overhead. Concord, on the other

hand, introduces Compiler Interrupts (CI), enabling workers to yield voluntarily

based on a shared flag. Tiny Quanta uses CI alone, removing the dispatcher’s

role in interrupting. Tardis employs hardware timers and recent CPU features like

user-level interrupts [64] to preempt workers periodically.

Synergy also uses preemption but improves upon prior designs by using

job-aware conditional preemption. It interrupts long requests only when other jobs

are waiting in the worker’s queue, which avoids unnecessary context switches and

reduces the system overhead.

4.4 Application Awareness

Most existing approaches are application-agnostic and treat all requests uniformly,

ignoring valuable information that the application can provide [35, 55, 69]. This

lack of awareness forfeits opportunities to make more informed scheduling and

resource allocation decisions. By incorporating application-level information—such

as request type, expected processing time, or priority—systems can adapt more

effectively to workload characteristics, leading to more efficient resource usage and

improved performance.

Some of the recent systems like Perséphone [20] and Shinjuku [36] distinguish

request types. Perséphone classifies requests at dispatch time and assigns each

worker to a specific class, allowing workers to process requests without interruption.

However, classification is done externally by the dispatcher, duplicating effort the

application later repeats. Shinjuku supports multiple queues per worker but relies

facom-ufms

Design Space 34

on the network subsystem—also running on the dispatcher—for classification.

Unlike prior work, Synergy uses direct application feedback to classify requests,

eliminating the need for centralized classification. This approach eliminates

redundancy and enables lightweight cooperation between the application and the

scheduler. It also broadens the range of request types that can be treated differently,

including those whose service times depend on internal state or application-specific

factors (e.g., search term popularity [18]).

4.5 Extra Core and Optimizations

Many designs rely on a dedicated core for auxiliary tasks such as dispatching, request

classification, or triggering preemptions. However, since this core handles every

request, it often becomes a scalability bottleneck. In Perséphone, for example, the

dispatching core is also responsible for periodically adjusting resource allocation

(e.g., resizing the set of reserved cores for short requests), which temporarily pauses

dispatching and increases queueing delays [20].

Synergy, like some prior systems, reserves an extra core for background tasks.

Importantly, this core remains off the request-processing path, ensuring it does not

limit scalability. It performs two key functions: (i) interrupting workers processing

long requests when needed and (ii) monitoring the wait queue to ensure long requests

make progress. These functionalities provide the following benefits:

Reduced Interrupt Frequency: Synergy minimizes preemptions by

interrupting a long request only when there is a new request waiting on the worker’s

queue. This approach contrasts with prior systems that interrupt any request

exceeding a fixed quantum, imposing constant overhead even when unnecessary.

Fewer interrupts not only reduce the latency for long requests but also improve

system throughput. Furthermore, Synergy ensures that short requests execute to

completion without requiring a large quantum. This not only avoids the impact of

facom-ufms

Design Space 35

Table 4.1: Comparison of Synergy and prior systems across key scheduling design
dimensions.

Synergy Shinjuku [36] Perséphone [20] Concord [33] Tardis [69] Tiny Quanta [45]

Request Dispatching Hardware/Decentralized Software/Centralized Software/Centralized Software/Centralized Hardware/Decentralized Software/Centralized

Load Balancing
Work Stealing and

Wait Queue
JIQ Reserved JIQ JBSQ

Global Queue and
Work Stealing

JSQ

HOL Blocking Mitigation Preemptive Preemptive Core reservation Preemptive Preemptive Preemptive

Application Aware Yes Yes Yes No No No

Extra-Core Function
Worker Interrupt and

Monitoring
Request Dispatching
and Worker Interrupt

Request Classification and
Dispatching, and Core
Reservation Updates

Request Dispatching
and Worker Interrupt

- Request Dispatching

Interrupt Frequency Job-aware Timed - Timed Timed Timed

Quantum Size Dynamic Static - Static Static Static

premature interruptions on short requests but also enables the use of small quantum.

Dynamic Quantum Sizing: Thanks to the application feedback, Synergy

dynamically adjusts the quantum size based on workload conditions. By identifying

the type of request each worker is processing and measuring the service time of

short requests, Synergy can adjust the quantum size in real time. This adaptive

strategy avoids the limitations of a fixed quantum: if the quantum is too large,

short requests experience unnecessary delays when the worker is processing a long

request; if too small, the system incurs excessive preemptions and added overhead.

Also, operators can fine-tune quantum sizing parameters to prioritize specific request

types according to application needs.

Together, the design choices in Synergy allow it to combine the scalability of

decentralized dispatching with the latency benefits of intelligent, application-aware

preemption, effectively mitigating HOL blocking without sacrificing performance.

Table 4.1 summarizes the design space and compares Synergy with the existing

systems.

facom-ufms

Chapter 5

Synergy

This chapter introduces Synergy, a cooperative, application-aware scheduling

system that uses direct feedback from applications to prioritize short requests,

dynamically adjusts scheduling parameters, and avoids unnecessary preemptions.

Synergy delivers fast, low-overhead, and scalable scheduling optimized explicitly

for datacenter applications with microsecond-scale workloads, as we outline in

Chapter 4. By combining efficient scheduling mechanisms with lightweight

coordination, Synergy addresses the performance demands of modern low-latency

and high-throughput environments.

5.1 Design

Figure 5.1 presents an overview of Synergy and illustrates the interaction between

its main components. Synergy receives incoming requests through multiple NIC

queues (e.g., using RSS [61], Flow Director [52], or programmable NICs [37]).

Each NIC queue is assigned to a single worker to prevent concurrent access to the

hardware queues. Synergy also maintains a global wait queue to store preempted

requests. For clarity, we describe the system using only two request types—short

and long—but it can be extended to more types by using multiple wait queues with

36

Synergy 37

1
NIC

r

NIC RX queue

rr

Soft RX queue

Steal

Worker core

rr

r

Timer enable/disable

Interrupt

Monitor

Preempted green thread

Green thread

r

Feedback

r

Wait queue

2

Feedback

3

4 5
6

r Request

Figure 5.1: Synergy overview. Solid lines represent request path and dashed
lines indicate timer core queue monitoring and interactions between timer core and
worker cores.

priority levels based on request type.

To enable efficient work stealing, each worker transfers batches of requests from

its NIC queue to a local software queue. It then processes each request using

a reusable green thread, unlike prior systems that allocate a new green thread

per request [33, 36, 69]. Short requests always run to completion and are never

preempted. In contrast, when a long request is interrupted, Synergy moves its

associated green thread to the wait queue and switches to a new green thread to

process new requests.

Any worker can access the wait queue to resume preempted requests to improve

load distribution across cores. Workers also compute the average service time of

short requests so that Synergy can dynamically calculate the quantum for long

requests. The goal is to set the quantum so that a short request queued behind a

long one is not delayed for more than the typical service time of a short request.

Operators can adjust this behavior using a configurable multiplier to increase the

CPU time allocated to long requests and reduce their total time in the system.

Section 6.3.2 evaluates the impact of this multiplier.

Synergy also reserves a dedicated CPU core—referred to as the timer core—to

coordinate time-sensitive scheduling tasks. It monitors both the workers’ queues

facom-ufms

Synergy 38

and the wait queue, preempts long requests when needed, and signals workers to

resume preempted requests that have been waiting in the wait queue for more than

a specified threshold.

In summary, Synergy operates as follows: first, incoming requests are

distributed across multiple queues 1 . Within each worker, a request is scheduled

to the application 2 , which may correspond to either a new request or a previously

preempted one. When a new request is scheduled, the application sends feedback to

Synergy if the request is classified as long 3 , which triggers Synergy to activate

a timer in the timer core 4 . When necessary, the timer core interrupts workers to

mitigate head-of-line (HOL) blocking 5 , causing the worker to place the currently

executing request into the wait queue 6 .

5.1.1 Worker Core

recv feedback

Worker Core

r

r

RX queues

A

Synergy

Green thread

Global wait queue

Timer Core

(a) New request.

sched B

Worker Core

RX queues

B

Synergy

Green thread

Global wait queue

Timer Core

A

(b) Request preempted.

recv sched A

Worker Core

RX queues

A

Synergy

Green thread

Global wait queue

Timer Core

A

B

(c) Request resumed.

send

Worker Corer

RX queues

A

Synergy

Green thread

Global wait queue

NIC TX
queue

r

(d) Request done.

Figure 5.2: Request life cycle. The components inside the dotted rectangle
represent a single worker. Solid lines mean request path and Synergy operations.
Blue dashed lines indicate worker actions to enable/disable the timer, signaling
the timer core. Red dashed line represents an interrupt from the timer core to the
worker core.

facom-ufms

Synergy 39

After initializing (e.g., loading a database), the application calls synergy() to

set up workers, queues, and timers (Algorithm 5.1, Line 12), passing a callback

function to handle incoming requests. The Synergy initialization function launches

a green thread on each worker to run the callback function (server loop()), which

in turn calls synergy recv() (Line 3) to select a request for the worker to process

(Algorithm 5.2).

Algorithm 5.1 Aplication Pseudocode

1: function server loop ▷ Instantiated per worker.
2: loop
3: req ← synergy recv()

4: if classify request(req) == short then
5: process request req to completion
6: else
7: synergy feedback start()

8: process request req
9: synergy feedback finished()

10: synergy send(req reply)

11: ... ▷ Application initialization.
12: synergy(server loop)

To inform Synergy that it is processing a long request, the application

invokes synergy feedback start() at the beginning (Line 7) and

synergy feedback finished() at the end of processing (Line 9). Figure 5.2

illustrates the request life cycle. In the initial stage (Figure 5.2a), the application

receives a request via synergy recv(), classifies it as short or long, and, for long

requests, provides feedback to Synergy, which then activates a timer managed by

the timer core.

Later (Figure 5.2b), if the request exceeds its quantum and the worker’s local

queue is not empty, the timer core interrupts the worker. The corresponding green

thread (e.g., A) is moved to the wait queue, and a new thread (e.g., B) is scheduled

to process a new request. At a later point (Figure 5.2c), any worker may resume

preempted requests from the wait queue to guarantee that they make progress.

Finally, once processing is completed, the application sends the reply over the

facom-ufms

Synergy 40

network, concluding the request life cycle (Figure 5.2d and Line 10 of Algorithm 5.1).

Short requests, by contrast, run to completion without interruption to minimize

overhead and latency (Line 5).

5.1.1.1 Request Selection

Algorithm 5.2 shows how each worker selects the next request to execute. The

worker first checks the check wait queue flag (Line 3) to determine whether it

should prioritize a preempted request from the global wait queue (Qwait). This flag

is set by the timer core when a green thread is waiting in the wait queue for a time

longer than a specified threshold (Algorithm 5.3). This mechanism bounds the delay

for long requests that have been waiting to resume.

Algorithm 5.2 Synergy Request Selection

1: function synergy recv
2: loop
3: if check wait queue then
4: if th ← Qwait.dequeue() then
5: resume green thread th

6: if req ← QRX.dequeue() then
7: return req

8: if th ← Qwait.dequeue() then
9: resume green thread th

10: for i = 1, . . . , tot workers-1 do
11: j ← (worker id + i) mod tot workers

12: if Qtmp ← QRX
j .steal(STEAL THRESHOLD) then

13: req ← Qtmp.dequeue()
14: QRX ← Qtmp

15: return req

If the flag is unset or the wait queue is empty, the worker fetches a request

from its local software queue (QRX) and begins processing (Lines 6 and 7). If the

local queue is also empty, the worker rechecks the wait queue (Line 8) regardless of

the check wait queue flag. If the wait queue is still empty, the worker attempts

to steal requests from another worker’s receive queue QRX
j (Line 12), where j is

the chosen target. Work stealing occurs only if QRX
j has more requests than the

facom-ufms

Synergy 41

operator-defined STEAL THRESHOLD, which helps avoid stealing too few requests and

ensures the cost of stealing is amortized.

When resuming a preempted long request from the wait queue, its execution

restarts in Synergy’s interrupt handler. Before returning to the application, the

interrupt handler marks the current green thread as processing a long request and

starts a timer associated with the worker where the thread was resumed by calling

synergy feedback start().

5.1.1.2 Quantum Sizing

Choosing an appropriate value for the quantum is critical for the performance of

a preemptive system: a quantum that is too small increases context-switching

overhead, while a large one can delay short requests, leading to HOL blocking. Prior

systems [33, 36, 45] use fixed quanta, typically between 2–15 µs, tuned offline based

on workload characteristics. While simple, this approach is sensitive to runtime

variations such as cache behavior and may result in short requests being preempted,

incurring unnecessary overhead in the system.

Synergy, instead, adjusts the quantum dynamically at runtime. Each worker

maintains an Exponential Moving Average (EMA) of short request service times,

computed locally to avoid synchronization. To track short request service times,

the worker computes the difference between a request’s termination and scheduling

times and updates the EMA with this value. When the application identifies a long

request, the worker uses its EMA to set the preemption quantum. This per-worker

approach ensures that quantum sizing adapts to workload conditions in real time

with minimal overhead.

To provide additional flexibility, Synergy introduces a tunable quantum factor

(QUANTUM FACTOR) that scales the computed quantum. Operators can use

this factor to allocate more or less CPU time to reduce the total latency of long

requests or to increase the responsiveness of short requests. Although workloads

facom-ufms

Synergy 42

with extremely short requests (as low as 500 ns [20, 55]) make a small quantum

more costly, Synergy mitigates this overhead through two strategies: (i) allowing

operators to scale the quantum using the configurable factor and (ii) avoiding

preemptions when no new requests are waiting to be processed. Together, these

mechanisms balance the responsiveness required for short requests with the efficiency

needed to handle long ones.

5.1.2 Request Classification

Prior systems often perform this classification externally [20, 36], requiring

prior knowledge of the application’s protocol. This approach introduces

redundancy—since the application reclassifies the same request—and lacks

generality, especially for complex applications like search engines [44].

Synergy takes a different approach by delegating classification to the

application, which signals Synergy through lightweight feedback. When the

application identifies a long request, it notifies Synergy to activate the timer

interrupt on the current worker to bound the request’s runtime and protect

short requests from interference. This mechanism incurs minimal overhead, as

notifications occur only for long requests, and short requests run to completion

and are never interrupted.

By relying on application-level feedback, Synergy avoids hardcoding

application-specific logic into the dispatcher. This separation of concerns allows

applications to implement classification using criteria that are best aligned with

their internal semantics, while preserving a decentralized scheduling architecture.

As a result, Synergy eliminates the need for centralized classification and supports

more complex classification schemes.

facom-ufms

Synergy 43

5.1.3 Timer Core

The timer core in Synergy is responsible for two key tasks: (i) monitoring the wait

queue and (ii) interrupting workers when necessary. Algorithm 5.3 outlines these

tasks.

Algorithm 5.3 Timer Core

1: factor ← QUANTUM FACTOR

2: check wait queue ← false
3: last state ← false
4: loop
5: state ← Qwait.is congested(THRESH WQD)
6: if state ̸= last state then
7: if state is true then
8: factor ← CONGESTED QUANTUM FACTOR

9: else
10: factor ← QUANTUM FACTOR

11: check wait queue ← state

12: last state ← state

13: for each w in workers do
14: if timerw expired then
15: if QRX

w is not empty then
16: interrupt w to process new request
17: else
18: renew timerw deadline

5.1.3.1 Wait Queue Monitoring

The timer core periodically checks the wait queue to ensure the timely processing of

preempted requests. Instead of tracking per-request timestamps, which would add

overhead to workers, Synergy adopts a lightweight strategy inspired by Shenango’s

congestion control [50]. At each interval, defined by the user-configurable parameter

THRESH WQD, the timer core compares the wait queue’s current consumer index with

the producer index recorded during the previous check. If the consumer index

has not advanced, this indicates that some requests have been waiting for at least

THRESH WQD microseconds.

facom-ufms

Synergy 44

When this condition is met, the timer core sets the check wait queue flag

to true, prompting workers to prioritize the wait queue over local queues and

work stealing, and ensuring that preempted requests are eventually resumed. The

THRESH WQD parameter must be carefully tuned to the workload. If it is set too

low, the wait queue will consistently be marked as congested, causing workers to

check it before their local queues. This behavior can reduce overall system efficiency.

Conversely, if THRESH WQD is set to the special value 0, requests in the wait queue are

processed in a best-effort manner, since the wait queue is never considered congested.

The timer core also applies the operator-defined parameter

CONGESTED QUANTUM FACTOR to increase the quantum when the wait queue is

congested, allowing long requests to run longer and helping them complete more

quickly.

This design guarantees progress for all preempted requests while giving operators

control over the trade-off between responsiveness for short requests and throughput

for long ones. For example, if long requests violate their SLOs under heavy

load, increasing CONGESTED QUANTUM FACTOR helps them complete sooner without

sacrificing short-request performance under lighter load. As a result, Synergy

adapts to dynamic workloads while maintaining low latency and high efficiency.

5.1.3.2 Worker Interrupt

The timer core in Synergy coordinates worker preemptions to mitigate HOL

blocking while avoiding unnecessary interrupts. Rather than preempting blindly

when a fixed quantum expires, Synergy takes the worker’s local state into account.

If no new requests are pending in the worker’s queue, the current request continues

running, avoiding wasteful context switches. Furthermore, we choose no preempt

to process requests waiting in wait queue because the priority between requests is

same, and the current request can finish faster. This selective, job-aware strategy

improves efficiency over prior systems that rely solely on quantum timers [33,36,45].

facom-ufms

Synergy 45

Unlike hardware timer-based approaches [35, 69], which eliminate the need for

a dedicated core but impose higher user-space overhead and reduced flexibility,

Synergy’s software-managed preemption offers finer control at lower cost. The

timer core supports a wide range of interrupt delivery mechanisms, including

signals [9, 63], Inter-Processor Interrupts (IPIs) [6, 36], user-level solutions like

Intel’s User Interrupts (UINTR) [35, 42, 64], and cooperative yielding via compiler

instrumentation [33,45]. This flexibility allows Synergy to operate efficiently across

diverse runtime environments and hardware platforms, making it well-suited for

latency-sensitive applications.

5.2 Implementation

We implement Synergy as a user-space library linked directly with the application.

Since each Synergy instance serves a single application, workers and the timer

core run as threads within the same process, which simplifies variable sharing

and coordination. While the current design targets single-application deployments,

Synergy can be extended to support multiple applications by running the timer

core in a separate process and using inter-process shared memory. The current

implementation consists of 1,688 lines of C code, along with minimal assembly for

green-thread context switching and interrupt handling. The optional kernel modules

kmod ipi and kmod uintr (§6.3.3) contain 186 and 209 lines of C code, respectively.

5.2.1 Data Plane

Synergy uses DPDK [31] (v23.11) to bypass the kernel and access the NIC directly.

Each worker owns a dedicated RX/TX queue pair and continuously polls its RX

queue. Upon dequeuing a batch, the first request is processed immediately, while

the remainder are placed into a per-worker software queue implemented as a lockless

DPDK ring to support efficient work stealing without synchronization overhead.

facom-ufms

Synergy 46

Idle workers first try to resume long requests from the wait queue, implemented

as a lockless multi-producer, multi-consumer ring. Despite being shared among all

workers, this queue scales well due to three reasons: (i) it is lock-free; (ii) enqueue

operations only occur during preemption events, which Synergy minimizes; and

(iii) dequeue operations are limited to idle workers when the wait queue is not

congested. If no tasks are found locally or in the wait queue, idle workers attempt

work stealing, as discussed in Section 5.1.1.1.

5.2.2 Green Threads

Synergy implements green threads (i.e., light-weight, user-level threads) from

scratch using a custom data structure that stores the callee-saved (per the System

V AMD64 ABI [66]), instruction pointer (RIP), and stack pointer (RSP) registers.

This minimal context enables switching between green threads by copying only

64 bytes—i.e., one cache line—making it more efficient than general-purpose

alternatives.

Unlike prior systems that spawn one green thread for each new request [33,

36, 50, 56], Synergy reuses green threads for processing different requests, which

reduces allocation and context-switch overhead. A new green thread is created only

when the current one is preempted. Synergy further minimizes overhead when

resuming a green thread from the wait queue: instead of returning to the main thread

context, it switches directly to the resumed green thread. The preempted green

thread is placed in a per-worker list for deferred deallocation. This design avoids

unnecessary context switches, enables batch deallocation, and defers cleanup to

opportune moments—such as when returning to the main thread due to an interrupt.

Green threads are allocated using DPDKmempools with per-worker caches to reduce

locking in (de)allocation operations.

Similar to prior work [33, 36, 50], Synergy disables preemption while the

facom-ufms

Synergy 47

application executes a critical section. Since Synergy only preempts long requests

by design, this restriction applies exclusively to them. Critical sections include code

protected by locks and functions that rely on thread-local storage (TLS) [22].

To handle locks, Synergy uses a shim layer that intercepts functions like

pthread mutex (un)lock and forces the green thread to yield if it fails to acquire

a lock and is not already holding one. If a thread holds a lock and fails to

acquire a second, it will yield after exiting the critical section if the timer core

requests preemption during the non-preemptible period. As Synergy targets

low-latency applications, these critical sections are typically short, and nested

locking is discouraged in scalable multicore designs.

For TLS, which is used internally by functions like malloc to avoid locking,

Synergy disables preemption while such functions execute since green-thread-level

preemption could lead to inconsistencies due to shared system-thread TLS contexts.

Copying and restoring TLS state per green thread is impractical, as there are

often more green threads than system threads, making concurrent reuse unsafe.

Consequently, Synergy prevents green-thread preemption during TLS-dependent

operations and disallows application-level TLS use in its current implementation.

Future work may extend Synergy with green-thread-aware global variables to

support TLS-like behavior safely.

5.2.3 Preemption Mechanisms

Synergy supports multiple preemption mechanisms to interrupt long requests and

mitigate HOL blocking, including Compiler Interrupts (CI) and several IPI-based

methods.

Compiler Interrupts (CI). CI relies on compiler-inserted yield points, allowing

voluntary preemption without interrupting execution at arbitrary points. This

approach avoids saving the full processor state and has been shown to outperform

facom-ufms

Synergy 48

asynchronous methods [33,45]. Synergy adopts a CI design similar to Concord [33],

where the timer core sets a flag that workers periodically check. Because CI avoids

interrupt delivery altogether, it incurs lower overhead—unless yield points fall inside

tight loops, where it can add up to 20% overhead [45].

IPI-based Methods. For applications where CI is unsuitable, Synergy supports

the following IPI mechanisms:

• signal: The default POSIX IPI mechanism suffers from high overhead due to

system call transitions and general-purpose kernel routines (e.g., TID-to-CPU

mapping).

• kmod ipi: A custom kernel module that we developed to reduce signal

overhead. It supports direct CPU ID targeting and bypasses kernel features

unrelated to Synergy. In the receiver, it saves RIP and transitions to a

user-level handler to handle interrupts much faster.

• uintr (User-level Interrupts): A hardware feature on Intel Sapphire Rapids

CPUs that allows IPIs to be sent and handled entirely in user space. Since it

is not yet supported in mainline Linux, we implemented a kernel module to

enable the uintr functionality on the processor.

Sender

Interrupt handler

Receiver main flow

time

receive return

propagation

send
st2

rt0 rt1 rt2 rt3

st0 st1

Figure 5.3: Interrupt delivery path stages measured in Table 5.1.

Table 5.1 presents microbenchmark results on an Intel Xeon Gold 6438Y+ system

running Linux 5.15.0. The evaluation measures latency across the four phases

facom-ufms

Synergy 49

Table 5.1: Overhead (ns) for interrupt methods, showing 50th and 99.9th
percentiles over 500k runs.

Method
send propagation receive return

p50 p99.9 p50 p99.9 p50 p99.9 p50 p99.9

signal 746 929 2216 2533 1434 3185 641 677

kmod ipi 490 549 1225 1659 728 2516 100 138

uintr 171 236 671 1354 464 1534 45 105

illustrated in Figure 5.3: send (st1 − st0), propagation (st2 − st0), receive

(rt1 − rt0), and return (rt3 − rt2). Each method was tested over 500k runs with

Turbo Boost and frequency scaling disabled. uintr achieves the lowest overhead

among IPI-based methods because it avoids the kernel overhead.

facom-ufms

Chapter 6

Evaluation

This chapter presents a comparative evaluation of Synergy against prior systems

using both synthetic and real-world workloads. Our analysis focuses on key

performance metrics, including tail latency, slowdown, and throughput across diverse

load conditions and system configurations. To gain more in-depth insight into

Synergy’s design, we conduct an ablation study that isolates the impact of its main

components. Additionally, we evaluate the Synergy’s sensitivity to configuration

parameters, the effectiveness of different interrupt mechanisms, and its robustness

in the presence of load imbalance.

6.1 Methodology and Setup

This section describes our traffic generator, workloads, and testbed configuration

for evaluating Synergy against state-of-the-art systems [20,33,36,45].

We evaluate performance using synthetic and real workloads. Table 6.1

summarizes the four workloads used in our experiments. The High, Extreme, and

ZippyDB workloads are synthetic and use a configurable application that consumes

CPU cycles proportional to each request’s target service time. These workloads

exhibit high service time variability and are widely used in prior work [33, 36, 45].

50

Evaluation 51

Table 6.1: Evaluated workloads.

Workload Request Type(s) Service time(s) (µs) Ratio(s) (%)

High Short, Long 1, 100 50, 50

Extreme Short, Long 0.5, 500 99.5, 0.5

ZippyDB Short1, Short2, Long 0.5, 2.5, 500 78, 19, 3

LevelDB GET, SCAN 0.92, 94 50, 50

We also include a real-world workload based on LevelDB [41], a key-value store

that performs real GET and SCAN operations. The service times in Table 6.1 reflect

averages from experiments with one million requests of each type.

Traffic is generated using an open-loop load generator built on DPDK [31]

(v23.11), which bypasses the OS networking stack to minimize NIC and protocol

overhead. The client sends 128-byte UDP requests over 512 independent flows.

Request inter-arrival times follow an exponential distribution with meanN , whereN

corresponds to the mean time interval for a given request rate in Requests Per Second

(RPS). This traffic pattern is commonly observed in datacenter workloads [12].

The client runs on three dedicated CPU cores: one for transmision (TX), and two

for reception (RX). The first RX core polls the NIC and forwards replies to the

second RX core, which records latencies. This separation minimizes interference

and improves measurement accuracy.

Each experiment runs for 60 seconds, with the first 10% of responses discarded

as warm-up. We report averages across 10 independent runs with 95% confidence

intervals. We show individual-run results when relevant. Any run with more than

0.1% loss is discarded.

Our primary performance metric is the 99.9th percentile tail latency, critical

for latency-sensitive services. Since long requests often dominate tail latency in

high-variance workloads and to capture queuing effects independent of service time,

we also report the 99.9th percentile of slowdown, defined as total request latency

divided by its service time. This metric, often dominated by short requests, enables

facom-ufms

Evaluation 52

consistent SLO comparisons across workloads and is widely used in related work [20,

33,36].

6.1.1 Setup

Unless otherwise stated, experiments are conducted on two CloudLab [23] c6420

nodes connected via a 10 Gbps link. Each node features an Intel Xeon Gold 6142

CPU (16 cores @2.60 GHz), 376 GB RAM, and an Intel X710 10GbE NIC. Turbo

Boost is disabled, and all cores are isolated from the Linux scheduler using the

isolcpus parameter. DPDK is configured with 8,192 2MB hugepages, and threads are

pinned to specific cores using EAL core masks and taskset to ensure NUMA locality

and avoid contention. The average round-trip time (RTT) is 10 µs. All latency

measurements are collected at the client side to avoid clock synchronization issues.

We run Ubuntu 18.04 with Linux kernel 4.4.185 to ensure a fair comparison between

Shinjuku and Synergy, as this is the latest version compatible with Dune [6], a

dependency of Shinjuku.

6.2 Synergy vs. Preemptive Systems

We begin by comparing Synergy with leading preemptive systems: Shinjuku [36],

Concord [33], and Tiny Quanta (TQ) [45], all of which use interrupt-based techniques

to mitigate HOL blocking. Shinjuku uses hardware virtualization to reduce IPI

overhead, while Concord and Tiny Quanta rely on Compiler Interrupts (CI). To

ensure a fair comparison, we use CI in all systems where applicable and modify

Shinjuku to use Concord’s CI mechanism, referring to it as Shinjuku-CI.

Concord, Shinjuku, and Shinjuku-CI all use a fixed 5 µs quantum, as in the

original Shinjuku paper. Reducing this value hurts performance, as shown in prior

work [33]. Tiny Quanta uses a 2 µs quantum, which its authors report as optimal.

In contrast, Synergy uses a dynamic quantum with parameter QUANTUM FACTOR=2

facom-ufms

Evaluation 53

and THRESH WQD=0, a reserved value that instructs Synergy to ignore congestion

in the wait queue and prioritize short requests while processing long ones from the

wait queue in a best-effort manner. Finally, all systems use 14 dedicated CPU cores

for the workers.

6.2.1 Synthetic Workload

6.2.1.1 High

0
20
40
60
80

100

Sl
ow

do
wn

 (x
)

SLO

Concord
Shinjuku

Shinjuku-CI
Tiny Quanta

Synergy

0 50 100 150 200 250
Offered Load (kRPS)

0
200
400
600
800

1000

La
te

nc
y

(
s)

Figure 6.1: 99.9th percentile of both slowdown (top) and latency (bottom) in the
High workload. At 239 kRPS, which represents 86% of load, Synergy reduces
slowdown by 2.9×, 1.5×, and 1.2× compared to Concord, Tiny Quanta, and
Shinjuku-CI, respectively, while maintaining 20% more throughput that Shinjuku
to 50× slowdown SLO.

Figure 6.1 shows 99.9th percentile slowdown (top) and tail latency (bottom)

for the High workload, respectively. Shinjuku suffers from high interrupt overhead,

which limits its throughput. Replacing its IPI mechanism with CI (Shinjuku-CI)

improves throughput by 11%, from 211 kRPS to 239 kRPS. Concord and Tiny

Quanta achieve similar throughput of 239 kRPS before violating the SLO (in this

case, a slowdown of at most 50), but Tiny Quanta has a smaller slowdown due

facom-ufms

Evaluation 54

to its smaller quantum, while Concord offers better tail latency because its larger

quantum favors long requests.

Synergy outperforms all systems, achieving 20% higher throughput than

Shinjuku (211 vs. 266 kRPS) and 9% more than Shinjuku-CI, Concord, and

Tiny Quanta (239 vs. 266 kRPS), for the target SLO. At 239 kRPS, which

represents 86% of CPU load, Synergy reduces slowdown by 2.9×, 1.5×, and 1.2×

(Synergy=14.42, Concord=42.55, TQ=23.12, Shinjuku-CI=18.02) compared to

Concord, Tiny Quanta, and Shinjuku-CI, respectively.

At 211 kRPS (76% of CPU load), which corresponds to the request rate where all

the systems still meet the SLO, Synergy reduces the tail latency (282 µs) by 3×,

1.38×, and 1.17× compared to Shinjuku=849 µs, TQ=390 µs, and Concord=330

µs, respectively, while remaining competitive with Shinjuku-CI=262 µs.

6.2.1.2 Extreme

Figure 6.2 shows the results for the Extreme workload. This workload has the

highest dispersion among those in Table 6.1, and its extremely high proportion of

short requests stresses the systems with a higher request rate.

Shinjuku performs worst due to dispatcher contention and constant interrupt

overhead. Concord and Tiny Quanta scale better than Shinjuku by using

the Join-Bounded Shortest Queue (JBSQ) and Join-the-Shortest-Queue (JSQ)

load-balancing policies, respectively, which reduce contention at the dispatcher.

Synergy achives the best performance by combining the scalability of

distributed queues with efficient load balancing and low-overhead optimizations.

It achieves the highest throughput (3.79 MRPS) and lowest latency, delivering 37%,

31%, and 24% more throughput than Shinjuku (2.37 MRPS), Shinjuku-CI (2.61

MRPS), and Concord (2.84 MRPS), respectively, before each system violates the

slowdown SLO. Compared to Tiny Quanta (48.62), Synergy reduces slowdown

(35.77) by 1.35× before the system drops requests at 3.79 MRPS, which corresponds

facom-ufms

Evaluation 55

0
20
40
60
80

100

Sl
ow

do
wn

 (x
)

SLO

Concord
Shinjuku

Shinjuku-CI
Tiny Quanta

Synergy

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Offered Load (MRPS)

0
500

1000
1500
2000

La
te

nc
y

(
s)

Figure 6.2: 99.9th percentile slowdown (top) and latency (bottom) for the Extreme
workload. Synergy delivers up to 37% more throughput before SLO violation.

to 81% of CPU load. In terms of latency, Synergy outperforms all systems up to

3.56 MRPS (78% load). Because Synergy handles long requests on a best-effort

basis, it consistently prioritizes short ones. Under heavier load, operators can further

reduce latency by adjusting input parameters as needed.

6.2.1.3 ZippyDB

Figure 6.3 shows the results for the ZippyDB workload, which reflects the request

distribution observed in production environments [12]. This workload balances

the previously evaluated High and Extreme workloads, featuring a 1,000× (like

Extreme) dispersion and a higher proportion of long requests. As a result, it stresses

both system throughput and interrupt mechanisms.

Consistent with the previous experiments, Shinjuku delivers the lowest

throughput, followed by Shinjuku-CI, Concord, and Tiny Quanta. Synergy

achieves 843 kRPS, which is 36%, 25%, 20%, and 14% higher than Shinjuku (538

kRPS), Shinjuku-CI (628 kRPS), Concord (673 kRPS), and Tiny Quanta (717

kRPS), respectively, before violating the SLO.

facom-ufms

Evaluation 56

0
20
40
60
80

100

Sl
ow

do
wn

 (x
)

SLO

Concord
Shinjuku

Shinjuku-CI
Tiny Quanta

Synergy

0 100 200 300 400 500 600 700 800
Offered Load (kRPS)

0
500

1000
1500
2000

La
te

nc
y

(
s)

Figure 6.3: 99.9th percentile slowdown (top) and latency (bottom) for the ZippyDB
workload. Synergy delivers up to 36% more throughput before SLO violation.

At 717 kRPS, 81% of CPU load, Synergy reduces slowdown by 1.47× compared

to Tiny Quanta, from 42.7 to 29.97, and lowers tail latency by 1.54× compared

to Concord, from 1,616 µs to 1,044 µs. Even when processing long requests in a

best-effort manner, Synergy consistently achieves lower tail latency across all load

levels.

6.2.2 Real Application - LevelDB

This section compares Synergy with Shinjuku-CI and Concord using a real

application. All systems run the same LevelDB version (v1.23), compiled with

Concord’s LLVM compiler pass [39] to ensure identical instruction streams and

eliminate variance from instrumentation or compiler differences. The database runs

on a RAM-backed file system (i.e., tmpfs) to eliminate disk I/O overhead and is

preloaded with 1,000 unique entries. SCAN requests iterate over all entries, while

GET requests target randomly selected keys.

Figure 6.4 shows the results. Since the workload resembles High, Synergy

facom-ufms

Evaluation 57

0
20
40
60
80

100

Sl
ow

do
wn

 (x
)

SLO

Concord Shinjuku-CI Synergy

0 50 100 150 200 250
Offered Load (kRPS)

0
200
400
600
800

1000

La
te

nc
y

(
s)

Figure 6.4: 99.9th percentile slowdown (top) and latency (bottom) for LevelDB
with 1,000 entries under 50% GET and 50% SCAN workload.

behaves similarly to Figure 6.1. However, unlike the synthetic workload, LevelDB

introduces lock contention in GET and SCAN operations. Synergy mitigates this

contention by making long requests yield when failing to acquire a lock outside

critical sections, allowing other requests to progress. In contrast, Concord and

Shinjuku-CI block until the lock is acquired. Synergy achieves a throughput of

284 kRPS, which is 26% and 21% more throughput than Shinjuku-CI (209 kRPS)

and Concord (224 kRPS), respectively, before violating the slowdown SLO. At 224

kRPS, 76% load, Synergy reduces slowdown by 2.92×, from 48.09 to 16.44 and

tail latency by 1.56×, from 841 µs to 539 µs compared to Concord.

6.3 Ablation Study

This section presents a detailed analysis of Synergy. We begin by isolating

the impact of each component on performance (§6.3.1), then examine how input

parameters influence its ability to balance short and long requests (§6.3.2). We

also evaluate the supported interrupt mechanisms (§6.3.3) and stress the system

facom-ufms

Evaluation 58

under severe load imbalance (§6.3.4). Finally, we also compare Synergy to

Perséphone [20], a non-preemptive system that reserves cores for processing short

requests exclusively.

6.3.1 Synergy Components Breakdown

0
20
40
60
80

100

Sl
ow

do
wn

 (x
)

SLO

rss-ci
rss-ci+ws

rss-ci+ws+wq
rss-ci+ws+wq+cp

rss-ci+ws+wq+cp+qa

0 100 200 300 400 500 600 700 800
Offered Load (kRPS)

0
500

1000
1500
2000

La
te

nc
y

(
s)

0
20
40
60
80
100

In
te

rru
pt

s s
av

ed
 (%

)cp - interrupts saved

0
20
40
60
80
100

In
te

rru
pt

s s
av

ed
 (%

)cp - interrupts saved

Figure 6.5: Performance improvement breakdown by individual Synergy
components. The upper graph shows the 99.9th percentile of slowdown (left y-axis)
and the percentage of avoided interruptions (right y-axis). The lower graph shows
the 99.9th percentile of latency.

Figure 6.5 shows the individual contribution of each Synergy component using

the ZippyDB workload. The first evaluated configuration, rss-ci, depends solely on

multi-queue and interrupt-based processing. It uses the CI technique with a 5 µs

quantum, where preempted requests are placed at the end of the worker’s queue.

This setup serves as the baseline, with additional components incrementally enabled.

As expected, rss-ci delivers the worst performance, with slowdown and latency of

46.14 and 1075 µs, respectively, at 10% of system capacity with 89,739 RPS, since it

lacks any mechanism to balance requests across queues. To address this limitation,

the second configuration, rss-ci+ws, incorporates work-stealing to balance the load

facom-ufms

Evaluation 59

among the queues.

Although work-stealing improves the system’s processing capacity, sustain

throughput of 538 kRPS before SLO violation, it falls short under workloads with

high variability for two main reasons: (i) it cannot balance the load with sufficient

granularity since equalizing the number of requests per queue alone is not enough,

and (ii) it lacks visibility into which request should be processed next, causing

many short requests to wait behind long ones for at least one quantum. The

following configuration, rss-ci+ws+wq, introduces the wait queue to address these

limitations. The wait queue enables more efficient distribution of long requests across

idle workers and prioritizes processing newly arrived requests.

Since the wait queue prioritizes the processing of newly arrived requests, the

slowdown drops significantly, sustaining throughput of 762 kRPS, which represents

86% of system capacity, before the system starts dropping requests. The top graph of

Figure 6.5 highlights the queue’s effectiveness in mitigating HOL blocking. However,

the wait queue also increases tail latency, especially after 61% of system capacity

with 538 kRPS, as shown in the bottom graph, as long requests dominate the

tail latency. It reflects a trade-off between mitigating HOL blocking and handling

long requests. Note that it is only necessary to preempt the processing of a long

request when that request is likely causing HOL blocking, motivating the following

configuration, rss-ci+ws+wq+cp, which introduces conditional preemption.

Unlike prior preemptive systems that interrupt requests based on fixed timers,

Synergy only preempts a long request after it has executed for at least one quantum

and when the worker’s queue contains newly arrived requests, an indication of

potential HOL blocking (§5.1.3). The right axis of the top graph of Figure 6.5

shows the percentage of preemptions avoided compared to the configuration without

conditional preemption. As expected, the higher offered load increases the need for

preemptions to mitigate HOL blocking. Synergy avoids over 90% of preemptions,

which increases system throughput to 95% of system capacity with 843 kRPS and

facom-ufms

Evaluation 60

significantly improves tail latency, even under high utilization. As the results

show, conditional preemption is the key optimization that enables Synergy to

consistently achieve the best tail latency compared to the preemptive systems

evaluated in §6.2.

Finally, a fixed quantum may not provide optimal performance for short

requests. For example, a 5 µs quantum can cause up to a 10× slowdown for

requests with a service time of 0.5 µs. To address this limitation, we evaluate the

final configuration, rss-ci+ws+wq+cp+qa, which introduces automatic quantum

adjustment. In addition to using application-level feedback to minimize timer

management overhead, we use this feedback to compute the quantum based on

the workload characteristics (§5.1.1). In this experiment, the automatic quantum

computation reduces the slowdown compared to the fixed quantum configuration

without impacting latency, reducing the slowdown from 40.23 to 30.54 with 95% of

system utilization.

6.3.2 Dynamic Request Priority

This section evaluates Synergy under different configurations to prioritize short

or long requests using the Extreme workload. Figure 6.6 shows results with

QUANTUM FACTOR=2 fixed, while THRESH WQD and CONGESTED QUANTUM FACTOR are

varied. For example, the configuration (d15-f20) sets the THRESH WQD=15 µs

and the CONGESTED QUANTUM FACTOR=20. In particular, configuration

(d0-f0) indicates that the wait queue is never considered congested, and the

CONGESTED QUANTUM FACTOR is never used. As a result, requests in the

wait queue are processed in a best-effort manner, giving maximum priority to short

requests. We use this configuration as the baseline in the subsequent evaluations.

The (d15-f20) configuration is the most tolerant to queueing delay before

considering the wait queue congested. As a result, the dynamic priority

facom-ufms

Evaluation 61

0
20
40
60
80

100

Sl
ow

do
wn

 (x
) SLO

Perséphone
S (d15-f20)

S (d10-f10)
S (d10-f5)

S (d0-f0)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Offered Load (MRPS)

0
500

1000
1500
2000

La
te

nc
y

(
s)

Figure 6.6: Synergy knobs for adjusting request processing priorities under the
Extreme workload. Top: 99.9th percentile slowdown. Bottom: 99.9th percentile
latency. By relaxing the slowdown SLO to 80×, configuration (d10-f10) improves
tail latency by 336 µs compared to (d0-f0) at 78% of the offered load (3.65 MRPS).
Furthermore, Synergy maintains 43% more throughput than Perséphone before
violating the 50× slowdown SLO.

adjustment mechanism is triggered only under a higher offered load than the other

configurations. Regarding the second parameter, a higher factor allows long requests

to execute without interruption for more time, such as in configurations (d10-f5) and

(d10-f10). Consequently, the resulting behavior negatively impacts slowdown, which

is dominated by short requests, but improves latency, which long ones dominate.

For example, suppose the SLO can tolerate a slowdown of up to 60×. In that case,

the operator may choose the configuration (d10-f5), which increases slowdown by

23.9, from 32.88 to 56.8, but reduces latency by 530 µs, from 1,721 µs to 1,191 µs,

compared to the baseline at 3.65 MRPS, 78% of system capacity. Similarly, if

the SLO can be relaxed to 80×, configuration (d10-f10) becomes a viable option,

increasing slowdown by 32.64, from 32.88 to 72.94, while reducing latency by 670 µs,

from 1,721 µs to 1,051 µs, under the same load conditions.

Compared to Perséphone, Synergy, under the (d0-f0) configuration, achieves

facom-ufms

Evaluation 62

43% higher throughput (3.8 MRPS vs. 2.1 MRPS) before hitting a 50× slowdown.

Perséphone has lower latency due to its run-to-completion model but suffers from

HOL blocking at high load. When using the (d10-f10) configuration, Synergy

incurs at most a 16% higher tail latency (904 µs vs. 765 µs) than Perséphone while

still sustaining 35% more throughput (3.75 MRPS vs. 2.37 MRPS) before both

systems reach the 80× slowdown.

6.3.3 Interrupt Methods

0
20
40
60
80

100

Sl
ow

do
wn

 (x
)

SLO

Perséphone
S-Signal

S-IPI
S-UINTR

S-CI

0 50 100 150 200 250
Offered Load (kRPS)

0
200
400
600
800

1000

La
te

nc
y

(
s)

Figure 6.7: Synergy performance for the High workload using different interrupt
methods. Top: 99.9th percentile slowdown. Bottom: 99.9th percentile latency.

This section evaluates Synergy using the different interrupt mechanisms

presented in §5.2.3. To assess the user-level interrupt (UINTR) technology in

Synergy, we conducted the experiments in this section on a server equipped with

an Intel(R) Xeon(R) Gold 6438Y+ processor, 125 GiB of RAM, Ubuntu 22.04.05

operating system with Linux Kernel 5.15.0, and a Mellanox ConnectX-4 100 Gb/s

NIC. For comparison, we also run Perséphone on the same setup.

Figure 6.7 show the results for the High workload, where Synergy-IPI (S-IPI)

facom-ufms

Evaluation 63

uses the kmod ipi module, S-Signal relies on the standard signal mechanism (i.e.,

tgkill), S-UINTR uses user-level interrupts, and S-CI employs the Compiler

Interrupts technique used in all previous experiments. As expected, S-Signal delivers

the worst performance due to its high interrupt overhead (§5.2.3). However, because

Synergy minimizes the number of preemptions to mitigate HOL blocking (§6.3.1),

S-Signal performs similarly to the other mechanisms under low load. In contrast,

S-IPI, S-UINTR, and S-CI improve throughput by 5%, 10%, and 13%, respectively,

compared to S-Signal before violating the slowdown SLO. We observe the same

pattern for the latency. Compared to Perséphone at 239 kRPS, S-CI and S-UINTR

deliver 7% and 6% higher throughput, respectively, while incurring up to 6% and

23% higher tail latency.

6.3.4 Load Balance

0
20
40
60
80

100

Sl
ow

do
wn

 (x
)

SLO

Flows
8 512

0 50 100 150 200 250
Offered Load (kRPS)

0
20
40
60
80

100

CP
U

(%
)

Figure 6.8: Synergy performance under the High workload with uneven flow
distribution across CPU cores. The upper graph shows the 99.9th percentile of
slowdown. In the bottom graph, each data point represents the average, with the
bars indicating the maximum and minimum, CPU utilization across workers.

Synergy relies on multiple NIC queues to scale, with one queue assigned per

worker. Most NICs use RSS [61] to distribute packets by hashing the five-tuple and

mapping the result through an indirection table. However, RSS can cause significant

facom-ufms

Evaluation 64

imbalance [3], especially under high-dispersion workloads where equalizing request

counts per queue is insufficient (§6.3.1). Synergy addresses this load imbalance

by combining a global wait queue with work stealing, allowing idle workers to

process requests from overloaded peers regardless of their original queue. Figure 6.8

evaluates Synergy under queue imbalance by varying the number of active flows.

With 512 flows, worker queues are evenly loaded (i.e., receive the same number of

flows); with only 8 flows, at least 6 of the 14 queues remain unused, resulting in a 42%

imbalance. Despite this load imbalance caused by RSS, the top graph shows that

Synergy maintains stable performance in both scenarios. The bottom graph shows

CPU utilization. At low load, some workers remain idle under 8-flow configurations,

but as the load increases, underutilized workers engage in work stealing, which

increases their utilization. At 65% load (183 kRPS), the CPU usage gap across

workers drops below 5%.

6.4 Multicore Scaling

We evaluate the scalability of Synergy by varying the number of available worker

cores, aiming to assess how well it maintains performance as parallelism increases.

The evaluation includes multiple worker configurations and compares Synergy

against Perséphone, tested under both its default scheduling policy and a centralized

First-Come, First-Served (cFCFS) baseline. All experiments are conducted on the

same server described in Section 5.2.3, equipped with a 32-core Intel Xeon Gold

6438Y, using the ZippyDB workload. To ensure a fair comparison, we fix the effective

CPU utilization at 50% for all configurations, meaning workers spend 50% of their

time processing requests. The request rate (RPS) is adjusted proportionally to the

number of workers: for example, 256kRPS with 8 workers and 961kRPS with 30

workers.

Figure 6.9 shows results for configurations with 8 to 30 workers. With only

facom-ufms

Evaluation 65

0
20
40
60
80

100
Sl

ow
do

wn
 (x

)
SLO

Perséphone
Synergy-UINTR

Synergy-CI cFCFS

8 10 12 14 16 18 20 22 24 26 28 30
Worker cores

0
200
400
600
800

1000

La
te

nc
y

(
s)

Figure 6.9: Synergy multicore scaling capacity for the ZippyDB workload. Top:
99.9th percentile slowdown. Bottom: 99.9th percentile latency. Perséphone
and cFCFS dropp requests when using more than 22 workers due to dispatcher
contention. In contrast, Synergy scales up to 30 workers, the maximum available
on the server used for the experiment.

8 workers, all systems suffer higher tail latencies due to longer queues, especially

during traffic bursts. The effect is strongest in Perséphone, which reserves some

cores for short requests, leaving fewer workers for long requests, the main drivers of

tail latency.

In the 8-worker setup, Synergy-CI achieves competitive slowdown (13× vs.

16× for Perséphone) while reducing tail latency by 1.38× (598 µs vs. 826 µs).

Synergy-CI also outperforms cFCFS in terms of tail latency (598 µs vs. 605 µs),

while cFCFS suffers from an extreme slowdown of 596×, omitted from Figure 6.9

for being out of range.

As the number of workers increases, Synergy scales more effectively than the

alternatives. It maintains stable performance up to 30 workers—the maximum

supported by the server—while both Perséphone and cFCFS exceed the tolerated

0.1% packet loss threshold beyond 22 workers, exposing their scalability limitations.

facom-ufms

Chapter 7

Discussion

This chapter discusses the advantages of application-driven feedback in Synergy

and how it can be effectively implemented across various workloads.

7.1 Delegating Classification to the Application

Request classification is inherently application-specific. For example, Minos [21]

uses payload size as a proxy for service time. Key-value stores like Redis [57],

RocksDB [60], and LevelDB [41] can distinguish request types based on operations

(e.g., GET vs. SCAN). In contrast, systems like Apache Lucene [44] may only estimate

request cost after partial processing, since ranking popular terms is significantly

more expensive [18].

Prior systems [20,36] rely on external classification based on protocol knowledge.

This design introduces three key drawbacks: (i) redundancy, as classification still

occurs internally within the application; (ii) limited scalability, as classification is

centralized and serial; (iii) reduced accuracy, as external logic cannot account for

runtime state or encrypted content. Preemptive schedulers [33,36,45], on the other

hand, rely on fixed-time quanta to implicitly classify requests: any request exceeding

the quantum is implicitly treated as long. While this approach enables simple

66

Discussion 67

prioritization, it suffers from unnecessary preemptions and cannot avoid delaying

short requests when a large quantum is used.

In contrast, proactive, application-level classification offers two main

advantages: (i) it reduces timer management overhead by enabling preemption only

when needed; and (ii) it enables job-aware preemption, where only long-running

requests are interrupted, preserving the responsiveness of short ones. Synergy uses

lightweight feedback from the application to enable this proactive classification. This

inline mechanism avoids protocol-specific logic, supports parallelism across worker

threads, and generalizes across applications.

7.2 Timeliness and Practical Implementation

Feedback is only useful if delivered early enough to affect scheduling decisions. The

sooner a request is identified as long, the more effectively the system can mitigate

HOL blocking. In many systems, early classification is feasible. For example: (i) in

key-value stores, request types are known immediately after parsing; (ii) in pipelined

systems like Redis [58], feedback can reflect the number of pipelined operations; (iii)

in search engines [18], lightweight cost estimation (e.g., based on query popularity)

can be used.

In modular applications, tools like LDB [18] and CoverUP [54] can help automate

feedback insertion. LDB identifies latency-critical functions, while CoverUP uses

LLMs to improve test coverage. These tools could be extended to detect expensive

operations and automatically instrument them with feedback logic. While this is a

promising research direction, we leave this automation for future work.

facom-ufms

Discussion 68

7.3 Benefits of Application Feedback

Application-level feedback provides fine-grained, low-latency control over scheduling

decisions. Below, we summarize the key benefits:

Low Overhead. Feedback incurs minimal overhead for two reasons: (i)

classification is already performed by the application, so the feedback simply

communicates the result; and (ii) only long requests require feedback, which are

typically a small fraction of total requests. Even when a timer is activated, Synergy

’s timer implementation is lightweight (< 40 ns in our tests). Without feedback,

timers would need to be configured for every request, increasing overhead.

Scheduler Generalization. Delegating classification to the application decouples

the scheduler from protocol-specific logic or communication patterns. This design

improves maintainability, eliminates the need for per-application tuning, and enables

reuse across diverse workloads.

Job-Aware Preemption. By default, the scheduler assumes all requests are

short unless told otherwise. This lets short requests run to completion without

preemption. Consequently, small quanta can be used to improve responsiveness

without hurting short-request latency.

Dynamic Quantum Sizing. Feedback allows the quantum to adapt dynamically

to workload characteristics. This removes the need for manual tuning and enables

real-time responsiveness to changing conditions.

Resilience to Workload Variability. Application feedback provides timely

signals that help the scheduler adapt to workload changes, such as bursts or shifts

in request mix, improving robustness under diverse and unpredictable conditions.

facom-ufms

Discussion 69

7.4 Dealing with Multiple Request Types

Priority queues are a well-established technique for handling multiple request

types, as used in systems like Perséphone [20] and Shinjuku [36]. Extending

Synergy to support multiple queues with explicit priorities is straightforward and

orthogonal to our core contributions. Our focus is on showing that even without

centralized queues, decentralized scheduling with lightweight feedback can achieve

high performance and low tail latency.

facom-ufms

Chapter 8

Conclusion

This work explores the design space of systems for processing datacenter applications

and introduces novel, previously unexplored optimizations. We consolidate these

ideas into the implementation of a system called Synergy, which achieves both

high scalability and low latency while effectively mitigating Head-of-Line (HOL)

blocking in workloads with significant service time variability.

The main contributions of this work are: (i) a novel technique that enables

direct cooperation between the application and the scheduler, significantly reducing

HOL blocking and associated overhead. (ii) a new strategy to minimize interrupt

frequency, improving throughput while still addressing HOL blocking. (iii)

a comprehensive evaluation of several recent state-of-the-art systems that use

interrupts and core reservation to mitigate HOL blocking. (iv) a system, called

Synergy, that integrates these optimizations into a cohesive design, resulting in a

more scalable architecture than prior solutions without sacrificing latency.

A key innovation introduced in this work is the use of application-level feedback

for request classification. This approach allows the scheduler to adapt across a broad

range of applications without requiring application-specific logic. The feedback

mechanism enables precise scheduling decisions and unlocks several performance

optimizations, such as automatic quantum adjustment and job-aware preemptions.

70

Conclusion 71

Experimental results show that Synergy can process significantly more requests

than prior state-of-the-art systems while consistently meeting strict service-level

objectives (SLOs) for short requests—on the order of a few microseconds. It also

reduces tail latency for long-running requests compared to existing preemptive

scheduling techniques, highlighting its effectiveness across a variety of conditions.

In conclusion, this work shows that tight cooperation between applications and

the scheduler can significantly improve performance in latency-critical environments.

The techniques introduced here pave the way for more adaptive, efficient, and

scalable systems in modern datacenters.

8.1 Future Work

A broader evaluation of the feedback technique across a wider range of real-world

applications could offer deeper insights into its effectiveness under diverse workload

characteristics. While this work demonstrates the benefits of application-driven

feedback using LevelDB [41], many widely adopted systems, such as Redis [57],

RocksDB [60], Apache Lucene [44], and Memcached [47], present distinct execution

patterns and resource profiles that could serve as valuable benchmarks for further

validation.

Another promising avenue involves reducing the manual effort required to

adopt feedback techniques and employ automatic instrumentation. As discussed in

Section 7.2, automating the integration of application feedback into scheduling logic

could broaden the applicability of the approach and lower the barrier to adoption.

Finally, extending Synergy using emerging hardware features to meet the

increasing demands of high-throughput environments. As network interface cards

(NICs) continue to scale in bandwidth, sustaining line-rate performance requires

highly efficient request processing. Hardware-assisted technologies such as Intel’s

Dynamic Load Balancer (DLB) [32], which provides efficient queue management,

facom-ufms

Conclusion 72

could be leveraged to implement Synergy ’s wait queue with lower overhead,

potentially boosting both performance and scalability. Moreover, because Synergy

employs preemptive scheduling, advances in interrupt delivery and handling,

whether through hardware or OS-level enhancements, can directly improve its

responsiveness. These future directions can build upon the codebase developed in

this work to explore enhanced implementations and broader deployment scenarios.

facom-ufms

Bibliography

[1] D. Ardelean, A. Diwan, and C. Erdman. Performance Analysis of Cloud

Applications. In 15th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 18), pages 405–417, 2018.

[2] B. Aydogmus, L. Guo, D. Zuberi, T. Garfinkel, D. Tullsen, A. Ousterhout,

and K. Taram. Extended User Interrupts (xUI): Fast and Flexible Notification

without Polling. In Proceedings of the 30th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems,

Volume 2, pages 373–389, 2025.

[3] T. Barbette, G. P. Katsikas, G. Q. Maguire Jr, and D. Kostić. RSS++

Load and State-aware Receive Side Scaling. In Proceedings of the 15th

international conference on emerging networking experiments and technologies,

pages 318–333, 2019.

[4] The Barrelfish OS. https://barrelfish.org/.

[5] L. A. Barroso, U. Hölzle, and P. Ranganathan. The Datacenter as a Computer:

Designing Warehouse-scale Machines. Springer Nature, 2019.

[6] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and C. Kozyrakis.

Dune: Safe User-level Access to Privileged {CPU} Features. In 10th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 12),

pages 335–348, 2012.

73

https://barrelfish.org/

BIBLIOGRAPHY 74

[7] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and E. Bugnion.

{IX}: A Protected Dataplane Operating System for High Throughput and

Low Latency. In 11th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 14), pages 49–65, 2014.

[8] M. S. Berghetti, F. B. Carvalho, and R. A. Ferreira. AFP: A Feedback-Driven

Microservices Request Scheduler. In Proc. of SBRC 2024, pages 1148–1161,

2024.

[9] S. Boucher, A. Kalia, D. G. Andersen, and M. Kaminsky. Lightweight

Preemptible Functions. In 2020 USENIX Annual Technical Conference

(USENIX ATC 20), pages 465–477, 2020.

[10] Q. Cai et al. Understanding Host Network Stack Overheads. In Proceedings of

the 2021 ACM SIGCOMM 2021 Conference, pages 65–77, 2021.

[11] Q. Cai et al. Towards µs Tail Latency and Terabit Ethernet: Disaggregating the

Host Network Stack. In Proceedings of the ACM SIGCOMM 2022 Conference,

pages 767–779, 2022.

[12] Z. Cao, S. Dong, S. Vemuri, and D. H. Du. Characterizing, Modeling,

and Benchmarking {RocksDB}{Key-Value} Workloads at Facebook. In 18th

USENIX Conference on File and Storage Technologies (FAST 20), pages

209–223, 2020.

[13] F. B. Carvalho and R. A. Ferreira. Scaling Stateful Network Services on

Multicore Architectures. In Proceedings of the IEEE Network Operations and

Management Symposium (NOMS 2025), pages 01–08, 2025.

[14] F. B. Carvalho, R. A. Ferreira, Í. Cunha, M. A. Vieira, and M. K. Ramanathan.

Dyssect: Dynamic Scaling of Stateful Network Functions. In IEEE INFOCOM

facom-ufms

BIBLIOGRAPHY 75

2022-IEEE Conference on Computer Communications, pages 1529–1538. IEEE,

2022.

[15] F. B. Carvalho, R. A. Ferreira, Í. Cunha, M. A. Vieira, and M. K. Ramanathan.

State Disaggregation for Dynamic Scaling of Network Functions. IEEE/ACM

Transactions on Networking, 32(1):81–95, 2023.

[16] Coroutines, 2025. https://en.cppreference.com/w/cpp/language/

coroutines.

[17] S. Chen et al. Parties: Qos-aware Resource Partitioning for Multiple Interactive

Services. In Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems,

pages 107–120, 2019.

[18] I. Cho, S. J. Park, A. Saeed, M. Alizadeh, and A. Belay. {LDB}: An Efficient

Latency Profiling Tool for Multithreaded Applications. In 21st USENIX

Symposium on Networked Systems Design and Implementation (NSDI 24),

pages 1497–1510, 2024.

[19] J. Dean and L. A. Barroso. The Tail at Scale. Communications of the ACM,

56(2):74–80, 2013.

[20] H. M. Demoulin, J. Fried, I. Pedisich, M. Kogias, B. T. Loo, L. T. X. Phan,

and I. Zhang. When Idling is Ideal: Optimizing Tail-latency for Heavy-tailed

Datacenter Workloads with Perséphone. In Proceedings of the ACM SIGOPS

28th Symposium on Operating Systems Principles, pages 621–637, 2021.

[21] D. Didona and W. Zwaenepoel. Size-Aware Sharding for Improving Tail

Latencies in In-Memory Key-Value Stores. In USENIX NSDI’19, 2019.

[22] U. Drepper. Elf Handling for Thread-local Storage. Technical report, Technical

report, Red Hat, Inc., 2003. URL http://people.redhat.com, 2005.

facom-ufms

https://en.cppreference.com/w/cpp/language/coroutines
https://en.cppreference.com/w/cpp/language/coroutines

BIBLIOGRAPHY 76

[23] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller,

M. Hibler, D. Johnson, K. Webb, et al. The Design and Operation of

{CloudLab}. In 2019 USENIX annual technical conference (USENIX ATC

19), pages 1–14, 2019.

[24] L. Foundation. The Linux Kernel, 2024. https://kernel.org/.

[25] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay. Caladan: Mitigating

Interference at Microsecond Timescales. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 20), pages 281–297,

2020.

[26] GNU. GNU Pth - The GNU Portable Threads, 2025. https://www.gnu.org/

software/pth/.

[27] Proposal: Non-cooperative Goroutine Preemption, 2025. https:

//go.googlesource.com/proposal/+/master/design/24543-non-

cooperative-preemption.md.

[28] S. Han et al. PacketShader: A GPU-Accelerated Software Router. ACM

SIGCOMM Computer Communication Review, 40(4):195–206, 2010.

[29] M. E. Haque, Y. H. Eom, Y. He, S. Elnikety, R. Bianchini, and K. S. McKinley.

Few-to-many: Incremental Parallelism for Reducing Tail Latency in Interactive

Services. ACM Sigplan Notices, 50(4):161–175, 2015.

[30] K. Huang, J. Zhou, Z. Zhao, D. Xie, and T. Wang. Low-Latency Transaction

Scheduling via Userspace Interrupts: Why Wait or Yield When You Can

Preempt? Proceedings of the ACM on Management of Data, 3(3):1–25, 2025.

[31] Intel. Data Plane Development Kit, 2024. https://www.dpdk.org/.

[32] Intel Dynamic Load Balancer, 2025. https://www.intel.com/content/www/

us/en/download/686372/intel-dynamic-load-balancer.html.

facom-ufms

https://kernel.org/
https://www.gnu.org/software/pth/
https://www.gnu.org/software/pth/
https://go.googlesource.com/proposal/+/master/design/24543-non-cooperative-preemption.md
https://go.googlesource.com/proposal/+/master/design/24543-non-cooperative-preemption.md
https://go.googlesource.com/proposal/+/master/design/24543-non-cooperative-preemption.md
https://www.dpdk.org/
https://www.intel.com/content/www/us/en/download/686372/intel-dynamic-load-balancer.html
https://www.intel.com/content/www/us/en/download/686372/intel-dynamic-load-balancer.html

BIBLIOGRAPHY 77

[33] R. Iyer, M. Unal, M. Kogias, and G. Candea. Achieving Microsecond-scale Tail

Latency Efficiently with Approximate Optimal Scheduling. In Proceedings of

the 29th Symposium on Operating Systems Principles, pages 466–481, 2023.

[34] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park.

{mTCP}: A Highly Scalable User-level {TCP} Stack for Multicore Systems.

In 11th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 14), pages 489–502, 2014.

[35] Y. Jia, K. Tian, Y. You, Y. Chen, and K. Chen. Skyloft: A General

High-Efficient Scheduling Framework in User Space. In Proceedings of the ACM

SIGOPS 30th Symposium on Operating Systems Principles, pages 265–279,

2024.

[36] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and C. Kozyrakis.

Shinjuku: Preemptive Scheduling for {µsecond-scale} Tail Latency. In 16th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

19), pages 345–360, 2019.

[37] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and A. Krishnamurthy.

High Performance Packet Processing with Flexnic. In Proceedings of

the Twenty-First International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 67–81, 2016.

[38] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krishnamurthy, and

T. Anderson. TAS: TCP Acceleration as an OS Service. In Proceedings of the

Fourteenth EuroSys Conference 2019, pages 1–16, 2019.

[39] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In International symposium on code

generation and optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

facom-ufms

BIBLIOGRAPHY 78

[40] B. H. Leitao. Tuning 10Gb Network Cards on Linux. In Proceedings of the

2009 Linux Symposium, pages 169–185. Citeseer, 2009.

[41] LevelDB. LevelDB, 2024. https://github.com/google/leveldb.

[42] Y. Li, N. Lazarev, D. Koufaty, T. Yin, A. Anderson, Z. Zhang, G. E. Suh,

K. Kaffes, and C. Delimitrou. Libpreemptible: Enabling Fast, Adaptive,

and Hardware-assisted User-space Scheduling. In 2024 IEEE International

Symposium on High-Performance Computer Architecture (HPCA), pages

922–936. IEEE, 2024.

[43] Libibverbs Library. https://www.ibm.com/docs/en/aix/7.2?topic=ofed-

libibverbs-library.

[44] Apache Lucene, 2024. https://lucene.apache.org/.

[45] Z. Luo, S. Son, D. Bali, E. Amaro, A. Ousterhout, S. Ratnasamy, and

S. Shenker. Efficient Microsecond-scale Blind Scheduling with Tiny Quanta. In

Proceedings of the 29th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, Volume 2, pages 305–319,

2024.

[46] S. McClure, A. Ousterhout, S. Shenker, and S. Ratnasamy. Efficient Scheduling

Policies for {Microsecond-Scale} Tasks. In 19th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 22), pages 1–18, 2022.

[47] Memcached. Memcached - A Distributed Memory Object Caching System,

2023. https://memcached.org/.

[48] Microsoft. Fibers, 2025. https://learn.microsoft.com/en-us/windows/

win32/procthread/fibers.

[49] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,

M. Paleczny, D. Peek, P. Saab, et al. Scaling Memcache at Facebook. In 10th

facom-ufms

https://github.com/google/leveldb
https://www.ibm.com/docs/en/aix/7.2?topic=ofed-libibverbs-library
https://www.ibm.com/docs/en/aix/7.2?topic=ofed-libibverbs-library
https://lucene.apache.org/
https://memcached.org/
https://learn.microsoft.com/en-us/windows/win32/procthread/fibers
https://learn.microsoft.com/en-us/windows/win32/procthread/fibers

BIBLIOGRAPHY 79

USENIX Symposium on Networked Systems Design and Implementation (NSDI

13), pages 385–398, 2013.

[50] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan. Shenango:

Achieving High {CPU} Efficiency for Latency-Sensitive Datacenter Workloads.

In 16th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 19), pages 361–378, 2019.

[51] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,

D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, et al. The RAMCloud Storage

System. ACM Transactions on Computer Systems (TOCS), 33(3):1–55, 2015.

[52] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Improving Network

Connection Locality on Multicore Systems. In Proceedings of the 7th ACM

european conference on Computer Systems, pages 337–350, 2012.

[53] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy, T. Anderson,

and T. Roscoe. Arrakis: The Operating System is the Control Plane. ACM

Transactions on Computer Systems (TOCS), 33(4):1–30, 2015.

[54] J. A. Pizzorno and E. D. Berger. CoverUp: Coverage-Guided LLM-Based Test

Generation. arXiv preprint arXiv:2403.16218, 2024.

[55] G. Prekas, M. Kogias, and E. Bugnion. Zygos: Achieving Low Tail Latency for

Microsecond-scale Networked Tasks. In Proceedings of the 26th Symposium on

Operating Systems Principles, pages 325–341, 2017.

[56] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout. Arachne:{Core-Aware}

Thread Management. In 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 18), pages 145–160, 2018.

[57] Redis Ltd. Redis, 2023. https://redis.io/.

facom-ufms

https://redis.io/

BIBLIOGRAPHY 80

[58] Redis Pipelining, 2025. https://redis.io/docs/latest/develop/use/

pipelining/.

[59] L. Rizzo. Netmap: A Novel Framework for Fast Packet I/O. In Proceedings

of the 2012 USENIX Conference on Annual Technical Conference, USENIX

ATC’12, pages 101–112, USA, 2012. USENIX Association.

[60] RocksDB. RocksDB, 2023. http://rocksdb.org/.

[61] RSS. Introduction to Receive Side Scaling, 2023. https://learn.microsoft.

com/en-us/windows-hardware/drivers/network/introduction-to-

receive-side-scaling.

[62] R. Schöne, D. Molka, and M. Werner. Wake-up Latencies for Processor

Idle States on Current x86 Processors. Computer Science-Research and

Development, 30:219–227, 2015.

[63] S. Shiina, S. Iwasaki, K. Taura, and P. Balaji. Lightweight Preemptive

User-level Threads. In Proceedings of the 26th ACM SIGPLAN symposium

on principles and practice of parallel programming, pages 374–388, 2021.

[64] Sohil Mehta. x86 User Interrupts Support, 2023. https://lwn.net/Articles/

869140/.

[65] Overview of Single Root I/O Virtualization (SR-IOV). https://learn.

microsoft.com/en-us/windows-hardware/drivers/network/overview-

of-single-root-i-o-virtualization--sr-iov-/.

[66] System V Application Binary Interface, 2025. https://gitlab.com/x86-

psABIs/x86-64-ABI.

[67] A. Wierman and B. Zwart. Is Tail-Optimal Scheduling Possible? Operations

Research, 2012.

facom-ufms

https://redis.io/docs/latest/develop/use/pipelining/
https://redis.io/docs/latest/develop/use/pipelining/
http://rocksdb.org/
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://lwn.net/Articles/869140/
https://lwn.net/Articles/869140/
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-/
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-/
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-/
https://gitlab.com/x86-psABIs/x86-64-ABI
https://gitlab.com/x86-psABIs/x86-64-ABI

BIBLIOGRAPHY 81

[68] W. Wu et al. The Performance Analysis of Linux Networking–Packet Receiving.

Computer Communications, 30(5):1044–1057, 2007.

[69] Y. Yang, Z. Huang, A. Kaufmann, and J. Li. Protected Data Plane OS Using

Memory Protection Keys and Lightweight Activation, 2023.

[70] I. Zhang, A. Raybuck, P. Patel, K. Olynyk, J. Nelson, O. S. N. Leija,

A. Martinez, J. Liu, A. K. Simpson, S. Jayakar, et al. The Demikernel Datapath

os Architecture for Microsecond-scale Datacenter Systems. In Proceedings of

the ACM SIGOPS 28th Symposium on Operating Systems Principles, pages

195–211, 2021.

[71] Z. Zhang, M. K. Ramanathan, P. Raj, A. Parwal, T. Sherwood, and M. Chabbi.

{CRISP}: Critical Path Analysis of {Large-Scale} Microservice Architectures.

In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages

655–672, 2022.

facom-ufms

Appendix A

Publications

We published the initial performance results of Synergy, based on simulations,

in the Brazilian Symposium on Computer Networks and Distributed Systems

(SBRC) 2024. After implementing Synergy with several new features, such as

different interrupt mechanisms, we submitted its full design, implementation, and

performance evaluation to a top systems conference, as listed below.

• BERGHETTI, M. S.; CARVALHO, F. B.; FERREIRA, R. A. AFP: Um

Escalonador de Requisições de Microsserviços Guiado por Feedback.

In Simpósio Brasileiro de Redes de Computadores e Sistemas Distribúıdos

(SBRC), Niterói, RJ, Brasil, p. 1134-1147, 2024 [8] (In Portuguese).

• BERGHETTI, M. S.; CARVALHO, F. B.; FERREIRA, R. A. Achieving

High Throughput and Low Tail Latency in Microsecond-Scale

Datacenter Applications with Synergy. Submitted for publication.

82

	Introduction
	Main Contributions
	Thesis Organization

	Background
	Kernel and Kernel-Bypass Packet Processing
	Request Distribution
	Load Balance Management
	Task Scheduling Models

	Related Work
	Network Protocol Stack
	System Interference
	Head-of-line Blocking

	Design Space
	Motivation
	Request Dispatching and Load Balancing
	HOL-Blocking Mitigation
	Application Awareness
	Extra Core and Optimizations

	Synergy
	Design
	Implementation

	Evaluation
	Methodology and Setup
	Synergy vs. Preemptive Systems
	Ablation Study
	Multicore Scaling

	Discussion
	Delegating Classification to the Application
	Timeliness and Practical Implementation
	Benefits of Application Feedback
	Dealing with Multiple Request Types

	Conclusion
	Future Work

	Bibliography
	Publications

