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Abstract

Detecting small objects in high-resolution images is a significant challenge

in computer vision, especially in agricultural scenarios, where the size of in-

sects tends to occupy only a few pixels relative to the entire image. Despite the

advances brought by Convolutional Neural Networks (CNNs), the standard use

of these architectures presents limitations, as the information associated with

small objects tends to be lost due to downsampling and pooling operations. In

this context, this thesis proposes strategies to improve the detection and seg-

mentation of small objects. Initially, images are divided into smaller patches,

and each patch is used individually to train and validate the models. For in-

ference and prediction on the test set, the patches are overlapped, ensuring

that in at least one of them, the object remains uncut. To address the issue

of objects that end up being divided among different patches, techniques are

presented to filter out-of-pattern predictions, those with low confidence sco-

res, or with redundant and overlapping regions. To allow these techniques to

also be applied to segmentation approaches, masks were generated from the

original annotations, enabling the evaluation of both detection and segmen-

tation models. Considering the limitations of the traditional Intersection over

Union (IoU) metric for small objects, especially due to its sensitivity to minor

spatial inaccuracies, this thesis also proposes an alternative metric based on

the distance between the centers of the bounding boxes. The experimental

results demonstrate that the proposed approaches contribute to the localiza-

tion of small objects in high-resolution images, showing that both detection

and segmentation techniques can be effective, as long as the data are properly

processed before and after being input into the model.
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Resumo

Detectar objetos pequenos em imagens de alta resolução é um desafio

relevante na visão computacional, especialmente em cenários agrícolas, nos

quais o tamanho dos insetos tende a ocupar poucos pixels em relação à ima-

gem inteira. Apesar dos avanços proporcionados pelas Convolutional Neural
Networks (CNNs), o uso padrão dessas arquiteturas apresenta limitações, pois

as informações associadas a objetos pequenos tendem a se perder devido às

operações de downsampling e pooling. Considerando esse contexto, esta tese

propõe estratégias para aprimorar a detecção e segmentação de objetos pe-

quenos. Inicialmente, as imagens são divididas em recortes menores, e cada

recorte é utilizado individualmente para treinar e validar os modelos. Para a

inferência e predição no conjunto de teste, os recortes são sobrepostos, garan-

tindo que, em pelo menos um deles, o objeto não seja recortado. Assim, para

contornar o problema de objetos que acabam sendo divididos entre diferen-

tes recortes, são apresentadas técnicas para filtrar predições fora do padrão,

com baixa pontuação de confiança ou com regiões redundantes e sobrepos-

tas. Para permitir que as técnicas também fossem aplicadas em abordagens

de segmentação, foram geradas máscaras a partir das anotações originais,

possibilitando a avaliação tanto de modelos detectores quanto segmentado-

res. Considerando as limitações da métrica tradicional de Intersection over
Union (IoU) para objetos pequenos, especialmente devido à sensibilidade a

pequenas imprecisões espaciais, esta tese também propõe uma métrica alter-

nativa baseada na distância entre os centros das caixas delimitadoras. Os

resultados experimentais demonstram que as abordagens propostas contri-

buem para a localização de objetos pequenos em imagens de alta resolução,

mostrando que tanto técnicas de detecção quanto de segmentação podem ser

eficazes, desde que os dados sejam processados adequadamente antes e de-

pois de passarem pelo modelo.
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CAPÍTULO

1
Introdução

Detectar objetos em imagens tem se tornado uma tarefa cada vez mais co-

mum nas áreas de visão computacional [34, 69, 74]. Arquiteturas de redes

neurais profundas têm desempenhado papel central nesse avanço. Inicial-

mente, CNNs obtiveram excelentes resultados na detecção de objetos, devido

à sua grande capacidade de extrair características das imagens [74, 84]. Mais

recentemente, modelos baseados em Transformers têm se destacado em di-

ferentes cenários, introduzindo mecanismos de atenção capazes de capturar

dependências globais e alcançar um bom desempenho em diversas tarefas de

detecção [13, 3].

Embora estas arquiteturas apresentem bons resultados na detecção de

objetos grandes e médios em conjuntos de dados tradicionais [69], a iden-

tificação de objetos pequenos continua sendo um desafio [91]. Arquitetu-

ras amplamente utilizadas, Faster Region-based Convolutional Neural Network
(Faster R-CNN) [60], Single Shot MultiBox Detector (SSD) [39] e You Only Look
Once (YOLO) [57], por exemplo, demonstram dificuldades quando aplicadas à

detecção de alvos de pequenas dimensões.

Entre os fatores que agravam essa dificuldade, destaca-se a variação de es-

cala. Nem sempre um objeto de interesse está em boas condições na imagem,

e problemas como iluminação e oclusão também comprometem a detecção.

Além disso, as características de grandes objetos podem ser extraídas mais

facilmente, em comparação com as de objetos pequenos, uma vez que estas

últimas possuem baixa resolução e são ruidosas [23, 24, 41].

Diversos autores propõem definições específicas para objetos pequenos. A

definição relativa considera pequenos objetos cuja largura e altura correspon-

dem a menos de 10% das dimensões da imagem original [93, 18]. Na definição
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absoluta, objetos pequenos possuem resolução inferior a 32×32 pixels [93, 22].

Com o objetivo de compreender como a detecção de objetos pequenos em

imagens tem sido abordada, é fundamental analisar a literatura recente. Nesse

contexto, a próxima seção apresenta um panorama dos principais trabalhos

correlatos, destacando as estratégias, técnicas e limitações apontadas por di-

ferentes autores.

Além disso, é importante destacar que os Capítulos 2 e 3 desta tese apre-

sentam estudos iniciais que, embora tenham sido conduzidos em contextos

diferentes, contribuíram para o amadurecimento metodológico da pesquisa.

Esses trabalhos permitiram entender as limitações e definir estratégias para a

detecção de objetos pequenos, servindo como etapas importantes que condu-

ziram às propostas apresentadas no Capítulo 4.

1.1 Trabalhos Correlatos

Abordagens de detecção de objetos em imagens com CNNs enfrentam de-

safios recorrentes relacionados à variação de escala [8, 75, 93], interferência

com o fundo da imagem [18, 92, 35] e a perda de informações com operações

de down-sampling e em camadas mais profundas da rede [35, 90]. Tais limi-

tações tornam-se especialmente críticas na identificação de objetos pequenos

em relação ao tamanho da imagem.

Com o desenvolvimento das tecnologias de satélite, bem como de Veículos

Aéreos Não Tripulados (VANTs), a detecção de objetos tem se tornado impor-

tante em imagens aéreas. Imagens obtidas por estas tecnologias possuem

características como amplas áreas de fundo, com uma pequena porção da

imagem representando objetos de interesse [14, 74, 82], o que pode fazer com

que as informações sejam insuficientes para representar os objetos devido aos

seus tamanhos [84, 91].

Além de imagens de sensoriamento remoto [16, 55, 52] e imagens captura-

das por drones [40, 37], as dificuldades mencionadas também são evidentes

em domínios como detecção de defeitos e peças no geral [12, 80, 61], cenas

marítimas [17, 87, 25], detecção de insetos e pragas agrícolas [66, 77], siste-

mas embarcados [48, 9, 96] e detecção de sinais de trânsito [88, 59, 28]. A

diversidade de contextos ressalta a necessidade de soluções robustas e adap-

táveis para mitigar as limitações das CNNs em cenários complexos.

Nesse contexto, diversos trabalhos propõem aprimoramentos estruturais

em arquiteturas baseadas em CNNs [45], modificações no estágio de gera-

ção de propostas de regiões [2], bem como avanços em técnicas de upsam-
pling [49], segmentação de imagens [81], métodos de destilação de conheci-

mento [89], divisão da imagem em pedaços com sobreposição [66] e estratégias
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para reduzir falsos positivos [1, 52].

Alguns estudos de revisão (surveys) apresentam um panorama abrangente

sobre a detecção de objetos pequenos, resumindo avanços, desafios e soluções

recorrentes nessa área. Por exemplo, uma análise [51] de métodos recentes

discute aspectos como definições de objetos pequenos, aprimoramentos ar-

quiteturais em redes convolucionais e transformers, técnicas de fusão de ca-

racterísticas, estratégias de aumento de dados e ajustes específicos para lidar

com objetos de baixa resolução. De forma semelhante, uma outra pesquisa [7]

aborda os desafios inerentes à detecção de objetos pequenos em larga escala,

destacando conjuntos de dados, métricas de avaliação e benchmarks padroni-

zados, propondo direções para pesquisas futuras.

Em domínios como sensoriamento remoto óptico, um estudo [29] descreve

métodos voltados à detecção de objetos em imagens de alta resolução, com

ênfase em aplicações como monitoramento ambiental, inspeção de infraestru-

tura e vigilância. Este estudo ressalta a importância de adaptar arquiteturas

e pré-processamentos para lidar com variações de escala, alta densidade de

alvos e interferências de fundo, fatores frequentemente presentes em cenários

agrícolas e urbanos. Esses surveys resumem o conhecimento existente, ma-

peando lacunas, oportunidades e oferecem um guia para o desenvolvimento

de abordagens relacionadas com detecção de objetos pequenos.

Esta seção está organizada em subseções que destacam as estratégias dos

trabalhos relacionados. A Subseção 1.1.1 apresenta de forma resumida es-

tudos sobre detecção de objetos pequenos em imagens de sensoriamento re-

moto. A Subseção 1.1.2 resume trabalhos relacionados com drones e imagens

aéreas. A Subseção 1.1.3 descreve técnicas adotadas para detectar insetos,

aracnídeos e pragas agrícolas em plantações.

1.1.1 Objetos pequenos em imagens de sensoriamento remoto

A detecção de objetos pequenos em imagens de sensoriamento remoto é

uma tarefa desafiadora, especialmente devido à alta resolução das imagens e

a proporção reduzida entre o tamanho dos objetos e a cena.

Métodos de detecção, como You Only Look Once version 3 (YOLOv3) [58],

SSD [39] e Faster R-CNN [60], foram comparados em um estudo [95] cujo ob-

jetivo é identificar pequenas aeronaves em imagens do Google Earth e do con-

junto Dataset for Object deTection in Aerial images (DOTA) [76]. Os resultados

mostraram que, além de apresentar maior velocidade, YOLOv3 também obteve

melhor desempenho médio de detecção comparada às demais arquiteturas.

Para superar limitações de modelos clássicos, diversas abordagens pro-

põem modificações estruturais. Por exemplo, o Context-Based Feature Fusion
SSD (CBFF-SSD) [31] integra unidades de fusão de características e mapas
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de detecção para melhorar a identificação de objetos pequenos. Experimen-

tos no conjunto Northwestern Polytechnical University Very High Resolution
10 (NWPU VHR-10) [6] demonstraram ganhos relevantes de precisão em rela-

ção ao SSD tradicional.

Outras abordagens buscam enriquecer a extração de características mul-

tiescala. Um exemplo é a aplicação da Mask Region-based Convolutional Neu-
ral Network (Mask R-CNN) [19] com Residual Neural Network with 101 layers
(ResNet101) [20] adaptada com Feature Pyramid Networks (FPN), que auxilia

na detecção objetos em diferentes escalas. A proposta [16] foi avaliada em con-

juntos como DOTA e Remote Sensing Object Detection (RSOD) [78], demons-

trando resultados promissores para detectar classes de “aviões” e “navios”.

A utilização de mecanismos de atenção e fusão de contexto também tem

se mostrado eficaz. O modelo Multiscale Context and Enhanced Channel At-
tention (MSCCA) [55] combina o backbone Pelee Network (PeleeNet) [73] com

blocos Efficient Channel Attention (ECA), obtendo 80,4% de mean Average Pre-
cision (mAP) no DOTA e 94,4% no NWPU VHR-10, equilibrando velocidade de

detecção e economia de recursos computacionais.

Além dos mecanismos de atenção, a preservação de resolução apresenta

bons resultados na detecção de objetos pequenos em fundos complexos. Nesse

contexto, a abordagem High-Resolution Transformer-embedding Parallel detec-
tion Network (HRTP-Net) [90] propõe módulos que preservam a alta resolução

espacial de objetos pequenos e distinguem seus pixels dos do fundo por meio

de mecanismos de atenção. Avaliado nos conjuntos Maritime SATellite Ima-
gery (MASATI) [15], VEhicle Detection in Aerial Imagery (VEDAI) [56] e DOTA, o

modelo superou métodos tradicionais.

Limitações computacionais são comuns em dispositivos como satélites e

drones. Neste sentido, o modelo Guided Hybrid Quantization with One-to-One
Self-Teaching (GHOST) [89] utiliza distilação guiada para preservar detalhes

importantes e detectar objetos pequenos, diminui os custos computacionais e

aumenta a precisão em comparação com métodos tradicionais de quantização.

Avaliado nos conjuntos VEDAI, DOTA, NWPU VHR-10 e DetectIon in Optical
Remote sensing images (DIOR) [30], GHOST se destacou em relação a outros

detectores.

No contexto de imagens de grande escala (por exemplo, 20000×20000 pixels),

a Remote sensing Region-based Convolutional Neural Network (R²-CNN) [52],

baseada em Tiny-Net, se destaca por seu baixo consumo de memória e por

apresentar mAP de 96,04%. Essa rede treina em conjunto um classificador e

um detector, processando pedaços de imagem sobrepostos para reduzir falsos

positivos e aumentar a precisão da localização.

Cenários complexos com objetos sobrepostos e fundos confusos requerem
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soluções com maior sensibilidade contextual. A Scene-Contextual Feature Py-
ramid Network (SCFPN) [4] utiliza normalização por grupo e melhora a de-

tecção de objetos pequenos em múltiplas escalas. O modelo foi avaliado no

conjunto de dados DOTA e demonstrou desempenho superior aos métodos de

referência nas métricas de IoU ≥ 0.7.

Propostas ainda mais robustas incluem arquiteturas compostas por múl-

tiplos componentes. A Multi-Component Fusion Network (MCFN) [35] com-

bina três blocos distintos, sendo eles, fusão de pirâmides, seleção de re-

giões baseada em interseção relativa e incorporação de contexto. Essa estru-

tura melhora significativamente a detecção em cenários complexos, superando

Faster R-CNN, YOLOv3 e SSD.

Considerando a baixa resolução ou ruídos em imagens, a Edge-Enhanced
Super-Resolution Generative Adversarial Network (EESRGAN) [54] utiliza uma

abordagem híbrida com Generative Adversarial Networks (GANs) para apri-

moramento de bordas e super-resolução. Testes nos conjuntos Car Overhead
with Context (COWC) [50] e Oil and Gas Storage Tank Dataset (OGST) [53] indi-

caram que preservar detalhes estruturais é fundamental para detectar objetos

pequenos.

Abordagens recentes exploram o potencial de arquiteturas híbridas. A Local
Perception Swin Transformer (LPSW) [81] incorpora elementos do Swin Trans-
former [42] com técnicas de atenção espacial para aprimorar a acurácia na

segmentação. Com base em conjuntos como DIOR, High-Resolution Remote
Sensing Detection (HRRSD) [94] e NWPU VHR-10, a abordagem demonstrou

uma inferência mais rápida e resultados superiores em segmentação.

Além disso, propostas específicas como a Hierarchical Scale Sensitive Cen-
terNet (HSSCenterNet) [21] focam na detecção de embarcações, integrando

vetores de direção para prever caixas delimitadoras inclinadas. Já o modelo

Model with Deep Reinforcement Learning and Efficient Convolution Feature le-
arning (MdrlEcf) [38] incorpora aprendizado por reforço para melhorar a lo-

calização e classificação de objetos pequenos, destacando-se na detecção em

imagens marítimas e urbanas.

Ainda no contexto de objetos inclinados, algumas técnicas [71, 72] uti-

lizam módulos de rotação de regiões de interesse e razão entre a largura e

altura dos objetos para estimar o ângulo de inclinação. Experimentos rea-

lizados nos conjuntos NWPU VHR-10, DOTA, University of Chinese Academy
of Sciences – Aerial Object Detection (UCAS-AOD) [97], High Resolution Ship
Collection 2016 (HRSC2016) [43] e German Aerospace Center 3K Vehicle Da-
taset (DLR-3K) [36] mostraram que as técnicas propostas superam métodos

tradicionais de representação de objetos, além de serem mais rápidas e preci-

sas na inferência.
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Outra proposta de destaque é a Vehicle Detection Network based on Remote
Sensing Images (VDNET-RSI) [98], uma rede em duas etapas que combina

preservação de bordas por meio do Local Implicit Image Function (LIIF), super-

resolução, módulos de detecção e atenção. Avaliada no conjunto DIOR, a

abordagem superou modelos como You Only Look Once version 5 (YOLOv5) [26],

Faster R-CNN e Fully Convolutional One-Stage Object Detection (FCOS) [68], de-

monstrando potencial para aplicações em sistemas de transporte inteligente.

Essas abordagens refletem a diversidade de estratégias empregadas na

detecção de objetos pequenos em imagens de sensoriamento remoto, com-

binando eficiência computacional, precisão e robustez.

1.1.2 Objetos pequenos em imagens aéreas e de drones

A detecção de objetos pequenos em imagens aéreas representa um desafio

significativo na visão computacional, especialmente em contextos com recur-

sos limitados e cenários visuais complexos. Detectores de objetos convencio-

nais são eficazes para alvos de dimensões médias ou grandes, mas apresentam

dificuldades quando aplicados à identificação de objetos pequenos. Esta seção

resume abordagens propostas para lidar com estas limitações.

A detecção de defeitos em isoladores elétricos, caracterizados como obje-

tos pequenos em fundos complexos, motivou a proposta da Ghost Convolution
and Centralized Feature Pyramid You Only Look Once (GC-YOLO) [12], uma

otimização da YOLOv5. Enquanto convoluções fantasmas extraem caracterís-

ticas de forma mais eficiente, mecanismos de atenção coordenada destacam

regiões relevantes da imagem. Avaliada em um conjunto com 1600 imagens e

5375 anotações, a GC-YOLO superou arquiteturas tradicionais.

Uma extensão [40] do YOLOv5 introduz módulos como Feature Enhance-
ment Block (FEBlock), Self-Characteristic Expansion Plate (SCEP) e camadas

adicionais de detecção para lidar com objetos pequenos em cenários densos

e com ruído de fundo. Avaliado no conjunto VisDrone2021 [99], o modelo

melhorou significativamente o desempenho, aumentando o mAP@0.5 de 42,5%
para 54,4% ao utilizar resolução de 1024×1024. Os resultados foram promisso-

res em condições como ruas noturnas e variações de iluminação.

Uma variação [37] da YOLOv3 incorpora blocos residuais modificados e

uma estrutura multiescala para previsão em diferentes resoluções. A rede foi

treinada com um conjunto de dados que possui 4406 imagens categorizadas

por distância e ruído de fundo. Estratégias como classificação prévia dos

dados e re-treinamento proporcionaram um mAP de 90,88%.

Para lidar com limitações computacionais de dispositivos embarcados, uma

proposta introduziu a Laplace Bottleneck and Cross-Layer Attention Upsam-
pling You Only Look Once (LC-YOLO) [9]. A arquitetura incorpora módulos que
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reforçam detalhes nas camadas superficiais por meio de filtros de realce e fun-

dem características rasas e profundas com atenção cruzada em nível de pixel.

Avaliado no conjunto UCAS-AOD, o modelo alcançou um mAP@0.5 de 94,96%,

superando versões mais robustas da YOLO.

Visando a detecção de objetos pequenos em missões com VANT, uma pro-

posta [96] modificou a arquitetura da You Only Look Once version 4 (YOLOv4),

introduzindo uma nova função de perda e o backbone Advanced Downsam-
pling Cross Stage Partial Darknet-53 (ADCSPDarknet53). O modelo incorpora

técnicas de aumento de dados e um método de classificação baseado em métri-

cas de distância. Avaliado com imagens aéreas de objetos pequenos, o detector

alcançou mAP@0.5 de 61,00% com 77 Frames por Segundo (FPS).

No mesmo contexto, Small Object Detection Convolutional Neural Network
(SODCNN) [47], uma variação da You Only Look Once version 7 (YOLOv7) [70],

foi proposta com diversas otimizações estruturais. Entre as melhorias es-

tão a remoção do módulo de detecção de objetos grandes, aumento do nú-

mero de âncoras e substituição da função de perda Complete Intersection over
Union (CIoU) pela Efficient Intersection over Union (EIoU). Avaliado no con-

junto VisDrone2019, o modelo alcançou mAP@0.5 de 54,03% e superou ou-

tros modelos da categoria YOLO e Cascade Region-based Convolutional Neural
Network (Cascade R-CNN).

Módulos de deconvolução, super-resolução e fusão de camadas rasas fo-

ram combinados para detectar objetos pequenos. O modelo [46] foi avaliado

em conjuntos de dados que incluem imagens de gado e pedestres capturadas

por drones, apresentando mAP de 79,12% e Recall de 94,10%, superando de-

tectores tradicionais. O equilíbrio entre desempenho e acurácia mostrou-se

adequado para aplicações de vigilância e agricultura de precisão.

Uma abordagem [5] alternativa explorou o uso de duas redes convolucio-

nais para melhorar a detecção de veículos com múltiplas orientações e escalas.

A primeira rede gera propostas de regiões orientadas com base em mapas de

características hierárquicos, enquanto a segunda realiza a classificação dos

objetos. Avaliado nos conjuntos VEDAI e Overhead Imagery Research Data
Set (OIRDS) [67], o modelo apresentou superioridade quando comparado com

arquiteturas tradicionais.

Modelos compactos também têm sido explorados para detectar objetos pe-

quenos quando há restrições de hardware. Uma proposta [48] usa camadas

pré-treinadas, concatena características de múltiplas escalas e aplica treina-

mento não supervisionado para extrair representações. A predição é realizada

por classificadores leves e um modelo de regressão otimizado, equilibrando

precisão, desempenho e baixo custo computacional.

Outra abordagem relevante é a Attention Enhancement and Fusion Network
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(AEFNet) [17], proposta para detecção de objetos pequenos em cenas maríti-

mas. A arquitetura une o backbone Swin-T [42] com módulos de autoatenção,

destacando características em fundos complexos, e funde informações entre

diferentes escalas para preservar detalhes de alvos pequenos. Avaliada no

conjunto TinyPerson [86], a AEFNet mostrou bom desempenho em contextos

com objetos pequenos e ruídos ao fundo.

Uma proposta [44] integrou o CSWin Transformer ao Mask R-CNN, comple-

mentado por um módulo híbrido que incorpora pedaços menores das imagens.

Essa abordagem visa reforçar a detecção em múltiplas escalas, preservando

detalhes como bordas e cantos, e melhorar a identificação de pequenos objetos

sem aumentar a complexidade do modelo. Os resultados mostraram ganhos

significicativos, especialmente em objetos pequenos.

Essas abordagens refletem a diversidade de estratégias propostas para a

detecção de objetos pequenos em imagens aéreas, combinando eficiência com-

putacional, preservação de detalhes em múltiplas escalas e mecanismos de

atenção para lidar com as limitações impostas por alvos de baixa resolução,

fundos complexos e restrições operacionais.

1.1.3 Insetos, aracnídeos, pragas agrícolas e plantações em ge-

ral

A detecção de insetos em imagens de platações apresenta desafios similares

à detecção de objetos pequenos, principalmente devido ao tamanho reduzido

das espécies e à semelhança entre indivíduos.

Um estudo [66] divide imagens em pedaços de 800× 800 pixels com sobre-

posição para serem processadas pelo detector YOLOv4. Ao combinar a estra-

tégia com Efficient Network (EfficientNet) na etapa de classificação, a precisão

obtida foi de 89%. Essa abordagem demonstrou ser eficaz para diferenciar

espécies pequenas e semelhantes, como Phyllotreta striolata e Phyllotreta atra.

Para detectar pragas de pequeno porte, foi desenvolvido o Yolo-Pest [77],

com módulos que extraem características em cenários com poucas amos-

tras e uma camada que amplia campos receptivos e reforça canais informa-

tivos. Avaliado em imagens de pragas agrícolas, o modelo alcançou 91,9% de

mAP@0.5, superando o You Only Look Once version 5 – small (YOLOv5s) em

quase 8% com redução de parâmetros.

Uma abordagem [83] baseada em Gradient-weighted Class Activation Map-
ping (Grad-CAM) foi aplicada na YOLOv5 para detectar espigas de trigo. A

arquitetura final remove a camada de larga escala, adiciona uma camada de

microescala e reforça a extração de características na escala intermediária.

Testes no conjunto Global Wheat Head Detection Dataset (GWHD) [10, 11]

mostraram aumento da métrica Average Precision (AP) para 93,5% em alta re-
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solução com redução de parâmetros.

O reconhecimento de impurezas em grãos de milho também demanda aten-

ção com objetos pequenos. Uma arquitetura [85] integra FasterRCNN com

Efficient Network – Model B7 (EfficientNetB7) para extrair características se-

mânticas de múltiplas escalas e gera caixas delimitadoras com uma Adaptive
Region Proposal Network (ARPN). O modelo supera as alternativas ResNet101

e EfficientNetB7, destacando-se na detecção de objetos pequenos.

A identificação automatizada de espécies de carrapatos em imagens foi via-

bilizada por meio do Tick Identification Network (TickIDNet) [27]. O modelo foi

treinado em um conjunto de imagens com variações em relação a qualidade e

tamanho dos objetos. Mesmo obtendo uma boa acurácia, o modelo foi afetado

pelo tamanho relativo do carrapato e por características como estágio de vida

e status alimentar.

Para diferenciar regiões normais e defeituosas em laranjas-baía, foi pro-

posto o Feature Skyscraper Detector (FSD) [65]. A arquitetura utiliza conec-

tividade densa e otimiza a extração de características de objetos pequenos,

como manchas pretas, além de distinguir com precisão as extremidades do

caule e da flor. Avaliado em um conjunto específico, o modelo superou detec-

tores como YOLOv3 e SSD.

Os estudos analisados resumem a detecção de insetos, pragas e defeitos

em cenários agrícolas, destacando os desafios associados à identificação de

objetos pequenos, com alta similaridade visual e baixa representatividade nos

dados.

1.2 Motivação

Conforme observado nos trabalhos correlatos, a detecção de objetos em

imagens tem evoluído significativamente nos últimos anos, com arquiteturas

de CNNs e, mais recentemente, modelos baseados em Transformers, princi-

palmente em contextos em que os objetos são grandes em relação ao tamanho

da imagem, favorecendo a extração de características pelos modelos.

Apesar dos avanços em cenários de maior escala, a detecção de objetos

pequenos continua sendo um dos principais desafios da visão computacio-

nal, especialmente em contextos com resolução limitada, fundos complexos e

com grande densidade de objetos. Embora avanços significativos tenham sido

obtidos com o uso de arquiteturas especializadas, mecanismos de atenção e

técnicas de que utilizam multiescala, parte dos estudos concentra-se em ce-

nários urbanos, marítimos e de tráfego, com foco em veículos e embarcações.

A detecção de insetos, por sua vez, permanece como um campo menos

explorado, ainda que compartilhe diversas dificuldades com os cenários men-
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cionados, como o tamanho reduzido dos objetos e a semelhança visual entre

classes. Um pequeno número de abordagens foi proposto para este domínio

e algumas delas utilizam variações da família YOLO. Além disso, a falta de

estratégias que exploram técnicas de pré e pós-processamento de imagens e

refinamento dos resultados obtidos foi observada.

Esses desafios tornam-se ainda mais evidentes em situações em que as

imagens são redimensionadas para serem processadas por CNNs, fazendo

com que informações de objetos pequenos desapareçam [79]. Mesmo quando

permanecem visíveis, à medida que as imagens passam por sucessivas con-

voluções e seus mapas de características se tornam menores, as informações

associadas a esses objetos tendem a se perder ainda mais [14, 34, 64].

Além dos desafios mencionados, os conjuntos de dados bem conhecidos

usados para o treinamento das CNNs, como ImageNet1, MS COCO2 e PASCAL

VOC3, consistem de imagens obtidas em visão de frente e com uma certa pro-

ximidade dos objetos. Desta maneira, as arquiteturas de CNNs desenvolvidas

para realizar a detecção de objetos é mais apropriada para as características

destes conjuntos de dados [34].

Outro problema que ocorre com a detecção de objetos pequenos é a falta de

dados, pois a maioria dos conjuntos de dados possuem anotações em objetos

de grande ou média escala. Para estes problemas específicos, os algoritmos de

detecção de objetos, como as CNNs, podem não ser capazes de proporcionar

bons resultados [69].

Os trabalhos correlatos mostraram que a estratégia de recortar as imagens

auxilia na detecção de objetos pequenos, mas não há padronização quanto à

sua aplicação. Alguns estudos adotam sobreposição entre as regiões recorta-

das, enquanto outros não utilizam esse recurso. Outro ponto pouco abordado

é o procedimento para reunir novamente objetos que acabam sendo dividi-

dos durante o processo de recorte da imagem. Isso evidencia que as soluções

atuais são, em geral, desenvolvidas para problemas bastante específicos, difi-

cultando sua generalização para outros cenários.

Alguns experimentos realizados ao longo desta tese buscaram aplicar téc-

nicas de detecção de objetos em cenários nos quais os alvos são visualizados

de cima. O primeiro estudo desenvolvido, detalhado no Capítulo 2, avaliou a

capacidade de diferentes arquiteturas de CNNs em detectar árvores da espécie

Cumbaru em imagens aéreas adquiridas por VANTs.

No segundo trabalho, apresentado no Capítulo 3, investigou-se a aplicação

de CNNs para a detecção de bueiros e poços de visita em imagens capturadas

de ruas na cidade de Campo Grande-MS. Um dos principais desafios identifi-

1Disponível em: https://www.image-net.org/
2Disponível em: https://cocodataset.org/
3Disponível em: http://host.robots.ox.ac.uk/pascal/VOC/

10

https://www.image-net.org/
https://cocodataset.org/
http://host.robots.ox.ac.uk/pascal/VOC/


cados foi a distância entre os objetos de interesse e a câmera, resultando em

objetos extremamente pequenos nas imagens. Para mitigar esse problema,

adotou-se a estratégia de recortar e utilizar apenas a parte inferior das ima-

gens, descartando regiões com objetos menores e pouco visíveis.

Em muitos cenários, objetos pequenos são os alvos principais e descartar

regiões pode levar a perda de informações importantes. Diante desse desafio,

o terceiro artigo, apresentado no Capítulo 4, detecta insetos em imagens de

folhas de soja. Vistos de cima, os insetos apresentam dimensões reduzidas

em relação ao tamanho total da imagem.

Para lidar com essa dificuldade, foi adotada a estratégia de recortar as

imagens em regiões menores com sobreposição, garantindo que a análise de

todas as áreas da imagem e que nenhum objeto de interesse fosse descartado.

Além disso, o trabalho final compara abordagens baseadas em detectores e

segmentadores, avaliando o desempenho de ambos os tipos de modelos na

identificação dos alvos.

1.3 Objetivos

O objetivo geral deste trabalho foi propor técnicas para detectar objetos pe-

quenos em imagens de alta resolução, explorando abordagens de detecção e

segmentação, especialmente em domínios pouco explorados, como a identifi-

cação de insetos. Para alcançar o objetivo geral, foram definidos e concluídos

os seguintes objetivos específicos:

• Anotar um conjunto de dados com imagens de insetos, que originalmente

foi desenvolvido para classificação de superpixels, contribuindo para pes-

quisas em detecção e segmentação de objetos pequenos;

• Desenvolver e padronizar técnicas de pré-processamento, incluindo mé-

todos de recorte de imagens com sobreposição e conversão de caixas de-

limitadoras em máscaras de segmentação;

• Propor e implementar estratégias de pós-processamento, incluindo união

de detecções que foram recortadas no pré-processamento e alternativas

para contornar as limitações da métrica IoU.

• Avaliar e comparar abordagens de detecção e segmentação para a identi-

ficação de objetos pequenos, analisando vantagens e limitações dos méto-

dos originais e das técnicas de pré e pós-processamento propostas neste

trabalho.
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1.4 Estrutura do texto

Esta tese está organizada em cinco capítulos. O presente capítulo introdu-

ziu os problemas enfrentados ao detectar objetos pequenos em imagens de alta

resolução, resumiu trabalhos correlatos, destacou as lacunas encontradas e

apresentou os objetivos deste estudo.

A tese é composta por uma coleção de artigos, inclusos nos Capítulos 2,

3 e 4, e por um capítulo de conclusões (5). No primeiro artigo (Capítulo 2),

diversas arquiteturas de CNNs são avaliadas para detectar árvores da espécie

cumbaru em imagens obtidas por VANTs. No segundo artigo (Capítulo 3),

bueiros e poços de visita são detectados em imagens, e uma abordagem de

recortar metade da imagem é avaliada para melhorar a detecção de objetos

pequenos. Por fim, o terceiro artigo (Capítulo 4) apresenta uma abordagem de

diversos recortes com sobreposição para encontrar insetos em folhas de soja.

Além dos artigos publicados, há um capítulo de conclusões (5), no qual são

discutidas as principais contribuições, limitações e perspectivas para pesqui-

sas futuras na identificação de objetos pequenos em imagens de alta resolu-

ção.
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CAPÍTULO

2
Assessment of CNN-Based Methods

for Individual Tree Detection on
Images Captured by RGB Cameras

Attached to UAVs

Este capítulo apresenta um estudo inicial da pesquisa, desenvolvido sob a

forma de um artigo [63] publicado na revista Sensors1, o qual avalia o desem-

penho de diferentes arquiteturas de CNNs para detectar árvores da espécie

cumbaru em imagens Red, Green, Blue (RGB) capturadas por VANTs. Embora

o foco deste trabalho não esteja diretamente na detecção de objetos pequenos,

sua realização foi fundamental para o amadurecimento metodológico da tese,

permitindo conhecer limitações, pensar em estratégias e avaliar arquiteturas

que posteriormente auxiliaram nas investigações em objetos pequenos.

Para este trabalho, foram consideradas três arquiteturas de CNNs, sendo

elas, YOLOv3 [58], Faster R-CNN [60] e Retina Network (RetinaNet) [33], as

duas últimas usando Residual Neural Network with 50 layers (ResNet50) [20]

como backbone. O conjunto de dados era composto por 392 imagens, com

resolução de 5472×3648 pixels e capturadas em diferentes épocas do ano. Cada

imagem possuía cerca de uma amostra de cumbaru, a qual foi anotada por

um especialista.

Até o presente momento, o artigo contabiliza 196 citações pelo Google Scho-
lar2, mostrando a importância deste trabalho.

1Disponível em: https://www.mdpi.com/journal/sensors
2Disponível em: https://scholar.google.com/
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Abstract: Detection and classification of tree species from remote sensing data were performed
using mainly multispectral and hyperspectral images and Light Detection And Ranging (LiDAR)
data. Despite the comparatively lower cost and higher spatial resolution, few studies focused on
images captured by Red-Green-Blue (RGB) sensors. Besides, the recent years have witnessed an
impressive progress of deep learning methods for object detection. Motivated by this scenario,
we proposed and evaluated the usage of Convolutional Neural Network (CNN)-based methods
combined with Unmanned Aerial Vehicle (UAV) high spatial resolution RGB imagery for the detection
of law protected tree species. Three state-of-the-art object detection methods were evaluated: Faster
Region-based Convolutional Neural Network (Faster R-CNN), YOLOv3 and RetinaNet. A dataset
was built to assess the selected methods, comprising 392 RBG images captured from August 2018 to
February 2019, over a forested urban area in midwest Brazil. The target object is an important tree
species threatened by extinction known as Dipteryx alata Vogel (Fabaceae). The experimental analysis
delivered average precision around 92% with an associated processing times below 30 miliseconds.

Keywords: object-detection; deep learning; remote sensing

1. Introduction

Preservation of sensitive tree species requires timely and accurate information on their distribution
in the area under threat. Remote sensing techniques have been increasingly applied as alternatives
to costly and time consuming field surveys for assessing forest resources. For this purpose, satellite,
aerial and, more recently, Unmanned Aerial Vehicle (UAV) have been the most common platforms
used for data collection.

Multispectral [1–5] and hyperspectral [6,7] imageries, Light Detection And Ranging (LiDAR)
data [8–11], and also combinations of them [12–17] have been the preferred data source. Clark et al. [6]
used airborne hyperspectral data (161 bands, 437–2434 nm) for the classification of seven tree species.

Sensors 2019, 19, 3595; doi:10.3390/s19163595 www.mdpi.com/journal/sensors
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Linear discriminant analysis (LDA), maximum likelihood (ML) and spectral angle mapper (SAM)
classifiers were tested. The authors reported accuracy of 88% with a ML classifier based on 60 bands.
Dalponte et al. [7] investigated the use of hyperspectral sensors for the classification of tree species
in a boreal forest. Accuracy around 80% was achieved, using Support Vector Machines (SVM) and
Random Forest (RF) classifiers.

Immitzer et al. [3] applied RF to classify 10 tree species in an Austrian temperate forest upon
WorldView-2 (8 spectral bands) multispectral data, having achieved an overall classification accuracy
around 82%. In a later work, Immitzer et al. [4] used Sentinel-2 multispectral imagery to classify tree
species in Germany with a RF classifier achieving accuracy around 65%. Franklin and Ahmed [5]
reported 78% accuracy in the classification of deciduous tree species applying object-based and machine
learning techniques to UAV multispectral images.

Voss and Sugumaran [12] combined hyperspectral and LiDAR data to classify tree species using
an object-oriented approach. Accuracy improvements up to 19% were achieved when both data were
combined. Dalponte et al. [15] investigated the combination of hyperspectral and multispectral images
with LiDAR for the classification of tree species in Southern Alps. They achieved 76.5% accuracy in
experiments using RF and SVM. Nevalainen et al. [18] combined UAV-based photogrammetric point
clouds and hyperspectral data for tree detection and classification in boreal forests. RF and Multilayer
Perceptron (MLP) provided 95% overall accuracy. Berveglieri et al. [19] developed a method based on
multi-temporal Digital Surface Model (DSM) and superpixels for classifying successional stages and
their evolution in tropical forest remnants in Brazil.

While numerous studies have been conducted on multispectral, hyperspectral, LiDAR and
combinations of them, there are few studies relying on RGB images for tree detection/classification.
Feng et al. [20] used RGB images for urban vegetation mapping. They used RF classifiers, and verified
that the texture, derived from the RGB images, contributed significantly to improve the classification
accuracy. However, tree species classification was not specifically addressed in this work.

In the last few years, approaches based on deep learning, such as Convolutional Neural Networks
(CNNs) and their variants, gained popularity in many fields, including remote sensing data analysis.
Mizoguchi et al. [11] applied CNN to terrestrial LiDAR data to classify tree species and achieved
between 85% and 90% accuracy. Weinstein et al. [21] used semi-supervised deep learning neural
networks for individual tree-crown detection in RGB airborne imagery. Barré et al. [22] developed a
deep learning system for classifying plant species based on leaf images using CNN.

Regarding plant species classification and diseases detection based on leaf images, several works
were developed [23–28]. Fuentes et al. [25] focused on the development of a deep-learning-based
detector for real-time tomato plant diseases and pests recognition, considering three CNNs: Faster
Region-based Convolutional Neural Network (Faster R-CNN), Region-based Fully Convolutional
Network (R-FCN) and Single Shot Multibox Detector (SSD). However, tree detection was not the
target application.

To the best of our knowledge, no study focused thus far on state-of-the-art deep learning-based
methods for tree detection on images generated by RGB cameras on board of UAVs. The present
study addressed this gap and presented an evaluation of deep learning-based methods for individual
tree detection on UAV/RGB high resolution imagery. This study focused on a tree species known as
Dipteryx alata Vogel (Fabaceae), popularly known as baru or cumbaru (henceforth cumbaru), which is
threatened by extinction according to the IUCN (2019) (The International Union for Conservation
of Nature’s Red List of Threatened Species, https://www.iucnredlist.org/species/32984/9741012).
This species has a high economic potential and a wide range of applications, mainly for the use of
non-timber forest products. It is distributed over a large territory, being mostly associated to the
Brazilian Savanna, although it also occurs in the wetlands [29] in midwest Brazil.

Our work hypothesis is that state-of-the-art deep learning-based methods are able to detect single
tree species upon high-resolution RGB images with attractive cost, accuracy and computational load.
The contribution of this work is twofold. First, we assessed the usage of high-resolution images
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produced by RGB cameras carried by UAVs for individual trees detection. Second, we compared three
state-of-the-art CNN-based object detection methods, namely FasterRCNN, RetinaNet and YOLOv3,
for the detection of cumbaru trees on said UAV/RGB imagery.

The rest of this paper is organized as follows. Section 2 presents the materials and methods
adopted in this study. Section 3 presents and discusses the results obtained in the experimental
analysis. Finally, Section 4 summarizes the main conclusions and points to future directions.

2. Materials and Methods

2.1. Overall Experimental Procedure

The experiments were conducted in four main steps (see Figure 1). First, the images were acquired
in different periods of the year by a RGB camera on a UAV platform. The images were annotated
by a specialist who delimited the cumbaru trees with a rectangle (bounding box). In the next step,
the networks representing each method were trained to detect the cumbaru tree instances in a set
of training images. In the third step, the images not used for training were submitted to the trained
networks, which predicted the cumbaru tree occurrences, returning the detected bounding boxes.
In the final step, the accuracy metrics were computed for each methods on the predicted results.

(a) (b)

Figure 1. General processing chain: (a) UAV images at different seasons were captured and annotated
by a specialist. A set of images were selected to train the detection network. (b) Once trained,
the network was applied to detect cumbaru trees in test images. The object detection method in
this figure corresponds to RetinaNet, although other methods (e.g., Faster-RCNN and YOLOv3) can
be applied.

2.2. Data Acquisition

In total, 392 UAV images were acquired over seven months (from August 2018 to February 2019 in
six missions). An advanced Phantom 4 UAV equipped with a 20-megapixel camera captured the images
at flight heights of 20–40 m (see Table 1 for more details). Images with a mean Ground Sample Distance
(GSD) of 0.82 cm (centimeter) were acquired in three study regions, with a total area of approximately
150,000.00 square meters, in the urban part of Campo Grande municipality, in the Brazilian state of
Mato Grosso do Sul. Approximately 110 trees were imaged during the missions. Some tree samples
are shown in Figure 2. Notice the variability in terms of appearance, scale and illumination.
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Table 1. Aircraft and flight specifications.

Aircraft Sensor Field of View Nominal Focal Length Image Size Mean GSD Mean Flight Height

Phantom4 1” CMOS 84◦ 8.8 mm 5472 × 3648 0.82 cm 30 m
Advanced (20 Mp)

(a) (b)

(c) (d)

Figure 2. Examples from the dataset: images captured on: (a) 26 August 2018; (b) 21 September 2018;
(c) 22 September 2018; and (d) 20 February 2019.

Each image was annotated by a specialist using LabelMe software (https://github.com/
wkentaro/labelme). In this process, a bounding box specified by the top-left and bottom-right corners
was annotated for each cumbaru tree sample in the image.

2.3. Object Detection Methods

The object detection methods compared in this study are briefly described in the following
(the following source codes were used as a basis for our implementation: Faster-RCNN, https://github.
com/yhenon/keras-frcnn; YOLOv3, https://github.com/qqwweee/keras-yolo3; and RetinaNet,
https://github.com/fizyr/keras-retinanet).

• Faster-RCNN [30]: In this method, a feature map is initially produced by a ResNet50 [31]. Given
the feature map, Faster-RCNN detects object instances in two stages. The first stage, called Region
Proposal Network (RPN), receives the feature map and proposes candidate object bounding
boxes. The second stage also accesses the feature map and extracts features from each candidate
bounding box using a Region of Interest Pooling (RoIPoolRoIPool) layer. This operation is based
on max pooling, and aims to obtain a fixed-size feature map, independent on the size of the
candidate bounding box at its input. A softmax layer then predicts the class of the proposed
regions as well as the offset values for their bounding boxes.
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• YOLOv3 [32]: Unlike Faster-RCNN, which has a stage for region proposal, YOLOv3 addresses the
object detection as a problem of direct regression from pixels to bounding box coordinates and class
probabilities. The input image is divided into S × S tiles. For each tile, YOLOv3 predicts bounding
boxes using dimension clusters as anchor boxes [33]. For each bounding box, an objectness score
is predicted using logistic regression, which indicates the chance of the bounding box to have an
object of interest. In addition, C class probabilities are estimated for each bounding box, indicating
the classes that it may contain. In our case, each bounding box may contain the cumbaru species
or background (uninteresting object). Thus, each prediction in YOLOv3 is composed of four
parameters for the bounding box (coordinates), one objectness score and C class probabilities.
To improve detection precision, YOLOv3 predicts boxes at three different scales using a similar
idea to feature pyramid networks [34]. As a backbone, YOLOv3 uses Darknet-53 as it provides
high accuracy and requires fewer operations compared to other architectures.

• RetinaNet [35]: Similar to YOLOv3, RetinaNet is a one-stage object detector but it addresses
class imbalance by reducing the loss assigned to well-classified images. Class imbalance occurs
when the number of background examples is much larger than examples of the object of interest
(cumbaru trees). Using this new loss function, training focuses on hard examples and prevents the
large number of background examples from hampering method learning. RetinaNet architecture
consists of a backbone and two task-specific subnetworks (see Figure 1b). As the backbone,
RetinaNet adopts the Feature Pyramid Network from [34], which is responsible for computing
a feature map over an entire input image. The first subnet is responsible for predicting the
probability of object’s presence at each spatial position. This subnet is a small Fully Convolutional
Network (five conv layers) attached to the backbone. The second subnet, which is parallel with
the object classification subnet, performs bounding box regression. The design of this subnet
is identical to the first one except that it estimates box coordinates for each spatial location at
the end.

2.4. Experimental Setup

We adopted in our experiments a five-fold cross validation strategy. Thus, all images were
randomly divided into five equal sized sets, called folds. One fold was separated for testing while the
remaining four folds were used as training data. This procedure was repeated five times, each time
with a different fold selected for testing. Part of the training set was used for validation. Thus,
each round (or iteration) of the cross validation procedure was carried out on training, validation,
and testing sets comprising 60%, 20% and 20% of the available images, respectively. To reduce the
risk of overfitting, we tuned the learning rate and the number of epochs upon the validation set.
The weights of the ResNet backbone were initialized with values pre-trained at ImageNet, a procedure
known as transfer learning.

The Adam optimizer was used for training all object-detection methods. We set the learning rate
to 0.01, 0.001, 0.0001 and 0.00001. The networks were trained through a number of epochs until the
loss stabilized both in the training and in the validation sets. After this tuning procedure, we adopted
learning rates equal to 0.0001, 0.001 and 0.0001, and the number of epochs was set to 500, 600, and 250
for Faster-RCNN, YOLOv3, and RetinaNet, respectively.

The performance of each method is reported in the next section by precision–recall curves and
the average precision (AP) [36,37]. To estimate the precision and recall, we calculated the Intersection
over Union (IoU), which is given by the overlapping area between the predicted and the ground truth
bounding boxes divided by the area of union between them. Following well-known competitions
in object detection [36,37], a correct detection (True Positive, TP) is considered for IoU ≥ 0.5, and a
wrong detection (False Positive, FP) for IoU < 0.5. A False Negative (FN) is assigned when no
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corresponding ground truth is detected. Given the above metrics, precision and recall are estimated
using Equations (1) and (2), respectively.

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

The average precision is given by the area under the precision–recall curve.

3. Results and Discussion

This section presents the results collected in our experiments in three ways. Section 3.1 reports
the performance quantitatively in terms of average precision. Section 3.2 presents qualitative results.
Finally, we discuss in Section 3.3 the computational costs.

3.1. Precision Results of Three CNN-Based Methods

Figure 3 presents the precision–recall curves of all tested variants for each cross validation round.
RetinaNet delivered consistently the highest precision and recall among all tested methods. Despite the
comparatively smaller IoUs, Faster-RCNN and YOLOv3 also achieved encouraging results considering
the complexity of the problem, as the dataset contains many similar trees.
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Figure 3. Precision–recall curves of detection methods in all five cross validation rounds (a–e).

The average precision (area under the precision–recall curve) of the detection methods in each
cross validation round is shown in Table 2. RetinaNet presented the most accurate results, 92.64%
(±2.61%) on average over all five rounds. Actually, RetinaNet consistently achieved the best results on
all folds. YOLOv3 and Faster-RCNN came next, with average precision 85.88% (±4.03%) and 82.48%
(±3.94%), respectively. In accordance with Figure 3, Table 2 indicates that RetinaNet outperformed its
counterparts by about 7%, reaching 92.64% average precision. RetinaNet proposed a new loss function
to focus learning on hard negative examples [35]. In this case, training focused on separating the
cumbaru from similar trees (hard examples) contributed to greater precision. It is worth emphasizing
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that the dataset represents a wide variety of environmental conditions, such as flight height and
lighting. Thus, the results support the hypothesis that high resolution UAV/RGB images might be a
viable approach for detection of individual trees.

Table 2. Average precision (%) for cumbaru tree detection in five cross validation rounds (R1–R5).

Variant R1 R2 R3 R4 R5 Mean (std)

Faster-RCNN 86.62 84.14 86.13 77.83 77.69 82.48 (±3.94)
YOLOv3 89.08 88.64 89.74 80.99 80.93 85.88 (±4.03)

RetinaNet 93.13 93.92 95.65 87.82 92.66 92.64 (±2.61)

3.2. Detection under Different Conditions

Figure 4 shows detection results in different seasons, as cumbaru trees have different color and
overall appearance. The first row of images shows the cumbaru with chestnuts while the second row
presents the cumbaru with greener leaves. The images were captured approximately five months apart
from each other. In contrast to other detection approaches (e.g., [12]), all tested methods managed
to perform well regardless of image acquisition dates. Previous work suggested periods of the year
best suited for capturing images (e.g., September [38] and October [39]). Voss and Sugumaran [12]
showed that methods trained in images captured in the fall present more consistent results to those
trained with images captured in the summer. On the other hand, the methods used in this work do
not need to be trained separately in each season and present consistent precision compared to the
literature methods.

(a) (b) (c) (d)

Figure 4. Examples of detection results in images captured in different seasons: (a) ground truth;
(b) Faster-RCNN; (c) YOLOv3; and (d) RetinaNet.

The methods were able to detect cumbaru trees even on images captured under different lighting
and scale conditions, as shown in Figure 5. The first column shows the ground truth while the three
columns on the right present the results produced by the three detection methods.
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(a) (b) (c) (d)

Figure 5. Examples of detection results in images captured for different lighting (average of 67.15 and
130.99 for the brightness channel of the HSB color space) and scale conditions (1:4000 and 1:2500):
(a) ground truth; (b) Faster-RCNN; (c) YOLOv3; and (d) RetinaNet.

The UAV flight height directly influences the scale of a tree image. Generally, all tested methods
were able to handle different scales and flight heights in the range represented in the dataset. Figure 5
illustrates how they behaved under this kind of variation.

Figure 6 shows results of the same tree captured from different view angles.

(a) (b) (c) (d)

Figure 6. Examples of detection results in images with different capture angles (0◦ and 30◦): (a) ground
truth; (b) Faster-RCNN; (c) YOLOv3; and (d) RetinaNet.

3.3. Discussion on Computational Complexity

The models were trained and tested on a desktop computer with an Intel(R) Xeon(R) CPU
E3-1270@3.80GHz, 64 GB memory, and NVIDIA Titan V graphics card (5120 Compute Unified Device
Architecture (CUDA) cores and 12 GB graphics memory). The detection algorithms were coded using
Keras-Tensorflow [40] on the Ubuntu 18.04 operating system.

Table 3 shows the mean and standard deviation of the runtime for a tree detection after the image
image and trained network model have been loaded.

As expected, the Faster-RCNN variant had the highest computational cost, because it comprises
two sequential stages, the first one to propose regions, followed by the second one that classifies
the proposed regions. YOLOv3 and RetinaNet were approximately 6.3 and 2.5 times faster than
Faster-RCNN, respectively, mainly because they handle object detection as a regression problem.
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The results in Table 3 suggest that the methods meet real-time requirements and may be embedded
in devices with comparatively low computational capacity.

Table 3. Computational cost of the proposed approach variants. The time is the average in seconds to
execute the deep learning methods on an image.

Approach Variation Time (s)

Faster-RCNN 0.163 (±0.066)
YOLOv3 0.026 (±0.001)

RetinaNet 0.067 (±0.001)

4. Conclusions

In this work, we proposed and evaluated an approach for the detection of tree species based on
CNN and high resolution images captured by RGB cameras in an UAV platform. Three state-of-the-art
CNN-based methods for object detection were tested: Faster R-CNN, YOLOv3 and RetinaNet. In the
experiments carried out on a dataset comprising 392 images, RetinaNet achieved the most accurate
results, having delivered 92.64% average precision. Regarding computational cost, YOLOv3 was
faster than its counterparts. Faster RCNN was the least accurate and at the same time the most
computationally demanding among the assessed detection methods.

The experimental results indicate that RGB cameras attached to UAVs and CNN-based detection
algorithms constitute a promising approach towards the development of operational tools for
population estimates of tree species, as well for demography monitoring, which is fundamental
to integrate economic development and nature conservation. Future works will investigate the
application of the proposed techniques considering other tree species. Real-time tree detection using
embedded devices will also be investigated.
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CAPÍTULO

3
Storm-Drain and Manhole Detection

Using the RetinaNet Method

Este capítulo apresenta um segundo estudo preliminar da pesquisa, de-

senvolvido sob a forma de um artigo [62] publicado na revista Sensors1, no

qual foram avaliadas arquiteturas de CNNs para detectar bueiros e poços de

visita em ruas de diferentes regiões de Campo Grande-MS.

Assim como no Capítulo 2, o foco principal não estava diretamente na de-

tecção de objetos pequenos, mas os desafios observados, como presença de

sombras, objetos cortados pelos limites da imagem e alvos distantes da câ-

mera, foram fundamentais para compreender limitações práticas e elaborar

estratégias para a pesquisa em detecção de objetos pequenos.

Os resultados obtidos com a RetinaNet no artigo do capítulo anterior moti-

varam a avaliação desta arquitetura também neste estudo. Além da RetinaNet,

experimentos com Faster R-CNN foram realizados. Em ambas as arquitetu-

ras foram explorados os backbones ResNet50 e ResNet101 juntamente com

FPN [32].

O conjunto de dados é composto por 297 imagens RGB, com resolução de

1280×720 pixels. Para os experimentos, as imagens foram cortadas em cerca

de 50% da altura original, para eliminar a área do céu, que não apresentou

relevância para o estudo. Desta maneira, a resolução das imagens utilizadas

para treinamento foi de 1280×369 pixels.

O artigo atualmente contabiliza 38 citações de acordo com o Google Scho-
lar2, reforçando a relevância do trabalho.

1Disponível em: https://www.mdpi.com/journal/sensors
2Disponível em: https://scholar.google.com/
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Abstract: As key-components of the urban-drainage system, storm-drains and manholes are essential
to the hydrological modeling of urban basins. Accurately mapping of these objects can help to
improve the storm-drain systems for the prevention and mitigation of urban floods. Novel Deep
Learning (DL) methods have been proposed to aid the mapping of these urban features. The main
aim of this paper is to evaluate the state-of-the-art object detection method RetinaNet to identify
storm-drain and manhole in urban areas in street-level RGB images. The experimental assessment was
performed using 297 mobile mapping images captured in 2019 in the streets in six regions in Campo
Grande city, located in Mato Grosso do Sul state, Brazil. Two configurations of training, validation,
and test images were considered. ResNet-50 and ResNet-101 were adopted in the experimental
assessment as the two distinct feature extractor networks (i.e., backbones) for the RetinaNet method.
The results were compared with the Faster R-CNN method. The results showed a higher detection
accuracy when using RetinaNet with ResNet-50. In conclusion, the assessed DL method is adequate
to detect storm-drain and manhole from mobile mapping RGB images, outperforming the Faster
R-CNN method. The labeled dataset used in this study is available for future research.

Keywords: convolutional neural network; object detection; urban floods mapping

1. Introduction

According to the United Nations Office for Disaster Risk Reduction [1], floods were the most
common type of natural disaster in the world for the period 1998–2017, affecting 2 billion people,
causing 142,088 deaths and economic losses estimated at $656 billion. In this context, also urban
floods need to be considered; according to the World Urbanization Prospects [2], 36.8% of the
633 largest cities in the world are exposed to flood risk, impacting over 660 million inhabitants.
An increase in urban flood risks is expected due to climate change, as an intensification of extreme
events of precipitation is predicted, potentially leading to a larger water intake into an urban basin [3].
Furthermore, according to [4], changes in land use are another main factor responsible for modifying
the hydrological characteristics of urban basins due to the reduction of infiltration capacities and
increased runoff. Thus, urbanization leads to increased flood risk because of the impervious surfaces
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in urban areas [3,5]. Municipalities adopt storm-drain networks to decrease the runoff rate from
extreme events and impervious surfaces and thus reduce the impacts by urban floods [6]. One way to
assess urban flood risks is to model the drainage system for these watersheds at specific hydrological
conditions, and thus adapt the storm-drain network to mitigate the potential damage caused by such
floods. It is an essential tool for the planning and management of storm-drain system infrastructures
of urban watersheds [7]. Models, such as HEC-1 and Storm Water Management Model (SWMN),
evaluate the interation between rainwater and drainage system. Inputs to these models include the
size, quantity, and spatial distribution of storm-drains. However, municipal management does not
always possess this data, especially in developing countries.

Various remote sensing approaches have been developed to find manholes and storm-drains
in urban areas automatically. For instance, [8,9] tested the usage of laser scanning (LiDAR) data.
However, when compared to image-based methods, LiDAR data are expensive in terms of equipment
and computational costs. Therefore, another focus has been on machine learning algorithms applied to
imagery because they can be a useful and robust form to analyze data [10]. These algorithms are widely
combined with computer vision techniques to process image data [11,12]. For manhole detection in
aerial images, different algorithms were designed with shallow structures [13–17], which need a careful
feature extraction method involving pre-processing steps and classification algorithms to achieve
good accuracy rates [18,19]. For example, in [15], the authors achieved manhole detection accuracies
of 58%. Due to the variety of images datasets (with different illumination conditions, occlusions,
noise, and scale), traditional machine learning methods have a low probability of being successful to
detect manhole and storm-drain, especially in high dimensionality feature space. More recent, Deep
Learning (DL) based-methods have shown higher performances in computer vision tasks because they
can extract features while jointly performing classification (end-to-end learning) [18].

DL methods have been successfully used to object detection [20] in several applications, such as
agriculture and environmental studies [21,22], urban infrastructure [23] and health analysis [24]. Thus
far, solely few works have been developed to detect manholes using DL ([25] and [26]). Reference [25]
perform manhole detection in aerial images. However, according to [26], there are two main limitations
for using aerial images to detect manholes: (i) The images present resolutions of about 5–10 cm/pixel,
which can be insufficient to identify details of the objects, and (ii) manholes can be hidden by trees
and vehicles in these images. Therefore, in [26] the authors aimed to detect manhole and storm-drains
in images captured from Google Street View API. They demonstrated that street-level imagery can
provide useful information to identify obstructed objects, which were not appropriately detected in
aerial images.

In this paper, the state-of-the-art DL method RetinaNet was investigated to automatically detect
storm-drain and manhole covers in street-level images collected with a car-mounted camera. As
an additional contribution, an analyzes of the influence of different feature extractor networks
(i.e., backbones) was conducted at the detection accuracy of storm-drain and manhole different
from [26], which used a Faster R-CNN architecture (two-stage network) with Resnet 101 as the
backbone. The one-stage network RetinaNet was chosen as the network architecture because of its
state-of-the-art performance in object detection tasks [27–29]. Furthermore, one-stage methodologies
have lower computational processing costs than two-stage approaches [20,30]. One-stage methods
typically use the VGG and ResNet as network backbone [31,32], which have shown good results even
compared to the DenseNet backbone [23]. ResNet backbones (ResNet-50 and ResNet-101) are used
to analyze the effect of their depth on the RetinaNet classification model. Another contribution is to
make the labeled dataset publicly available to allow for further DL training in this object detection
application. In summary, here are the main contributions:

• The state-of-the-art DL method RetinaNet is investigated to detect Storm-drain and Manhole;
• RetinaNet is compared to Faster R-CNN, which was used for the same purpose in

previous research;
• ResNet-50 and ResNet-101 backbones were assessed and;
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• The data set is publicly provided for future investigations in https://sites.google.com/view/
geomatics-and-computer-vision/home/datasets.

This paper is organized as followed. In Section 2, materials and methods adopted in the study
are described. Section 3 presents and discusses the results obtained in the experimental analysis, and
Section 4 highlights the main conclusions.

2. Material and Methods

To achieve the aim of this work, initially terrestrial images were acquired in the streets of the
Campo Grande city (Section 2.1). The image dataset is described with details in Section 2.2, including
the organization in training, validation, and testing sets. The assessed object detection methods are
presented in Section 2.3. Finnaly, the assessment metrics are presented in Section 2.4. The procedure
steps are the same adopted in our previous work [22].

2.1. Study Area

The images were acquired in the streets of the Campo Grande city, in the state of Mato Grosso do
Sul, Brazil (Figure 1). Several damages related to floods occurred in Campo Grande in the previous
years, showing a real need for detailed hydrological modeling in its urban area. Accurately mapping
storm-drains and manholes is a crucial step to contribute to this modeling. The black lines in Figure 1d
highlight the streets considered in our experiments.

Figure 1. Study area in (a) South America and Brazil, (b) Mato Grosso do Sul, (c) Campo Grande,
and (d) experimental streets. The black lines represent the streets used in the experiments

2.2. Image Dataset

Storm-drain and manhole samples are presented in Figure 2, showing that the images of the
dataset possess variability in terms of appearance, position, scale, and illumination. The dataset is
composed of 297 images with resolutions of 1280 × 720 pixels acquired with a GoPro HERO6 Black



Sensors 2020, 20, 4450 4 of 12

RGB camera. This data set contains 166 manhole and 142 storm-drain objects. These images correspond
to different regions of Campo Grande city. The images were cropped at 50% of the original width to
remove the sky, as done by [26] and [25], resulting in images with resolutions of 1280 × 369 pixels.

Figure 2. Eight examples of images containing (a) storm-drains and (b) manhole, both highlighted by
green rectangles.

The images were manually annotated by marking the manhole and storm-drains objects with
rectangles (bounding boxes) and labeling each rectangle to its corresponding class. Afterward, these
images were divided into two groups of training, validation, and testing sets. The first group
(named 76-12-12) has 76%, 12%, and 12%, respectively, for training, validation and testing sets.
The second group (named 66-15-19) has 66% of training images, 15% of validation images, and 19%
of testing images. These two groups were considered to assess the methods not only in one scenario,
contributing to a more robust evaluation.
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Images for training, validation, and test are from different regions of the city. The idea is to avoid
similarity between images from validation and test sets with the training set images to achieve a well
generalizing detection model. In Table 1, the main features of our data set summarized.

Table 1. Distribution of the number of (#) images and classes on training, validation and testing
data-sets for the division 72-12-12 and 66-15-19.

Division Set # Images (%) # Manholes # Storm-Drains

76-12-12

Train 226 (76%) 120 113
Validation 35 (12%) 25 10

Train + Validation 261 (88%) 145 123
Test 36 (12%) 21 19

66-15-19

Train 198 (66%) 104 100
Validation 44 (15%) 25 20

Train + Validation 226 (81%) 129 120
Test 55 (19%) 37 22

2.3. Object Detection Method

For this study, the RetinaNet object detection method [33] was adopted. RetinaNet is a one-stage
object detection method that considers class imbalance by reducing the loss assigned to images that
are well-classified. Class imbalance happens when the number of background examples is larger than
the examples of the object of interest, which, in this case, are storm-drains and manholes.

The training step focuses on hard-to-detect examples. RetinaNet architecture is composed of
a backbone and two task-specific subnetworks. We adopted the ResNet-50 and ResNet-101 as the
backbone and combined it with the Feature Pyramidal Network (FPN) [34], which represents objects
at multiple scales that share high and low-level features. Two subnets are applied to the backbone’s
output to perform the classification and regression tasks.

The models’ weights were initialized with weights from the same architecture pre-trained on the
MS Coco dataset [35] to reduce the training time. We used the source code available on the Detectron2
toolbox [36] for our implementation. The model was trained and tested on a desktop computer with
an Intel(R) Xeon(R) CPU E3-1270@3.80GHz, 64 GB memory, and an NVIDIA Titan V Graphics Card
(5120 Compute Unified Device Architecture (CUDA) cores and 12 GB graphics memory) on the Ubuntu
18.04 operating system.

A learning rate of 0.01 was adopted. The number of iterations was set to 10,000 (as set in [25]).
Moreover, a batch size of 4 images and 128 regions of interests was chosen for the RetinaNet and Faster
R-CNN [37] methods. The results between both methods were compared because previous work on
storm-drain and manhole detection [26] considered Faster R-CNN.

2.4. Method Assessment

The performance of RetinaNet was assessed by precision–recall curves and the average
precision (AP) as adopted in [22]. To estimate the precision and recall, the Intersection over Union (IoU)
was calculated. This metric is given by overlapping the area between the predicted and the ground
truth bounding boxes divided by the area of union between them. Following well-known competitions
in the object detection scene, a correct detection (True Positive, TP) was also considered for IoU ≥ 0.5,
and a wrong detection (False Positive, FP) for IoU < 0.5. A False Negative (FN) is assigned when no
corresponding ground truth is detected. Based on the above metrics, precision (P) and recall (R) are
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estimated using Equations (1) and (2), respectively. The average precision is estimated by the area
under the precision–recall curve.

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

3. Results and Discussions

3.1. Learning Results of the Object Detection Method

The training of the methods was performed with different backbones and the loss curves are
shown in Figures 3 and 4 for both groups, 76-12-12 and 66-12-19, respectively. These loss curves
indicate that no overfitting occurred because the loss values for training and validation were similar
and did not increase. Furthermore, the RetinaNet model converged at approximately 2000 iterations
while the Faster R-CNN needed about 8000 iterations until the training loss curve remained flat. This
was noted for both proposed divisions of training, validation, and testing sets.

Figure 3. Training and Validation Loss values for all methods to the division 76-12-12 over 10,000
iterations of training model.
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Figure 4. Training and Validation Loss values for all methods to the division 66-15-19 over 10,000
iterations of training model.

3.2. Inference Results of the Object Detection Method

The average precision (AP, %) and its mean values (mAP, %) obtained from the area under the
curve are illustrated in Figures 5 and 6 and in Table 2. The results on Table 2 display the IoU cutoff
at 0.5 (AP50) and the AP values to each class, manhole (APmh) and storm-drain (APsd). The best AP50
values are achieved by RetinaNet, compared to Faster R-CNN, for both datasets division (76-12-12 and
66-12-19). Furthermore, RetinaNet provides the best results for the storm-drain class, which is more
challenging to identify when compared to the manhole class.

Table 2. Average precision values to AP50 and to classes manhole (APmh) and storm-drain (APsd).

Division Method Backbone AP50(%) APmh(%) APsd(%)

76-12-12
Faster-RCNN ResNet-50 88.30 95.24 71.93

ResNet-101 86.32 95.24 71.15

RetinaNet ResNet-50 92.08 100.00 84.21
ResNet-101 92.08 95.24 89.47

66-15-19
Faster-RCNN ResNet-50 88.62 97.22 80.86

ResNet-101 85.22 96.95 73.85

RetinaNet ResNet-50 88.85 94.01 84.42
ResNet-101 89.69 94.22 85.93



Sensors 2020, 20, 4450 8 of 12

Figure 5. Precision–recall curves for all methods (R_50 and R_101 means ResNet-50 and ResNet-101,
respectively) to the division 76-12-12. on IoU threshold at 0.5 (AP50).

Figure 6. Precision–recall curves for all methods (R_50 and R_101 means ResNet-50 and ResNet-101,
respectively) to the division 66-15-19 on IoU threshold at 0.5 (AP50).

Considering the images in Figure 7 it becomes obvious that not all predictions were made correctly
by RetinaNet and Faster-RCNN. We found six situations of FNs (false-negative) for the division
76-12-12: Faster-RCNN (ResNet-101) achieved four FNs (Figure 7b–f); Faster-RCNN (ResNet-50 ) not
only achieved the same FNs, but also did not detect the object of interest in Figure 7a; RetinaNet
(ResNet50) and RetinaNet (ResNet101) provided only two FNs each one. The objects were not detected
in Figure 7b,e when using RetinaNet (ResNet-50), while RetinaNet (ResNet-101) did not detect them
in Figure 7c,d. These images were challenging for the trained network due to illumination and noise
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conditions (Figure 7f). Nevertheless, even in these conditions RetinaNet (ResNet-50) achieved an IoU
value of 0.77 with a corresponding confidence (score) value of 0.99.

To examine the importance of our proposed framework, a discussion is presented with a selection
of similar studies. A study by [38] achieved an F1-measure score of 0.95 using mobile laser scanning
data and a random forest model to identify manholes. The approach, although showing high
performance for a shallow learning method, is more expensive regarding data acquisition than RGB
data imagery. Another approach by [25] detected manholes in aerial imagery with an accuracy of 99%
and a positioning error below 0.7 m. In that study, a Single Shot multi-box Detector (SSD) method
was developed and evaluated for images mostly captured from the nadir position. A paper by [25]
evaluated different DL networks to detect manholes similar to the current study. However, they
utilized aerial images. Their method faced the same conditions as the study by [25]; the high-resolution
imagery from the nadir position returned lower accuracies (ranging from 0.67 to 0.89) than our
approach. However, it is difficult to compare the results with the performance of our method because
they evaluated images from a different point-of-view. The investigated DL-based approach identified
hard-to-detect instances with proximal accuracy metrics, in different sizes, point-of-view, and positions,
which demonstrates its versatility.

Based on the qualitative and quantitative analysis, RetinaNet outperformed Faster-RCNN,
mainly due to more reliable detection in challenging situations. It is important to highlight that
the RetinaNet method focuses on hard-to-detect examples in the training task. Furthermore, a higher
performance was revealed for manhole detection compared to storm-drain, which confirms the
previous work by [26]. Furthermore, only small differences was verified in the results obtained with
different backbones. According to [26], results from deep models (like ResNet101) could deteriorate
the detection’s quality when using aerial images because the last layers of the model are not able to
respond to too small objects, as shown in [25]. Thus, street-level images can provide a good alternative
to detect manhole and storm-drain objects in images.

Previous work [22,39] showed the potential of RetinaNet in other remote sensing applications,
which was also verified in the detection of manhole and storm-drain. However, additional experiments
are still necessary to evaluate its effectiveness in other applications.

Figure 7. Examples of images that some models did not predict the bounding boxes to the
division 76-12-12 considering (a) shadow presence, (b) small size objects, (c) small size objects truncated,
(d) small size objects, (e) small size objects with shadow presence and (f) shadow presence.
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4. Conclusions

The state-of-art deep network named RetinaNet was investigated to detect storm-drains and
manholes in mobile mapping RGB images. RetinaNet was considered with a backbone composed of
the ResNet-50 and the Resnet-101 models. THe approach revealed high accuracy in detecting both
objects (with mAP higher than 90%). The RetinaNet method was suitable to detect storm-drains in
terrestrial RGB imagery, and it outperformed the Faster R-CNN method.

In the future, the trained network will be able to be used to map entire urban catchments with
the help of image-based mobile imagery to allow for the incorporation of manhole and storm-drain
information into hydrologic and hydraulic modeling to better prevent and mitigate the impact of
urban flood events. Other state-of-the-art methods should be proposed and tested to produce a more
specific network, which is related to our previous work [21], that can handle this and similar tasks
considering point annotation. We provide the labeled dataset used in this study and encourage future
research to test the performance of new DL methods with this data. Because of the specific nature
of this type of labeled data, it is usually not easily available, and hence it should benefit the training
process for focused hydrological work in urban areas.
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CAPÍTULO

4
Finding Small Objects: A Patch-Based

and Distance-Based Evaluation
Method

Este artigo propõe uma abordagem para a detecção de objetos pequenos em

imagens de alta resolução, utilizando como principal aplicação a identificação

de insetos em folhas de soja.

Inicialmente, um conjunto de dados anotado com superpixels foi adaptado

para oferecer anotações baseadas em caixas delimitadoras, possibilitando sua

aplicação tanto em tarefas de detecção quanto de segmentação. A estratégia

desenvolvida inclui técnicas de pré-processamento baseadas no recorte so-

breposto das imagens, o que ajuda a preservar objetos pequenos durante o

treinamento e a inferência dos modelos. Além disso, foram propostas estra-

tégias de pós-processamento, como a adaptação do algoritmo Non-Maximum
Suppression (NMS) e uma métrica de avaliação baseada na distância entre

centros de objetos, buscando superar limitações da métrica IoU tradicional.

Os resultados experimentais demonstram que as técnicas propostas me-

lhoram o desempenho na detecção e segmentação de pequenos objetos, des-

tacando o potencial da abordagem para aplicações em cenários agrícolas e

outros domínios com objetos pequenos.
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Abstract

Detecting small objects in high-resolution images remains a challenging task in computer vision,
especially in agricultural scenarios where targets often occupy only a few pixels. This paper
proposes an strategy to enhance the detection and segmentation of small objects, focusing on
the identification of insects on soybean leaves. A dataset originally annotated with superpixels
was adapted to provide bounding box annotations, enabling its use for both detection and
segmentation. The methodology introduces preprocessing techniques based on dividing images
into overlapping patches, which help preserve small objects during model training and infer-
ence. Furthermore, post-processing strategies, including an adaptation of the Non-Maximum
Suppression (NMS) algorithm and a distance-based evaluation metric, were developed to over-
come the limitations of traditional metrics such as Intersection over Union (IoU) when handling
small objects. Experimental results demonstrate that the proposed methods significantly im-
prove the detection and segmentation performance of small insects, as evaluated with models
such as DINO and Segformer. The study discusses the strengths and weaknesses of detection
and segmentation approaches, providing insights for future applications in different domains.

Keywords: small object detection, high-resolution images, agricultural applications, insect
identification, distance-based metric

1. Introduction

Object detection in images has become an increasingly common task in the field of computer
vision [1, 2, 3]. Deep neural network architectures have played a central role in this progress.
Initially, Convolutional Neural Networks (CNNs) achieved remarkable results in object detec-
tion, mainly due to their high capacity for extracting features from images [3, 4]. More recently,
Transformer-based models have stood out in different scenarios, introducing attention mech-
anisms capable of capturing global dependencies and achieving strong performance in several
detection tasks [5, 6].

Although CNNs perform well in detecting large and medium-sized objects in conventional
datasets [2], identifying small objects remains a challenge [7]. Widely used architectures, such
as Faster R-CNN [8], SSD [9], and YOLO [10], for instance, have shown difficulties when applied
to the detection of small-sized targets.

Among the factors that increase this challenge, scale variation is particularly noteworthy.
Objects of interest are not always well represented in the image, and issues such as illumination
and occlusion can also reduce the effectiveness of detection. Furthermore, the features of
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large objects can be more easily extracted compared to those of small objects, since the latter
typically have low resolution and are noisy [11, 12, 13].

Several authors have proposed specific definitions for small objects. The relative definition
considers small objects to be those whose width and height correspond to less than 10% of the
dimensions of the original image [14, 15]. According to the absolute definition, small objects
have a resolution lower than 32× 32 pixels [14, 16].

To understand how the detection of small objects in images has been addressed, it is essential
to review the recent literature. In this context, Section 2 provides an overview of the main
related works, highlighting the strategies, techniques, and limitations reported by different
authors.

Based on these considerations, the remainder of this paper is organized as follows. Section 2
provides an overview of the related works, with emphasis on the main strategies and limitations
reported in the literature. Section 3 discusses the motivation behind this work and defines its
main objectives, highlighting the challenges of detecting small objects in high-resolution images.
Section 4 details the dataset adaptation, the preprocessing and postprocessing techniques, and
the evaluation protocol adopted in this study. Section 5 presents and discusses the experi-
mental results, including a comparative analysis between object detection and segmentation
approaches. Finally, Section 6 summarizes the main findings and outlines directions for future
research.

2. Related Work

Object detection approaches based on CNNs face recurrent challenges related to scale vari-
ation [14, 17, 18], background interference [15, 19, 20], and information loss caused by down-
sampling operations performed in deeper layers of the network [20, 21]. Such limitations become
especially critical when identifying small objects relative to the image size.

With the advancement of satellite technologies, as well as Unmanned Aerial Vehicles (UAVs),
object detection has become increasingly important in aerial imagery. Images obtained from
these technologies are characterized by large background areas, with only a small portion of the
image representing objects of interest [22, 3, 23], which may result in insufficient information
to represent the objects due to their small sizes [4, 7].

In addition to remote sensing images [24, 25, 26] and images captured by drones [27, 28],
the aforementioned challenges are also evident in domains such as defect and part detection [29,
30, 31], maritime scenes [32, 33, 34], insect and agricultural pest detection [35, 36], embedded
systems [37, 38, 39], and traffic sign detection [40, 41, 42]. The diversity of contexts highlights
the need for robust and adaptable solutions to mitigate the limitations of CNN in complex
scenarios.

In this context, several studies have proposed structural improvements to CNN-based archi-
tectures [43], modifications to the region proposal stage [44], as well as advances in upsampling
techniques [45], image segmentation [46], knowledge distillation methods [47], splitting the
image into overlapping patches [35], and strategies to reduce false positives [26, 48].

Several review studies (surveys) provide a comprehensive overview of small object detection,
summarizing advances, challenges, and recurring solutions in this field. For example, one anal-
ysis [49] of recent methods discusses aspects such as definitions of small objects, architectural
improvements in convolutional and transformer-based networks, feature fusion techniques, data
augmentation strategies, and specific adjustments for handling low-resolution objects. Simi-
larly, another study [50] addresses the challenges inherent in large-scale small object detection,
highlighting datasets, evaluation metrics, and standardized benchmarks, as well as proposing
directions for future research.

5



In domains such as optical remote sensing, one work [51] describes methods aimed at de-
tecting objects in high-resolution images, with emphasis on applications such as environmental
monitoring, infrastructure inspection, and surveillance. This study highlights the importance
of adapting architectures and preprocessing techniques to handle scale variations, high target
density, and background interference—factors frequently present in agricultural and urban sce-
narios. These surveys consolidate existing knowledge, mapping gaps and opportunities, and
provide guidance for the development of approaches related to small object detection.

This section is organized into subsections that highlight the strategies of related works.
Subsection 2.1 provides a brief overview of studies on the detection of small objects in remote
sensing images. Subsection 2.2 summarizes works related to drones and aerial images. Subsec-
tion 2.3 describes techniques adopted for detecting insects, arachnids, and agricultural pests in
plantations.

2.1. Small Objects in Remote Sensing Images

The detection of small objects in remote sensing images is a challenging task, especially due
to the high resolution of the images and the small ratio between the object size and the overall
scene.

Methods such as You Only Look Once version 3 (YOLOv3) [52], Single Shot MultiBox
Detector (SSD) [9], and Faster Region-based Convolutional Neural Network (Faster R-CNN) [8]
were compared in a study [53] aimed at identifying small aircraft in images from Google Earth
and the Dataset for Object deTection in Aerial images (DOTA) dataset [54]. The results showed
that, in addition to higher speed, YOLOv3 also achieved better average detection performance
compared to the other architectures.

To overcome the limitations of classical models, several approaches have proposed structural
modifications. For instance, Context-Based Feature Fusion SSD (CBFF-SSD) [55] integrates
feature fusion units and detection maps to improve the identification of small objects. Experi-
ments on the Northwestern Polytechnical University Very High Resolution 10 (NWPU VHR-10)
dataset [56] demonstrated significant precision gains compared to the traditional SSD.

Other approaches aim to enhance multiscale feature extraction. One example is the appli-
cation of Mask Region-based Convolutional Neural Network (Mask R-CNN) [57] with Residual
Neural Network with 101 layers (ResNet101) [58] adapted with Feature Pyramid Networks
(FPN), which assists in detecting objects at different scales. The proposed method [24] was
evaluated on datasets such as DOTA and Remote Sensing Object Detection (RSOD) [59],
demonstrating promising results for detecting “airplane” and “ship” classes.

The use of attention mechanisms and context fusion has also proven to be effective. The
Multiscale Context and Enhanced Channel Attention (MSCCA) model [25] combines the Pelee
Network (PeleeNet) backbone [60] with Efficient Channel Attention (ECA) blocks, achieving
80.4% mean Average Precision (mAP) on DOTA and 94.4% on NWPU VHR-10, balancing
detection speed and computational resource efficiency.

In addition to attention mechanisms, maintaining resolution has shown good results in de-
tecting small objects in complex backgrounds. In this context, the High-Resolution Transformer-
embedding Parallel detection Network (HRTP-Net) approach [21] proposes modules that pre-
serve the high spatial resolution of small objects and distinguish their pixels from the back-
ground by means of attention mechanisms. Evaluated on the Maritime SATellite Imagery
(MASATI) [61], VEhicle Detection in Aerial Imagery (VEDAI) [62], and DOTA datasets, the
model outperformed traditional methods.

Computational limitations are common in devices such as satellites and drones. In this
regard, the Guided Hybrid Quantization with One-to-One Self-Teaching (GHOST) model [47]
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employs guided distillation to preserve important details and detect small objects, reduces
computational costs, and increases accuracy compared to traditional quantization methods.
Evaluated on the VEDAI, DOTA, NWPU VHR-10, and DetectIon in Optical Remote sensing
images (DIOR) [63] datasets, GHOST outperformed other detectors.

In the context of large-scale images (with dimensions of 20000 × 20000 pixels), Remote
sensing Region-based Convolutional Neural Network (R²-CNN) [26], based on Tiny-Net, stands
out for its low memory consumption and for achieving a mAP of 96.04%. This network jointly
trains a classifier and a detector, processing overlapping image patches to reduce false positives
and increase localization accuracy.

Complex scenarios with overlapping objects and confusing backgrounds require solutions
with greater contextual sensitivity. Scene-Contextual Feature Pyramid Network (SCFPN) [64]
employs group normalization and improves the detection of small objects at multiple scales.
The model was evaluated on the DOTA dataset and demonstrated superior performance over
baseline methods at IoU ≥ 0.7 metrics.

Even more robust approaches include architectures composed of multiple components. The
Multi-Component Fusion Network (MCFN) [20] combines three distinct blocks: pyramid fu-
sion, region selection based on relative intersection, and context incorporation. This structure
significantly improves detection in complex scenarios, outperforming Faster R-CNN, YOLOv3,
and SSD.

Considering low resolution or image noise, Edge-Enhanced Super-Resolution Generative
Adversarial Network (EESRGAN) [65] employs a hybrid approach with Generative Adversarial
Network (GAN) for edge enhancement and super-resolution. Experiments on the Car Overhead
with Context (COWC) [66] and Oil and Gas Storage Tank Dataset (OGST) [67] datasets
indicated that preserving structural details is essential for detecting small objects.

Recent approaches explore the potential of hybrid architectures. The Local Perception Swin
Transformer (LPSW) [46] architecture incorporates elements from the Swin Transformer [68]
along with spatial attention techniques to enhance segmentation accuracy. Based on datasets
such as DIOR, High-Resolution Remote Sensing Detection (HRRSD) [69], and NWPU VHR-10,
the approach demonstrated faster inference and superior segmentation results.

Specific approaches such as Hierarchical Scale Sensitive CenterNet (HSSCenterNet) [70]
focus on vessel detection, integrating direction vectors to predict oriented bounding boxes. The
Model with Deep Reinforcement Learning and Efficient Convolution Feature learning (MdrlEcf)
model [71] incorporates reinforcement learning to improve the localization and classification of
small objects, standing out in the detection of maritime and urban images.

Still in the context of oriented objects, some techniques [72, 73] employ rotated region of
interest modules and aspect ratio between object width and height to estimate the orientation
angle. Experiments conducted on the NWPU VHR-10, DOTA, University of Chinese Academy
of Sciences – Aerial Object Detection (UCAS-AOD) [74], High Resolution Ship Collection
2016 (HRSC2016) [75], and German Aerospace Center 3K Vehicle Dataset (DLR-3K) [76]
datasets showed that the proposed techniques outperform traditional object representation
methods, in addition to being faster and more accurate during inference.

Another noteworthy proposal is Vehicle Detection Network based on Remote Sensing Im-
ages (VDNET-RSI) [77], a two-stage network that combines edge preservation using Local
Implicit Image Function (LIIF), super-resolution, detection, and attention modules. Evalu-
ated on the DIOR dataset, the approach outperformed models such as You Only Look Once
version 5 (YOLOv5) [78], Faster R-CNN, and Fully Convolutional One-Stage Object Detec-
tion (FCOS) [79], demonstrating potential for applications in intelligent transportation sys-
tems.
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These approaches reflect the diversity of strategies employed in the detection of small objects
in remote sensing images, combining computational efficiency, accuracy, and robustness.

2.2. Small Objects in Aerial and Drone Images

The detection of small objects in aerial images represents a significant challenge in computer
vision, especially in contexts with limited resources and complex visual scenarios. Conventional
object detectors are effective for medium or large-sized targets but face difficulties when applied
to the identification of small objects. This section summarizes proposed approaches to address
these limitations.

The detection of defects in electrical insulators, characterized as small objects in complex
backgrounds, motivated the proposal of Ghost Convolution and Centralized Feature Pyramid
You Only Look Once (GC-YOLO) [29], an optimization of YOLOv5. While ghost convolutions
extract features more efficiently, coordinated attention mechanisms highlight relevant regions
of the image. Evaluated on a dataset with 1600 images and 5375 annotations, GC-YOLO
outperformed traditional architectures.

An extension [27] of YOLOv5 introduces modules such as Feature Enhancement Block
(FEBlock), Self-Characteristic Expansion Plate (SCEP), and additional detection layers to han-
dle small objects in dense scenarios with background noise. Evaluated on the VisDrone2021 [80]
dataset, the model significantly improved performance, increasing mAP@0.5 from 42.5% to
54.4% when using a resolution of 1024 × 1024. The results were promising under conditions
such as nighttime streets and lighting variations.

A variation [28] of YOLOv3 incorporates modified residual blocks and a multiscale structure
for prediction at different resolutions. The network was trained with a dataset containing 4406
images categorized by distance and background noise. Strategies such as preliminary data
classification and retraining resulted in a mAP of 90.88%.

To address the computational limitations of embedded devices, Laplace Bottleneck and
Cross-Layer Attention Upsampling You Only Look Once (LC-YOLO) [38] was proposed. The
architecture incorporates modules that enhance details in the shallow layers through enhance-
ment filters and fuse shallow and deep features using pixel-level cross-attention. Evaluated
on the UCAS-AOD dataset, the model achieved a mAP@0.5 of 94.96%, outperforming more
robust versions of You Only Look Once (YOLO).

Aiming at small object detection in UAV missions, a proposal [39] modified the You Only
Look Once version 4 (YOLOv4) architecture by introducing the Advanced Downsampling Cross
Stage Partial Darknet-53 (ADCSPDarknet53) backbone and a new loss function. The model
incorporates data augmentation techniques and a classification method based on distance met-
rics. Evaluated with aerial images of small objects, the detector achieved mAP@0.5 of 61.00%
with 77 Frames Per Second (FPS).

In the same context, Small Object Detection Convolutional Neural Network (SODCNN) [81],
a variation of You Only Look Once version 7 (YOLOv7) [82], was proposed with several struc-
tural optimizations. Among the improvements are the removal of the large object detection
module, an increased number of anchors, and the replacement of the Complete Intersection over
Union (CIoU) loss function with Efficient Intersection over Union (EIoU). Evaluated on the
VisDrone2019 dataset, the model achieved amAP@0.5 of 54.03% and outperformed other mod-
els in the YOLO and Cascade Region-based Convolutional Neural Network (Cascade R-CNN)
categories.

Deconvolution modules, super-resolution, and shallow layer fusion were combined to detect
small objects. The model [83] was evaluated on datasets including cattle and pedestrian images
captured by drones, achieving a mAP of 79.12% and Recall of 94.10%, outperforming traditional
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detectors. The balance between performance and accuracy proved suitable for surveillance and
precision agriculture applications.

An alternative approach [84] explored the use of two convolutional networks to improve
the detection of vehicles with multiple orientations and scales. The first network generates
oriented region proposals based on hierarchical feature maps, while the second performs object
classification. Evaluated on the VEDAI and Overhead Imagery Research Data Set (OIRDS) [85]
datasets, the model outperformed traditional architectures.

Compact models have also been explored for small object detection when there are hardware
constraints. One proposal [37] uses pretrained layers, concatenates multiscale features, and ap-
plies unsupervised training to extract representations. Prediction is performed by lightweight
classifiers and an optimized regression model, balancing accuracy, performance, and low com-
putational cost.

Another relevant approach is Attention Enhancement and Fusion Network (AEFNet) [32],
proposed for small object detection in maritime scenes. The architecture combines the Swin-T
backbone [68] with self-attention modules, highlighting features in complex backgrounds and
fusing information across different scales to preserve small target details. Evaluated on the
TinyPerson [86] dataset, AEFNet showed good performance in contexts with small objects and
background noise.

A proposal [87] integrated the CSWin Transformer with Mask R-CNN, complemented by
a hybrid module that incorporates smaller patches of the images. This approach aims to
strengthen detection at multiple scales, preserving details such as edges and corners, and to
improve the identification of small objects without increasing model complexity. The results
showed significant gains, especially for small objects.

These approaches reflect the diversity of strategies proposed for the detection of small objects
in aerial images, combining computational efficiency, detail preservation at multiple scales, and
attention mechanisms to address the limitations imposed by low-resolution targets, complex
backgrounds, and operational constraints.

2.3. Insects, Arachnids, Agricultural Pests, and Plantations

The detection of insects in plantation images presents challenges similar to small object
detection, mainly due to the reduced size of the species and the similarity between individuals.

A study [35] divides images into overlapping 800 × 800 pixel patches to be processed by
the YOLOv4 detector. By combining this strategy with Efficient Network (EfficientNet) in
the classification stage, an accuracy of 89% was achieved. This approach proved effective in
distinguishing small and similar species, such as Phyllotreta striolata and Phyllotreta atra.

To detect small pests, Yolo-Pest [36] was developed with modules that extract features in
scenarios with few samples and a layer that expands receptive fields and reinforces informative
channels. Evaluated on agricultural pest images, the model achieved 91.9% mAP@0.5, outper-
forming You Only Look Once version 5 – small (YOLOv5s) by almost 8% while reducing the
number of parameters.

An approach [88] based on Gradient-weighted Class Activation Mapping (Grad-CAM) was
applied to YOLOv5 for detecting wheat ears. The final architecture removes the large-scale
layer, adds a micro-scale layer, and enhances feature extraction at the intermediate scale. Tests
on the Global Wheat Head Detection Dataset (GWHD) [89, 90] dataset showed an increase in
Average Precision (AP) to 93.5% at high resolution with a reduction in parameters.

The recognition of impurities in corn grains also requires attention to small objects. An
architecture [91] extracts multiscale semantic features and generates bounding boxes using an
Adaptive Region Proposal Network (ARPN), integrating Faster R-CNN with Efficient Network
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– Model B7 (EfficientNetB7). The model outperforms alternatives such as ResNet101 and
EfficientNetB7, standing out in the detection of small objects.

The automated identification of tick species in images was enabled by Tick Identification
Network (TickIDNet) [92]. The model was trained on a dataset of images with variations in
quality and object size. Although good accuracy was achieved, the model was affected by the
relative size of the tick and characteristics such as life stage and feeding status.

To distinguish between normal and defective regions in navel oranges, Feature Skyscraper
Detector (FSD) [93] was proposed. The architecture employs dense connectivity and optimizes
the extraction of small object features, such as black spots, as well as precisely distinguishing
the ends of the stem and the flower. Evaluated on a specific dataset, the model outperformed
detectors such as YOLOv3 and SSD.

The studies reviewed summarize the detection of insects, pests, and defects in agricultural
scenarios, highlighting the challenges associated with the identification of small objects, high
visual similarity, and low data representativeness.

3. Motivation and Objectives

As observed in related work, object detection in images has evolved significantly in recent
years, with CNNs architectures and, more recently, Transformer-based models achieving high
performance mainly in contexts where objects are large relative to the image size, which favors
the features extraction by the models.

Despite these advances in larger-scale scenarios, small object detection remains one of the
main challenges in computer vision, especially in contexts with limited resolution, complex
backgrounds, and high object density. Although significant progress has been made through
the use of specialized architectures, attention mechanisms, and multiscale techniques, many
studies focus on urban, maritime, and traffic scenarios, with emphasis on vehicles and vessels.

Insect detection, in turn, remains a less explored field, even though it shares several chal-
lenges with the aforementioned scenarios, such as the reduced size of objects and visual simi-
larity between classes. Only a small number of approaches have been proposed for this domain,
and some of them employ variations of the YOLO family. Moreover, a lack of strategies that
leverage image pre and post-processing techniques and result refinement has been observed.

These challenges become even more evident in situations where images are resized to be
processed by CNNs, causing information about small objects to disappear [94]. Even when they
remain visible, as the images undergo successive convolutions and their feature maps become
smaller, the information associated with these objects tends to be further lost [22, 1, 95].

In addition to the challenges mentioned above, the well-known datasets used for training
CNNs, such as ImageNet1, MS COCO2, and PASCAL VOC3, consist of images acquired from a
frontal viewpoint and with a certain proximity to the objects. In this way, CNNs architectures
developed for object detection are more suitable for the characteristics of these datasets [1].

Another issue that arises in small object detection is the lack of data, as most datasets
contain annotations for large or medium-scale objects. For these specific problems, object
detection algorithms such as CNNs may not be able to provide good results [2].

Related work has shown that the strategy of cropping images helps with the detection of
small objects, but there is no standardization regarding its application. Some studies adopt

1Available at: https://www.image-net.org/
2Available at: https://cocodataset.org/
3Available at: http://host.robots.ox.ac.uk/pascal/VOC/

10



overlap between the cropped regions, while others do not use this feature. Another aspect that
is rarely addressed is the procedure for reuniting objects that end up being split during the
image cropping process. This highlights that current solutions are generally developed for very
specific problems, which hinders their generalization to other scenarios.

In many scenarios, small objects are the main targets, and discarding regions may lead to
the loss of important information. Given this challenge, efforts were made to detect insects in
images of soybean leaves. When viewed from above, insects appear with reduced dimensions
relative to the total image size.

To address this difficulty, the strategy of cropping images into smaller overlapping regions
was adopted, ensuring that all areas of the image were analyzed and that no object of interest
was discarded. In addition, this work compares approaches based on detectors and segmenters,
evaluating the performance of both types of models in identifying the targets.

The general objective of this work was to propose techniques for detecting small objects in
high-resolution images, exploring detection and segmentation approaches, especially in under-
explored domains such as insect identification. To achieve this general objective, the following
specific objectives were defined and accomplished:

• Annotate a dataset with insect images, which was originally developed for superpixel
classification, thus contributing to research on the detection and segmentation of small
objects;

• Develop and standardize preprocessing techniques, including methods for cropping images
with overlap and converting bounding boxes into segmentation masks;

• Propose and implement postprocessing strategies, including the merging of detections
that were split during preprocessing and alternatives to address the limitations of the
IoU metric;

• Evaluate and compare detection and segmentation approaches for identifying small ob-
jects, analyzing the advantages and limitations of the original methods and the proposed
pre and postprocessing techniques in this work.

4. Material and Methods

Small objects in high-resolution images become imperceptible when the images are resized
as they pass through the layers of machine learning models. Considering that the objects
are insects and the images represent soybean leaves, the targets are difficult to visualize even
without resizing the image. To address this challenge, several techniques were implemented
and are described in detail in this section.

The first technique adapts a dataset in which insects were annotated using superpixels. This
adaptation was necessary because the proposed technique employs bounding boxes. Therefore,
the superpixels were converted into bounding boxes that delimit the objects of interest. The
adaptation of the dataset for the proposed problem and approach is described in Subsection 4.1.

The second technique consists of creating crops from the original image. These crops are
then individually used for object detection or segmentation, reducing data loss when resizing the
image to a smaller size. After detection or segmentation, the crops are merged to reconstruct
the original image. The details of this proposal are presented in Subsection 4.2.

The third technique is a proposed metric that reduces the impact of pixel errors in small
objects. This error is present in traditional metrics that use bounding boxes. Subsection 4.3
details the proposed metric and describes the experiments.
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Table 1: Number of superpixels for each class [96].

Species Samples

Diabrotica speciosa 358
Euschistus adult 3052
Euschistus mating 132
Euschistus nymph 342
Gastropoda 357
Spodoptera 89
Background 5670

Total 10000

4.1. Dataset Adaptation

Originally developed for a classification approach, the dataset [96] consists only of super-
pixels, which do not contain information about the location of the objects of interest in the
images. This limitation restricts the use of the data in techniques that rely on detection and
segmentation.

The objects of interest are insects segmented using the SLIC Superpixels technique [97]
and classified by an expert. The segmentation process used only superpixels, and the object
coordinates were discarded. Subsection 4.1.1 provides more details about the dataset.

The approach proposed in this study is based on bounding boxes, which require the co-
ordinates of the objects of interest with respect to the image, making it necessary to adapt
the original dataset because this information is not available. This adaptation is described in
Subsection 4.1.2.

After adapting the original dataset to support object detection and segmentation, the final
version provides comprehensive annotations for thousands of small insect instances in high-
resolution images. The details regarding the structure, class distribution, and partitioning
protocol of the final dataset are presented in Subsection 4.1.3.

4.1.1. Original Dataset

The dataset [96] contains 1,000 images collected in a soybean field over several days and
under different weather conditions, between 06:00 and 19:30. The images were captured at
a distance of approximately one meter from the soybean leaves and at an angle of about 45
degrees. All images have a size of 2268× 4032 pixels.

In total, seven classes were considered for the superpixels, one of which represents the
background of the image, that is, a superpixel that does not contain an insect. The other classes
represent insect species, namely, Diabrotica speciosa, Euschistus adult, Euschistus mating,
Euschistus nymph, Gastropoda, and Spodoptera.

Table 1 shows the number of samples for each species and the background class, totaling
10,000 superpixels.

4.1.2. Adapted Dataset

The dataset adaptation process was divided into three steps. In the first step, the superpixels
were searched in the images. In the second step, matches of superpixels found in the images
were selected. Finally, in the third and last step of the adaptation process, the bounding boxes
of the superpixels were adjusted.
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Table 2: Score for a superpixel from the Spodoptera class.

File name xmin ymin xmax ymax score

626.jpg 3520 600 3760 840 17.37
142.jpg 3790 390 4030 630 28.20
185.jpg 3780 1050 4020 1290 29.22
653.jpg 3560 410 3800 650 29.50
994.jpg 110 810 350 1050 29.88
199.jpg 1000 990 1240 1230 29.98
252.jpg 3170 810 3410 1050 30.06
355.jpg 2890 1800 3130 2040 30.45
564.jpg 2410 780 2650 1020 30.47
77.jpg 1230 1960 1470 2200 30.59

The first step of the dataset adaptation process was to search for each superpixel in the
original image and obtain the coordinates of its bounding box. For this purpose, the Template
Matching algorithm4, available in the OpenCV5 Computer Vision library, was used.

A script was developed to search for each superpixel sample, except for the “Background”
class, in all 1,000 images of the dataset. This script creates a text file for each superpixel, and
each line in the file contains information about the image in which the superpixel was searched,
the coordinates of the match found, and its score.

The first 10 lines of the file generated by searching for a superpixel from the Spodoptera class
are shown in Table 2. The lines are ordered by increasing score, indicating that the searched
superpixel is most likely part of the image “626.jpg”, within a rectangle whose top-left corner
is at position (3520, 600) and bottom-right corner is at position (3760, 840).

A Graphical User Interface (GUI) application was developed to assist in selecting the best
match. In this application, the user can view the superpixel and the 10 best matches found
among the 1,000 images, and then click on the pattern most similar to the superpixel.

When a match is found, a JSON file is used to store information about the image to which the
superpixel belongs, as well as the coordinates of the bounding box that delimits the superpixel
region. Figure 1 shows the application’s main screen.

In Figure 1, the searched pattern is shown on the left, and the 10 best matches found are
displayed side by side and numbered from zero to nine. In this example, the best match found
for the superpixel from the Spodoptera class is number 0. By clicking on it, the information
about the image in which the pattern was found, the coordinates of the matched pattern, and
the respective class of the object are stored.

Most superpixels were found using this technique. When a superpixel was not found among
the first 10 matches, the next 90 matches were checked. If, even then, the corresponding
superpixel was not found, it was discarded and not added to the dataset.

The final step of the adaptation process was to adjust the object coordinates. Since the
coordinates obtained corresponded to the superpixels, most of the object region was actually
composed of image background. Therefore, it was necessary to adjust the bounding box of each
object.

4Available at: https://docs.opencv.org/master/d4/dc6/tutorial_py_template_matching.html
5Available at: https://opencv.org/
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Figure 1: Main screen of the application developed to assist in selecting the best match.

Figure 2: Bounding box coordinate adjustment.

The LabelMe software6 was used in this step. Figure 2 shows an example of bounding box
coordinate adjustment. From left to right, the first image represents a superpixel. The second
image depicts the region corresponding to the superpixel in the source image. Finally, the third
image corresponds to the bounding box that encompasses only the object of interest. In this
case, an insect from the Euschistus class.

In addition to the coordinate adjustment, new insects were annotated in the images, and the
insects of the species Euschistus adult, Euschistus mating, and Euschistus nymph were merged
into a single class (Euschistus), thus finalizing the dataset adaptation process.

After all adjustments, the dataset was defined with five classes, including one class to
represent the image background. Table 3 shows the number of bounding boxes for each class.

4.1.3. Final Dataset

The final dataset comprises 10, 537 objects (excluding the “Background” class), annotated
in 1, 000 images. Figure 3 shows an image from the dataset, with samples enlarged by 10×,
highlighting that the objects are small relative to the image size.

The dataset images were randomly distributed to ensure that approximately 70% of the

6Available at: https://github.com/wkentaro/labelme
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Table 3: Number of bounding boxes for each class.

Category Id Species Count

1 Diabrotica 1346
2 Euschistus 8126
3 Gastropoda 905
4 Spodoptera 160
5 Background 1000

Object total — 11537
Image total — 1000

Figure 3: Samples of dataset species enlarged by 10×.
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Figure 4: Representation of the plane (black lines with arrows), image or crop (black rectangle), annotation
(green rectangle), and detection (red rectangle).

samples of each species were used for training, 15% for validation, and 15% for testing. Table 4
presents the results of this split.

Table 4: Dataset split.

Category Id Species Training Validation Test Total

1 Diabrotica 951 (71%) 200 (15%) 195 (14%) 1346
2 Euschistus 5610 (69%) 1264 (16%) 1252 (15%) 8126
3 Gastropoda 633 (70%) 132 (15%) 140 (15%) 905
4 Spodoptera 111 (69%) 24 (15%) 25 (16%) 160
5 Background 700 (70%) 150 (15%) 150 (15%) 1000

Object total — 8005 (69%) 1770 (15%) 1762 (15%) 11537
Image total — 700 (70%) 150 (15%) 150 (15%) 1000

4.2. Proposed Method

An image may lose information during the resizing step. At this stage, objects may become
smaller or even disappear, which is a problem observed in the insect dataset. Thus, the proposed
method suggests a preprocessing step, referred to as Cropping.

In this section, images, crops, annotations, and detections will be demonstrated using rect-
angles, which in turn will be represented by two points: the top-left point and the bottom-right
point. The coordinates of each point consist of two values, represented by x and y.

The coordinate system is similar to the Cartesian plane, with the Y axis inverted. Figure 4
shows an example of an image, with an annotation and a detection, and their respective points
represented in the plane.
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4.2.1. Cropping

In the cropping step, each input image is divided into N ×N crops, forming a grid, where
N is a parameter to be specified. Each crop approximately preserves the aspect ratio of the
original image. An example of an image of size 756 × 1344 pixels with annotated objects is
shown in Subfigure 5a, and an example of a 3× 3 grid application is shown in Subfigure 5b.

(a) (b)

Figure 5: Application of a 3× 3 grid on a 756× 1344 pixel image. (a) Image with objects annotated in green;
(b) Image with grid application dividing the annotated objects.

Each crop in Subfigure 5b is used individually as input for the training and validation steps,
including crops that do not contain insects. All crops are annotated with the “Background”
class, which encompasses their entire area. These negative samples help the model learn regions
of the image without insects, reducing the number of false positives.

If a horizontal or vertical grid line divides an annotated object, the points delimiting this
object are adjusted, as are the points of objects that are not divided, to ensure that they do
not exceed the limits of their respective crop. The verification of annotated object division
is performed by iterating over each crop, calculating its intersection with all ground-truth
bounding boxes from the original image. When an intersection is detected, a new annotation is
generated with coordinates expressed relative to the crop local reference frame. In cases where
a grid line splits an object, the resulting fragments are preserved as separate annotations, unless
their height or width falls below predefined thresholds, in which case they are discarded.

The image splitting process generates new images and, in cases where an object is divided,
generates new objects. The behavior of the splitting process is similar to data augmentation
methods based on cropping7, which consist of extracting rectangular crops from the training
images to increase the data available for training.

In the example shown in Figure 5, nine new images are created from a single image, and
the number of annotated objects increases from seven to 13. The number of images and the
number of objects in a dataset may vary depending on the grid size chosen.

4.2.2. Mask Creation for Segmentation

Detection and segmentation are two distinct approaches for analyzing image content. De-
tection methods define the location of an object through bounding boxes, whose coordinates
are obtained by a regression process. Segmentation, in turn, is a method that classifies each
pixel in the image with a label corresponding to an object category.

7Available at: https://pytorch.org/vision/stable/transforms.html
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(a) (b)

Figure 6: Pair of crop and its corresponding mask. (a) Crop representation; (b) Corresponding mask.

The proposed approach uses bounding box coordinates to create segmentation masks, which
are used to train, validate, and test the model. A mask is an image with the same size as the
original image, and each pixel is assigned the value of the corresponding object category.

After the step of splitting the images into smaller patches, each crop is used to create a
mask. An example of a crop and its corresponding mask is shown in Figure 6.

The mask for each bounding box is computed such that pixels closer to the center have
values equal to or near 1.0, while pixels near the edge have values close to or equal to 0.0. A
filter is applied to discard pixels with values below the established threshold. Figure 7 shows a
bounding box and the resulting masks with a threshold ranging from 0.0 to 1.0.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 7: Masks generated for different threshold values (0.0 to 1.0 in 0.1 increments), corresponding to labels
(a)–(k), respectively.

4.2.3. Image Reconstruction

The image is reconstructed from predictions in overlapping crops. The overlaps are per-
formed in such a way that, in at least one crop, an object is not divided. A representation of
the overlapping grids is shown in Figure 8.

In Subfigure 8a, a 3 × 3 grid is applied to an image containing four objects in red, green,
blue, and light blue. The red object represents an object that was not split at this stage, while
all other objects were affected by the application of this grid.

In Subfigure 8b, the blue object—which was split in the previous grid—is now complete,
while the red object has a small segment cropped from its top. The green object, which
was cropped in both the 3 × 3 and 2 × 3 grids, is not cropped in the 3 × 2 grid shown in
Subfigure 8c. Even the light blue object, which was divided into four parts in the first grid,
can be seen completely in the 2× 2 grid.

After prediction in each of the grids, overlapping parts of the same object are eliminated
using an adapted non-maximum suppression approach, which keeps objects with larger area
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(a) (b)

(c) (d)

Figure 8: Representation of grids applied to an image. The outer border (in gray) represents the image
boundaries. (a) 3 × 3 training grid that covers the entire image; (b) 2 × 3 grid focusing on the vertical center
of the image; (c) 3× 2 grid focusing on the horizontal center of the image; (d) 2× 2 grid focusing on the center
of the image.

instead of those with the highest score. This ensures that objects that were not split are
retained rather than their smaller parts.

In addition, objects that have 0.5 or more overlap percentage with another are also discarded.
This is necessary because non-maximum suppression does not always eliminate all duplicates.

4.2.4. Proposed Metric for Evaluation

Traditional detection metrics, such as IoU, have some limitations when objects are small [20,
98]. In these cases, small variations in the predicted coordinates decrease the IoU value, even
when the prediction is visually close to the annotation. Table 5 demonstrates how pixel dis-
placement affects the IoU value for different bounding box sizes.

In Table 5, it can be observed that the smaller the object, the more sensitive the IoU
becomes to prediction displacement, which can increase the number of false negatives. Given
this limitation, and based on other distance metrics [39, 99, 100], a metric that combines
predictions and annotations is proposed.

The metric consists of measuring the distance between all prediction centers and all anno-
tation centers, for each image and for each class. This process creates a distance matrix, where
the rows represent the annotations and the columns represent the predictions.

Once the distance matrix is computed, the smallest distance is compared with a predefined
threshold for the minimum distance between centers. The annotation and prediction corre-
sponding to the smallest distance, if the threshold is satisfied, are considered a valid match.
Otherwise, they are considered an invalid match.
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Table 5: IoU for different bounding box sizes and pixel displacements. In red, values below 0.70.

Unit: pixels Displacement
Size 1 2 3 4 5 6 7 8 9 10

10x10 0.82 0.67 0.54 0.43 0.33 0.25 0.18 0.11 0.05 0.00
20x20 0.90 0.82 0.74 0.67 0.60 0.54 0.48 0.43 0.38 0.33
30x30 0.94 0.88 0.82 0.76 0.71 0.67 0.62 0.58 0.54 0.50
40x40 0.95 0.90 0.86 0.82 0.78 0.74 0.70 0.67 0.63 0.60
50x50 0.96 0.92 0.89 0.85 0.82 0.79 0.75 0.72 0.69 0.67
60x60 0.97 0.94 0.90 0.88 0.85 0.82 0.79 0.76 0.74 0.71
70x70 0.97 0.94 0.92 0.89 0.87 0.84 0.82 0.79 0.77 0.75
80x80 0.98 0.95 0.93 0.90 0.88 0.86 0.84 0.82 0.80 0.78
90x90 0.98 0.96 0.94 0.91 0.89 0.88 0.86 0.84 0.82 0.80
100x100 0.98 0.96 0.94 0.92 0.90 0.89 0.87 0.85 0.83 0.82

Valid matches are used to count the true positives. Invalid matches are used to account
for annotations without predictions and predictions without annotations, thus allowing the
estimation of false negatives and false positives.

After counting the false negatives, false positives, and true positives, it is possible to compute
Precision, Recall, and F-measure, the latter being the metric used to define the detection
capability of the proposed approach.

4.3. Experiments and Evaluation

The initial experiments were conducted on a computer with 16 GB of RAM, an Intel®
Core™ i5-9600K CPU @ 3.70 GHz ×6, running Ubuntu 24.04.1 LTS, and an NVIDIA GeForce
RTX 2060 GPU with 12 GB of memory.

Data augmentation techniques were applied to improve the generalization capability of the
CNN [101]. Random flipping with a probability of 50% was used in the training set. In addition,
annotations that were divided among different subimages also increased the overall amount of
data, simulating the crop technique.

The object detection experiments were conducted using the MMDetection framework8.
Five object detectors were used as baselines for comparison: Faster R-CNN [8], Retina Net-
work (RetinaNet) [102], DETR with Improved deNoising anchOr boxes (DINO) [103], DAB-
DETR [104], and YOLOv3 [52].

The architectures Segformer [105], DeepLabV3 [106], and DeepLabV3+ [107] were used as
baselines for evaluating the proposed method. All segmentation experiments were conducted
using the MMSegmentation framework9. For Segformer, the standard variants b0, b1, b2, b3,
b4, and b5 were used.

All trainings used the default hyperparameter values provided by the framework. Each
training run was performed for 30 epochs, with the batch size adjusted according to the archi-
tecture and the available GPU memory. Evaluation metrics were computed based on predictions
over the entire image, that is, by merging the predictions from all crops.

8Available at: https://github.com/open-mmlab/mmdetection
9Available at: https://github.com/open-mmlab/mmsegmentation
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5. Results and Discussion

This section presents the results obtained from experiments conducted on the test set.
To enable a direct comparison between detection and segmentation tasks, two representative
models were selected for this analysis: DINO [103] and Segformer B3 [105].

Subsection 5.1 compares training results using full images and crops, highlighting their im-
pact on the training process. Subsection 5.2 presents the inference and image reconstruction
procedures, including bounding box filtering, and describes the evaluation protocol based on
center-based matching. This section also compares the results obtained using image recon-
struction with those from the approach in which each crop is evaluated independently. Finally,
Subsection 5.3 compares object detection with segmentation-based approaches.

5.1. Effect of Image Cropping on Model Training

The effects of applying the image cropping technique become noticeable in the very early
stages of model training. The main impact lies in the increased processing time, which grows
proportionally to the number of crops generated from the original images. The increase in the
number of image crops significantly impacts training time for both detection and segmentation
models. Table 6 presents a comparison of training times for DINO and Segformer B3, using full
images and crops generated with a 5 × 5 grid. The reported times correspond to 30 training
epochs for each configuration.

Table 6: Comparison of training times for DINO and Segformer B3 using full images and crops generated with
a 5× 5 grid. Times are presented in the format days:hours:minutes (dd:hh:mm).

Model Full images Crops

DINO 00:03:11 03:09:22
Segformer B3 00:00:56 00:20:52

In these experiments, a total of 700 full images were used for training and 150 for evaluation.
When using crops, each image was divided into 25 patches, resulting in 17, 500 training samples
and 3, 750 evaluation samples for each epoch. For the DINO model, a batch size of 2 was used
during training and 1 during validation, while for Segformer B3, the batch sizes were 8 for
training and 1 for validation. It is important to note that the training times presented in
Table 6 include both the training and evaluation steps for all epochs.

Despite the higher computational cost, the increase in the number of samples brings signif-
icant benefits to the learning process. Analysis of the loss function shows that training with
crops results in lower error values compared to training with full images. An example of this
behavior is presented in Figure 9.

The training loss curves shown in Figure 9 reinforce the positive impact of using crops during
model training. For both DINO (a) and Segformer B3 (b), the models trained with crops exhibit
consistently lower loss values throughout the epochs when compared to those trained with full
images. This behavior is especially pronounced for the detection model (DINO), where the use
of crops leads to a substantially faster and more stable reduction in loss.

In the case of the Segformer B3, although the training loss quickly converges to very low
values, this result should be interpreted with caution. Since background pixels represent the
vast majority of the image, the model can achieve low loss values by simply predicting the
background class, which may give a false impression of high accuracy. Therefore, it is essential
to complement loss analysis with more robust evaluation metrics.
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(a) (b)

Figure 9: Comparison of training loss curves for detection and segmentation models. (a) full images and crops
(5× 5 grid) for DINO; (b) full images and crops (5× 5 grid) for Segformer B3.

Building on these observations, we now present a quantitative comparison of model perfor-
mance for both detection and segmentation tasks. Table 7 summarizes the results obtained for
DINO and Segformer B3, comparing training and evaluation using full images, and using crops
generated by dividing each image into a 5 × 5 grid. For the crop-based approach, predictions
were performed on overlapping crops using multiple grid configurations (4×4, 4×5, 5×4, and
5× 5), and the results were aggregated.

Table 7: Evaluation metrics for DINO and Segformer B3 on the test set using full images and crops.

Training Method Metric Full images Crops

FN 802 360
FP 276 393
TP 810 1252
P 0.746 0.761
R 0.502 0.777
F 0.600 0.769

DINO

mAP* 0.300 0.472

FN 859 334
FP 265 360
TP 753 1278
P 0.740 0.780
R 0.467 0.793
F 0.573 0.786
aAcc* 0.999 0.999

Segformer B3

mIoU* 0.279 0.625
mAcc* 0.296 0.681

Table 7 includes both the main metrics (False Negative (FN), False Positive (FP), True
Positive (TP), Precision (P), Recall (R), and F-score (F)), which were computed by aggregating
the predictions across all crops for each image, and the conventional detection and segmentation
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metrics (indicated with an asterisk). The latter—such as mean mAP for detection and IoU for
segmentation—were calculated based on the predictions from individual crops, without merging
them, in order to provide comparability with standard evaluation protocols. This distinction
is essential for correctly interpreting the values, as the aggregated metrics better reflect the
performance of the complete pipeline, while the asterisked metrics align with traditional single-
image evaluation approaches.

The results in Table 7 clearly demonstrate the advantages of the cropping strategy for both
detection and segmentation models. For DINO, the number of false negatives drops from 802
to 360 with crops, while true positives increase from 810 to 1252. This leads to a substantial
improvement in recall and F-score, with only a modest rise in false positives. Similarly, for
Segformer B3, applying crops nearly halves the number of false negatives and boosts both
recall and F-score, again with a small increase in false positives. Precision remains relatively
stable in both cases, indicating that the gains in recall are not solely at the cost of more incorrect
predictions.

Conventional metrics (mAP, average Accuracy (aAcc), mean Intersection over Union (mIoU),
and mean Accuracy (mAcc)), also show improvements when using crops. However, the abso-
lute values of these metrics remain low compared to the overall performance of the models,
and may underestimate their true effectiveness. In contrast, the other metrics reflect the gains
achieved through cropping. This highlights the importance of employing evaluation strategies
that capture the advances provided by the proposed approach.

Although the metrics in Table 7 summarize the quantitative differences between the evalu-
ated strategies, they do not fully capture the qualitative effects of cropping. Figure 10 provides
visual examples for both detection and segmentation models, comparing predictions with and
without the use of crops.

The results illustrated in Figure 10 provide further insights into the practical impact of
applying the cropping and filtering strategy. To properly interpret the results, it is important
to note that the colored boxes—green for true positives, red for false negatives, and orange for
false positives—are shown only in the prediction images.

Subfigure 10a displays a crop of the original image, which contains some insects but does
not include any annotations or predictions. When predictions are performed using DINO on
the full image (Subfigure 10b), only one object is correctly detected. In contrast, when using
crops (Subfigure 10c), all objects are identified, demonstrating a clear improvement in detection
performance with the proposed approach.

When analyzing the segmentation results in Subfigures 10d and 10e, each color represents
a different object category, while the darkest color corresponds to the background. When the
segmentation is performed on the full image, not all objects are correctly segmented, and some
that are segmented are assigned the wrong class. With cropping, however, all objects are both
accurately segmented and correctly classified.

When converting the segmentation predictions into bounding boxes (Subfigures 10f and 10g),
it is evident that the predictions from the full image contain only false positives and false nega-
tives. In contrast, the cropping-based technique achieves correct localization and classification
for all insect instances, further reinforcing the quantitative findings that cropping and filtering
contribute to more effective detection and segmentation of small objects.

5.2. Inference and Image Reconstruction

The inference process consists of loading the trained model and generating predictions for
each individual crop. Each crop contains metadata indicating its coordinates within the original
image, which allows the mapping of predicted bounding boxes to their correct locations in the
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 10: Comparison of detection and segmentation results before and after applying the cropping strategy.
(a) Crop of original image; (b) DINO predictions on the full image (no cropping); (c) DINO predictions after
applying cropping and post-processing; (d) Segformer B3 predictions on the full image (no cropping); (e)
Segformer B3 predictions after applying cropping; (f) Bounding boxes from Segformer B3 predictions (no
cropping); (g) Bounding boxes from Segformer B3 predicions after applying cropping and post-processing.

full image. This subsection details the procedures adopted to reconstruct the complete image
from crop-based predictions and to refine the detection results.

Initially, bounding boxes with a confidence score below a predefined threshold, as well as
boxes whose width or height are smaller than a minimum value, are filtered out. Next, NMS is
applied to remove redundant detections, keeping only the boxes with the largest area. Finally,
the remaining boxes are further filtered so that, if the overlap between two boxes exceeds a
certain threshold, the one with the smaller area is ignored. This procedures are described in
detail in Subsubsection 5.2.1.

After this post-processing, the evaluation metrics are computed. For each image, the
distances between the centers of annotated objects and the centers of predicted boxes are
calculated. These distances are used to establish correspondences between predictions and
ground-truth annotations, allowing the identification of true positives, false positives, and false
negatives, and the calculation of performance metrics. The evaluation protocol is detailed in
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Subsubsection 5.2.2.
Once the metrics for the reconstructed images are obtained, they are compared with those

calculated when evaluating each crop individually. This comparison enables a comprehensive
analysis of the benefits and limitations of the image reconstruction approach. Results of this
comparison are presented in Subsubsection 5.2.3.

5.2.1. Bounding Box Filtering

Given that the cropping technique proved effective for the detection of small objects, as
evidenced in the previous section, the present subsection examines the impact of different
filters on the predictions. To this end, two models—DINO and Segformer B3—were selected to
analyze the performance of detection and segmentation in distinct post-processing scenarios.

Initially, the results obtained on the test set for both models are presented without the
application of filters, always using crops generated by a 5×5 grid. The metrics calculated from
all predictions are shown in Table 8, serving as a reference for the subsequent post-processing
steps.

Table 8: Metrics obtained without the application of filters for both models using crops generated by a 5 × 5
grid.

DINO Segformer B3
Filter

FN FP TP P R F FN FP TP P R F

No filters 13 2873405 1599 0.001 0.992 0.001 278 4240 1334 0.239 0.828 0.371

In the case of DINO, a significant number of false positives is observed, indicating that the
model produces multiple predictions for a single annotation or incorrectly identifies background
regions as objects. This characteristic becomes even more evident when analyzing an image
containing all generated bounding boxes, as illustrated in Figure 11.

As observed in Subfigure 11b, the large number of false positives produced by DINO results
in an excessive number of bounding boxes, making it difficult even to visualize the objects
of interest. In contrast, Segformer B3 exhibits a different behavior, with the generation of
bounding boxes limited only to relevant regions, that is, those distinct from the background.
These initial results serve as a baseline to be surpassed, and the impact of the filters will be
analyzed according to the order in which they are applied.

The first filter eliminates bounding boxes based on a minimum confidence threshold. Next,
the second filter discards predictions whose area is below predefined values for each category.
The third filter applies variations of NMS to remove redundant predictions. Finally, the fourth
filter excludes predictions that exhibit an overlap greater than a specified percentage between
their areas.

The initial stage of post-processing consists of eliminating bounding boxes whose confidence
score is below a defined threshold. To analyze the impact of this filter, different confidence
thresholds were tested, ranging from 0.0 to 1.0, in order to evaluate both the scenario without
filtering (zero threshold) and the case in which only predictions with maximum confidence are
considered. The comparative results of these configurations are presented in Table 9.

As the confidence threshold increases, a significant reduction in the number of false positives
is observed, resulting in higher model precision. However, this gain comes at the expense of an
increase in false negatives, which negatively affects recall.

Thus, it is essential to seek a balance between precision and recall through the appropriate
selection of the confidence threshold. For DINO, in this dataset, a threshold of 0.9 yielded
the highest F-score value. However, thresholds close to 1.0 resulted in no predictions with
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(a)

(b)

(c)

Figure 11: Detection and segmentation results prior to the application of filtering methods. (a) Crop of the
original image; (b) All DINO predictions; (c) All Segformer B3 predictions.

maximum confidence, which led to an F-score value of zero. Therefore, the selection of the
ideal threshold depends both on the characteristics of the dataset and on the model and the
behavior of the evaluated metrics.

For Segformer B3, high confidence thresholds also reduce the number of true positives.
Considering that the prediction score is calculated based on the ratio between the number of
object pixels and the area of the bounding box, better performance is observed for thresholds
below 0.9.

To illustrate the effect of the confidence score filter on the predictions, Figure 12 presents a
visual comparison of the results before and after applying the filter. The threshold values used
were 0.9 for DINO and 0.8 for Segformer B3.

As shown in Figure 12, although the application of the confidence filter reduces the number
of false positives, this strategy alone does not guarantee the proper detection of the objects
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Table 9: Variation of the confidence score threshold for predictions by the DINO and Segformer B3 models.

Dino Segformer B3
Thr.

FN FP TP P R F FN FP TP P R F

0.0 13 2873405 1599 0.001 0.992 0.001 278 4240 1334 0.239 0.828 0.371
0.1 245 4883 1367 0.219 0.848 0.348 278 4240 1334 0.239 0.828 0.371
0.2 285 4003 1327 0.249 0.823 0.382 278 4240 1334 0.239 0.828 0.371
0.3 304 3766 1308 0.258 0.811 0.391 278 4240 1334 0.239 0.828 0.371
0.4 320 3645 1292 0.262 0.801 0.395 278 4237 1334 0.239 0.828 0.371
0.5 332 3538 1280 0.266 0.794 0.398 279 4221 1333 0.240 0.827 0.372
0.6 347 3455 1265 0.268 0.785 0.400 284 4146 1328 0.243 0.824 0.375
0.7 368 3363 1244 0.270 0.772 0.400 300 3938 1312 0.250 0.814 0.382
0.8 393 3206 1219 0.275 0.756 0.404 416 3050 1196 0.282 0.742 0.408
0.9 474 2763 1138 0.292 0.706 0.413 1265 323 347 0.518 0.215 0.304
1.0 1612 0 0 0.000 0.000 0.000 1586 43 26 0.377 0.016 0.031

(a) (b)

(c) (d)

Figure 12: Detection and segmentation results after applying the confidence score filter. (a) All DINO predic-
tions; (b) DINO bounding boxes after applying the confidence score filter; (c) All Segformer B3 predictions; (d)
Segformer B3 bounding boxes after applying the confidence score filter;

of interest. In the case of DINO, for example, higher threshold values reduce false positives
but increase false negatives, making object identification more challenging. Thus, for the fol-
lowing experiments, a confidence score threshold of 0.5 will be adopted for both detection and
segmentation.

In addition to the confidence score filter, a criterion is also applied that discards bounding
boxes whose dimensions are below the minimum values established for each category. To define
these reference values, the dataset annotations were analyzed to identify the smallest recorded
width and height for each object class. Table 10 presents a comparison of metric performance
before and after applying the minimum dimension filter.

The results presented in Table 10 indicate that, for DINO, no changes were observed in the
evaluated metrics. In contrast, for Segformer B3, the application of the minimum dimension
filter reduced the number of false positives and increased precision, although it caused a decrease
in recall, since some of the smaller objects were discarded.

Therefore, the adoption of this filter should be carefully considered according to the ob-
jectives of the study. In certain contexts, it may be more relevant to detect as many objects
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Table 10: Performance metrics for DINO and Segformer B3 before and after applying the minimum dimension
filter.

Dino Segformer B3
Filter

FN FP TP P R F FN FP TP P R F

No filter 332 3538 1280 0.266 0.794 0.398 279 4221 1333 0.240 0.827 0.372
With filter 332 3534 1280 0.266 0.794 0.398 309 3932 1303 0.249 0.808 0.381

as possible, even with lower precision. In others, the priority may be to obtain more reliable
detections, even if not all objects are recognized. There are also scenarios in which balancing
precision and recall is the most appropriate approach, aiming to optimize the F-score value.
Thus, the definition of filtering parameters should be aligned with the specific needs of each
application.

After applying the minimum bounding box dimension filter, the next post-processing step
consists of using the NMS technique. This technique can be implemented in different ways,
depending on the objectives of the experiment. One possibility is to apply NMS separately for
each class, preserving only the most relevant detections in each category. Alternatively, it is
possible to perform NMS globally, considering all classes at once, which eliminates redundant
predictions regardless of the category.

Another important aspect concerns the criterion adopted for selecting which boxes will be
retained during NMS. It is possible to prioritize predictions with higher confidence scores or
choose to keep those with the largest bounding box area. The impact of these NMS application
strategies can be observed in Table 11, which presents the performance metrics obtained for
each analyzed combination.

Table 11: Performance metrics for different NMS application methods.

DINO Segformer B3
Method

FN FP TP P R F FN FP TP P R F

By score and class 343 487 1269 0.723 0.787 0.754 323 521 1289 0.712 0.800 0.753
By area and class 344 479 1268 0.726 0.787 0.755 320 510 1292 0.717 0.801 0.757

By score, ignoring class 353 464 1259 0.731 0.781 0.755 326 502 1286 0.719 0.798 0.756
By area, ignoring class 357 459 1255 0.732 0.779 0.755 324 493 1288 0.723 0.799 0.759

As shown in Table 11, the application of NMS contributes to balancing the F-score value,
mainly by significantly reducing the number of false positives compared to Table 10. For DINO,
no significant differences are observed between the evaluated NMS strategies. In contrast, for
Segformer B3, a slight improvement in performance is noted when using the strategy based on
the largest object area, regardless of class.

The final filter applied in post-processing aims to eliminate redundant bounding boxes that
may still remain after the application of NMS. This removal is performed based on a predefined
overlap percentage. When the overlap percentage between two bounding boxes is equal to or
greater than this threshold, the box with the smaller area is discarded. The effects of this filter
on the performance metrics are presented in Table 12.

The results presented in Table 12 highlight how varying the overlap threshold affects the final
step of discarding bounding boxes. Lower thresholds eliminate a greater number of overlapping
boxes, since any intersection is sufficient to discard one of them. On the other hand, higher
thresholds remove only boxes with high overlap percentages, so that when using the maximum
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Table 12: Variation of the overlap percentage between bounding boxes.

Dino Segformer B3
Method Thr.

FN FP TP P R F FN FP TP P R F

0.0 363 390 1249 0.762 0.775 0.768 328 366 1284 0.778 0.797 0.787
0.1 362 390 1250 0.762 0.775 0.769 328 366 1284 0.778 0.797 0.787
0.2 361 390 1251 0.762 0.776 0.769 328 366 1284 0.778 0.797 0.787
0.3 360 390 1252 0.762 0.777 0.770 328 367 1284 0.778 0.797 0.787
0.4 359 391 1253 0.762 0.777 0.770 328 368 1284 0.777 0.797 0.787
0.5 359 396 1253 0.760 0.777 0.768 328 369 1284 0.777 0.797 0.787
0.6 359 397 1253 0.759 0.777 0.768 328 372 1284 0.775 0.797 0.786
0.7 359 400 1253 0.758 0.777 0.768 328 373 1284 0.775 0.797 0.786
0.8 359 410 1253 0.753 0.777 0.765 328 378 1284 0.773 0.797 0.784
0.9 358 420 1254 0.749 0.778 0.763 328 384 1284 0.770 0.797 0.783

B
y
cl
as
s

1.0 357 459 1255 0.732 0.779 0.755 324 493 1288 0.723 0.799 0.759

0.0 366 387 1246 0.763 0.773 0.768 335 357 1277 0.782 0.792 0.787
0.1 365 387 1247 0.763 0.774 0.768 335 357 1277 0.782 0.792 0.787
0.2 364 387 1248 0.763 0.774 0.769 334 357 1278 0.782 0.793 0.787
0.3 362 387 1250 0.764 0.775 0.769 334 358 1278 0.781 0.793 0.787
0.4 361 388 1251 0.763 0.776 0.770 334 359 1278 0.781 0.781 0.787
0.5 360 393 1252 0.761 0.777 0.769 334 360 1278 0.780 0.793 0.786
0.6 360 395 1252 0.760 0.777 0.768 333 363 1279 0.779 0.793 0.786
0.7 360 398 1252 0.759 0.777 0.768 333 364 1279 0.778 0.793 0.786
0.8 360 408 1252 0.754 0.777 0.765 333 369 1279 0.776 0.793 0.785
0.9 358 418 1254 0.750 0.778 0.764 331 377 1281 0.773 0.795 0.783

Ig
n
or
in
g
cl
as
s

1.0 357 459 1255 0.732 0.779 0.755 324 493 1288 0.723 0.799 0.759

value, only boxes that are completely contained within others are discarded.
Comparing the evaluated models, the impact of this filtering is most noticeable in the

number of false positives. As the threshold increases, more boxes are retained, raising this
index, especially for Segformer B3, regardless of class consideration. To illustrate the behavior
of this filter, Figure 13 presents examples of bounding boxes discarded at different overlap
ranges.

Figure 13 illustrates predictions with different overlap percentages, ranging from less than
10% to 100%. The green bounding boxes represent those that are retained after filtering, as they
have larger areas, while the red boxes are discarded for having smaller areas. It is noteworthy
that for very low overlap thresholds (Subfigures 13a-13d), true detections may be eliminated,
increasing the number of false negatives. Additionally, when ignoring the object class, there is
also a risk of discarding correct detections, as illustrated in Subfigure 13b, where an Euschistus
class insect was removed due to its proximity to another object. On the other hand, higher
thresholds for the overlap percentage can be useful for eliminating object fragments, which are
often generated during the image cropping process.

In general, the choice of filters and their respective thresholds directly impacts the set of
predictions used in the subsequent step, which is dedicated to calculating the metrics based on
the center of the bounding boxes. Thus, the appropriate selection of thresholds should consider
the specific objective of the application, whether it is to prioritize the detection of as many
objects as possible, maximize detection precision, or balance these aspects. Moreover, visual
comparisons between retained and discarded predictions can assist in defining the most suitable
parameters for each scenario.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 13: Bounding boxes with different overlap percentages. (a) Overlap less than 10%; (b) Overlap between
10 and 20%; (c) Overlap between 20 and 30%; (d) Overlap between 30 and 40%; (e) Overlap between 40 and
50%; (f) Overlap between 50 and 60%; (g) Overlap between 60 and 70%; (h) Overlap between 70 and 80%; (i)
Overlap between 80 and 90%; (j) - (l) Complete overlap (100%).

5.2.2. Center-Based Matching Metric

Previous experiments were conducted using a threshold of 15 pixels between the centers of
the annotated and predicted bounding boxes. However, this value can be adjusted depending
on the nature of the problem or the expected behavior of the model.

This subsection presents the results obtained using different distance thresholds for the
center-based matching technique, in order to evaluate how this variation influences model per-
formance in small object detection tasks. The performance metrics considered include precision,
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recall, and F-score.
In addition, the results obtained with the proposed technique are compared with those of

the traditional IoU-based approach, highlighting its limitations in scenarios involving small
objects. Table 13 summarizes the main results for different distance thresholds, as well as for
IoU with a minimum threshold of 0.5, enabling a direct comparison between the approaches.

Table 13: Results obtained with the center-based distance metric and IoU.

Dino Segformer B3
Method Thr.

FN FP TP P R F FN FP TP P R F

0 1586 1619 26 0.016 0.016 0.016 1599 1625 13 0.008 0.008 0.008
5 476 509 1136 0.691 0.705 0.698 454 480 1158 0.707 0.718 0.713
10 381 414 1231 0.748 0.764 0.756 360 386 1252 0.764 0.777 0.770
15 360 393 1252 0.761 0.777 0.769 334 360 1278 0.780 0.793 0.786
20 352 385 1260 0.766 0.782 0.774 325 351 1287 0.786 0.798 0.792D

is
ta
n
ce

25 348 381 1264 0.768 0.784 0.776 321 347 1291 0.788 0.801 0.794

0.5 395 428 1217 0.740 0.755 0.747 416 442 1196 0.730 0.742 0.736
0.6 481 514 1131 0.688 0.702 0.695 544 570 1068 0.652 0.663 0.657
0.7 692 725 920 0.559 0.571 0.565 800 826 812 0.496 0.504 0.500
0.8 1090 1123 522 0.317 0.324 0.321 1214 1240 398 0.243 0.247 0.245
0.9 1489 1522 123 0.075 0.076 0.076 1553 1579 59 0.036 0.037 0.036

Io
U

1.0 1609 1642 3 0.002 0.002 0.002 1612 1638 0 0.000 0.000 0.000

The results presented in Table 13 show that the center-based distance metric is more tolerant
to small spatial variations. When the distance threshold is extremely strict, as in the case of
zero, the centers of the predicted and annotated bounding boxes must be exactly aligned. This
rigid condition leads to a high incidence of false negatives and false positives for both the DINO
and Segformer B3 models, resulting in low values for precision, recall, and consequently, the
F-score. As the distance threshold becomes more flexible, an increase in true positives and
a reduction in false negatives and false positives is observed, contributing to a better balance
among the performance metrics.

On the other hand, when using IoU as the evaluation criterion, the best performance is
observed at the most commonly adopted threshold of 0.5, which is widely used in benchmarks
such as COCO and Pascal VOC. However, this metric proves to be highly sensitive to small
variations in the threshold. A modest increase from 0.5 to 0.6 already causes a significant drop
in the F-score, decreasing from 0.747 to 0.695 for the DINO model, and from 0.736 to 0.657
for Segformer B3. This degradation trend becomes more pronounced at higher thresholds,
highlighting the limitation of IoU in handling small spatial inaccuracies, particularly in the
detection of small objects.

Figure 14 illustrates the differences between the evaluation criteria based on center distance
and IoU. Blue bounding boxes represent the manual annotations from the test set. Green
boxes indicate predictions considered true positives according to the evaluation criterion, while
red boxes correspond to predictions classified as false.

In Figure 14, from left to right, the first column shows different insect samples from the
test set. The second column displays the predictions considered true positives by the center-
based distance metric with a threshold of 15 pixels, in which the centers of the annotated
and predicted bounding boxes are highlighted. The third and final column presents the same
predictions, but classified as false positives when using the IoU metric with a threshold of 0.5.

It is observed that several visually correct detections are accepted by the center-based
distance metric but rejected by IoU, even when they are positioned close to the annotated
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Figure 14: Matches between annotations and predictions using center-based distance and IoU. ((a), (d), (g))
Insect samples from the test set; ((b), (e), (h)) Predictions considered as positives using the center-based distance
metric; ((c), (f), (i)) Predictions considered as negatives using IoU.

object. This behavior highlights a significant limitation of IoU in the evaluation of small
objects, where minor spatial inaccuracies can lead to the rejection of relevant predictions.

5.2.3. Crops vs. Reconstructed Image

The results discussed in the previous section were obtained by calculating the metrics after
the image reconstruction process, taking into account the coordinates of the bounding boxes in
relation to the entire image. In this section, we provide an overview of the performance of the
methods by considering only the individual crops. Each crop is treated as an independent image,
with no connection to other crops that originated from the same original image. As a result,
the metrics are calculated directly on the detected objects within each crop, without accounting
for possible overlaps or duplications that might be resolved through the reconstruction process.
Table 14 presents the results obtained from different grid configurations applied to the images,
making it possible to compare the methods evaluated in this scenario.

It can be observed that, compared to the results obtained after image reconstruction, the
number of true positives increased considerably when the metrics are calculated directly on
the crops. This increase is a consequence of the fact that, from each test image, 81 distinct
crops were generated. Since these crops were not subsequently merged, each crop, along with
its corresponding objects, is treated as an independent image, which raises the number of
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Table 14: Metrics calculated on crops obtained from 5× 5, 4× 5, 5× 4, and 4× 4 grids.

DINO Segformer B3
FN FP TP P R F FN FP TP P R F

1712 762 4044 0.841 0.703 0.766 1421 879 4335 0.831 0.753 0.790

annotations and predictions considered. On the other hand, this approach also increases the
likelihood that objects will be divided into multiple parts, which leads to a higher number of
false negatives, especially for the DINO model. These aspects can be seen more clearly in
Figure 15, which presents examples of the models behavior when operating solely on individual
crops.

(a) (b)

(c) (d)

Figure 15: Detections for different grid configurations. (a) Detections with a 4 × 4 grid, with objects split
between crops; (b) Detections with a 4 × 5 grid, with objects split between crops; (c) Detection with a 5 × 4
grid, with the object kept whole; (d) Detection with a 5× 5 grid, with the object kept whole.

Figure 15 illustrates the impact of using crops in the evaluation of detection. For example, it
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can be seen that a single insect from the Euschistus class resulted in six distinct detections due
to the overlap of crops and the division of the object along the grid lines, which are indicated in
white in Subfigures 15a and 15b. In these configurations, the object was correctly identified in
both parts, resulting in four true positives. On the other hand, it is also apparent that another
object present in the scene was not detected, which led to two false negatives. Considering only
the metrics calculated over the crops, in this example there would be two false negatives, no
false positives, and six true positives, resulting in a precision of 1.0, recall of 0.75, and F-score
of 0.857. In contrast, when evaluating the same scene using the entire image, there would be
a single false negative, no false positives, and only one true positive, yielding a precision of
1.0, recall of 0.5, and F-score of 0.667. These results demonstrate that an evaluation based
solely on crops can overestimate the number of true positives and distort performance metrics,
reinforcing the need to reconstruct the image in order to obtain an analysis that more accurately
reflects real-world applications.

Overall, the results show that although the use of crops leads to an increase in the number of
false negatives, it also provides a significant gain in the number of true positives. This indicates
that the model is capable of identifying multiple occurrences of the object of interest, even when
the same insect is detected in different parts of the image due to fragmentation caused by the
grid divisions. Therefore, crop-based evaluation reveals the model ability to recognize isolated
parts of the objects, which can be relevant in scenarios with high fragmentation or overlap. In
this context, the choice of evaluation strategy should take into account the specific context and
objectives of the application.

5.3. Comparison Between Object Detection and Segmentation Approaches

This section presents the results obtained by object detection and segmentation models,
covering both conventional architectures and Transformer-based approaches. The comparison
between methods was conducted using the previously established metrics, including false nega-
tives, false positives, true positives, precision, recall, and F-score. For all models, intermediate
threshold values were adopted for the filters, using 0.5 as the threshold for both the confidence
score and the overlap percentage (regardless of class), in addition to applying area-based NMS,
also ignoring class, and discarding predictions whose bounding boxes diverged from the anno-
tation patterns. The results obtained for each model on the test set are presented in Table 15.

Table 15 provides an overview of the results obtained by the different models trained on
the insect dataset. Among the detection methods, conventional models such as Faster R-CNN,
RetinaNet, and YOLOv3 achieved F-score values greater than 0.75, indicating consistent per-
formance for the proposed task. Among the Transformer-based models, DINO stands out,
not only for achieving better results compared to DAB DETR, but also for presenting a suit-
able balance between precision and recall. In contrast, DAB DETR faced challenges during
training, resulting in inferior performance and suggesting the need for further experiments and
hyperparameter adjustments to improve its effectiveness.

In the context of segmentation, it can be observed that the Segformer architectures con-
siderably outperformed the DeepLab models, whose results revealed limitations, especially in
the identification of minority classes and small objects. Among the Segformer variants, the
larger architectures achieved higher F-score values. However, the B3 architecture stood out by
presenting the best balance between precision and recall.

To provide a more detailed illustration of the benefits and limitations of detection and
segmentation approaches, as well as the performance of the different models evaluated, Figure 16
presents an example of a test set image crop along with its corresponding annotation mask. In
this mask, each color represents a different insect species, allowing for a clear visualization of
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Table 15: Metrics obtained for different object detection and segmentation models.

Metrics
Method Model

FN FP TP P R F

Faster R-CNN 301 511 1311 0.720 0.813 0.764
Retinanet 332 485 1280 0.725 0.794 0.758
Yolo V3 438 340 1174 0.775 0.728 0.751
DAB DETR 743 357 869 0.709 0.539 0.612

Detection

DINO 360 393 1252 0.761 0.777 0.769

DeepLab V3 670 511 942 0.648 0.584 0.615
DeepLab V3+ 639 714 973 0.577 0.604 0.590
Segformer B0 363 559 1249 0.691 0.775 0.730
Segformer B1 348 425 1264 0.748 0.784 0.766
Segformer B2 311 402 1301 0.764 0.807 0.785
Segformer B3 334 360 1278 0.780 0.793 0.786
Segformer B4 327 405 1285 0.760 0.797 0.778

Segmentation

Segformer B5 339 372 1273 0.774 0.790 0.782

how the various classes are distributed within the crop. This example will be used as the basis
for the analysis of the results for both approaches.

(a) (b)

Figure 16: Crop and its corresponding mask. (a) Crop representation; (b) Corresponding mask, where blue
represents the Diabrotica class, light blue represents Gastropoda, and green represents Euschistus.

Figure 16 shows a crop from the test set containing four insects from different classes, one
from the Diabrotica class, one from the Gastropoda class, and two from the Euschistus class,
each identified by its respective mask in the annotation image. Based on this crop, we aim
to analyze and compare the predictions generated by the different detection models, placing
their outputs side by side to facilitate qualitative evaluation. This specific case is particularly
relevant as it brings together a diversity of classes within a single crop area and presents two
objects from different classes positioned very close to each other, with their masks adjacent.
Figure 17 presents the predictions of the main detection models evaluated for the same crop
shown in Subfigure 16a. Different colors indicate the outcome of each prediction, where green
bounding boxes represent true positives, orange boxes indicate false positives, and red boxes
denote false negatives.

In Figure 17, it can be observed that the Faster R-CNN (Subfigure 17a) and DINO (Sub-
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(a) (b)

(c) (d)

(e)

Figure 17: Detection model predictions. (a) Predictions from Faster R-CNN; (b) Predictions from RetinaNet;
(c) Predictions from YOLOv3; (d) Predictions from DAB DETR; (e) Predictions from DINO.

figure 17e) models showed exemplary performance in this crop, correctly identifying all insects
present, both in terms of localization and classification of the different categories. In contrast,
the RetinaNet (Subfigure 17b) and DAB DETR (Subfigure 17d) models exhibited limitations,
resulting in false positives and false negatives to Euschistus and Gastropoda classes. In the
case of RetinaNet, the predicted area encompassed two insects of different classes, whereas
DAB DETR was able to correctly detect only one of the objects present. The YOLOv3 model
(Subfigure 17c) also showed satisfactory performance in most cases, but failed to detect the
smallest insect in the set, which belongs to the Diabrotica class.

In general, the bounding boxes generated by the detection methods enabled the individual
identification of nearby objects. However, these boxes often also include regions of the image
background, which can lead to an overestimation of the area occupied by the object, especially
when the object is oriented diagonally. On the other hand, segmentation-based approaches
offer the advantage of classifying only the pixels that actually belong to the object of interest,
thus providing a more precise localization in the image. In this context, Figure 18 illustrates
the results obtained by the segmentation models, presenting both the generated masks and the
respective bounding boxes resulting from post-processing.

In Figure 18, the predictions generated by the different segmentation models evaluated in
this study are presented It can be observed that the DeepLab family models, shown in Subfig-
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Figure 18: Segmentation model predictions with masks and bounding boxes. (a) Predictions from DeepLabV3;
(b) Predictions from DeepLabV3 Plus; (c) Predictions from Segformer B0; (d) Predictions from Segformer B1;
(e) Predictions from Segformer B2; (f) Predictions from Segformer B3; (g) Predictions from Segformer B4; (h)
Predictions from Segformer B5.
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ures 18a and 18b, demonstrated limitations when segmenting the Diabrotica class insect, which
is the smallest object in the dataset. Additionally, these models were unable to correctly distin-
guish between the pixels of the Gastropoda and Euschistus class insects (located in the center
of the image). As a result, the region corresponding to two distinct insects was erroneously
classified as a single instance of the Euschistus class, leading to one false positive and two false
negatives in the evaluation.

In contrast, the Segformer family models (Subfigures 18c–18h) demonstrated superior per-
formance. Even the simplest variants of this architecture were able to correctly segment the
Diabrotica class insect, as well as accurately distinguish the pixels belonging to the Gastropoda
and Euschistus classes. This enabled all detections in these scenarios to be correctly classified
as true positives, including cases with small objects and also with different classes of objects
located close to each other.

Despite their superior performance, segmentation approaches still present an important
limitation related to the merging of masks when two objects are close together or in direct
contact, especially when they belong to the same category. This issue can result in incorrect
counting, since multiple instances may be interpreted as a single one, particularly in scenarios
with higher object density. Furthermore, the comparison between detection and segmentation
approaches required the development of additional procedures, such as converting bounding
boxes into masks and, subsequently, reconverting the predictions back into bounding boxes to
standardize the evaluated metrics. These steps increase processing time and may introduce
minor inaccuracies. Nevertheless, these adaptations were essential to ensure a fair and direct
comparison between the different methods.

Given the results presented, it is clear that the choice between detection and segmentation
methods should be guided both by the specific characteristics of the objects to be identified and
by the requirements of the final application. While detection approaches have shown a greater
ability to differentiate nearby objects, segmentation approaches have provided higher spatial
accuracy in delineating the insects. However, segmentation still faces challenges in scenarios
with high object density or close proximity between instances, which may affect individual
counting. Therefore, the decision on the most suitable approach should consider the balance
among the evaluated metrics as well as the limitations observed in each context.

6. Conclusions

This work presented and evaluated strategies for the detection and segmentation of small
objects in high-resolution images, focusing on agricultural and entomological contexts. First, a
dataset originally segmented by superpixels was adapted, allowing its use in detection and seg-
mentation tasks by transforming the annotations into adjusted bounding boxes. Additionally,
preprocessing techniques based on image patches were proposed, enabling better preservation
of small objects during the training and inference stages of the models. Post-processing strate-
gies were also implemented, including an adaptation of the NMS algorithm and an alternative
metric to IoU, based on the distance between centers, aiming to reduce the limitations faced
by traditional methods when dealing with small objects.

The results showed that the proposed approaches contribute to improving the detection
and segmentation of insects on soybean leaves, highlighting the potential application of these
techniques to similar problems involving small objects. However, some limitations were ob-
served, such as increased processing time due to image splitting and reconstruction, the need
for further adaptations to support rotated bounding boxes, and the restriction of analyses to
the agricultural context, specific detection and segmentation models, and only one adapted
dataset.
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As future perspectives, we suggest optimizing the performance of the techniques, focusing
on reducing processing time, extending the strategies to support rotated bounding boxes, and
evaluating them in different domains and datasets, such as urban, medical, or maritime images.
In this way, it is expected that the contributions of this study will serve as a basis for the
development of increasingly robust and efficient solutions for small object detection in a variety
of application contexts.
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pared to state-of-the-art superpixel methods, IEEE transactions on pattern analysis and
machine intelligence 34 (11) (2012) 2274–2282.

[98] S.-H. Kang, J.-S. Park, Aligned matching: improving small object detection in ssd, Sen-
sors 23 (5) (2023) 2589.

[99] Y. Ge, D. Jiang, L. Sun, Wood veneer defect detection based on multiscale detr with
position encoder net, Sensors 23 (10) (2023) 4837.

[100] B. Huo, C. Li, J. Zhang, Y. Xue, Z. Lin, Saff-ssd: Self-attention combined feature fusion-
based ssd for small object detection in remote sensing, Remote Sensing 15 (12) (2023)
3027.

46



[101] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016, http://www.
deeplearningbook.org.

[102] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection,
in: Proceedings of the IEEE international conference on computer vision, 2017.

[103] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. M. Ni, H.-Y. Shum, Dino: Detr
with improved denoising anchor boxes for end-to-end object detection (2022). arXiv:

2203.03605.

[104] S. Liu, F. Li, H. Zhang, X. Yang, X. Qi, H. Su, J. Zhu, L. Zhang, DAB-DETR: Dynamic
anchor boxes are better queries for DETR, in: International Conference on Learning
Representations, 2022.
URL https://openreview.net/forum?id=oMI9PjOb9Jl

[105] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, P. Luo, Segformer: Sim-
ple and efficient design for semantic segmentation with transformers, arXiv preprint
arXiv:2105.15203 (2021).

[106] L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolution for
semantic image segmentation, arXiv preprint arXiv:1706.05587 (2017).

[107] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous
separable convolution for semantic image segmentation, in: ECCV, 2018.

47



CAPÍTULO

5
Conclusões

Neste capítulo, são apresentadas as principais conclusões do trabalho, des-

tacando as contribuições alcançadas, bem como as limitações observadas du-

rante a condução dos experimentos e possíveis caminhos para pesquisas futu-

ras. Os resultados obtidos demonstram o potencial das abordagens propostas

para a detecção de objetos pequenos em imagens de alta resolução, usando

como base o contexto agrícola e entomológico, além de evidenciarem desafios

ainda presentes neste cenário.

Além disso, os trabalhos apresentados nos Capítulos 2 e 3 contribuíram

para o amadurecimento metodológico da pesquisa, mostrando limitações nos

cenários em que os objetos estão distantes da câmera e suas dimensões são

menores em relação ao tamanho da imagem. A seguir, são detalhadas as con-

tribuições científicas e técnicas proporcionadas por este estudo (Seção 5.1),

suas limitações e restrições (Seção 5.2), bem como sugestões de melhorias e

oportunidades para investigações futuras (Seção 5.3).

5.1 Contribuições

As contribuições deste trabalho abrangem desde a preparação de dados

até o desenvolvimento e avaliação de técnicas para detecção e segmentação de

objetos pequenos em imagens de alta resolução, usando como base o domínio

agrícola e entomológico. As principais contribuições podem ser destacadas a

seguir:

• Adaptação de conjunto de dados: uma adaptação foi realizada em um

conjunto de dados originalmente desenvolvido para classificação de su-
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perpixels, convertendo cada superpixel com inseto em caixa delimitadora

e ajustando suas coordenadas para representar apenas a área do inseto.

Além disso, novos insetos foram anotados e diferentes classes de Euschis-
tus foram unificadas, resultando em 10537 insetos de 4 classes diferentes

anotados em 1000 imagens. A disponibilização destas anotações contribui

para pesquisas futuras no contexto de insetos em ambientes agrícolas;

• Proposta de técnicas para pré-processamento: o uso de cada recorte

individualmente, ao invés da imagem inteira, como entrada para modelos

de detecção e segmentação, contorna o problema do desaparecimento

de objetos ao longo das camadas dos modelos, pois a relação entre o

tamanho do objeto e o tamanho do recorte é maior, quando comparada

ao tamanho da imagem original. Adicionalmente, a conversão de caixas

delimitadoras em máscaras permite que modelos de segmentação sejam

utilizados com a técnica de recorte proposta;

• Proposta de técnicas para pós-processamento: estratégias de pós-

processamento foram implementadas para unir detecções recortadas no

pré-processamento. Entre elas, uma adaptação do algoritmo de supres-

são de não-máximos, para considerar a área dos objetos ao invés de sua

pontuação (score), e uma métrica alternativa à IoU, baseada na distância

entre centros de caixas delimitadoras. Essas soluções buscam reduzir

o impacto que métodos tradicionais causam quando aplicados a objetos

pequenos;

• Comparação de abordagens: abordagens de detecção e segmentação fo-

ram avaliadas e comparadas quanto à identificação de objetos pequenos,

considerando tanto modelos originais quanto as técnicas de pré e pós-

processamento propostas neste trabalho, destacando vantagens, limita-

ções e desafios específicos relacionados à detecção de insetos em imagens

de alta resolução.

5.2 Limitações

Apesar dos resultados apresentados, este trabalho apresenta algumas li-

mitações:

• Aumento do tempo de processamento: as estratégias de divisão em

recortes e reconstrução das imagens, embora preserve objetos pequenos,

aumentam o tempo de treinamento e inferência dos modelos, limitando a

aplicação das técnicas em cenários que exigem respostas em tempo real;

88



• Ausência de testes com caixas delimitadoras inclinadas: as técnicas

propostas foram avaliadas apenas com caixas delimitadoras convencio-

nais. Portanto, adaptações podem ser necessárias para objetos que re-

querem a utilização de caixas delimitadoras inclinadas;

• Generalização para outros domínios: as abordagens foram desenvolvi-

das e avaliadas no contexto de insetos em folhas de soja, sendo necessá-

rias maiores investigações para outros domínios, como imagens urbanas,

médicas ou marítimas;

• Avaliação restrita a determinadas arquiteturas: as comparações e

análises foram realizadas com um conjunto limitado de modelos de de-

tecção e segmentação, e com um único conjunto de dados adaptado.

Novas avaliações, com arquiteturas ou bases de dados distintas podem

apresentar comportamentos diferentes;

• Possíveis impactos nos resultados com objetos fragmentados: em-

bora as estratégias de pós-processamento busquem mitigar problemas

de fragmentação de objetos em recortes sobrepostos, casos difícieis po-

dem ocorrer, como objetos com classes diferentes muito próximos ou par-

cialmente ocultos, além de outras dificuldades conhecidas ao lidar com

objetos pequenos.

5.3 Melhorias futuras

Diversas direções podem ser exploradas para aprimorar e expandir as con-

tribuições deste trabalho:

• Otimização de desempenho: investigar estratégias para reduzir o tempo

de processamento, como classificar recortes que possuem objetos e usar

apenas estes para treinamento e validação;

• Suporte a caixas delimitadoras inclinadas: adaptar as técnicas pro-

postas para lidar com caixas delimitadoras inclinadas, avaliando o de-

sempenho em cenários em que a orientação dos objetos não seja fixa;

• Avaliação em novos domínios e conjuntos de dados: aplicar as es-

tratégias em diferentes contextos, como imagens urbanas, médicas ou

marítimas, com o objetivo de identificar adaptações necessárias;

• Exploração de formas alternativas de visualização dos resultados:
usar representações gráficas para facilitar a interpretação e comparação

do desempenho dos modelos, tais como curvas Precision-Recall (PR) e
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Area Under the Curve (AUC), assim como matrizes de confusão, que per-

mitem avaliar de forma mais clara os acertos e erros de classificação em

cada classe;

• Investigação de convoluções deformáveis: explorar convoluções defor-

máveis como alternativa ou complemento a métodos baseados em Trans-
formers, avaliando sua capacidade em tarefas de detecção de pequenos

objetos;

• Possíveis aplicações comerciais e científicas com visão computacio-
nal e detecção de objetos: as técnicas propostas apresentam potencial

para diversas aplicações, como monitoramento de árvores e vegetação

com imagens obtidas por drones, inspeção e manutenção preventiva de

bueiros e poços de visita em áreas urbanas e detecção precoce de doenças

e insetos em plantações para suporte a práticas de manejo agrícola.
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