FUNDAÇÃO UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL INSTITUTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DOS MATERIAIS

A INFLUÊNCIA DE MATERIAIS DE MUDANÇA DE FASE NO DESEMPENHO TÉRMICO DE EDIFICAÇÕES EM CLIMA TROPICAL

TÁSSIO LUIZ DOS SANTOS

CAMPO GRANDE ABRIL/2025

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DOS MATERIAIS

A INFLUÊNCIA DE MATERIAIS DE MUDANÇA DE FASE NO DESEMPENHO TÉRMICO DE EDIFICAÇÕES EM CLIMA TROPICAL

TÁSSIO LUIZ DOS SANTOS

Orientador: Prof. Dr. Diogo Duarte dos Reis

Coorientador: Prof. Dr. Arthur Santos Silva

Tese apresentada à Universidade Federal de Mato Grosso do Sul - UFMS – Instituto de Física - INFI, como requisito para a obtenção do título de Doutor em Ciência dos Materiais.

Campo Grande – MS ABRIL/2025

INSTITUTO DE FÍSICA- INFI

AGRADECIMENTOS

Em primeiro lugar, expresso minha profunda gratidão ao meu orientador, Prof. Dr. Diogo Duarte dos Reis, pela oportunidade e pelo inestimável apoio durante o desenvolvimento desta pesquisa. Sua dedicação, sabedoria e orientação foram fundamentais para a conclusão deste trabalho. Agradeço igualmente ao meu coorientador, Prof. Dr. Arthur Santos Silva, não apenas por sua valiosa contribuição acadêmica, mas também pela amizade e pelo incentivo constante em mais uma etapa desafiadora da minha trajetória.

Não poderia deixar de mencionar o apoio espiritual e emocional da minha família, cujas orações e ânimo foram meu alicerce durante todo esse processo. A Deus, dedico minha gratidão pela força e discernimento ao longo desta jornada.

Agradeço ainda à Universidade Federal de Mato Grosso do Sul (UFMS/MEC – Brasil) pelo apoio institucional que viabilizou a realização deste estudo.

EPÍGRAFE

"E não vos conformeis com este mundo, mas transformai-vos pela renovação do vosso entendimento, para que experimenteis qual seja a boa, agradável, e perfeita vontade de Deus."

(BÍBLIA SAGRADA. Ep. aos Romanos 12:2)

RESUMO

No Brasil, 50,8% da energia elétrica é consumida por edificações, sendo aproximadamente um terço desse total direcionado ao atendimento do conforto térmico. Nesse contexto, o desempenho térmico das edificações desempenha um papel crucial na eficiência energética, e o desenvolvimento de tecnologias para aprimorar a eficiência das envoltórias pode contribuir significativamente para a redução do consumo energético. Entre essas tecnologias, destacamse os materiais de mudança de fase (PCM - Phase Change Materials), que, quando incorporados a uma das camadas da envoltória, possuem a capacidade de armazenar energia térmica e melhorar o desempenho energético das edificações. Já consolidados como solução eficiente em climas frios, os PCM apresentam elevado potencial para aplicação em edificações situadas em climas tropicais. Este trabalho tem como objetivo analisar o desempenho térmico e energético do PCM em regiões de clima tropical no hemisfério sul, com foco no Brasil, considerando o comportamento do material em diferentes sistemas construtivos. A metodologia adotada consistiu na simulação computacional de edificações por meio do programa EnergyPlusTM, considerando uma única geometria e variando o sistema construtivo, o tipo de ventilação, a temperatura de fusão do PCM e sua espessura, para as 27 unidades federativas do Brasil. Os resultados, analisados separadamente para cada tipo de ventilação, evidenciaram que os PCM podem reduzir de forma significativa a demanda por resfriamento e aquecimento. Observou-se um comportamento mais variável nas regiões mais quentes, enquanto nas regiões mais frias a influência dos PCM mostrou-se mais constante. Esses achados demonstram a viabilidade de desenvolver e adaptar essa tecnologia às diferentes condições climáticas do Brasil.

Palavras-chaves: Desempenho Térmico; Eficiência Energética; PCM; Simulação; Edificações.

ABSTRACT

In Brazil, 50.8% of electricity consumption is attributed to buildings, with approximately onethird of this total directed toward ensuring thermal comfort. In this context, the thermal performance of buildings plays a crucial role in energy efficiency, and the development of technologies to enhance the performance of building envelopes can significantly contribute to reducing energy consumption. Among these technologies, phase change materials (PCM) stand out due to their ability to store thermal energy and improve the energy performance of buildings when incorporated into one of the envelope layers. Although already established as an effective solution in cold climates, PCM show strong potential for application in buildings located in tropical climates. This study aims to analyze the thermal and energy performance of PCM in tropical regions of the Southern Hemisphere, focusing on Brazil, by considering the material's behavior across different construction systems. The adopted methodology involved computational simulations using the EnergyPlusTM software, considering a single building geometry while varying the construction system, ventilation type, PCM melting temperature, and its thickness, across the 27 Brazilian states. The results, analyzed separately according to the type of ventilation, demonstrated that PCM can significantly reduce cooling and heating demand. A more variable behavior was observed in warmer regions, while in colder regions, the influence of PCM proved to be more consistent. These findings highlight the feasibility of developing and adapting this technology to the diverse climatic conditions across Brazil.

Keywords: Thermal Performance; Energy Efficiency; PCM; Simulation; Buildings.

LISTA DE FIGURAS

Figura 1: Gráfico da variação da temperatura em função da absorção de calor por um material
de armazenamento de energia térmica (TES)
Figura 2: representação gráfica da classificação dos tipos de PCM
Figura 3: layout e imagem da geometria
Figura 4: dados das paredes
Figura 5: Modelo de ajuste de componente de seção paralela para seção em série45
Figura 6: funções de entalpia dos PCM
Figura 7: Taxa de ocupação dos ambientes de permanência prolongada
Figura 8: Taxa de uso da iluminação nos ambientes de permanência prolongada53
Figura 9: Teste dos parâmetros de simulação dos modelos sem HVAC59
Figura 10: Teste dos parâmetros de simulação dos modelos com HVAC59
Figura 11. Diferenças de temperaturas para as amostras sem HVAC60
Figura 12. Diferenças de temperaturas para as amostras com HVAC60
Figura 13: Graus Hora de Resfriamento/Aquecimento para a região Norte
Figura 14: Graus Hora de Resfriamento/Aquecimento para a região Nordeste
Figura 15: Graus Hora de Resfriamento/Aquecimento para a região Centro-oeste65
Figura 16: Graus Hora de Resfriamento/Aquecimento para a região Sudeste
Figura 17: Graus Hora de Resfriamento/Aquecimento para a região Sul
Figura 18: Carga Térmica Total para Resfriamento/Aquecimento para a região Norte71
Figura 19: Carga Térmica Total para Resfriamento/Aquecimento para a região Nordeste72
Figura 20: Carga Térmica Total para Resfriamento/Aquecimento para a região Centro-oeste73
Figura 21: Carga Térmica Total para Resfriamento/Aquecimento para a região Sudeste74
Figura 22: Carga Térmica Total para Resfriamento/Aquecimento para a região Sul75
Figura 23: Razão da diferença de GHR
Figura 24: Razão da diferença de GHA
Figura 25: Razão da diferença de CRt
Figura 26: Razão da diferença de CAt
Figura 27:Correlação de Pearson (Graus-Hora)
Figura 28: Correlação de Pearson (Carga Térmica Total)

LISTA DE TABELAS

Tabela 1: arquivos fontes para simulação	42
Tabela 2: características térmicas dos materiais	43
Tabela 3: dados do clima das cidades	49
Tabela 4: configuração das aberturas dos modelos computacionais	50
Tabela 5: coeficientes de infiltração das aberturas	51
Tabela 6: principais parâmetros adotados como constantes nas simulações	52
Tabela 7: Variáveis dependentes das simulações	53
Tabela 8: Variação das simulações paramétricas	55
Tabela 9: Área útil (efetiva) de aplicação do material	57
Tabela 10: Dados de custos de consumo de energia elétrica local	84
Tabela 11: Consumo de energia elétrica anual de HVAC por amostra	84
Tabela 12: Análise financeira da aplicação do PCM para as amostras com desemp	enho sup. 85
Tabela 13: Resultados de GH para a região Norte	96
Tabela 14: Resultados de GH para a região Nordeste	101
Tabela 15: Resultados de GH para a região Centro-oeste	108
Tabela 16: Resultados de GH para a região Sudeste	111
Tabela 17: Resultados de GH para a região Sul	114
Tabela 18: Resultados de CT para a região Norte	116
Tabela 19: Resultados de CT para a região Nordeste	121
Tabela 20: Resultados de CT para a região Centro-oeste	128
Tabela 21: Resultados de CT para a região Sudeste	131
Tabela 22: Resultados de CT para a região Sul	134

LISTA DE SIGLAS E ABREVIATURAS

ABNT Associação Brasileira de Normas Técnicas

AC Ar-condicionado

ANTAC Associação Nacional de Tecnologia do Ambiente Construído

ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers

BPE Building Performace Evaluation

CB3E Centro Brasileiro de Eficiência Energética em Edificações

Ct Capacidade Térmica de Componentes (J/m²K)

E+ Energy Plus

EPS Expanded Polystyrene (Poliestireno Expandido)

HIS Habitação de Interesse Social

HVAC Heating, Ventilation and Air Conditioning

INMET Instituto Nacional de Meteorologia

IPT Instituto de Pesquisas Tecnológicas

ISO International Organization for Standardization

OSB Oriented Strand Board
PCM Phase Change Material

rDC Razão da Diferença de Carga Térmica

rDGH Razão da Diferença de Graus Hora

RTQ-C Regulamento Técnico da Qualidade para Avaliação da Eficiência Energética de

Edificações Comerciais, de Serviço e Públicas

RTQ-R Regulamento Técnico da Qualidade para Avaliação da Eficiência Energética de

Edificações Residenciais

U Transmitância Térmica (W/m²K)

UFMS Universidade Federal de Mato Grosso do Sul

ZB Zona Bioclimática

LISTA DE SÍMBOLOS

% Porcentagem

°C Unidade de medida de temperatura em graus Celsius

cm Unidade de medida de comprimento em centímetro

h Unidade de medida de tempo em horas

kg Unidade de medida de massa em quilograma

kg/m³ Unidade de densidade aparente em quilograma por metro cúbico

kg/sm Unidade de infiltração em quilograma por segundo metros

kJ/(m²K) Unidade de capacidade térmica por metro quadrado de componentes em

quilojoule por metro quadrado kelvin

m Unidade de medida de comprimento em metro

m/s Unidade de medida de velocidade em metros por segundo

m² Unidade de medida de área em metro quadrado

Met Unidade de medida de taxa metabólica

mm Unidade de medida de comprimento em milímetro

W/(m²K) Unidade de transmitância térmica de componentes em watt por metro quadrado

kelvin

W/m² Unidade de medida de energia em watt por metro quadrado

SUMÁRIO

1	INTRODUÇA		27
	1.1 Ot	ojetivos	30
	1.1.1	Objetivo geral	30
	1.1.2	Objetivos específicos	30
2	REVISÃO BI	BLIOGRÁFICA	31
	2.1 Co	ontextualização	31
	2.2 Es	tado da arte	31
	2.3 De	esempenho térmico de edificações	34
	2.4 M	ateriais de armazenamento de energia térmica (TES)	36
	2.4.1	Utilização de PCM em edificações	37
	2.5 Ti	pos de PCM e classificação	39
	2.6 Co	onsiderações finais sobre a revisão da literatura	40
3	MÉTODO		41
	3.1 Pr	ograma de simulação computacional	41
	3.2 De	efinição dos modelos de simulação	41
	3.2.1	Geometria da edificação	42
	3.2.2	Características térmicas dos componentes da envoltória	43
	3.2.3	Características térmicas do PCM	46
	3.2.4	Condições de contorno	47
	3.2.5	Ganhos internos	52
	3.2.6	Dados de saída	53
	3.3 Ex	perimento computacional	55
	3.4 At	nálise de viabilidade econômica	55
	3.4.1	Composição da tarifa de energia elétrica	56
	3.4.2	Consumo anual de energia	56

	3.4.3	Área efetiva de aplicação do PCM	57
4	RESULTAD	OS E DISCUSSÕES	58
	4.1 V	Verificação das simulações e do comportamento do PCM	58
	4.2 A	Análise do desempenho térmico dos modelos	61
	4.2.1	Amostras com ventilação natural (Graus-Hora)	61
	4.2.2	Amostras com HVAC (Carga Térmica Total)	68
	4.3 F	Razão da Diferença	76
	4.4 A	Análise de correlação	82
	4.5 A	Análise de viabilidade econômica	84
5	CONCLUSÕ	ĎES	86
RE	FERÊNCIAS	BIBLIOGRÁFICAS	88
6	APÊNDICE.		96
	6.1 F	Resultados GH	96
	6.1.1	Norte	96
	6.1.2	Nordeste	101
	6.1.3	Centro-oeste	108
	6.1.4	Sudeste	111
	6.1.5	Sul	114
	6.2 F	Resultados CT	116
	6.2.1	Norte	116
	6.2.2	Nordeste	121
	6.2.3	Centro-oeste	128
	6.2.4	Sudeste	131
	6.2.5	Sul	134

1 INTRODUÇÃO

As edificações são responsáveis por 50,8% do consumo de energia elétrica no Brasil (Empresa de Pesquisa Energética, 2023). De acordo com o Ministério de Minas e Energia, conforme detalhado na Nota Técnica EPE 030/2018, 32% do consumo de energia elétrica em edificações residenciais e 33% em edificações não-residenciais são destinados aos sistemas de ar-condicionado. Esses dados indicam que o conforto térmico das edificações consome uma parcela significativa da matriz energética nacional, especialmente para o resfriamento dos ambientes, devido ao clima quente e úmido prevalente no país.

O conforto térmico em edificações situadas em climas tropicais está diretamente correlacionado com o desempenho térmico (Dos Santos; Porto; Silva, 2020). Em virtude dessa relação, um desempenho térmico eficiente nas edificações, mediante a adoção de estratégias passivas (i.e., que não necessitam de consumo energético), pode exercer uma influência significativa no conforto térmico dos ocupantes e, simultaneamente, reduzir o consumo energético necessário para atender às necessidades térmicas dos usuários.

Dentre as características das edificações, a envoltória, como coberturas e paredes externas, exerce uma influência significativa no desempenho térmico, sendo amplamente reconhecida como um dos principais elementos a impactar o conforto térmico e o consumo energético de edificações (Ioannou; Itard, 2015; Mirrahimi *et al.*, 2016; Nobahar; Mojib; Moharrami, 2015; Pereira, Cláudia Donald; Ghisi, 2011). Nesse contexto, o desenvolvimento de tecnologias voltadas à melhoria do desempenho térmico das envoltórias surge como uma estratégia promissora para otimizar as condições internas das edificações e reduzir a demanda por energia elétrica destinada ao resfriamento.

Uma dessas tecnologias é o material de mudança de fase (PCM – *Phase Change Material*), cuja aplicação em envoltórias de edificações tem demonstrado resultados expressivos em países de clima temperado. O PCM, quando aplicado nas camadas da envoltória, contribui para o aumento da inércia térmica das edificações, reduzindo as flutuações de temperatura no ambiente interno (Lei; Yang; Yang, 2016; Rathore; Shukla, 2020; Saxena; Rakshit; Kaushik, 2018; Socaciu *et al.*, 2014). Seu funcionamento baseia-se na capacidade de absorver energia térmica durante a transição de fase, sem variação de temperatura perceptível, alternando entre calor sensível e calor latente, e permitindo o armazenamento dessa energia na envoltória. O ponto de fusão, ou temperatura de transição do PCM, é crucial nesse processo, pois determina a faixa de temperatura em que o material alterna entre o armazenamento e a

liberação de calor, sendo, portanto, uma variável fundamental na análise de sua eficiência térmica.

Em climas frios e temperados, o PCM contribui para a redução do consumo de energia para o aquecimento das edificações, de forma passiva (Li; Chen, 2019; Nurlybekova; Memon; Adilkhanova, 2021; Socaciu *et al.*, 2014), o que viabiliza a utilização do material para estes locais. No caso do resfriamento, para locais mais quentes, o PCM pode contribuir para o conforto térmico dos ambientes quando utilizado com ponto de fusão maior (Ferster; Shen; Rendali, 2017; Kharbouch *et al.*, 2018; Lei; Yang; Yang, 2016; Rathore; Shukla, 2020; Sovetova; Memon; Kim, 2019).

As simulações computacionais desempenham um papel essencial na definição dos parâmetros ideais para a aplicação de PCM em edificações, incluindo sua espessura, temperatura de fusão e localização na envoltória, conforme destacado por Ferster, Shen e Rendali (2017). De acordo com Solgi *et al.* (2019), tanto a espessura da camada de PCM quanto sua temperatura de fusão influenciam diretamente o desempenho térmico das envoltórias, evidenciando a necessidade de um ajuste criterioso desses parâmetros. Além disso, por meio de simulações paramétricas, Kishore *et al.* (2021) identificou que a localização do PCM dentro da parede afeta significativamente o comportamento térmico do ambiente, com maiores cargas térmicas sendo observadas quando o material está posicionado em camadas mais internas. O estudo também revelou que a temperatura de fusão é o fator mais influente na regulação térmica interna, destacando sua relevância no desempenho geral das edificações.

Segundo Beltran, Martínez-Gómez e Lobato-Cordero (2017) o desempenho do PCM depende também do clima, pois a variação climática tem relação direta com a temperatura de operação do material. Para regiões com clima tropical, o PCM tem melhor desempenho quando é associado com sistemas de condicionamento de ar. Ao projetar um edifício com tecnologia de PCM, não apenas a classificação do clima deve ser considerada, mas também outros fatores geográficos e climáticos, como a altitude, a irradiância solar e o perfil do vento devem ser levados em consideração (Saffari *et al.*, 2017).

A utilização de PCM em edificações no Brasil (de clima predominantemente tropical) pode ser favorável na redução de consumo de energia para resfriamento de edificações com elementos de fechamento leve, como uma estratégia passiva do sistema construtivo. O material pode ser associado a outras estratégias como ventilação noturna ou sombreamento, potencializando o seu desempenho (Oliveira, Roberta Bastos de; Gonzales; Marques, 2021). Pesquisas envolvendo PCM como estratégia de resfriamento passivo de edificações são

escassas para as regiões climáticas do hemisfério sul, podendo ter relação com a ausência de fabricantes do material para esses locais (Brito *et al.*, 2017).

Nesse contexto, a investigação do comportamento de materiais de mudança de fase (PCM) aplicados às envoltórias de edificações em climas tropicais configura-se como uma contribuição relevante para a compreensão de estratégias passivas de melhoria do desempenho térmico. Considerando a escassez de estudos voltados às condições específicas do hemisfério sul, amplia-se a relevância de pesquisas que explorem o potencial de adequação tecnológica dos PCM às realidades climáticas e construtivas locais, reforçando a necessidade de novos aportes científicos para a evolução do conhecimento na área.

1.1 Objetivos

1.1.1 Objetivo geral

O presente trabalho tem como objetivo avaliar o desempenho térmico e energético de edificações unifamiliares, com envoltórias incorporando materiais de mudança de fase (PCM), considerando a influência de diferentes regiões climáticas do Brasil e distintos sistemas construtivos não convencionais.

1.1.2 Objetivos específicos

- Analisar o impacto do uso de PCM no desempenho térmico e no consumo energético de edificações localizadas em distintas regiões climáticas brasileiras.
- Avaliar o comportamento térmico e energético de habitações de interesse social (HIS)
 unifamiliares com aplicação de PCM, por meio de simulações computacionais
 utilizando o software EnergyPlusTM.
- Investigar a viabilidade de aplicação de PCM em climas tropicais, considerando sua contribuição para a melhoria do conforto térmico e da eficiência energética das edificações.

2 REVISÃO BIBLIOGRÁFICA

Neste capítulo são apresentados os conceitos de desempenho térmico de edificações, PCM e um breve histórico da utilização deste material no desempenho térmico de edificações. Também são apresentadas algumas das principais pesquisas que discutem sobre o tema, demonstrando o estado da arte e estabelecendo um embasamento teórico da pesquisa.

2.1 Contextualização

De acordo com o *Global Status Report for Buildings and Construction - Beyond foundations* (UNEP, 2024), o setor de edificações foi um dos maiores consumidores de energia globalmente, representando 30% da demanda final de energia, principalmente para necessidades operacionais como aquecimento e resfriamento. Conforme mencionado anteriormente, aproximadamente um terço do consumo de energia nas edificações no Brasil é direcionado para o resfriamento. As recentes revisões tarifárias nas contas de energia das unidades habitacionais têm aumentado o custo para garantir o conforto térmico dos residentes.

É fundamental destacar que o desempenho térmico adequado das edificações resulta em uma significativa redução do consumo energético, tanto para resfriamento quanto para aquecimento ambiental. A integração de tecnologias avançadas na envoltória das edificações pode otimizar substancialmente o desempenho térmico. Os Materiais de Mudança de Fase (PCMs) apresentam-se como uma solução promissora para melhorar as propriedades térmicas das envoltórias. Esses materiais são capazes de reter e liberar grandes quantidades de energia térmica durante suas transições de fase, proporcionando uma regulação mais eficaz da temperatura interna e, consequentemente, aumentando a eficiência energética das edificações.

2.2 Estado da arte

Estudos têm demonstrado que o PCM exerce uma influência significativa no desempenho térmico e energético de envoltórias de edificações (Arici *et al.*, 2020; Mahdaoui *et al.*, 2021; Shen *et al.*, 2020). Essa tecnologia, já consolidada e amplamente empregada em edificações localizadas em climas mais frios, tem seus estudos voltados para aprimorar suas aplicações (Maleki *et al.*, 2020; Michels *et al.*, 2021). Nesse contexto, a literatura também se expande para abordar medições de desempenho em protótipos, simulações numéricas de materiais e investigações sobre diferentes composições de PCM, indo além de simulações termoenergéticas tradicionais (Kharbouch *et al.*, 2018; Mahdaoui *et al.*, 2021; Michels *et al.*, 2021; Ravotti; Fellmann; *et al.*, 2020; Ravotti; Worlitschek; *et al.*, 2020).

Nurlybekova (2021) realizaram uma análise do conforto térmico e do desempenho energético de edificações em cidades com clima subtropical, utilizando simulações térmicas para avaliar o impacto de variações climáticas ao longo do tempo, incluindo projeções até o ano de 2095. O estudo revelou que, em cenários futuros, o consumo de energia para resfriamento tende a aumentar, enquanto a demanda por aquecimento apresenta uma redução significativa. Nesse contexto, os materiais de mudança de fase (PCMs) se mostraram uma solução vantajosa para mitigar o aumento do consumo energético, com os autores identificando os tipos de PCM mais adequados para essas condições futuras.

Almeida, Brandalise e Mizgier (2022), realizaram uma análise do uso de materiais de mudança de fase (PCMs) em habitações pré-fabricadas de envoltórias leves, considerando as cidades brasileiras de Brasília, Palmas e Santa Maria. O estudo utilizou o BioPCM com temperaturas de fusão de 22°C e 25°C, e avaliou o conforto térmico como variável dependente, com base no método de conforto adaptativo. Os resultados indicaram uma redução significativa nas horas de desconforto térmico, evidenciando a melhoria do conforto nos ambientes avaliados. Além disso, os autores destacaram que a correta seleção da temperatura de mudança de fase do PCM e sua adequada incorporação nas vedações das edificações contribuíram para o aumento da inércia térmica das habitações em todas as cidades analisadas. Os achados reforçam a importância de alinhar a escolha do ponto de fusão do PCM às condições climáticas locais e de combinar sua aplicação com outras estratégias passivas para otimizar o desempenho térmico de edificações leves pré-fabricadas.

Em climas tropicais, os sistemas de refrigeração passiva são adequados para gerenciar a carga de pico de aquecimento com o mínimo impacto ambiental, conforme indicado por Jurizat e Wonorahardjo (2018). As configurações de teto baseadas em PCM oferecem soluções mais ideais do que as configurações de parede baseadas em PCM, sendo que as camadas de PCM são mais propensas a ser uma solução melhor para zonas tropicais do que os materiais de construção convencionais (Austin; Araúz; Mora, 2022).

Oliveira, Lucarelli e Carlo (2024) investigaram a influência da incorporação de materiais de mudança de fase (PCMs) no conforto térmico de usuários em edifícios comerciais, considerando diferentes condições de contorno, estratégias de ventilação e camadas de instalação em fechamentos verticais leves. O estudo foi conduzido em cinco cidades brasileiras representativas de distintas zonas bioclimáticas: Campos do Jordão (SP), Bento Gonçalves (RS), Brasília (DF), Rio de Janeiro (RJ) e Belém (PA), totalizando 1.440 simulações. Foram

analisados seis tipos de PCMs (RT21HC, RT22HC, RT25HC, RT28HC, RT35HC e RT44HC). Os resultados indicaram que o uso de PCMs é uma estratégia eficaz para aumentar o percentual de horas de conforto (PHC) nas zonas bioclimáticas 1 e 4. Contudo, na zona bioclimática 8, a eficácia do PCM depende das condições climáticas específicas. Em Belém, caracterizada por altas temperaturas e baixa radiação, o uso do PCM resultou em uma redução do PHC na maioria dos casos simulados. O tipo de PCM, as condições climáticas (temperatura e radiação) e a camada de instalação foram identificados como os parâmetros mais influentes, gerando variações superiores a 20% no PHC entre cenários semelhantes.

Sangwan et al. (2022), realizaram um estudo paramétrico empregando gesso combinado com PCM microencapsulado em painéis de parede (wallboards) para avaliar a redução da carga térmica de resfriamento em um edifício localizado em Darwin, Austrália. Os resultados demonstraram que o aumento da espessura do PCM resultou em uma redução significativa da carga térmica total e do consumo energético, com uma diminuição de até 1,49%, atribuída à baixa condutividade térmica do material. A análise indicou que a maior eficiência na redução da carga térmica e do consumo de energia foi alcançada com a instalação dos painéis de gesso com PCM no lado interno das paredes. No entanto, os autores destacaram que, em climas tropicais, a aplicação de PCMs em paredes externas proporciona um desempenho superior em comparação com paredes internas, devido à solidificação do material durante os períodos noturnos, quando as temperaturas externas são mais baixas. O estudo reforçou a relevância de um projeto otimizado de envoltória térmica e da realização de simulações térmicas para minimizar a dependência de sistemas mecânicos ativos, além de enfatizar a importância da seleção adequada da temperatura de mudança de fase para maximizar a eficiência do PCM.

A utilização de Materiais de Mudança de Fase (PCM) em edificações no Brasil, que possui predominantemente um clima tropical, pode ser vantajosa na redução do consumo de energia para resfriamento de edificações com elementos leves de envoltória, como uma estratégia de construção passiva. Esse material pode ser combinado com outras estratégias, como ventilação noturna ou sombreamento, para aprimorar seu desempenho (Oliveira, Roberta Bastos de; Gonzales; Marques, 2021).

O uso estratégico de PCM em edifícios brasileiros, em conjunto com sistemas HVAC, contribui para a redução do consumo de energia elétrica, mantendo o conforto térmico nos ambientes internos. Dado o vasto território do país, é crucial utilizar PCM com diferentes pontos de fusão, adaptados à zona bioclimática de cada região (Oliveira, Matheus; Lucarelli; Carlo, 2024).

Pons e Stanescu (2017), investigaram o potencial de redução do consumo energético em edifícios comerciais no Brasil por meio da aplicação de materiais de mudança de fase (PCMs) como camadas de envoltória externa, comparando seu desempenho com técnicas construtivas convencionais, como gesso e alvenaria. O estudo foi conduzido em oito cidades representativas de diferentes regiões brasileiras, considerando um edifício de escritórios com estrutura de concreto e paredes de alvenaria. Os resultados indicaram que os PCMs podem reduzir de forma significativa o consumo de energia associado ao resfriamento em sistemas HVAC e de ventilação mecânica em diversas zonas bioclimáticas brasileiras. Contudo, a eficácia desses materiais depende das propriedades específicas do PCM e das condições climáticas de cada região, o que inviabiliza a adoção de uma solução universal aplicável a todas as zonas bioclimáticas.

Considerando o ponto de fusão, os PCM podem ser integrados em paredes leves para contribuir passivamente com o desempenho de conforto térmico, mesmo nas regiões mais quentes do Brasil. A maioria dos estudos indica que o ponto de fusão impacta significativamente o desempenho dos PCM em todo o Brasil, devido ao seu extenso território e condições climáticas diversas (Almeida; Brandalise; Mizgier, 2022; Oliveira, Matheus; Lucarelli; Carlo, 2024; Pons; Stanescu, 2017).

2.3 Desempenho térmico de edificações

O desempenho térmico de uma edificação corresponde à resposta da habitação, em termos de parâmetros térmicos ambientais, ao clima local (Gonçalves *et al.*, 2004) e está relacionado diretamente com a redução no consumo de energia de edificações para atender ao conforto térmico do usuário final desta. No Brasil, este tema é sistematizado a partir da NBR 15575-1 (ABNT, 2024b), esta norma foi republicada estabelecendo requisitos e mecanismos de avaliação de desempenho de edificações habitacionais, sendo a avaliação do desempenho térmico um dos seus itens. Em 2024 a norma foi revisada, apresentando alterações na metodologia de avaliação de desempenho térmico de edificações. Dentro da avaliação de desempenho, existem vários elementos a serem a analisados, como a cobertura, paredes e aberturas da edificação; estes elementos compõem o sistema chamado de envoltória, que representa os elementos construtivos que separam os ambientes internos do ambiente externo.

Dentre os elementos, as coberturas e suas características influenciam muito no desempenho das edificações localizadas em regiões mais quentes e as paredes externas têm maior influência no desempenho da edificação em regiões mais frias (Dos Santos; Porto; Silva,

2020). Dessa forma, desenvolver tecnologias para melhorar o desempenho deste sistema pode contribuir para o melhor desempenho térmico da edificação, bem como na redução do consumo de energia para atender ao conforto térmico dos usuários desta.

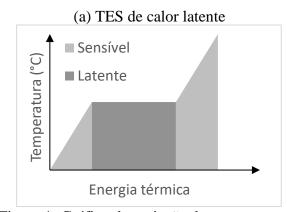
A NBR 15575 (ABNT, 2021) estabelece duas metodologias para a análise de desempenho térmico de edificações: procedimento simplificado, que avalia o desempenho de acordo com as características dos sistemas construtivos da edificação; e procedimento de simulação computacional, por meio de modelos computacionais que simulam condições térmicas das edificações após a sua construção.

O método de simulação é indicado para que o avaliador busque atingir os melhores desempenhos, segundo a norma, para a edificação. (Chvatal, 2014), constata que a simulação computacional é a metodologia mais indicada para analisar o desempenho das envoltórias, sendo mais abrangente que o método simplificado, estabelecido pela norma. As instruções normativas para a avaliação da eficiência energética de edificações do INMETRO (INMETRO, 2021a, b), tanto residencial quanto não residencial, propõe que projetos mais complexos, com ventilação híbrida, tenham suas envoltórias avaliadas pelo método de simulação computacional.

A simulação computacional possibilita ao avaliador analisar vários indicadores diferentes, como conforto, energia, temperatura, CO₂, entre outras variáveis resultantes das simulações. Alguns países da Europa, como Alemanha e países do Reino Unido, bem como asiáticos como Coréia do Sul, utilizam as taxas de emissão de CO₂ para avaliar o desempenho das edificações ((Koo *et al.*, 2014). Este parâmetro é um indicador importante para países que sua matriz energética é dependente de termelétricas, que queimam derivados de petróleo.

Os indicadores de graus-hora de resfriamento/aquecimento são recomendados por Sorgato et al. (2012) para a avaliação de desempenho térmico de edificações com ventilação natural. Para análise de incertezas físicas, Silva, Almeida e Ghisi (2017) utilizaram os indicadores graus-hora de resfriamento/aquecimento para o conforto térmico do morador, baseado no modelo adaptativo da STANDARD 55 (ASHRAE, 2020). Baseado em sua análise de índices de desempenho de conforto térmico ao usuário das edificações, Silva, Ghisi e Lamberts (2016) recomendam os índices de temperatura operativa e graus-hora de desconforto dos ocupantes, de forma paralela, para a avaliação de conforto térmico em um ambiente.

Os estudos apresentados neste item demonstram que a simulação computacional é muito utilizada para a avaliação de desempenho de edificações, recomendada para avaliações gerais ou casos mais complexos. O indicador utilizado, para casos das edificações no clima brasileiro, tende sempre a estar relacionado com as variações das temperaturas dos ambientes e o conforto


dos usuários finais da edificação. Logo basear a avaliação de desempenho nestes preceitos pode representar de forma mais consistente o comportamento térmico de uma edificação real.

2.4 Materiais de armazenamento de energia térmica (TES)

Os materiais de armazenamento de energia térmica (*Thernal Energy Storage* - TES) são classificados em três tipos, de acordo com a forma de armazenamento de energia: de calor sensível, de calor latente e termoquímico. Na construção civil, apenas os TES de calor sensível e latente são utilizados (Navarro *et al.*, 2016).

Entre estes dois métodos citados, o calor sensível é o método mais simples para armazenar a energia térmica. Este ocorre quando é aplicado um gradiente de temperatura a um meio, podendo ser líquido ou sólido, como água e rocha, por exemplo, para absorver ou liberar energia. A principal vantagem é por ser um material mais barato e sem risco de se tornar um agente tóxico, porém, dependendo da quantidade de energia térmica desejada há a necessidade de volumes grandes destes materiais para atender sua função, se tornando então uma desvantagem (De Gracia; Cabeza, 2015).

Os TES de calor latente utilizados na construção civil são conhecidos como PCM (*Phase Change Materials* — Materiais de mudança de fase). A principal propriedade do PCM é a retenção de energia térmica em forma de calor latente, com maior capacidade de reter energia por unidade de volume, quando são comparados com materiais convencionais (Baetens; Jelle; Gustavsen, 2010). A Figura 1 ilustra a variação da temperatura em função da absorção de energia térmica para dois tipos de materiais de armazenamento de energia térmica (TES).

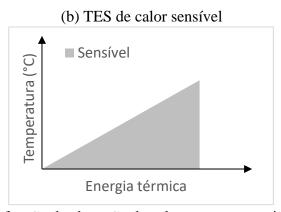


Figura 1: Gráfico da variação da temperatura em função da absorção de calor por um material de armazenamento de energia térmica (TES) em dois regimes (a) com mudança de fase e (b) sem mudança de fase.

No gráfico (a), referente ao PCM, observam-se duas regiões distintas: uma inicial, onde a temperatura aumenta linearmente devido ao armazenamento de calor sensível, e uma segunda, caracterizada por um platô térmico, onde a temperatura permanece constante durante a transição

de fase de sólido para líquido. Esse platô ocorre porque a energia fornecida é utilizada para romper as ligações moleculares, sem alterar a temperatura do material. Em contraste, o gráfico (b), relativo ao material não PCM, exibe uma curva linear contínua, refletindo o armazenamento de energia exclusivamente por meio de calor sensível, com aumento proporcional da temperatura na mesma fase (normalmente sólida). Além disso, a energia acumulada em ambos os materiais pode variar significativamente dependendo de fatores como espessura, calor específico e massa específica do material, o que influencia diretamente a eficiência do armazenamento térmico. Essa comparação evidencia a capacidade superior do PCM em armazenar grandes quantidades de energia em um intervalo térmico reduzido, destacando sua aplicabilidade em sistemas que demandam controle térmico preciso e alta densidade de armazenamento de energia.

2.4.1 Utilização de PCM em edificações

O PCM apresenta bom desempenho térmico para edificações localizadas em climas frios/temperados e em climas equatoriais (Alam *et al.*, 2014; Beltran; Martínez-Gómez; Lobato-Cordero, 2017; de Gracia *et al.*, 2015). Para os casos de climas quentes, o resfriamento passivo está diretamente relacionado com a irradiação solar vertical, constata de Gracia *et al.* (2015), em seu modelo matemático para sistemas de paredes ventiladas com placas de PCM.

Os estudos desenvolvidos com PCM motivaram as investigações com simulações computacionais, implementando este material nos modelos simulados, tornando os parâmetros térmicos e geométricos variáveis de entrada do processo. Dessa forma, estudos paramétricos começaram a ser desenvolvidos, no intuito de entender a influência dessas variáveis, bem como as configurações mais indicadas para esse tipo de simulação.

Tabares-Velasco, Christensen e Bianchi (2012), realizaram uma validação do módulo de simulação de materiais de mudança de fase (PCMs) do programa EnergyPlusTM (versão 7.1), com base nos critérios da norma ASHRAE 140. O estudo identificou as configurações ideais para garantir maior precisão nas simulações computacionais com PCM. Os autores recomendam o uso de um timestep inferior a 3 minutos e destacam que materiais com alta histerese podem aumentar a probabilidade de erros de precisão. Para simulações de PCMs, o algoritmo CondFD é indicado como padrão, sendo adequado para análises mensais e anuais. Contudo, para análises de desempenho horário com maior precisão, é necessário utilizar uma discretização espacial mais fina (1/3 do valor padrão no EnergyPlus), ainda que isso resulte em tempos de execução mais longos. Além disso, o estudo identificou dois bugs no programa e

pequenas limitações relacionadas à precisão de resultados em simulações com PCM de alta histerese.

A espessura da camada de PCM na envoltória pode reduzir o consumo de energia para aquecimento ou resfriamento em uma edificação, no caso de paredes leves. As temperaturas de fusão maiores apresentam melhor desempenho no verão e temperaturas menores no inverno. Em um modo geral, envoltórias com PCM possuem melhor desempenho quando os picos e quedas de temperatura são moderados (Mohseni; Tang, 2021).

Segundo Jin, Medina e Zhang (2013), a localização geométrica da camada de PCM na parede tem influência no desempenho térmico da envoltória. A melhor localização para se obter o maior tempo de atraso térmico é 1/5 da espessura da parede, baseado na face interna do ambiente. A temperatura de fusão tem relação direta com a posição geométrica da camada do material e dependendo desta posição, o PCM pode não entrar totalmente em seu estado líquido (Jin *et al.*, 2014).

De modo geral, o clima local, a localização geométrica na envoltória, temperatura de fusão e espessura do PCM, são as variáveis que têm grande influência no desempenho térmico da envoltória de edificações (Jin *et al.*, 2014; Jin; Medina; Zhang, 2013; Mohseni; Tang, 2021; Solgi *et al.*, 2019). Baseado nestas definições, é possível optar por um PCM de acordo com o clima local/região da edificação e o sistema construtivo adotado para ela, viabilizando assim implementar o PCM fora de regiões frias.

Lei, Yang e Yang (2016) identificaram que a incorporação de PCM em envoltórias pode proporcionar uma redução de 21 a 32% no consumo de energia de resfriamento de edificações localizadas em climas tropicais, de acordo com a temperatura de fusão adotada. O autor ainda aponta que dos modelos simulados, aqueles com o PCM localizado nas camadas mais externas apresentaram o melhor desempenho.

O sistema de resfriamento passivo é uma ferramenta importante no controle de picos de temperaturas dos ambientes. Os estudos com PCM em regiões tropicais são menos comuns, mas importantes, para entender seu comportamento em clima tropical (Jurizat; Wonorahardjo, 2018) Oliveira, Gonzales e Marques (2021) corroboram com tal carência, destacando várias lacunas em sua revisão bibliográfica sistemática como a associação de edificações leves, pontes térmicas, conforto térmico e outras. Estes estudos fomentam a necessidade de outras investigações sobre a utilização de PCM para climas análogos ao brasileiro.

2.5 Tipos de PCM e classificação

A Figura 2 apresenta a classificação dos tipos de PCM, de acordo com Socaciu *et al.* (2014). A classificação é feita como materiais orgânicos, inorgânicos e misturas eutéticas, que podem ser misturas entre materiais orgânicos/inorgânicos ou até mesmo entre orgânico/orgânico e inorgânico/inorgânico.

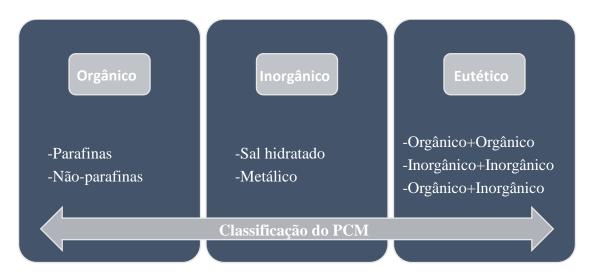


Figura 2: representação gráfica da classificação dos tipos de PCM

Sari, Biçer e Karaipekli (2009), conduziram uma análise detalhada das propriedades de materiais ésteres com o objetivo de avaliar sua viabilidade como materiais de mudança de fase (PCMs). Em sua pesquisa, novos PCMs sólido-líquido foram sintetizados por meio da reação de esterificação direta entre ácido esteárico e três álcoois distintos: n-butílico, isopropílico e glicerol. Esses materiais foram caracterizados utilizando espectroscopia FT-IR e análise de RMN de ¹H. As análises térmicas revelaram que os produtos sintetizados apresentam elevada capacidade térmica, permitindo armazenamento eficiente de energia térmica. Além disso, mesmo após 1.000 ciclos térmicos, não foi observada degradação na estrutura química dos materiais, demonstrando sua estabilidade e durabilidade como PCMs promissores.

Ravotti, Worlitschek *et al.* (2020) realizaram uma revisão abrangente sobre o potencial dos triglicerídeos como PCMs, destacando sua viabilidade em sistemas de armazenamento de calor latente (LHS). Esses sistemas são reconhecidos por suas altas densidades energéticas e pela capacidade de operar a temperaturas constantes, características essenciais para atender às demandas energéticas futuras e às metas de redução da pegada de carbono. Os triglicerídeos, especialmente os saturados e simétricos, foram identificados como candidatos valiosos para aplicações em faixas de temperatura mais elevadas, como em sistemas de aquecimento industrial, nos quais poucas substâncias orgânicas sustentáveis estão disponíveis. O estudo

concluiu que, para maximizar seu potencial, é necessário obter ou induzir a fase polimórfica estável β, garantindo sua eficiência e estabilidade em aplicações de armazenamento térmico. Tendo em vista que a eficiência energética é uma ação sustentável, o PCM deve ter este mesmo princípio em sua concepção, com baixo custo e sem possibilidade de agredir o meio ambiente (Gunasekara *et al.*, 2017).

2.6 Considerações finais sobre a revisão da literatura

A revisão da literatura realizada proporciona uma compreensão abrangente da relevância do desempenho térmico de edificações e de suas contribuições para a redução do consumo energético, especialmente no que tange ao conforto térmico dos usuários. Nesse contexto, métodos como as simulações térmicas computacionais se destacam, oferecendo uma ferramenta eficaz para a análise do comportamento das construções em função dos materiais adotados no projeto.

Embora o PCM (material de mudança de fase) seja uma tecnologia amplamente consolidada para climas frios, com comprovada capacidade de armazenamento de energia térmica, sua aplicabilidade em regiões de climas mais quentes ou temperados ainda demanda investigação aprofundada. O estudo do comportamento do PCM nessas condições é essencial para avaliar sua viabilidade em tais contextos. A evolução dos processos de simulação computacional tem permitido avanços significativos na análise do desempenho das envoltórias, especialmente com a integração de PCM, ampliando as possibilidades de otimização térmica em diferentes tipos de clima.

3 MÉTODO

O método adotado fundamenta-se em simulação numérica, empregando o programa EnergyPlusTM para modelagem termoenergética de edificações. Foram estabelecidos modelos paramétricos com variações nas características da envoltória, sistemas construtivos e condições de condicionamento ambiental, incluindo a integração de materiais com mudança de fase (PCM). As simulações consideraram parâmetros térmicos, como condutividade, absortância solar e espessuras equivalentes, além de condições de contorno específicas, como dados climáticos e sistemas HVAC. A análise dos resultados concentrou-se em indicadores de desempenho térmico e energético, complementada por uma avaliação de viabilidade econômica das configurações propostas.

3.1 Programa de simulação computacional

As simulações foram realizadas no programa EnergyPlusTM, versão 9.24.1, uma ferramenta de simulação numérica fundada pelo Departamento de Energia dos Estados Unidos (DOE) e atualmente mantida e atualizada pelo Laboratório Nacional de Energia Renovável (NREL), em colaboração com diversos parceiros internacionais. Desenvolvido com base nos programas DOE-2 e BLAST, o EnergyPlusTM permite a modelagem detalhada de sistemas de edificações por meio de objetos algorítmicos, nos quais o usuário configura o processamento de cada sistema, as características da envoltória e as condições climáticas locais. Como resultado, o programa fornece dados de saída, como cargas térmicas, consumo energético e outras informações relevantes para a análise do desempenho dos sistemas do projeto.

Neste trabalho, a edificação foi simulada numericamente utilizando o objeto Parametric:SetValueForRun, que permite variar parâmetros da edificação em um mesmo modelo, ampliando a abrangência da análise. Por meio desse objeto, foram modificadas características como componentes construtivos, espessuras de materiais e outras propriedades térmicas, possibilitando a avaliação de diferentes cenários de desempenho energético e térmico.

3.2 Definição dos modelos de simulação

Para as simulações paramétricas, foram estabelecidos modelos-base considerando a geometria da edificação e as configurações de condicionamento de ar. Adotou-se uma única geometria, de uma Habitação de Interesse Social (HIS), correspondente a um projeto residencial unifamiliar (detalhado no Item 3.2.1), e duas configurações de condicionamento ambiental: uma com sistema HVAC (*Heating, Ventilation and Air-Conditioning*) e outra sem HVAC,

utilizando apenas ventilação natural. Além disso, foram definidos três sistemas construtivos distintos: paredes de contêiner, paredes de argamassa com EPS (SCIP) e paredes de *Steel Frame*. Essa abordagem permitiu a análise comparativa do desempenho térmico e energético sob diferentes condições e materiais. A Tabela 1 apresenta as variações dos arquivos fontes das simulações, que foram variadas para cada cidade.

Tabela 1: arquivos fontes para simulação

Geometria	Sistema de resfr./aque.	Tipo de parede	Repetições
HIS	Com HVAC	Contêiner	27 Cidades
HIS	Com HVAC	SCIP	27 Cidades
HIS	Com HVAC	Steel Frame	27 Cidades
HIS	Sem HVAC	Contêiner	27 Cidades
HIS	Sem HVAC	SCIP	27 Cidades
HIS	Sem HVAC	Steel Frame	27 Cidades

3.2.1 Geometria da edificação

A edificação analisada neste estudo corresponde a uma Habitação de Interesse Social (HIS), categoria amplamente difundida no Brasil devido à sua relevância no atendimento à população de baixa renda. A escolha desse tipo de edificação justifica-se pelo seu papel fundamental na política habitacional do país, sendo frequentemente adotada em programas governamentais voltados à redução do déficit habitacional. Além disso, as HIS apresentam características padronizadas e recorrentes em diferentes regiões, possibilitando uma análise representativa do desempenho térmico dessas construções em diversos contextos climáticos. Considerando que a eficiência energética e o conforto térmico são aspectos essenciais para garantir a qualidade dessas moradias, torna-se necessário investigar soluções que otimizem seu desempenho sem comprometer sua viabilidade econômica.

A edificação modelo utilizada para a simulação computacional apresenta uma configuração típica de HIS no Brasil, composta por dois quartos, sala, cozinha e banheiro. A área útil total da construção é de 41,87 m², refletindo o padrão habitacional adotado em projetos populares. O layout dos ambientes e projeção da edificação são apresentados na Figura 3.

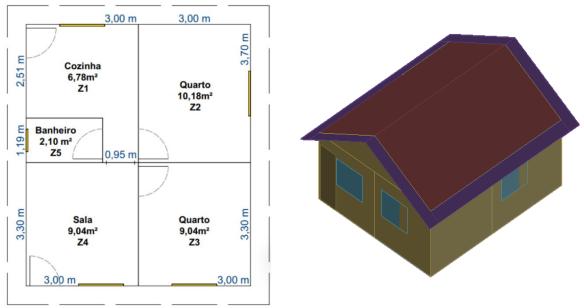


Figura 3: layout e imagem da geometria

3.2.2 Características térmicas dos componentes da envoltória

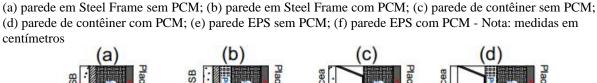

Para este estudo de simulação, foram considerados três tipos de sistemas construtivos, abrangendo diferentes categorias de massa térmica das envoltórias verticais (paredes externas). O *Structural Concrete Insulated Panels* (SC), também conhecido como parede de EPS, foi selecionado para representar o modelo de paredes pesadas, devido à sua elevada inércia térmica e crescente aplicação no setor da construção civil. Para a categoria de paredes leves, adotou-se o sistema de Contêiner (CO), cuja utilização tem se expandido no mercado brasileiro, especialmente em soluções modulares e sustentáveis. Por fim, foi incluído o *Steel Frame* (SF), um sistema construtivo amplamente consolidado no mercado internacional, caracterizado por sua leveza estrutural e eficiência na execução. O layout esquemático da composição das paredes externas é apresentado na Figura 4, com as informações de transmitância térmica (U) e capacidade térmica (Ct) dos sistemas construtivos sem PCM. A Tabela 2 apresenta as características térmicas dos materiais utilizados nos componentes.

Tabela 2: características térmicas dos materiais

Material	$\rho (kg/m^3)$	λ (W/mK)	c (kJ/kgK)
Argamassa	2000	1,150	1,00
Aço (contêiner)	7800	55,00	0,46
EPS	350	1,42	0,04
Gesso	1300	0,500	0,84
Lã de rocha	90	0,045	0,75
OSB	950	0,200	2,30

Legenda:

p= massa específica; λ = condutividade térmica; c= calor específico *OSB: *Oriented Strand Board*

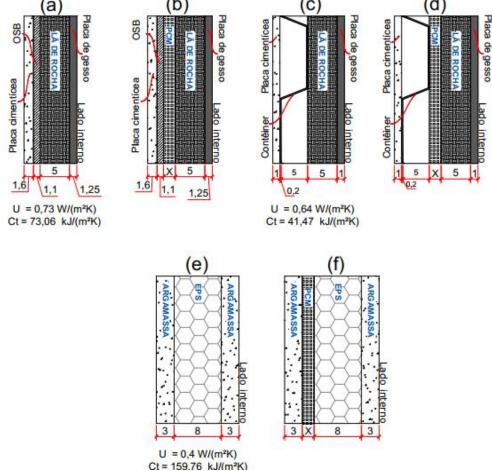


Figura 4: dados das paredes

As coberturas foram padronizadas em todos os modelos simulados, adotando-se um único sistema construtivo composto, na ordem de fora para dentro, por telhas cerâmicas, câmara de ar e forro de gesso. Nos cenários com aplicação de PCM, o material foi inserido entre a câmara de ar e o forro de gesso. As paredes internas, por sua vez, seguiram o mesmo sistema construtivo adotado para as paredes externas de cada modelo, porém sem a adição do PCM, mantendo a coerência entre os elementos internos e externos da envoltória, e permitindo a isolação dos efeitos do PCM nas análises comparativas.

3.2.2.1 Espessura equivalente: Método para componentes com seções paralelas

De acordo com a NBR 15220-2 (ABNT, 2022) os componentes construtivos nas edificações são caracterizados por propriedades equivalentes, como a transmitância térmica e a capacidade térmica, para uso nas simulações computacionais. Portanto, o fluxo de calor adotado

nos cálculos considera o regime permanente e fluxo unidirecional; portanto, as propriedades são calculadas considerando a resistência térmica e capacidade térmica nas diferentes camadas e seções dos materiais, os quais podem estar "em paralelo" ou "em série" em relação à direção do fluxo de calor.

Sendo assim, os componentes construtivos que possuem seções de fluxos de calor em paralelo precisaram ser transformados em seções únicas de camadas em série para poderem ser inseridos nos programas de simulação computacional. A metodologia estabelecida por Ordenes et al. (2003) define que o equivalente possua as mesmas camadas em série que o componente anterior já possuía, contudo, as camadas em série devem ter as espessuras recalculadas, denominadas "espessuras equivalentes".

A Figura 5 apresenta um dos componentes que foi ajustado para este trabalho, a fim de representar a transformação para camadas em série.

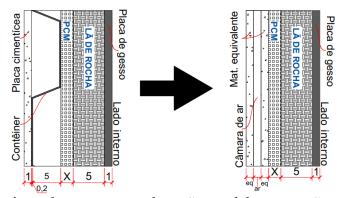


Figura 5: Modelo de ajuste de componente de seção paralela para seção em série

Para o processo deve-se determinar os valores de espessura equivalente e massa específica dos materiais adaptados. O método exige que se determinem dois parâmetros para esta camada de material equivalente, a espessura equivalente e a massa específica deste material. Este procedimento possibilitou obter componentes com seções em série para inserir as características térmicas dos componentes construtivos nos modelos de simulação computacional.

A espessura equivalente pode ser calculada por meio da fórmula da resistência térmica de um componente, calculada de superfície a superfície conforme a NBR 15220-2 (ABNT, 2022). Nessa fórmula a variável de espessura é isolada, considerando a condutividade térmica do material constante. A Equação (1) apresenta a equação da resistência térmica de uma superfície a outra, isolando a espessura equivalente. A condutividade térmica considerada para este procedimento de cálculo foi a da placa cimentícia.

$$e_{eq} = \frac{(R_t - R_{ar}) \cdot \lambda_c}{2} \tag{1}$$

Sendo:

 e_{eq} = Espessura equivalente [m];

 R_t = Resistência térmica de superfície à superfície [m²K/W];

 λ_c = Condutividade térmica adotada [W/mK];

 R_{ar} = Resistência térmica da câmara de ar [m²K/W].

O cálculo da massa específica é feito baseado na fórmula da capacidade térmica do componente. Neste caso a variável p é isolada e o calor específico fica como constante. O calor específico adotado para este procedimento de cálculo foi o da placa cimentícia. A Equação (2) apresenta a fórmula da capacidade térmica do componente com a massa específica isolada.

$$\rho_{eq} = \frac{C_t}{e_{eq} \cdot c_c} \tag{2}$$

Sendo:

 ρ_{eq} = Densidade de massa aparente equivalente [kg/m³];

 C_t = Capacidade térmica do componente [kJ/m²K];

 e_{eq} = Espessura equivalente [m];

 c_c = Calor específico adotado [kJ/(kgK)].

3.2.2.2 Absortância solar

A absortância à radiação solar corresponde à razão entre a quantidade de radiação solar absorvida por uma superfície e a quantidade total de radiação incidente sobre essa mesma superfície. Conforme estabelece a NBR 15575 (ABNT, 2024b), os valores de absortância devem ser definidos com base na coloração e nas propriedades das superfícies externas de paredes e coberturas. Neste estudo, adotou-se o valor de 0,5 para as paredes externas e 0,3 para a cobertura, considerando superfícies de coloração média e clara, respectivamente. Ressalta-se que a investigação da influência da absortância não constitui o objetivo principal deste trabalho, motivo pelo qual esses valores foram mantidos constantes em todas as simulações.

3.2.3 Características térmicas do PCM

Os materiais de mudança de fase (PCMs) adotados nas simulações foram os BioPCMTM, fabricados pela *Phase Change Energy Solutions Company*. As temperaturas de fusão consideradas foram 21°C (Q21), 23°C (Q23), 25°C (Q25), 27°C (Q27, 29°C (Q29), para duas

densidades de superfície diferentes: 2,7 kg/m² (M51) e 4,9 kg/m² (M91). As funções de entalpia são apresentadas na Figura 6, baseadas no modelo de (Feustel, 1995), em que o eixo x apresenta o aumento da temperatura do material e o eixo y o acúmulo da energia calorífica. A condutividade térmica do material é de 0,22 W/m.K e o calor latente varia entre 190 e 200 kJ/kg. As espessuras variaram entre 5 e 20 mm. Pode-se notar que o PCM Q21, por exemplo, inicia a fusão a partir de 20 °C, aproximadamente, e se torna líquido na temperatura de 21°C, com um grande acúmulo de energia térmica; o mesmo comportamento aparece nos demais PCMs.

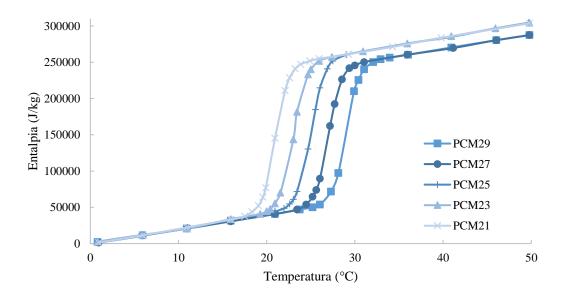


Figura 6: funções de entalpia dos PCM

3.2.4 Condições de contorno

Neste trabalho as condições de contorno referem-se aos parâmetros adotados nas simulações sobre as condições de contato com o solo, dados climáticos (arquivos climáticos), modelos de ventilação natural, troca de ar dos ambientes e sistema HVAC (*Heating, Refrigerating and Air-Conditioning*). Todos estes parâmetros estão relacionados aos algoritmos do EnergyPlusTM, bem como arquivos climáticos das cidades, que são dados públicos, disponibilizados na internet.

3.2.4.1 Arquivo climático

O trabalho foi realizado considerando apenas um projeto de edificação, que já foi construído em várias regiões do Brasil. Todas as capitais das 27 Unidades Federativas do Brasil (UF) foram consideradas neste trabalho, representando assim todas as regiões do país, sendo elas Norte, Nordeste, Centro-oeste, Sudeste e Sul. A Tabela 3 apresenta todas as cidades

avaliadas, bem como sua região e suas georreferencias. Esta tabela ainda apresenta a classificação climática de cada cidade, de acordo com Köppen-Geiger (Köppen; Geiger, 1936), e a zona bioclimática (ZB), de acordo com a NBR 15220-3 (ABNT, 2024a).

Para as simulações deste trabalho, os modelos simularam as 8.760 horas de um ano completo, considerando o ano de referência disponibilizado no arquivo climático de cada local, disponibilizados pelo INMET (Instituto Nacional de Meteorologia). Os arquivos climáticos foram baixados do *Weather Data*¹, site do programa EnergyPlusTM, onde são disponibilizados arquivos climáticos de várias cidades do mundo.

¹ EnergyPlus site do programa que disponibiliza dados climáticos de várias cidades do munto, prontos para análise e simulações computacionais.

Tabela 3: dados do clima das cidades

Capital	Estado (UF)	Região	Ban.	Lat.	Long.	Alt. (m)	Clima	ZB*	Temp. Média	Ampl. Térmica
Aracaju	Sergipe	Nordeste	0	-10,91	-37,07	4	Am	5A	26,53°C	4,27°C
Belém	Pará	Norte	ø	-6,75	-35,52	149	Af	5A	27,16°C	7,87°C
Belo Horizonte	Minas Gerais	Sudeste		-19,82	-43,96	858	Aw	6A	22,56°C	10,01°C
Boa Vista	Roraima	Norte	×	-7,26	-36,24	493	Am	6A	27,01°C	8,17°C
Brasília	Distrito Federal	Centro-Oeste	*	-15,78	-47,93	1171	Aw	5A	21,08°C	8,85°C
Campo Grande	Mato Grosso do Sul	Centro-Oeste	<u>\</u>	-20,44	-54,65	532	Aw	6A	23,45°C	10,06°C
Cuiabá	Mato Grosso	Centro-Oeste		-15,60	-56,10	176	Aw	3B	26,73°C	9,48°C
Curitiba	Paraná	Sul	4	-25,43	-49,27	934	Cfb	4A	16,34°C	9,56°C
Florianópolis	Santa Catarina	Sul	٠	-27,60	-48,55	3	Cfa	4B	20,66°C	7,41°C
Fortaleza	Ceará	Nordeste	0	-3,72	-38,54	21	Am	6A	26,65°C	5,87°C
Goiânia	Goiás	Centro-Oeste	i di	-16,68	-49,25	749	Aw	5B	23,23°C	12,30°C
João Pessoa	Paraíba	Nordeste		-7,12	-34,86	47	As	4B	26,02°C	5,24°C
Macapá	Amapá	Norte	T	0,04	-51,07	16	Af	3B	25,78°C	8,50°C
Maceió	Alagoas	Nordeste	8	-9,67	-35,74	16	Am	6A	25,52°C	6,88°C
Manaus	Amazonas	Norte	100	-3,10	-60,03	92	Am	5A	27,28°C	6,70°C
Natal	Rio Grande do Norte	Nordeste	100	-5,80	-35,21	30	As	1M	26,90°C	6,28°C
Palmas	Tocantins	Norte	V	-10,17	-48,33	230	Aw	5A	26,82°C	9,42°C
Porto Alegre	Rio Grande do Sul	Sul	0	-30,03	-51,23	3	Cfa	6A	20,03°C	8,82°C
Porto Velho	Rondônia	Norte	×	-8,76	-63,90	85	Am	4A	25,93°C	8,36°C
Recife	Pernambuco	Nordeste	\Diamond	-8,05	-34,88	4	Am	5A	25,75°C	6,35°C
Rio Branco	Acre	Norte		-9,98	-67,81	153	Am	2R	25,12°C	8,28°C
Rio de Janeiro	Rio de Janeiro	Sudeste	O.	-22,90	-43,21	2	Cwa	5A	23,15°C	8,73°C
Salvador	Bahia	Nordeste	_	-12,97	-38,51	8	Am	6A	25,86°C	5,24°C
São Luís	Maranhão	Nordeste	*	-2,53	-44,30	24	Am	3A	26,76°C	5,96°C
São Paulo	São Paulo	Sudeste	0:	-23,55	-46,64	760	Cfa	2M	19,57°C	8,01°C
Teresina	Piauí	Nordeste	*	-5,09	-42,80	72	Aw	5A	27,69°C	11,13°C
Vitória	Espírito Santo	Sudeste	-	-20,32	-40,34	3	Cwa	6B	24,40°C	7,93°C

*Zonas bioclimáticas (NBR 15220-3): IM - Muito Fria Com Inverno Moderado; 2R - Fria Com Inverno Rigoroso; 2M - Fria Com Inverno Moderado; 3A - Mista Úmida; 3B - Mista Seca; 4A - Levemente Quente E Úmida; 4B - Levemente Quente E Seca; 5A - Quente E Úmida; 5B - Quente E Seca; 6A - Muito Quente E Úmida

3.2.4.2 Contato com o solo

Como o contato da edificação com o solo ocorre diretamente por uma laje, a simulação do contato com o solo foi feita baseada no algoritmo do objeto *Site:GoundDomain:Slab* do EnergyPlusTM. Este objeto é capaz de lidar com diferentes configurações de placas de isolamento térmico, utilizando um modelo de diferenças finitas implícito para obter as temperaturas do solo (Eli *et al.*, 2019). Para a configuração do objeto, foram inseridos os dados

de temperatura do solo de acordo com as médias mensais a 0,50m de profundidade, de cada arquivo climático.

3.2.4.3 Aberturas e ventilação natural

A ventilação natural foi configurada no objeto *AirflowNetwork* do EnergyPlusTM. O algoritmo deste objeto possibilita a configuração das infiltrações de ar das aberturas, bem como a troca de ar entre os ambientes, considerando a diferença de temperaturas entre elas. Neste objeto ainda é possível configurar as frações de aberturas, rotinas e critério de abertura das portas e janelas. Os tipos de janelas e taxas de aberturas adotadas para este projeto são apresentados na Tabela 4.

Com relação à configuração das rotinas e padrões de abertura, as janelas e portas dos ambientes ficaram sempre fechados, quando o sistema HVAC estava em funcionamento - para os modelos de simulação com sistema HVAC - e eram abertas, quando a temperatura do ar interna era maior que a temperatura do ar externa. No caso dos modelos sem HVAC, as aberturas foram configuradas para funcionar sempre que a temperatura do ar interno era maior que a temperatura do ar externo, e quando houvesse a presença do usuário no ambiente.

Tabela 4: configuração das aberturas dos modelos computacionais

Tipo de janela	Imagem	Taxa de abertura para ventilação natural (%)
Correr com 2 folhas		45
Basculante		70 (se inclinar 45°) ou 90 (se inclinar 90°)
Maxim-ar		80

Foram consideradas infiltrações de ar nas aberturas quando estiverem fechadas, com base no trabalho de Pereira et al. (2013), que dispõe de tabelas de infiltração de acordo com o tipo de abertura. A Tabela 5 apresenta os coeficientes de infiltração utilizados nas simulações computacionais deste trabalho. Estas infiltrações de ar foram consideradas para todos os modelos simulados, com e sem sistema HVAC.

Tabela 5: coeficientes de infiltração das aberturas

Abertura	Tipo de abertura	Infiltração (kg/s.m)
Portas internas	Madeira – 1 folha pivotante	0,00187
Portas externas	Metálica – Pivotante E. Vertical	0,00005
Janelas quartos e sala	2 folhas - Deslizamento vertical	0,0023
Janelas cozinha	Pivotante - eixo horizontal superior	0,0014

3.2.4.4 Sistema HVAC

Os modelos de simulação com sistema HVAC foram configurados no objeto *HVACTemplate:Zone:IdealLoadsAirSystem*. O algoritmo deste objeto permite que seja configurado um sistema de ar-condicionado ideal para o ambiente, independentemente do tipo de sistema (central, split etc.). O sistema "ideal" implica que o sistema consegue atender a temperatura de setpoint em 100% do tempo, ou seja, considerando uma capacidade de refrigeração modulável conforme a carga térmica a cada instante da simulação. O sistema HVAC foi configurado para ser acionado quando a temperatura interna era maior que a externa, havia ocupante no ambiente, considerando um termostato com temperatura de resfriamento de 24°C.

Ainda na configuração do sistema de HVAC foi considerado que o equipamento funcionasse para resfriamento durante o ano inteiro. Já para o aquecimento, os equipamentos poderiam ser acionados apenas no inverno (de 21/06 a 21/09), quando o termostato atingisse 18°C, sempre que tivesse ocupante no ambiente.

3.2.4.5 Outras configurações

As configurações variadas entre os modelos computacionais foram apresentadas nos itens anteriores desta metodologia, contudo, existem outras configurações, incluindo configurações do entorno, que foram mantidas para todas as simulações, independentemente do tipo de parede ou clima do modelo simulado.

A Tabela 6 apresenta as principais configurações adotadas para todas as simulações computacionais deste trabalho. Destaca-se que a constante "Suburbs" foi adotada para representar este tipo de habitação social unifamiliar, que geralmente é construída em regiões com edificações baixas, mais afastados de grandes edificações verticais.

Tabela 6: principais parâmetros adotados como constantes nas simulações

Classe	Objeto	Valor
Building	Terrain	Suburbs
Building	Solar Distribuition	FullExterior
SurfaceConvectionAlgorithm:Inside	Algorithm	TARP
SurfaceConvectionAlgorithm:Outside	Algorithm	DOE-2
SurfaceProperty:HeatTransferAlgorithm: Construction (paredes externas)	Algorithm	ConductionFiniteDifference
Timestep	Number of Timesteps per Hour	20
Site:GroundDomain:Slab	Soil Thermal Conductivity {W/m-K}	1,5
Site:GroundDomain:Slab	Soil Density {kg/m3}	2800
Site:GroundDomain:Slab	Soil Specific Heat {J/kg- K}	850
Site:GroundDomain:Slab	Soil Moisture Content Volume Fraction {percent}	30
Site:GroundDomain:Slab	Soil Moisture Content Volume Fraction at Saturation {percent}	50

3.2.5 Ganhos internos

Os ganhos internos, tanto de pessoas quanto de iluminação e equipamentos, foram configurados de acordo com RTQ-R (INMETRO, 2012). O regulamento estabelece rotinas de ocupação diferentes, para quartos e salas. As rotinas de ocupação são apresentadas na Figura 7. Para os dormitórios, foram consideradas 2 pessoas por ambiente, com taxa metabólica de 81 W, cada uma, representando assim uma pessoa dormindo/descansando. No caso das salas, foi considerada a soma das pessoas dos quartos, com taxa metabólica de 108 W, por pessoa, representando uma pessoa assistindo televisão.

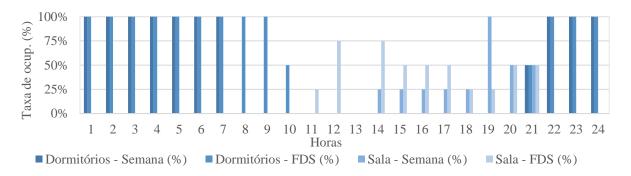


Figura 7: Taxa de ocupação dos ambientes de permanência prolongada

A densidade de potência de iluminação adotada foi de 6 W/m², para todos os ambientes, contudo, a rotina de funcionamento variou, sendo diferente para as salas e quartos, conforme é definido pelo INMETRO (2012). A Figura 8 apresenta as rotinas de funcionamento da

iluminação dos ambientes. Para representar os ganhos internos de equipamentos eletrodomésticos, tanto para quartos e salas, foi adotada uma densidade de potência de 1,5 W/m², no período de 24 h, para todos os dias do ano. Destaca-se que a zona térmica da cozinha não se considerou ganho térmico de equipamentos.

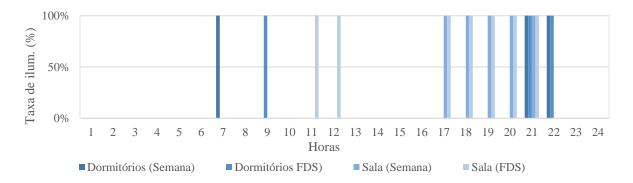


Figura 8: Taxa de uso da iluminação nos ambientes de permanência prolongada

3.2.6 Dados de saída

Para este trabalho, os dados de saída (variáveis dependentes) das simulações foram definidos no objeto "*Output:Variable*". Tendo em vista que os indicadores dos resultados foram diferentes, de acordo com o tipo de análise, foram solicitadas variáveis diferentes. Para o caso dos modelos de simulação com ventilação natural (Sem HVAC), foram solicitadas: temperatura operativa, temperatura do ar externo/interno dos ambientes. No caso dos modelos com arcondicionado (Com HVAC), foram solicitadas: carga térmica dos ambientes e temperatura do ar externo. A Tabela 7 apresenta o nome das variáveis dependentes solicitadas no programa.

Tabela 7: Variáveis dependentes das simulações

Tubela 7. Yana yels dependences das simulações					
Variável	Unidade	Abrangência	Objeto no E+	Modelo simul.	
Temp. dos ambientes	°C	Zona térmica	Zone Air Temperature	Sem HVAC	
Temp. externa	°C	Área externa	Site Outdoor Air Drybulb Temperature	Sem HVAC e Com HVAC	
Temp. operativa	°C	Zona térmica	Zone Operative Temperature	Sem HVAC	
Carga térmica de resfriamento	J	Zona térmica	Zone Ideal Loads Supply Air Total Cooling Energy	Com HVAC	
Carga térmica de aquecimento	J	Zona térmica	Zone Ideal Loads Supply Air Total Heating Energy	Com HVAC	

O programa EnergyPlusTM finaliza a simulação exportando as varáveis dependentes, solicitadas no objeto "*Output:Variable*", em um arquivo de extensão ".csv", para todos os modelos simulados. Para este trabalho, foi desenvolvido um *script* em linguagem R, no

programa R-StudioTM para a coleta e manipulação de todos os dados, o cálculo dos indicadores da pesquisa e a unificação dos resultados em apenas uma planilha.

3.2.6.1 Indicadores analisados no trabalho

Dois indicadores foram utilizados para analisar o desempenho dos modelos, os graushora de resfriamento/aquecimento (GH) e as cargas térmica para resfriamento/aquecimento (CT), conforme definições a seguir:

• **Graus-hora** (**GH**): Foram somadas as quantidades de horas em que haveria a necessidade de resfriamento/aquecimento para diminuir/aumentar a temperatura operativa, sendo os limites de 26 °C para resfriamento e 18 °C para aquecimento, determinando assim o GH de cada ambiente, conforme Equações (3) e (4). Esse indicador é calculado quando a edificação é naturalmente ventilada (sem HVAC).

$$GH_r = \sum_{i=1}^{8760} T_i - 26 , (se T_i > 26)$$
 (3)

$$GH_a = \sum_{i=1}^{8760} 18 - T_i , (se T_i < 18)$$
(4)

Sendo:

T_i temperatura operativa variando em i, de 1 a 365;

GHr Graus-hora de resfriamento

GHa Graus-hora de aquecimento

i número da simulação

• Carga térmica (CT): No caso da carga térmica, foi somada a energia térmica necessária para resfriamento ou aquecimento anual de todos os ambientes, determinando assim a CT de cada modelo, conforme Equação (5). Esse indicador é calculado quando o modelo é com HVAC.

$$CT = \sum_{i=1}^{8760} CH_i \tag{5}$$

Sendo CH a carga térmica horária.

As simulações foram feitas para as 8760 horas do ano do arquivo climático, de cada cidade especificamente e para cada ambiente de permanência prolongada: Quarto 1 (Z2); Quarto 2 (Z3); e Sala (Z4). Os resultados obtidos nas simulações foram para os três ambientes,

porém, foi feita a média ponderada com a área dos ambientes para definir o indicador que representasse o modelo.

3.3 Experimento computacional

Para criar as amostras usando o programa de simulação computacional EnergyPlusTM, foi utilizado o objeto *Parametric:SetValueForRun*. Como já citado anteriormente, o programa R-StudioTM, foi utilizado para a manipulação e tratamento dos resultados. A variação paramétrica no programa de simulação possibilitou a análise de modelos de simulação computacional em situações distintas, como climas, tipos de envoltórias e tipo de PCM.

Foram gerados 27 arquivos IDF base, todos com a mesma geometria, nos quais foram parametrizados três tipos de parede, duas configurações de sistema de resfriamento (ventilação natural e HVAC), cinco tipos de PCM e quatro espessuras de PCM. Além disso, para cada combinação de tipo de parede, sistema de resfriamento e cidade, foi incluída uma configuração de referência sem PCM (162). Todas essas variações foram submetidas à simulação para um período total de 8.760 horas, correspondente a um ano climático, resultando em um total de 3.402 simulações. As variações de simulações são apresentadas na Tabela 8.

Tabela 8: Variação das simulações paramétricas

Unidade	Níveis
-	Capitais das 26 unidades federativas (UF) + distrito federal [27]
°C	21; 23; 25; 27; 29 [5]
-	SCIP; Contêiner; Steel Frame. [3]
Cm	0,5; 1,0; 1,5; 2 [4]
-	Ventilação Natural; HVAC [2]
	- °C -

Para cada cidade [27]; tipo de parede [3]; e refrigeração [2]; foram simulados casos sem PCM [total 162], para se fazer a comparação dos indicadores de desempenho.

3.4 Análise de viabilidade econômica

Após a avaliação do desempenho térmico das amostras, foi realizada uma análise econômica preliminar com o objetivo de oferecer uma perspectiva mais ampla sobre a viabilidade do uso de materiais de mudança de fase (PCM) no Brasil. Essa análise focou exclusivamente nas amostras com sistemas HVAC, considerando o consumo anual de energia para aquecimento e resfriamento, bem como as tarifas de energia elétrica e os impostos específicos de cada cidade. Foram incluídos apenas os resultados positivos, nos quais o uso de PCM demonstrou vantagem em relação ao modelo de referência dentro do mesmo sistema construtivo, desconsiderando casos com valores absolutos irrelevantes.

O custo anual de energia foi calculado a partir do consumo anual de eletricidade de cada amostra, considerando as tarifas finais de energia aplicáveis em cada estado. A partir desses cálculos, identificou-se a amostra contendo PCM que apresentou o menor consumo energético

em relação às referências sem PCM. A economia anual de energia foi determinada comparandose o custo entre a referência com melhor desempenho e a amostra com PCM, independentemente do sistema construtivo da envoltória. Dessa forma, a análise contemplou diferentes tipos de envoltória, priorizando aquelas que resultaram em menor consumo de energia elétrica.

3.4.1 Composição da tarifa de energia elétrica

A tarifa de energia elétrica no Brasil é definida por contratos estabelecidos entre as concessionárias e os consumidores, sendo composta por diversos encargos e tributos. Entre os principais impostos incidentes estão o Imposto sobre Circulação de Mercadorias e Serviços (ICMS), de competência estadual, e as contribuições federais para o PIS/PASEP e COFINS, cujas alíquotas foram consideradas como 1,65% e 7,6%, respectivamente. Para a determinação do custo final da energia elétrica nas localidades analisadas, foram levantadas as alíquotas de ICMS aplicáveis em cada estado e incorporadas ao valor da tarifa praticada pela concessionária local.

Além dos tributos mencionados, há a incidência de taxas municipais que podem variar significativamente entre cidades, bairros, iluminação pública e faixas de consumo. No entanto, devido à heterogeneidade dessas cobranças e à complexidade das regulamentações municipais, tais taxas foram desconsideradas na análise. Dessa forma, o preço final da tarifa de energia elétrica foi obtido a partir da soma do valor base da concessionária, acrescido do ICMS estadual e das contribuições federais, garantindo uma estimativa padronizada e compatível com os dados disponíveis.

3.4.2 Consumo anual de energia

O consumo anual de energia para a operação do sistema HVAC em cada modelo simulado foi determinado pela soma das cargas térmicas para resfriamento (CRt) e aquecimento (CAt). Após obter esse valor, foi calculado o consumo de energia elétrica para a operação do sistema HVAC utilizando o Índice de Desempenho de Resfriamento Sazonal (IDRS). Este índice, fornecido por um modelo de desempenho médio classificado como Classe C pelo INMETRO², possui um valor nominal de 3,03.

A equação (6) apresenta o cálculo usado para determinar o consumo elétrico para a operação HVAC, como segue:

² <u>Tabelas INMETRO</u> (acessado em 17 de novembro de 2024)

$$Ce = \frac{dCT}{IDRS} \tag{6}$$

Sendo:

Ce = Consumo elétrico anual;

dCT = diferença de Carga Total (anual) entre parede referência e amostra;

IDRS = Índice de Desempenho de Resfriamento Sazonal.

3.4.3 Área efetiva de aplicação do PCM

Devido à inexistência de fornecedores de PCM no Brasil, os custos foram estimados com base nas especificidades do projeto. A Tabela 9 apresenta as áreas das paredes externas e áreas de aberturas (portas e janelas), nestas paredes externas, por ambiente, o que possibilitou definir a área útil (efetiva) para a aplicação do material, desde que se subtraísse as áreas das paredes pelas áreas das aberturas. A altura efetiva considerada do pé direito foi de 2,5 m.

Tabela 9: Área útil (efetiva) de aplicação do material

Ambiente	Área de Paredes externas	Área das Aberturas
Cozinha	13,78 m ²	2,88 m²
Banheiro	2,98 m²	0,48 m²
Sala	15,75 m ²	3,08 m²
Quarto	16,75 m ²	1,40 m²
Quarto	15,75 m²	1,40 m²
	Área efetiva total	55,76 m ²

4 RESULTADOS E DISCUSSÕES

Inicialmente, foram realizados testes de simulação para verificar o funcionamento dos objetos do programa EnergyPlusTM, incluindo a ventilação natural, as trocas de calor, o comportamento do PCM e o sistema HVAC. Esses testes, denominados verificações das simulações, são apresentados nesta seção para assegurar a correta configuração e operação dos elementos modelados.

Após a etapa de verificação, apresentam-se inicialmente os resultados referentes ao desempenho térmico, contemplando, em sequência, os valores de Graus-Hora obtidos nas simulações com ventilação natural e os valores de Carga Térmica nas simulações com HVAC. Posteriormente, são detalhadas as diferenças entre essas variáveis para as amostras com PCM em comparação às amostras de referência, possibilitando uma avaliação quantitativa dos efeitos promovidos pelo material. A totalidade desses resultados viabilizou a realização de uma análise de correlação entre as variáveis estudadas. Por fim, é mostrada a análise de viabilidade econômica, fundamentada nos resultados de consumo energético das amostras simuladas com HVAC.

4.1 Verificação das simulações e do comportamento do PCM

Para validar as simulações, foram testadas duas amostras representativas: uma sem sistema HVAC e outra com HVAC. No caso sem HVAC, as variáveis de saída solicitadas incluíram a temperatura do ar externo de bulbo seco, a taxa de troca de ar, o número de ocupantes e a temperatura média do ar interno. No caso com HVAC, as variáveis obtidas foram a temperatura do ar externo de bulbo seco, a carga térmica do sistema HVAC, o número de ocupantes e a temperatura média do ar interno.

A verificação foi realizada em um dos quartos da residência durante um período de 48 horas, especificamente nos dias 1 e 2 de abril, com o uso do arquivo climático de São Paulo, SP. A Figura 9 apresenta o comportamento horário das variáveis para o cenário sem HVAC, enquanto a Figura 10 ilustra o cenário com HVAC. Os testes demonstraram a funcionalidade da ventilação natural nos espaços ocupados durante as simulações sem HVAC. Para os casos com HVAC, o sistema foi acionado quando os espaços estavam ocupados e a temperatura interna atingiu 24°C.

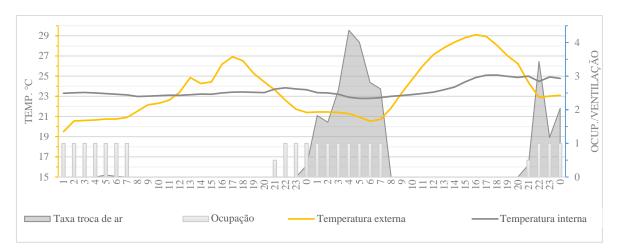


Figura 9: Teste dos parâmetros de simulação dos modelos sem HVAC

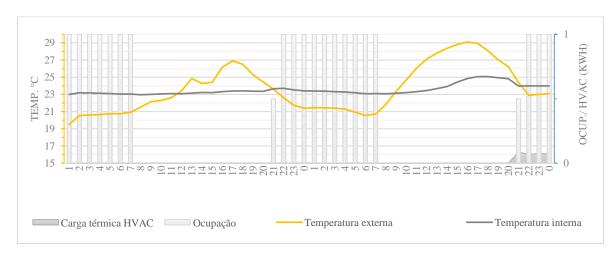


Figura 10: Teste dos parâmetros de simulação dos modelos com HVAC

Para avaliar o desempenho efetivo do PCM, foram realizadas simulações nas quais o material foi testado sem sua capacidade de armazenamento de calor latente, mantendo-se apenas sua espessura e demais propriedades térmicas. As Figura 11 e Figura 12 ilustram as diferenças de temperatura para este caso de teste, comparando as temperaturas dos ambientes (Z2, Z3, Z4) entre o modelo com PCM funcionando plenamente e o modelo com PCM sem capacidade de armazenamento de calor latente. A Equação (7) apresenta o cálculo realizado para determinar as diferenças de temperatura entre os testes simulados. Os resultados indicaram que o material desempenhou de forma eficaz sua função de modulação térmica, conforme o esperado.

$$T_{Zi,dif} = T_{Zi,com\ PCM} - T_{Zi,sem\ PCM} \tag{7}$$

Sendo:

 $T_{Zi,dif}$ = Diferença de temperatura entre as simulações testes;

 $T_{Zi,comPCM}$ = Temperatura no ambiente para a simulação com PCM;

 $T_{Zi,semPCM}$ = Temperatura no ambiente para a simulação sem PCM.

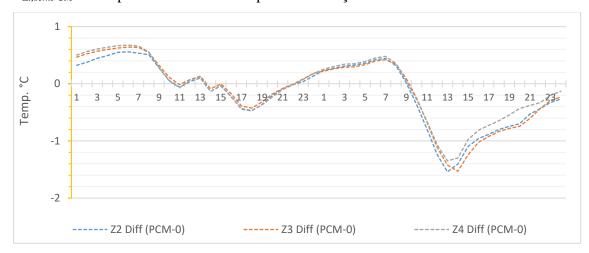


Figura 11. Diferenças de temperaturas para as amostras sem HVAC

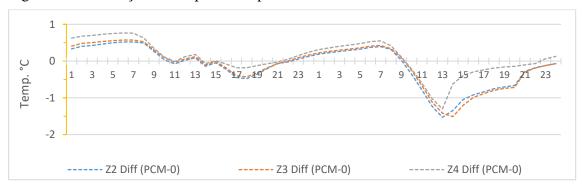


Figura 12. Diferenças de temperaturas para as amostras com HVAC

4.2 Análise do desempenho térmico dos modelos

Este subitem apresenta os resultados de desempenho térmico obtidos nas simulações. Inicialmente, são apresentados os resultados de Graus-Hora, seguidos dos de Carga Térmica. Para facilitar a análise, os dados foram agrupados conforme as cinco regiões do Brasil: Norte, Nordeste, Centro-Oeste, Sudeste e Sul. Ambos os conjuntos de dados são exibidos em gráficos de dispersão, onde o eixo Y indica a variação nos valores de Graus-Hora ou Carga Térmica, e o eixo X representa as diferentes configurações de PCM, classificadas em cinco tipos segundo suas respectivas temperaturas de fusão.

4.2.1 Amostras com ventilação natural (Graus-Hora)

Os resultados de Graus-Hora são apresentados da Figura 13 a Figura 17. Nesses gráficos, o eixo y representa as escalas de Graus-Hora de Resfriamento (GHRm) e Graus-Hora de Aquecimento (GHAm), enquanto o eixo x organiza os diferentes tipos de PCM. É possível visualizar inicialmente os resultados de Graus-Hora de Resfriamento e logo abaixo de Graus-Hora de Aquecimento. Mesmo estando na mesma região, o que indica maiores proximidades geográficas, os resultados se mostraram bem distintos, tanto em GHRm quanto em GHAm.

Ao analisar inicialmente a região Norte, conforme ilustrado na Figura 13, observou-se que as amostras com paredes em Steel Frame (SF) demonstraram um desempenho superior, evidenciado pelos menores valores de GHRm. Em relação às variáveis associadas ao PCM, os resultados indicaram uma resposta desfavorável para a região, como no caso das diferentes espessuras da camada de PCM, sendo que espessuras de 5 mm apresentaram desempenho ligeiramente melhor, quando comparado com espessuras maiores. No geral, as amostras com PCM de maiores temperaturas de fusão apresentaram resultados mais eficientes. Contudo, o caso de Manaus destacou uma possível limitação da aplicação do PCM para esta localidade específica, onde o sistema construtivo em Steel Frame (SF) sem PCM mostrou-se mais vantajoso em termos de desempenho térmico.

Ainda na análise das amostras da região Norte, apenas a cidade de Rio Branco apresentou valores de GHAm, embora em menor magnitude quando comparados aos valores de GHRm. Nessa localidade, todas as amostras contendo PCM demonstraram um desempenho superior, incluindo aquelas com a camada de maior espessura.

Os resultados da região Nordeste, ilustrados na Figura 14, apresentaram comportamento semelhante ao observado na região Norte, com as amostras de menor espessura de PCM mostrando melhor desempenho. Além disso, amostras com temperaturas de fusão mais elevadas

registraram os melhores resultados. Os valores de GHAm foram nulos, indicando ausência de necessidade de Graus-Hora de Aquecimento nas capitais dessa região.

A Figura 15 apresenta os resultados para a região Centro-Oeste, cuja tendência segue o comportamento observado nas regiões Norte e Nordeste, onde, para GHRm, as amostras de PCM com maior temperatura de fusão apresentam melhor desempenho. Contudo, as amostras com PCM de espessura de 20 mm demonstraram maior eficiência, exibindo resultados mais favoráveis para GHRm. Em relação a GHAm, a necessidade de Graus-Hora de Aquecimento foi mais pronunciada, especialmente em cidades como Campo Grande. No geral, as amostras com PCM destacaram-se em desempenho para GHAm, com a espessura de 20 mm mostrandose a mais vantajosa.

A Figura 16 apresenta os resultados para a região Sudeste, onde, assim como no Centro-Oeste, as amostras com PCM de 20 mm de espessura demonstraram maior eficiência para GHRm, incluindo casos com paredes em Steel Frame. Nos sistemas construtivos SCIP e Contêiner, o comportamento de GHRm mostrou-se bastante similar. Para esta região, observa-se que as amostras com temperaturas de fusão mais elevadas não mantiveram consistentemente o melhor desempenho térmico. Em São Paulo, cidade com os maiores valores de GHAm, as amostras com PCM se destacaram em desempenho, sendo a temperatura de fusão de 21 °C a mais eficaz para essa variável.

A Figura 17 apresenta os resultados para a região Sul. Observa-se uma inversão no desempenho de GHRm em relação à amostra de referência, na qual a parede de contêiner apresentou melhor desempenho em comparação com a parede de SCIP. No entanto, com a adição de PCM, as amostras de parede SCIP se mostraram mais eficientes. As amostras com PCM e maior temperatura de fusão também apresentaram um desempenho superior em GHRm. Na análise de GHAm, verificou-se um desempenho melhor nas amostras com PCM de menor temperatura de fusão, além de um comportamento similar de inversão de desempenho em relação ao sistema construtivo da parede.

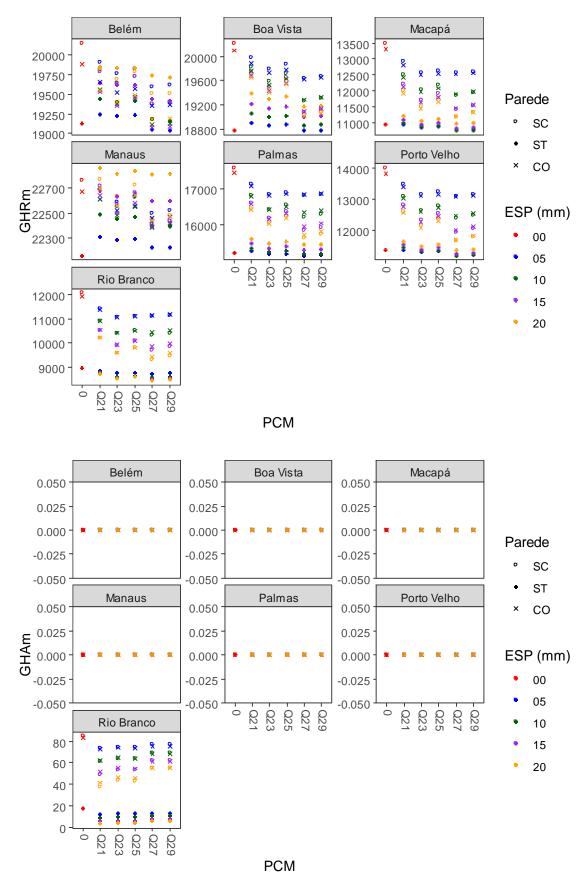


Figura 13: Graus Hora de Resfriamento/Aquecimento para a região Norte

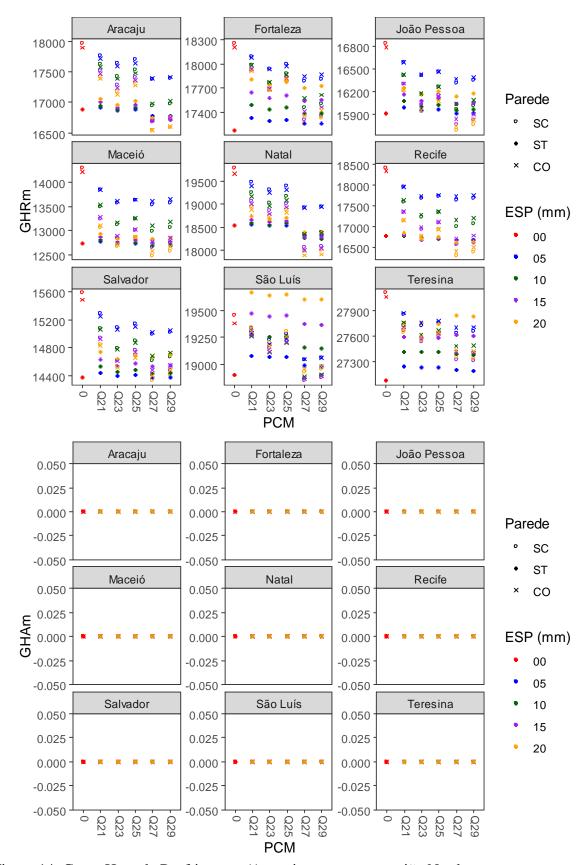


Figura 14: Graus Hora de Resfriamento/Aquecimento para a região Nordeste

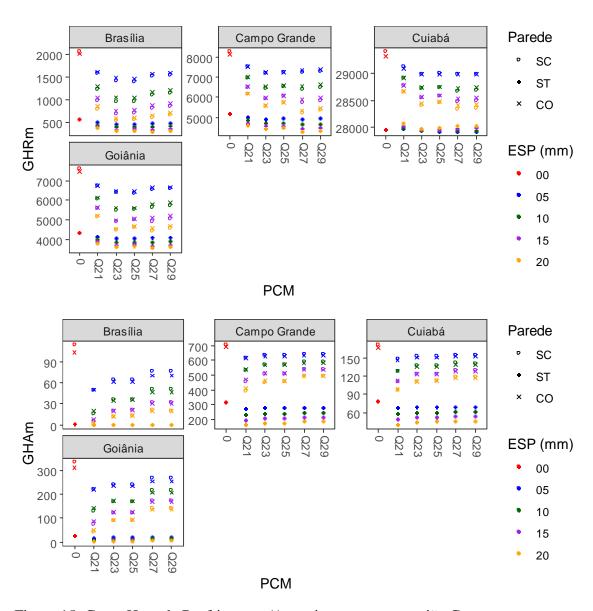


Figura 15: Graus Hora de Resfriamento/Aquecimento para a região Centro-oeste

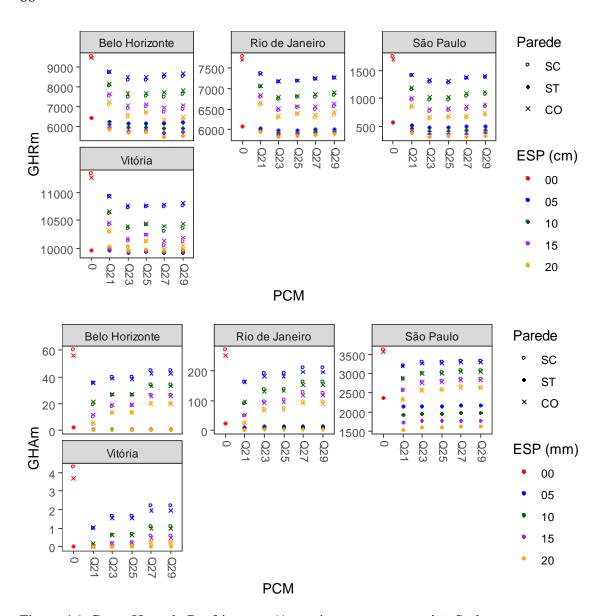


Figura 16: Graus Hora de Resfriamento/Aquecimento para a região Sudeste

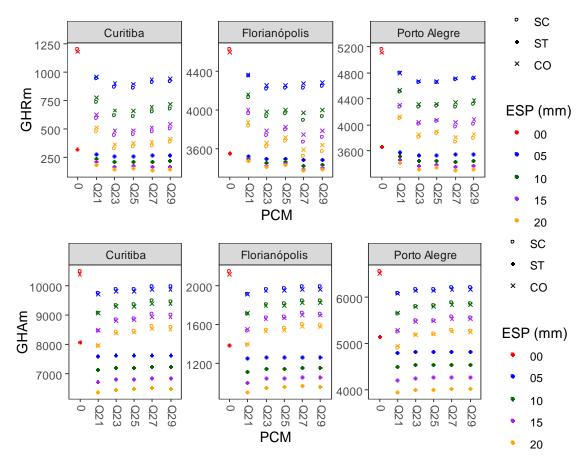


Figura 17: Graus Hora de Resfriamento/Aquecimento para a região Sul

Os resultados das análises com ventilação natural evidenciaram uma forte influência do clima regional e do tipo de sistema construtivo no desempenho térmico das amostras. De maneira geral, observou-se que as amostras contendo materiais de mudança de fase (PCM) apresentaram desempenhos variados, com vantagens específicas para determinadas condições climáticas e características construtivas. Regiões de clima mais quente, como Norte e Nordeste, mostraram maior eficiência em amostras de menor espessura de PCM e temperaturas de fusão mais elevadas, enquanto as regiões Centro-Oeste, Sudeste e Sul destacaram-se pela eficácia de amostras com espessura de 20 mm, tanto para resfriamento (GHRm) quanto para aquecimento (GHAm).

Embora o desempenho térmico tenha sido consistente para o resfriamento nas regiões mais quentes, a necessidade de aquecimento foi significativa apenas em localidades das regiões Sul e Sudeste, onde o uso de PCM, especialmente com menores temperaturas de fusão, mostrou vantagens claras. Esses resultados reforçam a importância de considerar as particularidades climáticas e construtivas ao avaliar a viabilidade do uso de PCMs, apontando para um potencial de aplicação mais promissor em regiões de clima temperado e frio.

4.2.2 Amostras com HVAC (Carga Térmica Total)

Os resultados com HVAC são apresentados da Figura 18 a Figura 22. Nesses gráficos, o eixo y representa as escalas de Carga de Resfriamento Total (CRt) e Carga de Aquecimento Total (CAt), enquanto o eixo x organiza os diferentes tipos de PCM. A Figura 18 ilustra os resultados de CRt para a região Norte do Brasil. Nesse caso, diferente da análise de GHR, as paredes de contêiner (CO) demonstraram melhor desempenho em todas as cidades dessa região. Entre as amostras com PCM, aquelas com a menor temperatura de fusão (Q21) apresentaram resultados mais favoráveis. Entretanto, as amostras de referência, sem PCM, registraram o desempenho mais eficiente, o que sugere que, para essa aplicação específica, o uso de PCM pode não proporcionar benefícios.

Na Figura 18, observa-se também os resultados de CAt, que em grande parte mantiveram-se em zero para a região Norte. A única exceção foi a cidade de Rio Branco, onde, embora o valor de CAt seja próximo de zero, nota-se um desempenho superior nas amostras com PCM em relação às amostras de referência (sem PCM). Nesse contexto específico, as paredes em Steel Frame apresentaram melhor desempenho comparado aos demais sistemas construtivos, evidenciando uma leve vantagem no uso de PCM para demandas de aquecimento nessa localidade.

O comportamento da CRt para a região Nordeste é apresentado na Figura 19, e este é compatível com os resultados com a região Norte, a parede de Contêiner teve melhor desempenho do que os outros sistemas construtivos, porém, dessa vez, as paredes de SCIP tiveram um comportamento parecido com as paredes de Contêiner. As amostras referência tiveram um desempenho melhor do que as amostras com PCM e, de forma geral, as amostras com menor temperatura de fusão Q21, comparando com as amostras de PCM. Nessa região, apenas o caso da cidade de Teresina, no sistema construtivo em Steel Frame, para as amostras de Q21 a Q25, o resultado com PCM tiveram melhor desempenho do que a referência. Ao analisar a CAt, todos os resultados foram zerados, para todas as cidades.

A Figura 19 apresenta o comportamento da CRt para a região Nordeste, o qual é consistente com os resultados observados para a região Norte. As paredes de contêiner destacaram-se pelo melhor desempenho entre os sistemas construtivos, embora, neste caso, as paredes de SC tenham mostrado um comportamento semelhante ao das paredes de contêiner. As amostras de referência (sem PCM) tiveram um desempenho superior em relação às amostras contendo PCM. Entre as amostras com PCM, aquelas com a menor temperatura de fusão (Q21) apresentaram resultados ligeiramente melhores. Uma exceção foi observada nas cidades de Aracaju e Teresina, onde, para o sistema em Steel Frame, as amostras com PCM (Q21 a Q25) superaram o desempenho da referência. Em relação à CAt, todos os valores permaneceram em zero para as cidades da região, indicando a ausência de necessidade de aquecimento.

A Figura 19 apresenta os resultados para a região Centro-Oeste, onde as médias anuais de temperatura são mais baixas, quando comparadas com as regiões já apresentadas, exceto na cidade de Cuiabá, que apresenta uma média de temperatura superior às demais cidades da região. Em Cuiabá, as paredes de SCIP e contêiner demonstraram melhor desempenho, com o PCM Q25 na espessura de 20 mm destacando-se como a única amostra desses sistemas a superar o desempenho da referência. Em uma análise geral da região, observam-se variações de comportamento conforme o tipo de sistema construtivo, com várias amostras contendo PCM apresentando desempenho térmico superior ao das amostras de referência. O PCM Q25 mostrou-se particularmente eficaz, especialmente na espessura de 20 mm.

Na análise de CAt, as cargas de aquecimento foram relativamente baixas, alcançando valores máximos próximos de 50 kWh anuais em Goiânia. No entanto, é relevante notar que, de modo geral, as amostras contendo PCM apresentaram um desempenho superior às de referência, com destaque para o PCM Q21. O sistema construtivo em Steel Frame apresentou os melhores resultados para todas as cidades.

A Figura 21 apresenta os resultados para as cidades da região Sudeste, que mostraram comportamento semelhante aos da região Centro-Oeste. Nas cidades com médias de temperatura mais elevadas, como Rio de Janeiro e Vitória, a parede no sistema construtivo SCIP apresentou melhor desempenho. Em São Paulo, onde a média de temperatura é mais baixa, os melhores resultados foram observados no sistema construtivo Steel Frame. O PCM Q25 destacou-se com o melhor desempenho geral, assim como a espessura de 20 mm, considerando todos os tipos de sistemas construtivos. Vitória, no entanto, apresentou um comportamento distinto, com os resultados de referência nos sistemas SCIP e contêiner mostrando melhor desempenho, mesmo em comparação com as amostras com PCM nos mesmos sistemas.

Na análise de CAt, as cargas foram relativamente baixas, semelhante ao comportamento observado no Centro-Oeste. Diversas amostras apresentaram valores de CAt zerados em Belo Horizonte, Rio de Janeiro e Vitória. A exceção foi São Paulo, onde os valores de CAt superaram os 200 kWh anuais. De modo geral, os melhores resultados para CAt foram obtidos com o sistema Steel Frame, especialmente nas amostras contendo PCM. Entre estas, o PCM Q21 apresentou o melhor desempenho, e a espessura de 20 mm foi a mais eficiente em todas as cidades da região.

A Figura 22 apresenta os resultados para a região Sul, caracterizada pelas menores médias de temperatura do Brasil. Nas amostras de referência, o sistema construtivo Steel Frame apresentou o melhor desempenho para CRt. No entanto, ao utilizar PCM, essa tendência se altera significativamente, com variação no desempenho das amostras nos diferentes sistemas construtivos. De modo geral, as amostras com PCM apresentaram melhor desempenho, com destaque para o PCM Q25, que foi o mais eficiente, e para a espessura de 20 mm, que também se mostrou superior.

Na análise de CAt, o sistema Steel Frame manteve o melhor desempenho para todas as cidades e variações com e sem PCM. O PCM Q21 se destacou como o mais eficaz, e, assim como na análise de CRt, a espessura de 20 mm apresentou os melhores resultados para a região.

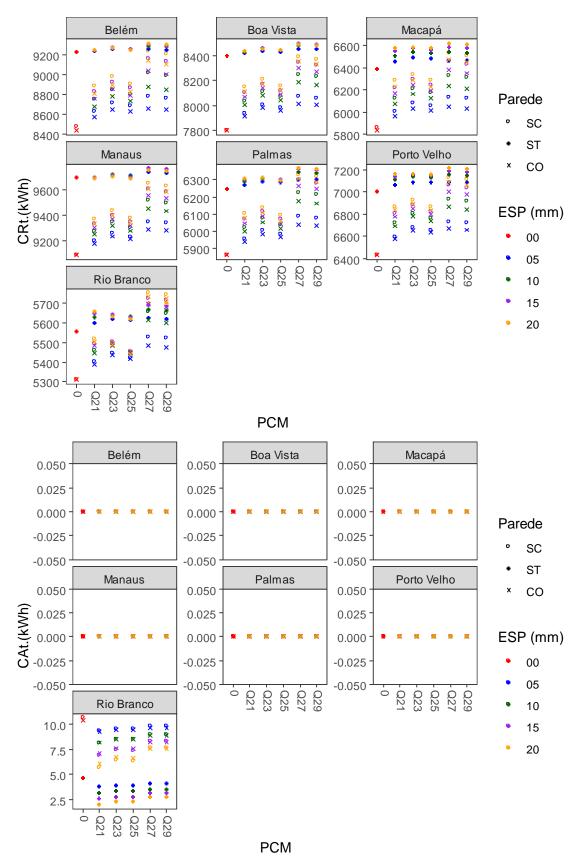


Figura 18: Carga Térmica Total para Resfriamento/Aquecimento para a região Norte

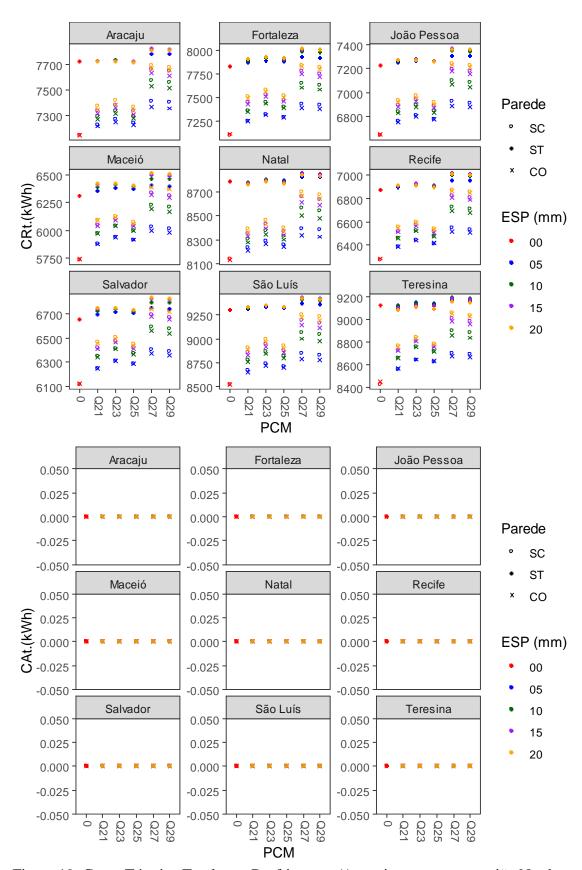


Figura 19: Carga Térmica Total para Resfriamento/Aquecimento para a região Nordeste

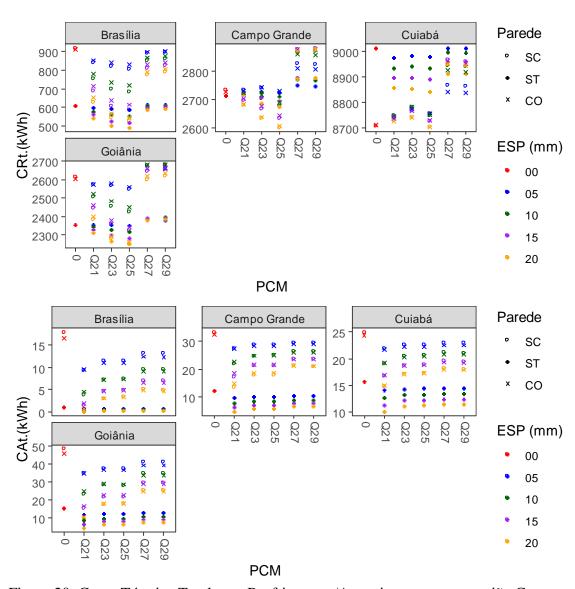


Figura 20: Carga Térmica Total para Resfriamento/Aquecimento para a região Centro-oeste

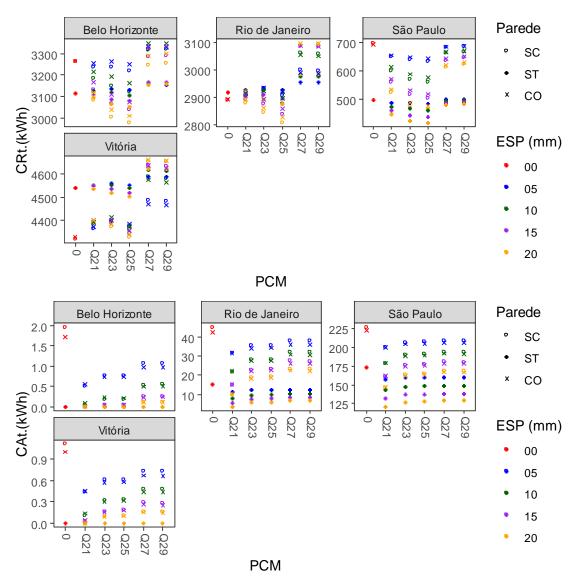


Figura 21: Carga Térmica Total para Resfriamento/Aquecimento para a região Sudeste

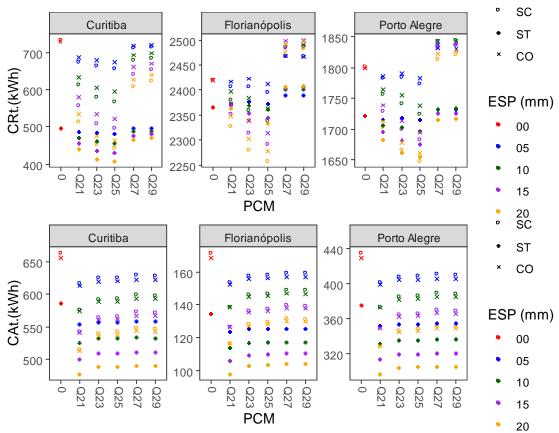


Figura 22: Carga Térmica Total para Resfriamento/Aquecimento para a região Sul

Os resultados das análises com HVAC mostraram uma grande variabilidade no desempenho térmico das amostras, influenciada pelas diferenças climáticas regionais e pelos sistemas construtivos. De maneira geral, as amostras com PCM apresentaram desempenhos específicos para cada região. Nas regiões Norte e Nordeste, as amostras de referência (sem PCM) tiveram melhor desempenho em termos de carga de resfriamento total (CRt), enquanto as amostras com menor temperatura de fusão (Q21) foram ligeiramente mais eficientes entre as opções com PCM. Em ambas as regiões, as cargas de aquecimento total (CAt) permaneceram praticamente inexistentes.

Já nas regiões Centro-Oeste, Sudeste e Sul, onde as médias de temperatura são mais baixas, o PCM Q25 e a espessura de 20 mm destacaram-se pelo melhor desempenho geral, tanto para CRt quanto para CAt. Nessas regiões, o sistema construtivo Steel Frame mostrou resultados consistentes, especialmente em demandas de aquecimento. De forma ampla, os dados reforçam a relevância de adaptar as estratégias de aplicação de PCM às condições climáticas e aos sistemas construtivos locais, indicando maior potencial de benefício em regiões de clima temperado e frio, onde a necessidade de aquecimento é mais significativa.

4.3 Razão da Diferença

As Figura 23 a Figura 26 exibem os gráficos da análise da Razão da Diferença, que fornece uma perspectiva sobre o desempenho relativo das amostras com PCM em comparação às amostras de referência (sem PCM). Nessa análise, o eixo Y representa a variação percentual dos resultados obtidos com PCM em relação aos resultados de referência para cada cidade, enquanto o eixo X organiza as cidades por siglas dos estados, agrupadas por região.

As grades no gráfico segmentam os resultados por tipo de parede, facilitando a comparação entre diferentes sistemas construtivos. Há casos em que os valores de referência são iguais a zero (como ocorre em algumas análises de aquecimento) os quais representam dados excluídos da avaliação. Isso ocorre porque, como a razão da diferença é calculada pela divisão dos resultados das amostras com PCM pelo valor de referência, não é possível realizar essa operação quando a referência é zero. Além disso, resultados de amostras com PCM nessas condições também são iguais a zero, tornando a análise irrelevante nesses casos. Essa estrutura de análise permite visualizar com clareza como o uso de PCM pode impactar o desempenho térmico nas diferentes cidades e regiões, com destaque para o tipo de parede e a resposta do PCM em cada situação específica.

A Figura 23 apresenta os resultados da Razão da Diferença de GHR (rDGHR), evidenciando variações distintas entre as regiões. Esse comportamento reforça o impacto das condições climáticas regionais na eficácia dos PCMs. Observa-se que os resultados de algumas amostras nas regiões Centro-Oeste e Sul ultrapassam 60%, enquanto, nas regiões Norte e Nordeste, onde as temperaturas são mais elevadas, a aplicação de PCM não resulta em grandes reduções nos valores de Graus-Hora de Resfriamento.

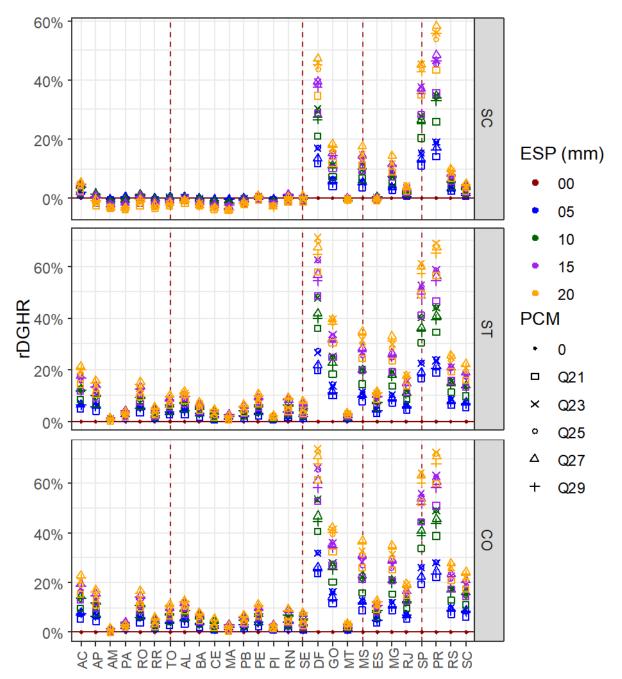


Figura 23: Razão da diferença de GHR

Para os casos em que o uso de PCM demonstra melhor desempenho, a espessura de 20 mm destaca-se como a mais eficiente, superando outras espessuras avaliadas. Entre as

diferentes temperaturas de fusão dos PCM, o Q27 apresentou o melhor desempenho, mostrando-se a opção mais eficaz para a redução de GHR nas condições analisadas.

A Figura 24 apresenta os resultados da Razão da Diferença de Graus-Hora de Aquecimento (rDGHA), os quais exigem uma análise cuidadosa. Embora vários resultados indiquem alta eficiência, com valores próximos a 100%, é importante observar que os valores absolutos de GHA para muitas cidades são baixos. Em Brasília, por exemplo, a rDGHA se aproxima de 100%, mas os valores absolutos de GHA são geralmente inferiores a 90 °C, o que significa uma baixa demanda de aquecimento. Esse padrão se repete em cidades como Cuiabá, Rio Branco, Goiânia, Belo Horizonte, Rio de Janeiro e Vitória.

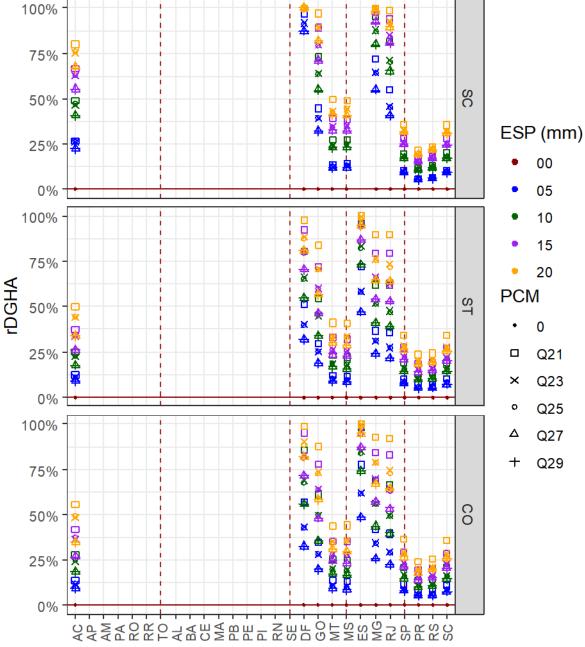


Figura 24: Razão da diferença de GHA

Apesar dessas limitações, o rDGHA oferece *insights* relevantes, especialmente para cidades em regiões com climas mais frios, onde o uso de PCM se mostra mais vantajoso. Nas amostras com PCM, a espessura de 20 mm continua a se destacar como a mais eficaz. Em termos de temperatura de fusão, o PCM Q21 apresentou o melhor desempenho, evidenciandose como a opção mais apropriada para a redução de GHA nas regiões analisadas.

A Figura 25 ilustra os resultados da Razão da Diferença de CRt (rDCRt), confirmando as tendências observadas nas análises com valores absolutos de CRt. Os dados revelam desempenhos negativos para as regiões mais quentes, onde o uso de PCM não proporciona uma contribuição significativa na redução do consumo de energia para resfriamento. Em contrapartida, nas regiões de clima mais temperado, os resultados positivos indicam uma possível diminuição no consumo energético com o uso de PCM. Entre os PCM testados, as amostras com 20 mm de espessura foram mais eficazes, com destaque para os PCM Q21 e Q23.

Na Figura 26, a análise da Razão da Diferença de CAt (rDCAt) segue um comportamento semelhante ao da rDGHA, mostrando altas taxas de eficiência relativa, embora os valores absolutos de aquecimento sejam baixos em alguns casos. Ao considerar apenas os resultados com valores absolutos relevantes, observamos que, entre as amostras com PCM, a espessura de 20 mm novamente demonstra melhor desempenho, enquanto o PCM Q21 apresenta a melhor eficiência em termos de temperatura de fusão.

Essas análises confirmam a influência positiva de certos PCM e espessuras específicas em contextos climáticos adequados, destacando a importância de adaptar o tipo de PCM e espessura de acordo com as condições térmicas de cada região.

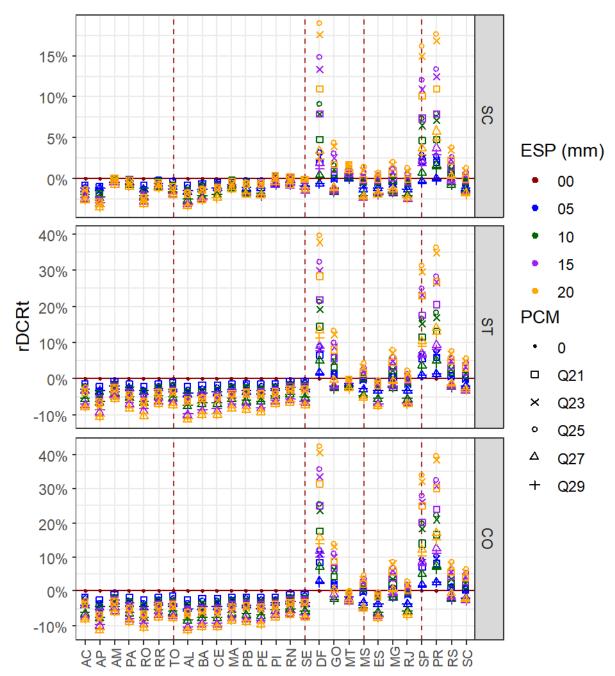


Figura 25: Razão da diferença de CRt

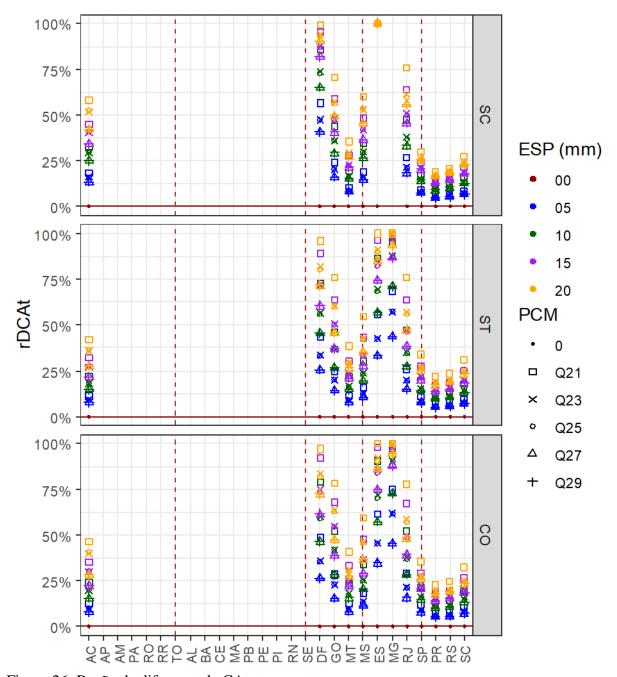


Figura 26: Razão da diferença de CAt

A análise da Razão da Diferença destaca a eficácia relativa dos PCMs em relação às amostras de referência, evidenciando variações significativas em função do clima regional, tipo de sistema construtivo e espessura do material. Em regiões de clima quente, como Norte e Nordeste, os PCMs tiveram impacto limitado na redução de Graus-Hora de Resfriamento (GHR) e na Carga Térmica Total de Resfriamento (CRt). No entanto, nas regiões Centro-Oeste, Sudeste e Sul, onde as demandas térmicas são mais variadas, os PCMs apresentaram um desempenho superior, com destaque para o PCM Q27 em aplicações de resfriamento e para o Q21 em demandas de aquecimento.

De forma geral, a espessura de 20 mm demonstrou maior eficiência em todas as análises, confirmando sua adequação para aplicações térmicas mais exigentes. Embora os resultados de aquecimento, como a Razão da Diferença de Graus-Hora de Aquecimento (rDGHA) e Carga Térmica Total de Aquecimento (CAt), apresentem altos índices percentuais, é essencial considerar os baixos valores absolutos em muitas cidades. Esses dados reforçam a necessidade de uma abordagem regionalizada, otimizando a escolha de PCM e espessura de acordo com as características climáticas locais para maximizar os benefícios no desempenho térmico de edificações.

4.4 Análise de correlação

A análise de Pearson foi realizada para avaliar a correlação entre variáveis independentes e as variáveis dependentes. Os resultados para as simulações com ventilação natural (GHR/GHA) estão apresentados na Figura 27, enquanto os resultados das simulações com HVAC (CRt/CAt) são analisados na Figura 28. Os padrões de correlação são consistentes entre os dois contextos, evidenciando semelhanças nas variáveis influentes.

No caso das variáveis relacionadas ao resfriamento (GHR/CRt), a temperatura média (T. Média) foi identificada como o fator de maior influência, enquanto a altitude (Alt.) apresentou menor impacto. Contudo, ao considerar a análise da Razão da Diferença para resfriamento (rDGHR/rDCRt), observa-se uma inversão nesse comportamento: a altitude torna-se a variável predominante, enquanto a temperatura média passa a exercer menor influência. Esse resultado destaca a discrepância entre as análises baseadas em valores absolutos e percentuais, evidenciando a complexidade das interações entre as variáveis climáticas e os indicadores de desempenho.

Para as variáveis de aquecimento (GHA/CAt), a altitude também se destacou como o principal fator de influência nos valores absolutos, enquanto a temperatura média demonstrou impacto reduzido. Já na análise da Razão da Diferença para aquecimento (rDGHA/rDCAt), a altitude permaneceu como a variável mais relevante, mas a latitude foi identificada como a de menor influência, reafirmando a importância de considerar diferentes perspectivas de análise para uma compreensão mais abrangente do desempenho térmico.

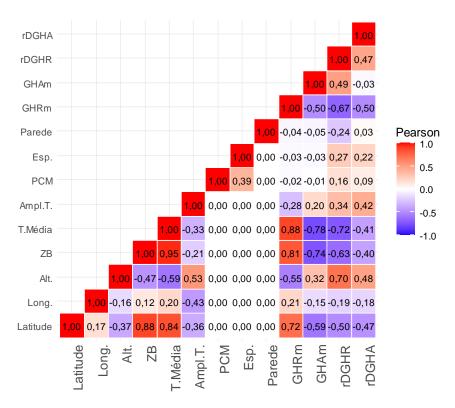


Figura 27: Correlação de Pearson (Graus-Hora)

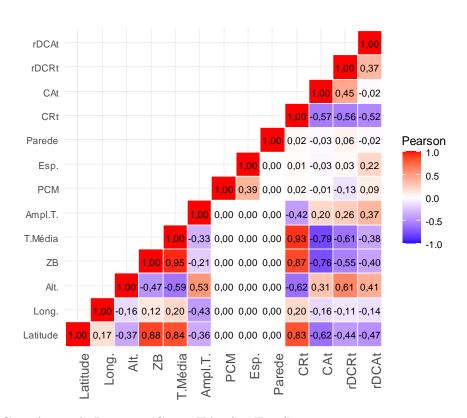


Figura 28: Correlação de Pearson (Carga Térmica Total)

4.5 Análise de viabilidade econômica

A análise contemplou cidades das regiões Centro-Oeste, Sudeste (exceto Vitória/ES) e Sul. A Tabela 10 apresenta os dados locais utilizados, incluindo tarifas, alíquotas de impostos e o preço final da energia em Reais (R\$), atualizados para novembro de 2024.

Tabela 10: Dados de custos de consumo de energia elétrica local

Cidade	Concessão	TUSD (MWh)	TE (MWh)	Total (MWh)	PIS	COFINS	ICMS	Preço final (MWh)	Preço final (kWh)
Belo Horizonte – MG	CEMIG	R\$ 486,18	R\$ 313,51	R\$ 799,69	7,6%	1,65%	18,0%	R\$ 1.017,61	R\$ 1,02
Brasília – DF	Neoenergia	R\$ 352,74	R\$ 390,62	R\$ 743,36	7,6%	1,65%	20,0%	R\$ 960,79	R\$ 0,96
Campo Grande – MS	Energisa	R\$ 539,69	R\$ 330,48	R\$ 870,17	7,6%	1,65%	17,0%	R\$ 1.098,59	R\$ 1,10
Cuiabá – MT	Energisa	R\$ 529,21	R\$ 353,70	R\$ 882,91	7,6%	1,65%	17,0%	R\$ 1.114,67	R\$ 1,11
Curitiba — PR	COPEL	R\$ 339,82	R\$ 290,19	R\$ 630,01	7,6%	1,65%	19,5%	R\$ 811,14	R\$ 0,81
Florianópolis – SC	CELESC	R\$ 340,12	R\$ 235,40	R\$ 575,52	7,6%	1,65%	17,0%	R\$ 726,59	R\$ 0,73
Goiânia – GO	Equatorial	R\$ 474,74	R\$ 271,19	R\$ 745,93	7,6%	1,65%	19,0%	R\$ 956,66	R\$ 0,96
Porto Alegre – RS	CEEE	R\$ 364,49	R\$ 278,56	R\$ 643,05	7,6%	1,65%	17,0%	R\$ 811,85	R\$ 0,81
Rio de Janeiro – RJ	Enel-RJ	R\$ 619,69	R\$ 293,18	R\$ 912,87	7,6%	1,65%	22,0%	R\$ 1.198,14	R\$ 1,20
São Paulo – SP	Enel-SP	R\$ 373,17	R\$ 263,07	R\$ 636,24	7,6%	1,65%	18,0%	R\$ 809,62	R\$ 0,81

A Tabela 11 apresenta o consumo anual de energia elétrica (*Ce*) das amostras com PCM que demonstraram o melhor desempenho em comparação com as respectivas referências simuladas. Além disso, a tabela indica o sistema construtivo de referência (*Ref. Parede*) utilizado na comparação.

Tabela 11: Consumo de energia elétrica anual de HVAC por amostra

Cidade	ESP	PCM	Parede	Ref. Parede	CT (kWh)	dCT (kWh)	IDRS	Ce (kWh)
Belo Horizonte – MG	20 mm	Q25	SC	SC	2978,25	137,2	3,03	45,28053
Brasília – DF	20 mm	Q25	SC	SC	494,12	115,91	3,03	38,25413
Campo Grande – MS	20 mm	Q25	CO	SC	2619,7	106,98	3,03	35,30693
Cuiabá – MT	20 mm	Q25	ST	СО	8718,86	13,25	3,03	4,372937
Curitiba – PR	20 mm	Q25	SC	SC	895,92	184,91	3,03	61,0264
Florianópolis – SC	20 mm	Q25	CO	SC	2387,43	111,27	3,03	36,72277
Goiânia – GO	20 mm	Q25	SC	СО	2256,28	111,56	3,03	36,81848
Porto Alegre – RS	20 mm	Q25	SC	SC	1958,04	137,11	3,03	45,25083
Rio de Janeiro – RJ	20 mm	Q25	CO	SC	2827,59	104,76	3,03	34,57426
São Paulo – SP	20 mm	Q25	SC	SC	544,35	124,85	3,03	41,20462

As vantagens econômicas do uso de PCM foram avaliadas para cada cidade, considerando a diferença de custo anual de energia. Adicionalmente, foi estimado o período de retorno financeiro para horizontes de 5 e 10 anos, considerando as variações nas tarifas de eletricidade no Brasil devido à inflação. Para essas estimativas, utilizaram-se as taxas históricas de inflação do Banco Central do Brasil:

- Cenário de 5 anos: taxa média histórica de 10 anos, igual a 5,937% ao ano.
- Cenário de 10 anos: taxa média histórica de 20 anos, igual a 5,905% ao ano. (Fonte: <u>Banco Central do Brasil</u>, acessado em 1º de setembro de 2024)

O cálculo considerou a área útil aplicável do material, definida como a superfície total das paredes externas, excluindo aberturas (portas e janelas), resultando em uma área útil de 55,76 m². Essa análise permitiu estimar o custo máximo por metro quadrado que garantiria a viabilidade financeira da aplicação do PCM, com os resultados detalhados na Tabela 12, incluindo as diferenças de custo por metro quadrado para cada amostra.

Tabela 12: Análise financeira da aplicação do PCM para as amostras com desempenho superior.

Cidade	Ce (kWh)	P. Final (kWh)	Economia Anual	Custo Anual/m²	Correção 5 Anos	Corr. 5 anos/m²	Correção 10 Anos	Corr. 10 anos/m²
Belo Horizonte – MG	45,2805	R\$ 1,02	R\$ 46,08	R\$ 0,83	R\$ 259,42	R\$ 4,65	R\$ 604,63	R\$ 10,84
Brasília – DF	38,2541	R\$ 0,96	R\$ 36,75	R\$ 0,66	R\$ 206,93	R\$ 3,71	R\$ 482,28	R\$ 8,65
Campo Grande – MS	35,3069	R\$ 1,10	R\$ 38,79	R\$ 0,70	R\$ 218,38	R\$ 3,92	R\$ 508,97	R\$ 9,13
Cuiabá – MT	4,3729	R\$ 1,11	R\$ 4,87	R\$ 0,09	R\$ 27,44	R\$ 0,49	R\$ 63,96	R\$ 1,15
Curitiba — PR	61,0264	R\$ 0,81	R\$ 49,50	R\$ 0,89	R\$ 278,69	R\$ 5,00	R\$ 649,54	R\$ 11,65
Florianópolis – SC	36,7228	R\$ 0,73	R\$ 26,68	R\$ 0,48	R\$ 150,22	R\$ 2,69	R\$ 350,12	R\$ 6,28
Goiânia – GO	36,8185	R\$ 0,96	R\$ 35,22	R\$ 0,63	R\$ 198,30	R\$ 3,56	R\$ 462,19	R\$ 8,29
Porto Alegre – RS	45,2508	R\$ 0,81	R\$ 36,74	R\$ 0,66	R\$ 206,83	R\$ 3,71	R\$ 482,06	R\$ 8,65
Rio de Janeiro – RJ	34,5743	R\$ 1,20	R\$ 41,42	R\$ 0,74	R\$ 233,22	R\$ 4,18	R\$ 543,57	R\$ 9,75
São Paulo – SP	41,2046	R\$ 0,81	R\$ 33,36	R\$ 0,60	R\$ 187,82	R\$ 3,37	R\$ 437,75	R\$ 7,85

A coluna "Corr. 10 anos/m²" apresenta o limite de custo máximo por metro quadrado para a aplicação do PCM, necessário para justificar economicamente sua implementação. Esse parâmetro demonstra que, quanto maior o teto de custo, mais vantajosa a aplicação do PCM se torna. As cidades de Belo Horizonte - MG e Curitiba - PR se destacaram como as localidades com os maiores potenciais de viabilidade econômica para o uso do material.

A análise financeira confirmou os resultados de desempenho térmico apresentados anteriormente, evidenciando que as amostras com PCM de 20 mm de espessura obtiveram o melhor desempenho. Destacaram-se, particularmente, as amostras com temperatura de fusão de 25 °C, que apresentaram as maiores diferenças nos custos anuais de energia em comparação com as referências em cada local avaliado. Essa abordagem permitiu uma avaliação geral da viabilidade econômica do PCM, considerando as condições reais de mercado, como falta de fornecedores, e as particularidades regionais de consumo e tarifação no Brasil.

5 CONCLUSÕES

O objetivo desse trabalho é avaliar o desempenho térmico e energético de edificações unifamiliares, com envoltórias incorporando materiais de mudança de fase (PCM), considerando a influência de diferentes regiões climáticas do Brasil e distintos sistemas construtivos não convencionais. Para atingir os objetivos foram realizadas simulações termoenergéticas empregando o material em diferentes climas e sistemas construtivos. As simulações geraram duas variáveis fundamentais para a análise do desempenho térmico: os Graus-Hora de Resfriamento e Aquecimento, bem como as Cargas Térmicas de Resfriamento e Aquecimento. Essas variáveis permitiram não apenas a avaliação das diferenças nos resultados obtidos, mas também possibilitaram a realização de uma análise de viabilidade econômica, estabelecendo parâmetros de referência para os custos associados à aplicação do material por metro quadrado.

Os resultados de desempenho indicaram que cada variável analisada apresenta comportamentos distintos dependendo do sistema construtivo adotado. Por exemplo, os GHRm, representando cenários de ventilação natural, apresentaram melhor desempenho em simulações com paredes de Steel Frame. Em contrapartida, para simulações com HVAC, na análise da variável CRt, as paredes de Contêiner destacaram-se nas regiões mais quentes, enquanto o desempenho das paredes em Steel Frame foi superior em cidades localizadas nas regiões centro e sul do Brasil.

Esses resultados ressaltam a relevância da interação entre o sistema construtivo e o clima regional, evidenciando que o tipo de construção pode influenciar significativamente o desempenho térmico de uma edificação, dependendo do sistema de aquecimento ou resfriamento utilizado. Além disso, os dados reforçam o potencial de tecnologias como o PCM para otimizar o desempenho térmico e energético, especialmente em climas mais frios, consolidando sua aplicação como uma solução eficiente e adaptável às condições climáticas brasileiras, nessas regiões.

A análise da razão da diferença evidenciou a efetividade do PCM nas regiões em que sua aplicação se mostrou uma solução técnica viável. Ao considerar os valores absolutos das variáveis GHRm/GHAm e CRt/CAt, foi possível compreender o potencial de contribuição do material, analisando-se tanto a temperatura de fusão quanto a espessura aplicada. Os resultados indicaram que a espessura de 20 mm foi a mais eficiente na maioria dos cenários favoráveis. Contudo, a eficácia da temperatura de fusão variou substancialmente conforme as condições

climáticas e a demanda específica por resfriamento ou aquecimento, destacando a necessidade de adequação às características regionais.

A análise da influência das variáveis climáticas e regionais sobre os indicadores térmicos, realizada na análise de correlação, revelou não apenas a relevância de fatores como temperatura média e altitude, mas também a necessidade de adotar abordagens complementares para interpretar os resultados. A inclusão da Razão da Diferença trouxe uma perspectiva valiosa, permitindo identificar padrões que poderiam passar despercebidos em análises baseadas exclusivamente em valores absolutos. Assim, este estudo reforça a importância de uma abordagem multifacetada para avaliar a interação entre características climáticas e o desempenho térmico de materiais construtivos, contribuindo para o desenvolvimento de estratégias mais eficazes e adaptadas às condições regionais.

A análise de viabilidade econômica demonstrou que, mesmo na ausência de fornecedores de PCM no Brasil, é possível estimar custos de aplicação viável, considerando a economia proporcionada na energia elétrica destinada ao uso de sistemas ativos de resfriamento e aquecimento (HVAC). Apesar das limitações inerentes aos projetos de habitação social, foi possível estabelecer parâmetros de custo unitário, que podem servir como referência para projetos de diferentes escalas, desde que mantenham um padrão construtivo similar.

Cabe destacar que, em tipologias de edificações com áreas externas maiores, como aquelas com amplas superfícies de paredes expostas ao ambiente externo, é provável que os custos unitários apresentem maior variação. Isso se deve à maior área sujeita à transferência de calor, o que pode impactar diretamente na eficiência do PCM e na estimativa de custos, exigindo adaptações específicas para cada contexto arquitetônico.

Em síntese, este estudo analisou o comportamento térmico de edificações simuladas com PCM em paredes externas, atingindo os objetivos propostos. Além disso, estimou custos para viabilizar o uso do material, fornecendo uma base para pesquisas futuras. No entanto, a análise se restringiu a HIS e três sistemas construtivos, sem medições in loco. Estudos futuros poderão considerar características regionais e diferentes tipologias de edificações, ampliando o conhecimento sobre o impacto do PCM e outras variáveis no desempenho térmico e energético.

REFERÊNCIAS BIBLIOGRÁFICAS

ABNT. NBR 15220-3: Desempenho térmico de edificações - Parte 3: Zoneamento bioclimático por desempenho. Rio de Janeiro, 1 dez. 2024a. Disponível em: www.abnt.org.br.

ABNT. NBR 15575-1: Edificações habitacionais — Desempenho - Parte 1: Requisitos gerais. Rio de Janeiro, 23 jan. 2024b. Disponível em: www.abnt.org.br.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15575-1 2013 Edificações Habitacionais — Desempenho Parte 1 : Requisitos gerais Prefácio. Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brasil, , p. 60, 2013. .

ALAM, Morshed; JAMIL, Hasnat; SANJAYAN, Jay; WILSON, John. Energy saving potential of phase change materials in major Australian cities. Energy and Buildings, [s. l.], vol. 78, p. 192–201, 2014. https://doi.org/10.1016/j.enbuild.2014.04.027.

ALMEIDA, Fernando da Silva; BRANDALISE, Mariane Pinto; MIZGIER, Martin Ordenes. Materiais de mudança de fase como sistema de resfriamento passivo em habitações de interesse social pré-fabricadas leves. PARC Pesquisa em Arquitetura e Construção, [s. l.], vol. 13, p. e022027, 3 out. 2022. https://doi.org/10.20396/parc.v13i00.8666777.

ARICI, Müslüm; BILGIN, Feyza; NIŽETIĆ, Sandro; KARABAY, Hasan. PCM integrated to external building walls: An optimization study on maximum activation of latent heat. Applied Thermal Engineering, [s. l.], vol. 165, 25 jan. 2020. https://doi.org/10.1016/j.applthermaleng.2019.114560.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, ABNT. NBR 15220-2: Desempenho térmico de edificações - Parte 2 - Componentes e elementos construtivos das edificações - Resistência e transmitância térmica - Métodos de cálculo (ISO 6946:2017 MOD). Rio de Janeiro: [s. n.], 2022. Disponível em: www.abnt.org.br.

AUSTIN, Miguel Chen; ARAÚZ, Jesús; MORA, Dafni. Numerical Assessment of Different Phase Change Materials as a Passive Strategy to Reduce Energy Consumption in Buildings under Tropical Climates. Buildings, [s. l.], vol. 12, no 7, 1 jul. 2022. https://doi.org/10.3390/buildings12070906.

BAETENS, Ruben; JELLE, Bjorn Petter; GUSTAVSEN, Arild. Phase change materials for building applications: A state-of-the-art review. Energy and Buildings, [s. l.], vol. 42, no 9, p. 1361–1368, 2010. https://doi.org/10.1016/j.enbuild.2010.03.026.

BELTRAN, David; MARTÍNEZ-GÓMEZ, Javier; LOBATO-CORDERO, Andrea. Effect of environment on the selection of phase change materials for building wallboards using multi-criteria decision methods and Building Energy Simulations. 1., 2017. Building Simulation

Conference Proceedings [...]. [S. l.]: International Building Performance Simulation Association, 2017. vol. 1, p. 265–275. https://doi.org/10.26868/25222708.2017.349.

BRITO, Adriana Camargo de; AKUTSU, Maria; SALLES, Elisa Morande; CASTRO, Guilherme Molnar. Características térmicas de materiais de mudança de fase adequados para edificações brasileiras. Ambiente Construído, [s. l.], vol. 17, no 1, p. 125–145, 2017. https://doi.org/10.1590/s1678-86212017000100128.

CHVATAL, Karin Maria S. Avaliação do procedimento simplificado da NBR 15575 para determinação do nível de desempenho térmico de habitações. Ambiente Construído, [s. l.], vol. 14, no 4, p. 119–134, 2014. .

DE GRACIA, Alvaro; CABEZA, Luisa F. Phase change materials and thermal energy storage for buildings. Energy and Buildings, [s. l.], vol. 103, p. 414–419, 15 set. 2015. https://doi.org/10.1016/j.enbuild.2015.06.007.

DE GRACIA, Alvaro; NAVARRO, Lidia; CASTELL, Albert; CABEZA, Luisa F. Energy performance of a ventilated double skin facade with PCM under different climates. Energy and Buildings, [s. l.], vol. 91, p. 37–42, 1 mar. 2015. https://doi.org/10.1016/j.enbuild.2015.01.011. ELI, Letícia Gabriela; KRELLING, Amanda Fraga; MENDES, Lorrany Silva; SILVA, Rayner Maurício e; MAZZAFERRO, Leonardo; MELO, Ana Paula; LAMBERTS, Roberto. MANUAL DE SIMULAÇÃO COMPUTACIONAL DE EDIFÍCIOS COM O USO DO OBJETO GROUND DOMAIN NO PROGRAMA ENERGYPLUS-Versão 9.0.1. Florianópolis: [s. n.], out. 2019. Disponível em: www.labeee.ufsc.br. Acessado em: 29 jul. 2022.

EMPRESA DE PESQUISA ENERGÉTICA (BRASIL). Balanço Energético Nacional (BEN) 2023. Rio de Janeiro: [s. n.], 2023. Disponível em: http://www.epe.gov.br.

FERSTER, Bronson; SHEN, Hui; RENDALI, Joseph D. PCM (Phase Change Material) optimization modeling for passive cooling in South Texas. 1., 2017. Building Simulation Conference Proceedings [...]. [S. l.]: International Building Performance Simulation Association, 2017. vol. 1, p. 241–247. https://doi.org/10.26868/25222708.2017.255.

FEUSTEL, Helmut E. Simplified numerical description of latent storage characteristics for phase change wallboard, indoor environment program, energy and environment division. 1995. California: Lawrence Berkeley Laboratory, University of California, 1995.

GONÇALVES, Helder; PANÃO, Marta Oliveira; CAMELO, Susana; RAMALHO, Álvaro; GRAÇA, João Mariz; AGUIAR, Ricardo. Ambiente construído, clima urbano, utilização racional de energia nos edifícios da cidade de Lisboa. Lisboa, 2004. Disponível em:

https://www.lneg.pt/wp-content/uploads/2022/03/Brochura_ACLURE_2004.pdf. Acessado em: 24 maio 2022.

GUNASEKARA, Saman Nimali; STALIN, Joseph; MARÇAL, Mariana; DELUBAC, Regis; KARABANOVA, Anastasiya; WEI CHIU, Justin Ning; MARTIN, Viktoria. Erythritol, glycerol, their blends, and olive oil, as sustainable phase change materials. 135., 2017. Energy Procedia [...]. [S. l.]: Elsevier Ltd, 2017. vol. 135, p. 249–262. https://doi.org/10.1016/j.egypro.2017.09.517.

INMETRO. Instrução Normativa Inmetro para a Classificação de Eficiência Energética de Edificações Comerciais, de Serviços e Públicas (INI-C) - MINISTÉRIO DA ECONOMIA. [S. l.: s. n.], 2021a. Disponível em: http://www.inmetro.gov.br/legislacao,.

INMETRO. Instrução Normativa Inmetro para a Classificação de Eficiência Energética de Edificações Residenciais (INI-R) - MINISTÉRIO DA ECONOMIA. [*S. l.*: *s. n.*], 2021b. Disponível em: www.inmetro.gov.br,.

INMETRO. PORTARIA N° 18, de 16 de janeiro de 2012. Regulamento Técnico da Qualidade para a Eficiência Energética de Edificações Residenciais (RTQ-R). Rio de Janeiro, Brasil: [s. n.], 2012.

IOANNOU, A.; ITARD, L. C M. Energy performance and comfort in residential buildings: Sensitivity for building parameters and occupancy. Energy and Buildings, [s. l.], vol. 92, no February, p. 216–233, 2015. DOI 10.1016/j.enbuild.2015.01.055. Disponível em: http://dx.doi.org/10.1016/j.enbuild.2015.01.055.

JIN, Xing; MEDINA, Mario A.; ZHANG, Xiaosong. On the importance of the location of PCMs in building walls for enhanced thermal performance. Applied Energy, [s. l.], vol. 106, p. 72–78, 2013. https://doi.org/10.1016/j.apenergy.2012.12.079.

JIN, Xing; ZHANG, Shuanglong; XU, Xiaodong; ZHANG, Xiaosong. Effects of PCM state on its phase change performance and the thermal performance of building walls. Building and Environment, [s. l.], vol. 81, p. 334–339, 1 nov. 2014. https://doi.org/10.1016/j.buildenv.2014.07.012.

JURIZAT, A.; WONORAHARDJO, S. A Review on the Application of Phase Change Material for Indoor Temperature Management in Tropical Area. 152., 11 jun. 2018. IOP Conference Series: Earth and Environmental Science [...]. [S. l.]: Institute of Physics Publishing, 11 jun. 2018. vol. 152, https://doi.org/10.1088/1755-1315/152/1/012022.

KHARBOUCH, Yassine; MIMET, Abdelaziz; EL GANAOUI, Mohammed; OUHSAINE, Lahoucine. Thermal energy and economic analysis of a PCM-enhanced household envelope

considering different climate zones in Morocco. International Journal of Sustainable Energy, [s. l.], vol. 37, no 6, p. 515–532, 3 jul. 2018. https://doi.org/10.1080/14786451.2017.1365076. KISHORE, Ravi Anant; BIANCHI, Marcus V.A.; BOOTEN, Chuck; VIDAL, Judith; JACKSON, Roderick. Parametric and sensitivity analysis of a PCM-integrated wall for optimal thermal load modulation in lightweight buildings. Applied Thermal Engineering, [s. l.], vol. 187, 25 mar. 2021. https://doi.org/10.1016/j.applthermaleng.2021.116568.

KOO, Choongwan; HONG, Taehoon; LEE, Minhyun; SEON PARK, Hyo. Development of a new energy efficiency rating system for existing residential buildings. Energy Policy, [s. l.], vol. 68, no 2014, p. 218–231, 2014. DOI 10.1016/j.enpol.2013.12.068. Disponível em: http://dx.doi.org/10.1016/j.enpol.2013.12.068.

KÖPPEN, Wladimir; GEIGER, Rudolf. Handbuch der Klimatologie. 10 ed. Berlim: [s. n.], 1936. vol. 1, .

LEI, Jiawei; YANG, Jinglei; YANG, En Hua. Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore. Applied Energy, [s. l.], vol. 162, p. 207–217, 15 jan. 2016. https://doi.org/10.1016/j.apenergy.2015.10.031.

LI, Wei; CHEN, Wei. Numerical analysis on the thermal performance of a novel PCM-encapsulated porous heat storage Trombe-wall system. Solar Energy, [s. l.], vol. 188, no January, p. 706–719, 2019. DOI 10.1016/j.solener.2019.06.052. Disponível em: https://doi.org/10.1016/j.solener.2019.06.052.

MAHDAOUI, Mustapha; HAMDAOUI, Said; AIT MSAAD, Abdelouahad; KOUSKSOU, Tarik; EL RHAFIKI, Tarik; JAMIL, Abdelmajid; AHACHAD, Mohammed. Building bricks with phase change material (PCM): Thermal performances. Construction and Building Materials, [s. l.], vol. 269, 1 fev. 2021. https://doi.org/10.1016/j.conbuildmat.2020.121315.

MALEKI, Behzad; KHADANG, Amirhosein; MADDAH, Heydar; ALIZADEH, Mostafa; KAZEMIAN, Ali; ALI, Hafiz Muhammad. Development and thermal performance of nanoencapsulated PCM/ plaster wallboard for thermal energy storage in buildings. Journal of Building Engineering, [s. l.], vol. 32, no August, p. 101727, 2020. DOI 10.1016/j.jobe.2020.101727. Disponível em: https://doi.org/10.1016/j.jobe.2020.101727.

MICHELS, Caren; GÜTHS, Saulo; MARINOSKI, Deivis L.; LAMBERTS, Roberto. Thermal performance and thermal resistance of fibre cement roof tiles: Experimental study. Energy and Buildings, [s. l.], vol. 231, 15 jan. 2021. https://doi.org/10.1016/j.enbuild.2020.110569.

MIRRAHIMI, Seyedehzahra; MOHAMED, Mohd Farid; HAW, Lim Chin; IBRAHIM, Nik Lukman Nik; YUSOFF, Wardah Fatimah Mohammad; AFLAKI, Ardalan. The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hothumid climate. Renewable and Sustainable Energy Reviews, [s. l.], vol. 53, p. 1508–1519, 2016. https://doi.org/10.1016/j.rser.2015.09.055.

MOHSENI, Ehsan; TANG, Waiching. Parametric analysis and optimisation of energy efficiency of a lightweight building integrated with different configurations and types of PCM. Renewable Energy, [s. l.], vol. 168, p. 865–877, 2021. DOI 10.1016/j.renene.2020.12.112. Disponível em: https://doi.org/10.1016/j.renene.2020.12.112.

NAVARRO, Lidia; DE GRACIA, Alvaro; NIALL, Dervilla; CASTELL, Albert; BROWNE, Maria; MCCORMACK, Sarah J.; GRIFFITHS, Philip; CABEZA, Luisa F. Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system. Renewable Energy, [s. l.], vol. 85, p. 1334–1356, 1 jan. 2016. https://doi.org/10.1016/j.renene.2015.06.064.

NOBAHAR, Aidin; MOJIB, Seyed; MOHARRAMI, Mahdi. Combined use of design of experiment and dynamic building simulation in assessment of energy efficiency in tropical residential buildings. Energy & Buildings, [s. l.], vol. 86, p. 525–533, 2015. DOI 10.1016/j.enbuild.2014.10.052. Disponível em: http://dx.doi.org/10.1016/j.enbuild.2014.10.052.

NURLYBEKOVA, Gauhar; MEMON, Shazim Ali; ADILKHANOVA, Indira. Quantitative evaluation of the thermal and energy performance of the PCM integrated building in the subtropical climate zone for current and future climate scenario. Energy, [s. l.], vol. 219, p. 119587, 2021. DOI 10.1016/j.energy.2020.119587. Disponível em: https://doi.org/10.1016/j.energy.2020.119587.

OLIVEIRA, Roberta Bastos de; GONZALES, Tomaz Silva; MARQUES, Michele Tereza. USO DE PCM PARA EDIFICAÇÕES EM REGIÃO DE CLIMA QUENTE : UMA REVISÃO SISTEMÁTICA. PARC Pesquisa em Arquitetura e Construção, [s. l.], vol. 12, p. 1–15, 18 jan. 2021.

OLIVEIRA, Matheus; LUCARELLI, Caio; CARLO, Joyce. Influência do uso de PCMs em escritório nos climas brasileiros. PARC Pesquisa em Arquitetura e Construção, [s. l.], vol. 15, p. e024006, 16 abr. 2024. DOI 10.20396/parc.v15i00.8673208. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8673208.

ORDENES, M.; PEDRINI, A.; GHISI, E.; LABERTS, R. Metodologia utilizada na elaboração da biblioteca de materiais e componentes construtivos brasileiros para simulações no VisualDOE-3.1. Florianópolis: [s. n.], 2003.

PEREIRA, Cláudia Donald; GHISI, Enedir. The influence of the envelope on the thermal performance of ventilated and occupied houses. Energy and Buildings, [s. l.], vol. 43, no 12, p. 3391–3399, 2011. https://doi.org/10.1016/j.enbuild.2011.09.001.

PEREIRA, Helena A. da C.; MELO, Ana Paula; VERSAGE, Rogério; SORGATO, Márcio; LAMBERTS, Roberto. MANUAL DE SIMULAÇÃO COMPUTACIONAL DE EDIFÍCIOS NATURALMENTE VENTILADOS NO PROGRAMA ENERGYPLUS – Versão 8.0. Florianópolis: [s. n.], out. 2013. Disponível em: http://www.labeee.ufsc.br/sites/default/files/disciplinas/Manual_Ventilacao_v8_0.pdf.

PONS, Vinicius; STANESCU, George. Materiais com mudança de fase: análise de desempenho energético para o Brasil. PARC Pesquisa em Arquitetura e Construção, [s. l.], vol. 8, no 2, p. 127, 21 dez. 2017. https://doi.org/10.20396/parc.v8i2.8650228.

RATHORE, Pushpendra Kumar Singh; SHUKLA, Shailendra Kumar. An experimental evaluation of thermal behavior of the building envelope using macroencapsulated PCM for energy savings. Renewable Energy, [s. l.], vol. 149, p. 1300–1313, 1 abr. 2020. https://doi.org/10.1016/j.renene.2019.10.130.

RAVOTTI, Rebecca; FELLMANN, Oliver; FISCHER, Ludger J.; WORLITSCHEK, Jörg; STAMATIOU, Anastasia. Investigation of the thermal properties of diesters from methanol, 1-pentanol, and 1-decanol as sustainable phase change materials. Materials, [s. l.], vol. 13, no 4, 1 fev. 2020. https://doi.org/10.3390/ma13040810.

RAVOTTI, Rebecca; WORLITSCHEK, Jörg; PULHAM, Colin R.; STAMATIOU, Anastasia. Triglycerides as novel phase-change materials: A review and assessment of their thermal properties. Molecules, [s. l.], vol. 25, no 23, 1 dez. 2020. https://doi.org/10.3390/molecules25235572.

SAFFARI, Mohammad; DE GRACIA, Alvaro; FERNÁNDEZ, Cèsar; CABEZA, Luisa F. Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings. Applied Energy, [s. l.], vol. 202, p. 420–434, 2017. https://doi.org/10.1016/j.apenergy.2017.05.107.

SANGWAN, Punita; MEHDIZADEH-RAD, Hooman; NG, Anne Wai Man; TARIQ, Muhammad Atiq Ur Rehman; NNACHI, Raphael Chukwuka. Performance Evaluation of Phase

Change Materials to Reduce the Cooling Load of Buildings in a Tropical Climate. Sustainability (Switzerland), [s. l.], vol. 14, no 6, 1 mar. 2022. https://doi.org/10.3390/su14063171.

SANTOS, Tássio Luiz dos; PORTO, Fernando Henrique Fiirst dos Santos; SILVA, Arthur Santos. Análise da correlação entre conforto e desempenho térmico em habitações de interesse social por simulação computacional. Ambiente Construído, [s. l.], vol. 20, no 2, p. 211–229, 2020. https://doi.org/10.1590/s1678-86212020000200396.

SARI, Ahmet; BIÇER, Alper; KARAIPEKLI, Ali. Synthesis, characterization, thermal properties of a series of stearic acid esters as novel solid-liquid phase change materials. Materials Letters, [s. l.], vol. 63, no 13–14, p. 1213–1216, 31 maio 2009. https://doi.org/10.1016/j.matlet.2009.02.045.

SAXENA, Rajat; RAKSHIT, Dibakar; KAUSHIK, S. C. Experimental assessment of characterised PCMs for thermal management of buildings in tropical composite climate. 2018. Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering [...]. [S. l.]: Avestia Publishing, 2018. https://doi.org/10.11159/htff18.170.

SHEN, Jingchun; COPERTARO, Benedetta; ZHANG, Xingxing; KOKE, Johannes; KAUFMANN, Peter; KRAUSE, Stefan. Exploring the potential of climate-adaptive container building design under future climates scenarios in three different climate zones. Sustainability (Switzerland), [s. l.], vol. 12, no 1, 1 jan. 2020. https://doi.org/10.3390/SU12010108.

SILVA, Arthur Santos; ALMEIDA, Laiane Susan Silva; GHISI, Enedir. Análise de incertezas físicas em simulação computacional de edificações residenciais. Ambiente Construído, [s. l.], vol. 17, no 1, p. 289–303, 2017. DOI 10.1590/s1678-86212017000100136. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678-

86212017000100289&lng=pt&nrm=iso&tlng=en.

SILVA, Arthur Santos; GHISI, Enedir; LAMBERTS, Roberto. Performance evaluation of long-term thermal comfort indices in building simulation according to ASHRAE Standard 55. Building and Environment, [s. l.], vol. 102, p. 95–115, 2016. https://doi.org/10.1016/j.buildenv.2016.03.004.

SOCACIU, Lavinia; PLEŞA, Angela; UNGUREŞAN, Paula; GIURGIU, Oana. Review on phase change materials for building applications. Leonardo Electronic Journal of Practices and Technologies, [s. l.], vol. 13, no 25, p. 179–194, 2014.

SOLGI, Ebrahim; HAMEDANI, Zahra; FERNANDO, Ruwan; MOHAMMAD KARI, Behrouz; SKATES, Henry. A parametric study of phase change material behaviour when used with night ventilation in different climatic zones. Building and Environment, [s. l.], vol. 147,

no October 2018, p. 327–336, 2019. DOI 10.1016/j.buildenv.2018.10.031. Disponível em: https://doi.org/10.1016/j.buildenv.2018.10.031.

SORGATO, M. J.; MARINOSKI, D. L.; MELO, A. P.; LAMBERTS, R. Nota técnica referente à avaliação para a norma de desempenho NBR 15575 em consulta pública. Florianópolis: [s. n.], 2012.

SOVETOVA, Meruyert; MEMON, Shazim Ali; KIM, Jong. Thermal performance and energy efficiency of building integrated with PCMs in hot desert climate region. Solar Energy, [s. l.], vol. 189, p. 357–371, 1 set. 2019. https://doi.org/10.1016/j.solener.2019.07.067.

TABARES-VELASCO, Paulo Cesar; CHRISTENSEN, Craig; BIANCHI, Marcus. Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Building and Environment, [s. l.], vol. 54, p. 186–196, ago. 2012. https://doi.org/10.1016/j.buildenv.2012.02.019.

UNITED NATIONS ENVIRONMENT PROGRAMME (UNEP); GLOBAL ALLIANCE FOR BUILDINGS CONSTRUCTION (GLOBALABC). Global Status Report for Buildings and Construction: Beyond foundations: Mainstreaming sustainable solutions to cut emissions from the buildings sector. [S. l.]: United Nations Environment Programme, mar. 2024. DOI 10.59117/20.500.11822/45095. Disponível em: https://wedocs.unep.org/20.500.11822/45095.

6 APÊNDICE

6.1 Resultados GH

6.1.1 Norte

Tabela 13: Resultados de GH para a região Norte

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
AC-CO_00_0	Rio Branco	12078,64	84,52
AC-CO_05_Q21	Rio Branco	11439,82	73,11
AC-CO_05_Q23	Rio Branco	11089,34	74,54
AC-CO_05_Q25	Rio Branco	11121,33	74,38
AC-CO_05_Q27	Rio Branco	11122,13	76,71
AC-CO_05_Q29	Rio Branco	11170,00	76,69
AC-CO_10_Q21	Rio Branco	10929,37	61,15
AC-CO_10_Q23	Rio Branco	10399,24	64,11
AC-CO_10_Q25	Rio Branco	10509,09	63,60
AC-CO_10_Q27	Rio Branco	10311,59	69,06
AC-CO_10_Q29	Rio Branco	10405,72	69,13
AC-CO_15_Q21	Rio Branco	10526,55	49,20
AC-CO_15_Q23	Rio Branco	9917,08	53,63
AC-CO_15_Q25	Rio Branco	10094,94	52,94
AC-CO_15_Q27	Rio Branco	9715,48	61,84
AC-CO_15_Q29	Rio Branco	9846,48	62,02
AC-CO_20_Q21	Rio Branco	10207,83	37,53
AC-CO_20_Q23	Rio Branco	9577,50	43,79
AC-CO_20_Q25	Rio Branco	9806,45	42,92
AC-CO_20_Q27	Rio Branco	9294,11	54,95
AC-CO_20_Q29	Rio Branco	9453,06	55,22
AC-SC_00_0	Rio Branco	8949,60	17,16
AC-SC_05_Q21	Rio Branco	8850,90	12,54
AC-SC_05_Q23	Rio Branco	8752,83	12,72
AC-SC_05_Q25	Rio Branco	8763,06	12,68
AC-SC_05_Q27	Rio Branco	8736,48	13,34
AC-SC_05_Q29	Rio Branco	8747,68	13,34
AC-SC_10_Q21	Rio Branco	8787,82	8,79
AC-SC_10_Q23	Rio Branco	8621,52	9,22
AC-SC_10_Q25	Rio Branco	8657,33	9,08
AC-SC_10_Q27	Rio Branco	8582,74	10,14
AC-SC_10_Q29	Rio Branco	8606,77	10,15
AC-SC_15_Q21	Rio Branco	8751,33	5,74
AC-SC_15_Q23	Rio Branco	8543,64	6,41
AC-SC_15_Q25	Rio Branco	8603,82	6,29
AC-SC_15_Q27	Rio Branco	8492,27	7,64
AC-SC_15_Q29	Rio Branco	8530,63	7,68

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	
PA-SC_15_Q21	Belém	19640,04	0,00	
PA-SC_15_Q23	Belém	19612,58	0,00	
PA-SC_15_Q25	Belém	19620,45	0,00	
PA-SC_15_Q27	Belém	19440,48	0,00	
PA-SC_15_Q29	Belém	19413,32	0,00	
PA-SC_20_Q21	Belém	19850,90	0,00	
PA-SC_20_Q23	Belém	19828,98	0,00	
PA-SC_20_Q25	Belém	19833,94	0,00	
PA-SC_20_Q27	Belém	19739,50	0,00	
PA-SC_20_Q29	Belém	19713,12	0,00	
PA-ST_00_0	Belém	19883,75	0,00	
PA-ST_05_Q21	Belém	19656,99	0,00	
PA-ST_05_Q23	Belém	19523,65	0,00	
PA-ST_05_Q25	Belém	19571,25	0,00	
PA-ST_05_Q27	Belém	19355,25	0,00	
PA-ST_05_Q29	Belém	19361,58	0,00	
PA-ST_10_Q21	Belém	19557,48	0,00	
PA-ST_10_Q23	Belém	19381,12	0,00	
PA-ST_10_Q25	Belém	19466,40	0,00	
PA-ST_10_Q27	Belém	19114,83	0,00	
PA-ST_10_Q29	Belém	19124,11	0,00	
PA-ST_15_Q21	Belém	19526,16	0,00	
PA-ST_15_Q23	Belém	19353,15	0,00	
PA-ST_15_Q25	Belém	19451,93	0,00	
PA-ST_15_Q27	Belém	19076,34	0,00	
PA-ST_15_Q29	Belém	19085,24	0,00	
PA-ST_20_Q21	Belém	19543,11	0,00	
PA-ST_20_Q23	Belém	19396,23	0,00	
PA-ST_20_Q25	Belém	19489,44	0,00	
PA-ST_20_Q27	Belém	19183,53	0,00	
PA-ST_20_Q29	Belém	19189,89	0,00	
RO-CO_00_0	Porto Velho	13994,94	0,00	
RO-CO_05_Q21	Porto Velho	13472,73	0,00	
RO-CO_05_Q23	Porto Velho	13162,37	0,00	
RO-CO_05_Q25	Porto Velho	13225,13	0,00	
RO-CO_05_Q27	Porto Velho	13102,85	0,00	
RO-CO_05_Q29	Porto Velho	13149,51	0,00	

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	IDF	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
AC-SC_20_Q21	Rio Branco	8737,23	3,42	RO-CO_10_Q21	Porto Velho	13087,49	0,00
AC-SC_20_Q23	Rio Branco	8511,20	4,20	RO-CO_10_Q23	Porto Velho	12647,01	0,00
AC-SC_20_Q25	Rio Branco	8589,55	4,11	RO-CO_10_Q25	Porto Velho	12798,69	0,00
AC-SC_20_Q27	Rio Branco	8449,28	5,61	RO-CO_10_Q27	Porto Velho	12394,01	0,00
AC-SC_20_Q29	Rio Branco	8502,12	5,65	RO-CO_10_Q29	Porto Velho	12482,91	0,00
AC-ST_00_0	Rio Branco	11936,26	83,09	RO-CO_15_Q21	Porto Velho	12809,89	0,00
AC-ST_05_Q21	Rio Branco	11394,91	72,80	RO-CO_15_Q23	Porto Velho	12331,27	0,00
AC-ST_05_Q23	Rio Branco	11088,70	73,90	RO-CO_15_Q25	Porto Velho	12543,80	0,00
AC-ST_05_Q25	Rio Branco	11102,53	73,76	RO-CO_15_Q27	Porto Velho	11934,50	0,00
AC-ST_05_Q27	Rio Branco	11158,03	75,57	RO-CO_15_Q29	Porto Velho	12048,31	0,00
AC-ST_05_Q29	Rio Branco	11193,84	75,55	RO-CO_20_Q21	Porto Velho	12614,43	0,00
AC-ST_10_Q21	Rio Branco	10931,90	62,18	RO-CO_20_Q23	Porto Velho	12143,64	0,00
AC-ST_10_Q23	Rio Branco	10432,15	64,59	RO-CO_20_Q25	Porto Velho	12389,55	0,00
AC-ST_10_Q25	Rio Branco	10510,19	64,17	RO-CO_20_Q27	Porto Velho	11672,86	0,00
AC-ST_10_Q27	Rio Branco	10443,33	68,32	RO-CO_20_Q29	Porto Velho	11799,89	0,00
AC-ST_10_Q29	Rio Branco	10522,79	68,37	RO-SC_00_0	Porto Velho	11347,90	0,00
AC-ST_15_Q21	Rio Branco	10545,73	51,76	RO-SC_05_Q21	Porto Velho	11374,54	0,00
AC-ST_15_Q23	Rio Branco	9951,51	55,26	RO-SC_05_Q23	Porto Velho	11299,59	0,00
AC-ST_15_Q25	Rio Branco	10094,20	54,69	RO-SC_05_Q25	Porto Velho	11318,04	0,00
AC-ST_15_Q27	Rio Branco	9858,81	61,42	RO-SC_05_Q27	Porto Velho	11218,55	0,00
AC-ST_15_Q29	Rio Branco	9977,50	61,52	RO-SC_05_Q29	Porto Velho	11225,90	0,00
AC-ST_20_Q21	Rio Branco	10230,87	41,44	RO-SC_10_Q21	Porto Velho	11439,98	0,00
AC-ST_20_Q23	Rio Branco	9607,07	46,62	RO-SC_10_Q23	Porto Velho	11318,70	0,00
AC-ST_20_Q25	Rio Branco	9802,66	45,96	RO-SC_10_Q25	Porto Velho	11361,22	0,00
AC-ST_20_Q27	Rio Branco	9425,47	54,84	RO-SC_10_Q27	Porto Velho	11193,48	0,00
AC-ST_20_Q29	Rio Branco	9573,72	55,06	RO-SC_10_Q29	Porto Velho	11209,40	0,00
AM-CO_00_0	Manaus	22761,18	0,00	RO-SC_15_Q21	Porto Velho	11529,31	0,00
AM-CO_05_Q21	Manaus	22687,53	0,00	RO-SC_15_Q23	Porto Velho	11386,73	0,00
AM-CO_05_Q23	Manaus	22591,18	0,00	RO-SC_15_Q25	Porto Velho	11445,52	0,00
AM-CO_05_Q25	Manaus	22635,79	0,00	RO-SC_15_Q27	Porto Velho	11249,41	0,00
AM-CO_05_Q27	Manaus	22501,40	0,00	RO-SC_15_Q29	Porto Velho	11273,71	0,00
AM-CO_05_Q29	Manaus	22520,85	0,00	RO-SC_20_Q21	Porto Velho	11636,69	0,00
AM-CO_10_Q21	Manaus	22684,22	0,00	RO-SC_20_Q23	Porto Velho	11487,88	0,00
AM-CO_10_Q23	Manaus	22552,77	0,00	RO-SC_20_Q25	Porto Velho	11557,00	0,00
AM-CO_10_Q25	Manaus	22626,72	0,00	RO-SC_20_Q27	Porto Velho	11357,77	0,00
AM-CO_10_Q27	Manaus	22411,98	0,00	RO-SC_20_Q29	Porto Velho	11389,79	0,00
AM-CO_10_Q29	Manaus	22440,40	0,00	RO-ST_00_0	Porto Velho	13825,94	0,00
AM-CO_15_Q21	Manaus	22716,43	0,00	RO-ST_05_Q21	Porto Velho	13383,90	0,00
AM-CO_15_Q23	Manaus	22576,10	0,00	RO-ST_05_Q23	Porto Velho	13104,95	0,00
AM-CO_15_Q25	Manaus	22663,40	0,00	RO-ST_05_Q25	Porto Velho	13146,40	0,00
AM-CO_15_Q27	Manaus	22406,91	0,00	RO-ST_05_Q27	Porto Velho	13093,88	0,00
AM-CO_15_Q29	Manaus	22436,18	0,00	RO-ST_05_Q29	Porto Velho	13127,74	0,00
AM-CO_20_Q21	Manaus	22771,03	0,00	RO-ST_10_Q21	Porto Velho	13030,07	0,00

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
AM-CO_20_Q23	Manaus	22636,00	0,00	RO-ST_10_Q23	Porto Velho	12602,85	0,00
AM-CO_20_Q25	Manaus	22725,38	0,00	RO-ST_10_Q25	Porto Velho	12724,17	0,00
AM-CO_20_Q27	Manaus	22451,91	0,00	RO-ST_10_Q27	Porto Velho	12469,48	0,00
AM-CO_20_Q29	Manaus	22480,84	0,00	RO-ST_10_Q29	Porto Velho	12545,61	0,00
AM-SC_00_0	Manaus	22158,00	0,00	RO-ST_15_Q21	Porto Velho	12758,41	0,00
AM-SC_05_Q21	Manaus	22310,07	0,00	RO-ST_15_Q23	Porto Velho	12278,03	0,00
AM-SC_05_Q23	Manaus	22285,50	0,00	RO-ST_15_Q25	Porto Velho	12462,15	0,00
AM-SC_05_Q25	Manaus	22295,33	0,00	RO-ST_15_Q27	Porto Velho	11999,09	0,00
AM-SC_05_Q27	Manaus	22225,13	0,00	RO-ST_15_Q29	Porto Velho	12108,75	0,00
AM-SC_05_Q29	Manaus	22225,87	0,00	RO-ST_20_Q21	Porto Velho	12558,25	0,00
AM-SC_10_Q21	Manaus	22490,60	0,00	RO-ST_20_Q23	Porto Velho	12079,84	0,00
AM-SC_10_Q23	Manaus	22453,44	0,00	RO-ST_20_Q25	Porto Velho	12302,45	0,00
AM-SC_10_Q25	Manaus	22470,19	0,00	RO-ST_20_Q27	Porto Velho	11704,59	0,00
AM-SC_10_Q27	Manaus	22390,27	0,00	RO-ST_20_Q29	Porto Velho	11830,23	0,00
AM-SC_10_Q29	Manaus	22391,83	0,00	RR-CO_00_0	Boa Vista	20215,07	0,00
AM-SC_15_Q21	Manaus	22676,69	0,00	RR-CO_05_Q21	Boa Vista	19971,13	0,00
AM-SC_15_Q23	Manaus	22634,39	0,00	RR-CO_05_Q23	Boa Vista	19798,53	0,00
AM-SC_15_Q25	Manaus	22654,04	0,00	RR-CO_05_Q25	Boa Vista	19864,64	0,00
AM-SC_15_Q27	Manaus	22593,87	0,00	RR-CO_05_Q27	Boa Vista	19637,74	0,00
AM-SC_15_Q29	Manaus	22597,44	0,00	RR-CO_05_Q29	Boa Vista	19668,28	0,00
AM-SC_20_Q21	Manaus	22862,62	0,00	RR-CO_10_Q21	Boa Vista	19828,25	0,00
AM-SC_20_Q23	Manaus	22819,10	0,00	RR-CO_10_Q23	Boa Vista	19595,19	0,00
AM-SC_20_Q25	Manaus	22839,28	0,00	RR-CO_10_Q25	Boa Vista	19714,49	0,00
AM-SC_20_Q27	Manaus	22809,40	0,00	RR-CO_10_Q27	Boa Vista	19265,23	0,00
AM-SC_20_Q29	Manaus	22815,05	0,00	RR-CO_10_Q29	Boa Vista	19309,63	0,00
AM-ST_00_0	Manaus	22669,84	0,00	RR-CO_15_Q21	Boa Vista	19750,77	0,00
AM-ST_05_Q21	Manaus	22613,27	0,00	RR-CO_15_Q23	Boa Vista	19504,07	0,00
AM-ST_05_Q23	Manaus	22521,64	0,00	RR-CO_15_Q25	Boa Vista	19647,51	0,00
AM-ST_05_Q25	Manaus	22558,39	0,00	RR-CO_15_Q27	Boa Vista	19082,94	0,00
AM-ST_05_Q27	Manaus	22457,27	0,00	RR-CO_15_Q29	Boa Vista	19129,98	0,00
AM-ST_05_Q29	Manaus	22471,60	0,00	RR-CO_20_Q21	Boa Vista	19717,37	0,00
AM-ST_10_Q21	Manaus	22613,62	0,00	RR-CO_20_Q23	Boa Vista	19479,11	0,00
AM-ST_10_Q23	Manaus	22482,33	0,00	RR-CO_20_Q25	Boa Vista	19628,80	0,00
AM-ST_10_Q25	Manaus	22548,40	0,00	RR-CO_20_Q27	Boa Vista	19027,89	0,00
AM-ST_10_Q27	Manaus	22385,83	0,00	RR-CO_20_Q29	Boa Vista	19074,34	0,00
AM-ST_10_Q29	Manaus	22411,69	0,00	RR-SC_00_0	Boa Vista	18788,67	0,00
AM-ST_15_Q21	Manaus	22644,59	0,00	RR-SC_05_Q21	Boa Vista	18910,50	0,00
AM-ST_15_Q23	Manaus	22501,47	0,00	RR-SC_05_Q23	Boa Vista	18869,92	0,00
AM-ST_15_Q25	Manaus	22582,79	0,00	RR-SC_05_Q25	Boa Vista	18883,05	0,00
AM-ST_15_Q27	Manaus	22391,04	0,00	RR-SC_05_Q27	Boa Vista	18784,43	0,00
AM-ST_15_Q29	Manaus	22421,66	0,00	RR-SC_05_Q29	Boa Vista	18788,25	0,00
AM-ST_20_Q21	Manaus	22696,64	0,00	RR-SC_10_Q21	Boa Vista	19062,29	0,00
AM-ST_20_Q23	Manaus	22557,18	0,00	RR-SC_10_Q23	Boa Vista	18996,91	0,00

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	IDF	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
AM-ST_20_Q25	Manaus	22643,00	0,00	RR-SC_10_Q25	Boa Vista	19023,03	0,00
AM-ST_20_Q27	Manaus	22441,09	0,00	RR-SC_10_Q27	Boa Vista	18872,46	0,00
AM-ST_20_Q29	Manaus	22474,62	0,00	RR-SC_10_Q29	Boa Vista	18877,90	0,00
AP-CO_00_0	Macapá	13494,89	0,00	RR-SC_15_Q21	Boa Vista	19221,70	0,00
AP-CO_05_Q21	Macapá	12911,94	0,00	RR-SC_15_Q23	Boa Vista	19144,07	0,00
AP-CO_05_Q23	Macapá	12570,37	0,00	RR-SC_15_Q25	Boa Vista	19178,70	0,00
AP-CO_05_Q25	Macapá	12625,90	0,00	RR-SC_15_Q27	Boa Vista	19011,74	0,00
AP-CO_05_Q27	Macapá	12551,84	0,00	RR-SC_15_Q29	Boa Vista	19019,57	0,00
AP-CO_05_Q29	Macapá	12600,18	0,00	RR-SC_20_Q21	Boa Vista	19384,49	0,00
AP-CO_10_Q21	Macapá	12491,22	0,00	RR-SC_20_Q23	Boa Vista	19302,88	0,00
AP-CO_10_Q23	Macapá	12018,32	0,00	RR-SC_20_Q25	Boa Vista	19341,83	0,00
AP-CO_10_Q25	Macapá	12163,18	0,00	RR-SC_20_Q27	Boa Vista	19180,83	0,00
AP-CO_10_Q27	Macapá	11844,89	0,00	RR-SC_20_Q29	Boa Vista	19192,30	0,00
AP-CO_10_Q29	Macapá	11936,10	0,00	RR-ST_00_0	Boa Vista	20096,28	0,00
AP-CO_15_Q21	Macapá	12194,29	0,00	RR-ST_05_Q21	Boa Vista	19891,42	0,00
AP-CO_15_Q23	Macapá	11688,86	0,00	RR-ST_05_Q23	Boa Vista	19730,24	0,00
AP-CO_15_Q25	Macapá	11896,95	0,00	RR-ST_05_Q25	Boa Vista	19780,84	0,00
AP-CO_15_Q27	Macapá	11408,25	0,00	RR-ST_05_Q27	Boa Vista	19625,73	0,00
AP-CO_15_Q29	Macapá	11526,31	0,00	RR-ST_05_Q29	Boa Vista	19649,20	0,00
AP-CO_20_Q21	Macapá	11989,51	0,00	RR-ST_10_Q21	Boa Vista	19760,94	0,00
AP-CO_20_Q23	Macapá	11504,88	0,00	RR-ST_10_Q23	Boa Vista	19529,18	0,00
AP-CO_20_Q25	Macapá	11747,04	0,00	RR-ST_10_Q25	Boa Vista	19629,87	0,00
AP-CO_20_Q27	Macapá	11173,62	0,00	RR-ST_10_Q27	Boa Vista	19289,08	0,00
AP-CO_20_Q29	Macapá	11304,90	0,00	RR-ST_10_Q29	Boa Vista	19331,01	0,00
AP-SC_00_0	Macapá	10912,50	0,00	RR-ST_15_Q21	Boa Vista	19684,49	0,00
AP-SC_05_Q21	Macapá	10921,21	0,00	RR-ST_15_Q23	Boa Vista	19432,81	0,00
AP-SC_05_Q23	Macapá	10846,05	0,00	RR-ST_15_Q25	Boa Vista	19560,51	0,00
AP-SC_05_Q25	Macapá	10864,85	0,00	RR-ST_15_Q27	Boa Vista	19092,42	0,00
AP-SC_05_Q27	Macapá	10757,15	0,00	RR-ST_15_Q29	Boa Vista	19139,51	0,00
AP-SC_05_Q29	Macapá	10764,16	0,00	RR-ST_20_Q21	Boa Vista	19648,59	0,00
AP-SC_10_Q21	Macapá	10982,99	0,00	RR-ST_20_Q23	Boa Vista	19402,31	0,00
AP-SC_10_Q23	Macapá	10864,16	0,00	RR-ST_20_Q25	Boa Vista	19540,23	0,00
AP-SC_10_Q25	Macapá	10906,90	0,00	RR-ST_20_Q27	Boa Vista	19019,80	0,00
AP-SC_10_Q27	Macapá	10740,80	0,00	RR-ST_20_Q29	Boa Vista	19068,31	0,00
AP-SC_10_Q29	Macapá	10756,26	0,00	TO-CO_00_0	Palmas	17591,97	0,00
AP-SC_15_Q21	Macapá	11073,10	0,00	TO-CO_05_Q21	Palmas	17137,22	0,00
AP-SC_15_Q23	Macapá	10936,32	0,00	TO-CO_05_Q23	Palmas	16859,85	0,00
AP-SC_15_Q25	Macapá	10996,50	0,00	TO-CO_05_Q25	Palmas	16909,88	0,00
AP-SC_15_Q27	Macapá	10818,90	0,00	TO-CO_05_Q27	Palmas	16819,76	0,00
AP-SC_15_Q29	Macapá	10841,63	0,00	TO-CO_05_Q29	Palmas	16860,26	0,00
AP-SC_20_Q21	Macapá	11183,81	0,00	TO-CO_10_Q21	Palmas	16818,60	0,00
AP-SC_20_Q23	Macapá	11049,18	0,00	TO-CO_10_Q23	Palmas	16434,58	0,00
AP-SC_20_Q25	Macapá	11116,76	0,00	TO-CO_10_Q25	Palmas	16557,11	0,00

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
AP-SC_20_Q27	Macapá	10955,72	0,00	TO-CO_10_Q27	Palmas	16223,48	0,00
AP-SC_20_Q29	Macapá	10983,62	0,00	TO-CO_10_Q29	Palmas	16294,33	0,00
AP-ST_00_0	Macapá	13296,79	0,00	TO-CO_15_Q21	Palmas	16598,67	0,00
AP-ST_05_Q21	Macapá	12801,00	0,00	TO-CO_15_Q23	Palmas	16186,95	0,00
AP-ST_05_Q23	Macapá	12496,24	0,00	TO-CO_15_Q25	Palmas	16359,35	0,00
AP-ST_05_Q25	Macapá	12529,83	0,00	TO-CO_15_Q27	Palmas	15838,72	0,00
AP-ST_05_Q27	Macapá	12517,46	0,00	TO-CO_15_Q29	Palmas	15926,97	0,00
AP-ST_05_Q29	Macapá	12551,68	0,00	TO-CO_20_Q21	Palmas	16450,69	0,00
AP-ST_10_Q21	Macapá	12415,76	0,00	TO-CO_20_Q23	Palmas	16050,71	0,00
AP-ST_10_Q23	Macapá	11961,57	0,00	TO-CO_20_Q25	Palmas	16250,51	0,00
AP-ST_10_Q25	Macapá	12073,72	0,00	TO-CO_20_Q27	Palmas	15630,80	0,00
AP-ST_10_Q27	Macapá	11890,95	0,00	TO-CO_20_Q29	Palmas	15725,40	0,00
AP-ST_10_Q29	Macapá	11968,59	0,00	TO-SC_00_0	Palmas	15190,99	0,00
AP-ST_15_Q21	Macapá	12126,76	0,00	TO-SC_05_Q21	Palmas	15242,89	0,00
AP-ST_15_Q23	Macapá	11625,60	0,00	TO-SC_05_Q23	Palmas	15173,39	0,00
AP-ST_15_Q25	Macapá	11800,74	0,00	TO-SC_05_Q25	Palmas	15186,09	0,00
AP-ST_15_Q27	Macapá	11447,08	0,00	TO-SC_05_Q27	Palmas	15131,18	0,00
AP-ST_15_Q29	Macapá	11555,76	0,00	TO-SC_05_Q29	Palmas	15138,48	0,00
AP-ST_20_Q21	Macapá	11917,51	0,00	TO-SC_10_Q21	Palmas	15339,02	0,00
AP-ST_20_Q23	Macapá	11431,27	0,00	TO-SC_10_Q23	Palmas	15232,04	0,00
AP-ST_20_Q25	Macapá	11643,92	0,00	TO-SC_10_Q25	Palmas	15262,04	0,00
AP-ST_20_Q27	Macapá	11192,49	0,00	TO-SC_10_Q27	Palmas	15170,25	0,00
AP-ST_20_Q29	Macapá	11315,87	0,00	TO-SC_10_Q29	Palmas	15184,09	0,00
PA-CO_00_0	Belém	20149,12	0,00	TO-SC_15_Q21	Palmas	15456,96	0,00
PA-CO_05_Q21	Belém	19903,84	0,00	TO-SC_15_Q23	Palmas	15337,47	0,00
PA-CO_05_Q23	Belém	19765,71	0,00	TO-SC_15_Q25	Palmas	15377,96	0,00
PA-CO_05_Q25	Belém	19823,14	0,00	TO-SC_15_Q27	Palmas	15276,55	0,00
PA-CO_05_Q27	Belém	19597,82	0,00	TO-SC_15_Q29	Palmas	15295,53	0,00
PA-CO_05_Q29	Belém	19611,68	0,00	TO-SC_20_Q21	Palmas	15591,97	0,00
PA-CO_10_Q21	Belém	19807,44	0,00	TO-SC_20_Q23	Palmas	15472,95	0,00
PA-CO_10_Q23	Belém	19636,65	0,00	TO-SC_20_Q25	Palmas	15518,45	0,00
PA-CO_10_Q25	Belém	19731,04	0,00	TO-SC_20_Q27	Palmas	15429,82	0,00
PA-CO_10_Q27	Belém	19381,99	0,00	TO-SC_20_Q29	Palmas	15451,33	0,00
PA-CO_10_Q29	Belém	19401,10	0,00	TO-ST_00_0	Palmas	17469,50	0,00
PA-CO_15_Q21	Belém	19788,38	0,00	TO-ST_05_Q21	Palmas	17083,98	0,00
PA-CO_15_Q23	Belém	19627,11	0,00	TO-ST_05_Q23	Palmas	16831,91	0,00
PA-CO_15_Q25	Belém	19730,59	0,00	TO-ST_05_Q25	Palmas	16862,64	0,00
PA-CO_15_Q27	Belém	19381,98	0,00	TO-ST_05_Q27	Palmas	16849,22	0,00
PA-CO_15_Q29	Belém	19394,16	0,00	TO-ST_05_Q29	Palmas	16879,12	0,00
PA-CO_20_Q21	Belém	19819,52	0,00	TO-ST_10_Q21	Palmas	16791,38	0,00
PA-CO_20_Q23	Belém	19686,19	0,00	TO-ST_10_Q23	Palmas	16416,27	0,00
PA-CO_20_Q25	Belém	19780,58	0,00	TO-ST_10_Q25	Palmas	16510,37	0,00
PA-CO_20_Q27	Belém	19503,51	0,00	TO-ST_10_Q27	Palmas	16336,02	0,00

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
PA-CO_20_Q29	Belém	19507,98	0,00	TO-ST_10_Q29	Palmas	16398,30	0,00
PA-SC_00_0	Belém	19123,98	0,00	TO-ST_15_Q21	Palmas	16576,89	0,00
PA-SC_05_Q21	Belém	19243,20	0,00	TO-ST_15_Q23	Palmas	16161,70	0,00
PA-SC_05_Q23	Belém	19221,78	0,00	TO-ST_15_Q25	Palmas	16306,87	0,00
PA-SC_05_Q25	Belém	19229,91	0,00	TO-ST_15_Q27	Palmas	15950,29	0,00
PA-SC_05_Q27	Belém	19047,88	0,00	TO-ST_15_Q29	Palmas	16036,69	0,00
PA-SC_05_Q29	Belém	19037,59	0,00	TO-ST_20_Q21	Palmas	16426,36	0,00
PA-SC_10_Q21	Belém	19433,40	0,00	TO-ST_20_Q23	Palmas	16017,03	0,00
PA-SC_10_Q23	Belém	19404,84	0,00	TO-ST_20_Q25	Palmas	16192,94	0,00
PA-SC_10_Q25	Belém	19414,84	0,00	TO-ST_20_Q27	Palmas	15714,68	0,00
PA-SC_10_Q27	Belém	19187,74	0,00	TO-ST_20_Q29	Palmas	15810,76	0,00
PA-SC_10_Q29	Belém	19166,06	0,00				

6.1.2 Nordeste

Tabela 14: Resultados de GH para a região Nordeste

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
AL-CO_00_0	Maceió	14295,52	0,00
AL-CO_05_Q21	Maceió	13839,38	0,00
AL-CO_05_Q23	Maceió	13571,47	0,00
AL-CO_05_Q25	Maceió	13621,71	0,00
AL-CO_05_Q27	Maceió	13534,81	0,00
AL-CO_05_Q29	Maceió	13576,65	0,00
AL-CO_10_Q21	Maceió	13491,96	0,00
AL-CO_10_Q23	Maceió	13118,71	0,00
AL-CO_10_Q25	Maceió	13234,32	0,00
AL-CO_10_Q27	Maceió	12978,60	0,00
AL-CO_10_Q29	Maceió	13053,60	0,00
AL-CO_15_Q21	Maceió	13238,13	0,00
AL-CO_15_Q23	Maceió	12842,26	0,00
AL-CO_15_Q25	Maceió	12998,54	0,00
AL-CO_15_Q27	Maceió	12649,64	0,00
AL-CO_15_Q29	Maceió	12741,26	0,00
AL-CO_20_Q21	Maceió	13055,64	0,00
AL-CO_20_Q23	Maceió	12677,21	0,00
AL-CO_20_Q25	Maceió	12853,09	0,00
AL-CO_20_Q27	Maceió	12482,78	0,00
AL-CO_20_Q29	Maceió	12581,72	0,00
AL-SC_00_0	Maceió	12735,63	0,00
AL-SC_05_Q21	Maceió	12767,82	0,00
AL-SC_05_Q23	Maceió	12720,74	0,00
AL-SC_05_Q25	Maceió	12728,12	0,00
AL-SC_05_Q27	Maceió	12689,09	0,00

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
PB-SC_15_Q21	João Pessoa	16157,30	0,00
PB-SC_15_Q23	João Pessoa	16070,74	0,00
PB-SC_15_Q25	João Pessoa	16109,05	0,00
PB-SC_15_Q27	João Pessoa	16027,79	0,00
PB-SC_15_Q29	João Pessoa	16047,68	0,00
PB-SC_20_Q21	João Pessoa	16249,40	0,00
PB-SC_20_Q23	João Pessoa	16157,28	0,00
PB-SC_20_Q25	João Pessoa	16201,33	0,00
PB-SC_20_Q27	João Pessoa	16138,78	0,00
PB-SC_20_Q29	João Pessoa	16166,38	0,00
PB-ST_00_0	João Pessoa	16784,43	0,00
PB-ST_05_Q21	João Pessoa	16582,58	0,00
PB-ST_05_Q23	João Pessoa	16420,84	0,00
PB-ST_05_Q25	João Pessoa	16458,32	0,00
PB-ST_05_Q27	João Pessoa	16364,33	0,00
PB-ST_05_Q29	João Pessoa	16387,83	0,00
PB-ST_10_Q21	João Pessoa	16421,96	0,00
PB-ST_10_Q23	João Pessoa	16175,49	0,00
PB-ST_10_Q25	João Pessoa	16257,80	0,00
PB-ST_10_Q27	João Pessoa	16034,28	0,00
PB-ST_10_Q29	João Pessoa	16080,80	0,00
PB-ST_15_Q21	João Pessoa	16303,17	0,00
PB-ST_15_Q23	João Pessoa	16026,48	0,00
PB-ST_15_Q25	João Pessoa	16140,12	0,00
PB-ST_15_Q27	João Pessoa	15830,92	0,00
PB-ST_15_Q29	João Pessoa	15895,85	0,00

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
AL-SC_05_Q29	Maceió	12692,17	0,00	PB-ST_20_Q21	João Pessoa	16221,02	0,00
AL-SC_10_Q21	Maceió	12809,40	0,00	PB-ST_20_Q23	João Pessoa	15942,66	0,00
AL-SC_10_Q23	Maceió	12730,96	0,00	PB-ST_20_Q25	João Pessoa	16075,07	0,00
AL-SC_10_Q25	Maceió	12752,88	0,00	PB-ST_20_Q27	João Pessoa	15739,50	0,00
AL-SC_10_Q27	Maceió	12693,76	0,00	PB-ST_20_Q29	João Pessoa	15818,64	0,00
AL-SC_10_Q29	Maceió	12701,67	0,00	PE-CO_00_0	Recife	18407,36	0,00
AL-SC_15_Q21	Maceió	12860,14	0,00	PE-CO_05_Q21	Recife	17949,66	0,00
AL-SC_15_Q23	Maceió	12766,14	0,00	PE-CO_05_Q23	Recife	17695,18	0,00
AL-SC_15_Q25	Maceió	12800,18	0,00	PE-CO_05_Q25	Recife	17741,75	0,00
AL-SC_15_Q27	Maceió	12745,91	0,00	PE-CO_05_Q27	Recife	17639,69	0,00
AL-SC_15_Q29	Maceió	12760,61	0,00	PE-CO_05_Q29	Recife	17677,91	0,00
AL-SC_20_Q21	Maceió	12919,24	0,00	PE-CO_10_Q21	Recife	17597,74	0,00
AL-SC_20_Q23	Maceió	12820,74	0,00	PE-CO_10_Q23	Recife	17243,26	0,00
AL-SC_20_Q25	Maceió	12862,97	0,00	PE-CO_10_Q25	Recife	17352,92	0,00
AL-SC_20_Q27	Maceió	12832,29	0,00	PE-CO_10_Q27	Recife	17007,83	0,00
AL-SC_20_Q29	Maceió	12855,26	0,00	PE-CO_10_Q29	Recife	17073,19	0,00
AL-ST_00_0	Maceió	14220,50	0,00	PE-CO_15_Q21	Recife	17334,97	0,00
AL-ST_05_Q21	Maceió	13844,52	0,00	PE-CO_15_Q23	Recife	16949,64	0,00
AL-ST_05_Q23	Maceió	13610,29	0,00	PE-CO_15_Q25	Recife	17103,80	0,00
AL-ST_05_Q25	Maceió	13641,70	0,00	PE-CO_15_Q27	Recife	16577,65	0,00
AL-ST_05_Q27	Maceió	13613,50	0,00	PE-CO_15_Q29	Recife	16657,23	0,00
AL-ST_05_Q29	Maceió	13643,80	0,00	PE-CO_20_Q21	Recife	17137,44	0,00
AL-ST_10_Q21	Maceió	13529,52	0,00	PE-CO_20_Q23	Recife	16754,96	0,00
AL-ST_10_Q23	Maceió	13170,72	0,00	PE-CO_20_Q25	Recife	16935,88	0,00
AL-ST_10_Q25	Maceió	13258,47	0,00	PE-CO_20_Q27	Recife	16314,80	0,00
AL-ST_10_Q27	Maceió	13109,26	0,00	PE-CO_20_Q29	Recife	16403,68	0,00
AL-ST_10_Q29	Maceió	13173,37	0,00	PE-SC_00_0	Recife	16791,30	0,00
AL-ST_15_Q21	Maceió	13282,45	0,00	PE-SC_05_Q21	Recife	16783,05	0,00
AL-ST_15_Q23	Maceió	12885,84	0,00	PE-SC_05_Q23	Recife	16725,44	0,00
AL-ST_15_Q25	Maceió	13016,66	0,00	PE-SC_05_Q25	Recife	16735,45	0,00
AL-ST_15_Q27	Maceió	12766,43	0,00	PE-SC_05_Q27	Recife	16692,69	0,00
AL-ST_15_Q29	Maceió	12852,16	0,00	PE-SC_05_Q29	Recife	16698,74	0,00
AL-ST_20_Q21	Maceió	13096,41	0,00	PE-SC_10_Q21	Recife	16789,69	0,00
AL-ST_20_Q23	Maceió	12712,02	0,00	PE-SC_10_Q23	Recife	16692,15	0,00
AL-ST_20_Q25	Maceió	12865,64	0,00	PE-SC_10_Q25	Recife	16720,73	0,00
AL-ST_20_Q27	Maceió	12579,91	0,00	PE-SC_10_Q27	Recife	16625,38	0,00
AL-ST_20_Q29	Maceió	12676,18	0,00	PE-SC_10_Q29	Recife	16637,75	0,00
BA-CO_00_0	Salvador	15583,21	0,00	PE-SC_15_Q21	Recife	16808,12	0,00
BA-CO_05_Q21	Salvador	15291,61	0,00	PE-SC_15_Q23	Recife	16688,78	0,00
BA-CO_05_Q23	Salvador	15085,60	0,00	PE-SC_15_Q25	Recife	16732,89	0,00
BA-CO_05_Q25	Salvador	15138,26	0,00	PE-SC_15_Q27	Recife	16600,41	0,00
BA-CO_05_Q27	Salvador	14989,77	0,00	PE-SC_15_Q29	Recife	16620,73	0,00
BA-CO_05_Q29	Salvador	15024,98	0,00	PE-SC_20_Q21	Recife	16837,70	0,00

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
BA-CO_10_Q21	Salvador	15081,14	0,00	PE-SC_20_Q23	Recife	16710,71	0,00
BA-CO_10_Q23	Salvador	14790,60	0,00	PE-SC_20_Q25	Recife	16764,94	0,00
BA-CO_10_Q25	Salvador	14899,12	0,00	PE-SC_20_Q27	Recife	16619,79	0,00
BA-CO_10_Q27	Salvador	14608,74	0,00	PE-SC_20_Q29	Recife	16648,58	0,00
BA-CO_10_Q29	Salvador	14668,98	0,00	PE-ST_00_0	Recife	18349,02	0,00
BA-CO_15_Q21	Salvador	14937,14	0,00	PE-ST_05_Q21	Recife	17960,87	0,00
BA-CO_15_Q23	Salvador	14618,17	0,00	PE-ST_05_Q23	Recife	17733,89	0,00
BA-CO_15_Q25	Salvador	14762,82	0,00	PE-ST_05_Q25	Recife	17763,13	0,00
BA-CO_15_Q27	Salvador	14410,33	0,00	PE-ST_05_Q27	Recife	17729,89	0,00
BA-CO_15_Q29	Salvador	14484,62	0,00	PE-ST_05_Q29	Recife	17758,92	0,00
BA-CO_20_Q21	Salvador	14841,87	0,00	PE-ST_10_Q21	Recife	17634,53	0,00
BA-CO_20_Q23	Salvador	14526,66	0,00	PE-ST_10_Q23	Recife	17287,81	0,00
BA-CO_20_Q25	Salvador	14688,99	0,00	PE-ST_10_Q25	Recife	17372,25	0,00
BA-CO_20_Q27	Salvador	14330,52	0,00	PE-ST_10_Q27	Recife	17160,34	0,00
BA-CO_20_Q29	Salvador	14414,26	0,00	PE-ST_10_Q29	Recife	17219,04	0,00
BA-SC_00_0	Salvador	14367,56	0,00	PE-ST_15_Q21	Recife	17376,00	0,00
BA-SC_05_Q21	Salvador	14441,54	0,00	PE-ST_15_Q23	Recife	16983,13	0,00
BA-SC_05_Q23	Salvador	14395,91	0,00	PE-ST_15_Q25	Recife	17113,45	0,00
BA-SC_05_Q25	Salvador	14405,89	0,00	PE-ST_15_Q27	Recife	16714,32	0,00
BA-SC_05_Q27	Salvador	14364,94	0,00	PE-ST_15_Q29	Recife	16793,05	0,00
BA-SC_05_Q29	Salvador	14369,16	0,00	PE-ST_20_Q21	Recife	17173,63	0,00
BA-SC_10_Q21	Salvador	14529,35	0,00	PE-ST_20_Q23	Recife	16776,33	0,00
BA-SC_10_Q23	Salvador	14455,86	0,00	PE-ST_20_Q25	Recife	16937,18	0,00
BA-SC_10_Q25	Salvador	14480,56	0,00	PE-ST_20_Q27	Recife	16422,87	0,00
BA-SC_10_Q27	Salvador	14422,10	0,00	PE-ST_20_Q29	Recife	16512,95	0,00
BA-SC_10_Q29	Salvador	14432,75	0,00	PI-CO_00_0	Teresina	28099,97	0,00
BA-SC_15_Q21	Salvador	14626,98	0,00	PI-CO_05_Q21	Teresina	27857,42	0,00
BA-SC_15_Q23	Salvador	14539,03	0,00	PI-CO_05_Q23	Teresina	27725,04	0,00
BA-SC_15_Q25	Salvador	14574,58	0,00	PI-CO_05_Q25	Teresina	27759,41	0,00
BA-SC_15_Q27	Salvador	14528,16	0,00	PI-CO_05_Q27	Teresina	27638,28	0,00
BA-SC_15_Q29	Salvador	14544,50	0,00	PI-CO_05_Q29	Teresina	27651,11	0,00
BA-SC_20_Q21	Salvador	14732,12	0,00	PI-CO_10_Q21	Teresina	27724,94	0,00
BA-SC_20_Q23	Salvador	14640,54	0,00	PI-CO_10_Q23	Teresina	27573,92	0,00
BA-SC_20_Q25	Salvador	14681,53	0,00	PI-CO_10_Q25	Teresina	27634,07	0,00
BA-SC_20_Q27	Salvador	14666,63	0,00	PI-CO_10_Q27	Teresina	27395,93	0,00
BA-SC_20_Q29	Salvador	14689,34	0,00	PI-CO_10_Q29	Teresina	27405,62	0,00
BA-ST_00_0	Salvador	15487,47	0,00	PI-CO_15_Q21	Teresina	27663,00	0,00
BA-ST_05_Q21	Salvador	15246,46	0,00	PI-CO_15_Q23	Teresina	27530,86	0,00
BA-ST_05_Q23	Salvador	15060,33	0,00	PI-CO_15_Q25	Teresina	27597,66	0,00
BA-ST_05_Q25	Salvador	15096,73	0,00	PI-CO_15_Q27	Teresina	27322,96	0,00
BA-ST_05_Q27	Salvador	15018,15	0,00	PI-CO_15_Q29	Teresina	27320,00	0,00
BA-ST_05_Q29	Salvador	15044,66	0,00	PI-CO_20_Q21	Teresina	27647,29	0,00
BA-ST_10_Q21	Salvador	15057,82	0,00	PI-CO_20_Q23	Teresina	27546,91	0,00

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
BA-ST_10_Q23	Salvador	14778,44	0,00	PI-CO_20_Q25	Teresina	27609,08	0,00
BA-ST_10_Q25	Salvador	14866,14	0,00	PI-CO_20_Q27	Teresina	27355,35	0,00
BA-ST_10_Q27	Salvador	14676,78	0,00	PI-CO_20_Q29	Teresina	27340,58	0,00
BA-ST_10_Q29	Salvador	14728,71	0,00	PI-SC_00_0	Teresina	27086,75	0,00
BA-ST_15_Q21	Salvador	14921,34	0,00	PI-SC_05_Q21	Teresina	27247,65	0,00
BA-ST_15_Q23	Salvador	14606,57	0,00	PI-SC_05_Q23	Teresina	27242,52	0,00
BA-ST_15_Q25	Salvador	14731,21	0,00	PI-SC_05_Q25	Teresina	27242,53	0,00
BA-ST_15_Q27	Salvador	14477,60	0,00	PI-SC_05_Q27	Teresina	27204,88	0,00
BA-ST_15_Q29	Salvador	14548,07	0,00	PI-SC_05_Q29	Teresina	27200,65	0,00
BA-ST_20_Q21	Salvador	14826,80	0,00	PI-SC_10_Q21	Teresina	27417,64	0,00
BA-ST_20_Q23	Salvador	14513,17	0,00	PI-SC_10_Q23	Teresina	27410,83	0,00
BA-ST_20_Q25	Salvador	14657,91	0,00	PI-SC_10_Q25	Teresina	27409,56	0,00
BA-ST_20_Q27	Salvador	14393,56	0,00	PI-SC_10_Q27	Teresina	27389,87	0,00
BA-ST_20_Q29	Salvador	14475,56	0,00	PI-SC_10_Q29	Teresina	27380,08	0,00
CE-CO_00_0	Fortaleza	18256,41	0,00	PI-SC_15_Q21	Teresina	27585,62	0,00
CE-CO_05_Q21	Fortaleza	18087,63	0,00	PI-SC_15_Q23	Teresina	27580,39	0,00
CE-CO_05_Q23	Fortaleza	17931,55	0,00	PI-SC_15_Q25	Teresina	27577,58	0,00
CE-CO_05_Q25	Fortaleza	17992,14	0,00	PI-SC_15_Q27	Teresina	27608,53	0,00
CE-CO_05_Q27	Fortaleza	17783,29	0,00	PI-SC_15_Q29	Teresina	27596,47	0,00
CE-CO_05_Q29	Fortaleza	17812,58	0,00	PI-SC_20_Q21	Teresina	27749,98	0,00
CE-CO_10_Q21	Fortaleza	17981,44	0,00	PI-SC_20_Q23	Teresina	27751,16	0,00
CE-CO_10_Q23	Fortaleza	17763,74	0,00	PI-SC_20_Q25	Teresina	27746,16	0,00
CE-CO_10_Q25	Fortaleza	17876,82	0,00	PI-SC_20_Q27	Teresina	27837,91	0,00
CE-CO_10_Q27	Fortaleza	17461,87	0,00	PI-SC_20_Q29	Teresina	27825,94	0,00
CE-CO_10_Q29	Fortaleza	17508,85	0,00	PI-ST_00_0	Teresina	28056,50	0,00
CE-CO_15_Q21	Fortaleza	17926,76	0,00	PI-ST_05_Q21	Teresina	27869,96	0,00
CE-CO_15_Q23	Fortaleza	17690,35	0,00	PI-ST_05_Q23	Teresina	27753,75	0,00
CE-CO_15_Q25	Fortaleza	17830,65	0,00	PI-ST_05_Q25	Teresina	27778,86	0,00
CE-CO_15_Q27	Fortaleza	17303,14	0,00	PI-ST_05_Q27	Teresina	27695,82	0,00
CE-CO_15_Q29	Fortaleza	17357,39	0,00	PI-ST_05_Q29	Teresina	27704,37	0,00
CE-CO_20_Q21	Fortaleza	17908,29	0,00	PI-ST_10_Q21	Teresina	27759,24	0,00
CE-CO_20_Q23	Fortaleza	17673,39	0,00	PI-ST_10_Q23	Teresina	27616,54	0,00
CE-CO_20_Q25	Fortaleza	17823,35	0,00	PI-ST_10_Q25	Teresina	27664,96	0,00
CE-CO_20_Q27	Fortaleza	17263,51	0,00	PI-ST_10_Q27	Teresina	27485,47	0,00
CE-CO_20_Q29	Fortaleza	17323,96	0,00	PI-ST_10_Q29	Teresina	27493,62	0,00
CE-SC_00_0	Fortaleza	17173,61	0,00	PI-ST_15_Q21	Teresina	27705,41	0,00
CE-SC_05_Q21	Fortaleza	17328,99	0,00	PI-ST_15_Q23	Teresina	27575,90	0,00
CE-SC_05_Q23	Fortaleza	17295,66	0,00	PI-ST_15_Q25	Teresina	27632,66	0,00
CE-SC_05_Q25	Fortaleza	17306,08	0,00	PI-ST_15_Q27	Teresina	27411,67	0,00
CE-SC_05_Q27	Fortaleza	17255,60	0,00	PI-ST_15_Q29	Teresina	27410,11	0,00
CE-SC_05_Q29	Fortaleza	17257,86	0,00	PI-ST_20_Q21	Teresina	27692,18	0,00
CE-SC_10_Q21	Fortaleza	17488,10	0,00	PI-ST_20_Q23	Teresina	27593,29	0,00
CE-SC_10_Q23	Fortaleza	17431,51	0,00	PI-ST_20_Q25	Teresina	27648,15	0,00

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	IDF	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
CE-SC_10_Q25	Fortaleza	17454,74	0,00	PI-ST_20_Q27	Teresina	27440,43	0,00
CE-SC_10_Q27	Fortaleza	17380,41	0,00	PI-ST_20_Q29	Teresina	27428,62	0,00
CE-SC_10_Q29	Fortaleza	17386,22	0,00	RN-CO_00_0	Natal	19778,93	0,00
CE-SC_15_Q21	Fortaleza	17649,51	0,00	RN-CO_05_Q21	Natal	19466,59	0,00
CE-SC_15_Q23	Fortaleza	17579,73	0,00	RN-CO_05_Q23	Natal	19314,48	0,00
CE-SC_15_Q25	Fortaleza	17611,17	0,00	RN-CO_05_Q25	Natal	19394,45	0,00
CE-SC_15_Q27	Fortaleza	17533,32	0,00	RN-CO_05_Q27	Natal	18924,02	0,00
CE-SC_15_Q29	Fortaleza	17545,72	0,00	RN-CO_05_Q29	Natal	18948,49	0,00
CE-SC_20_Q21	Fortaleza	17810,97	0,00	RN-CO_10_Q21	Natal	19241,96	0,00
CE-SC_20_Q23	Fortaleza	17735,20	0,00	RN-CO_10_Q23	Natal	19035,27	0,00
CE-SC_20_Q25	Fortaleza	17771,03	0,00	RN-CO_10_Q25	Natal	19166,32	0,00
CE-SC_20_Q27	Fortaleza	17706,86	0,00	RN-CO_10_Q27	Natal	18360,81	0,00
CE-SC_20_Q29	Fortaleza	17725,98	0,00	RN-CO_10_Q29	Natal	18391,83	0,00
CE-ST_00_0	Fortaleza	18202,05	0,00	RN-CO_15_Q21	Natal	19076,49	0,00
CE-ST_05_Q21	Fortaleza	18073,71	0,00	RN-CO_15_Q23	Natal	18855,51	0,00
CE-ST_05_Q23	Fortaleza	17931,01	0,00	RN-CO_15_Q25	Natal	19005,47	0,00
CE-ST_05_Q25	Fortaleza	17975,85	0,00	RN-CO_15_Q27	Natal	18070,49	0,00
CE-ST_05_Q27	Fortaleza	17845,34	0,00	RN-CO_15_Q29	Natal	18098,74	0,00
CE-ST_05_Q29	Fortaleza	17867,36	0,00	RN-CO_20_Q21	Natal	18954,84	0,00
CE-ST_10_Q21	Fortaleza	17983,54	0,00	RN-CO_20_Q23	Natal	18737,62	0,00
CE-ST_10_Q23	Fortaleza	17770,59	0,00	RN-CO_20_Q25	Natal	18885,76	0,00
CE-ST_10_Q25	Fortaleza	17863,64	0,00	RN-CO_20_Q27	Natal	17981,49	0,00
CE-ST_10_Q27	Fortaleza	17571,41	0,00	RN-CO_20_Q29	Natal	18002,09	0,00
CE-ST_10_Q29	Fortaleza	17614,18	0,00	RN-SC_00_0	Natal	18529,89	0,00
CE-ST_15_Q21	Fortaleza	17933,33	0,00	RN-SC_05_Q21	Natal	18557,15	0,00
CE-ST_15_Q23	Fortaleza	17695,02	0,00	RN-SC_05_Q23	Natal	18528,49	0,00
CE-ST_15_Q25	Fortaleza	17817,31	0,00	RN-SC_05_Q25	Natal	18544,94	0,00
CE-ST_15_Q27	Fortaleza	17407,63	0,00	RN-SC_05_Q27	Natal	18339,50	0,00
CE-ST_15_Q29	Fortaleza	17463,81	0,00	RN-SC_05_Q29	Natal	18336,43	0,00
CE-ST_20_Q21	Fortaleza	17915,02	0,00	RN-SC_10_Q21	Natal	18608,87	0,00
CE-ST_20_Q23	Fortaleza	17674,26	0,00	RN-SC_10_Q23	Natal	18565,28	0,00
CE-ST_20_Q25	Fortaleza	17809,62	0,00	RN-SC_10_Q25	Natal	18590,42	0,00
CE-ST_20_Q27	Fortaleza	17358,85	0,00	RN-SC_10_Q27	Natal	18268,40	0,00
CE-ST_20_Q29	Fortaleza	17422,09	0,00	RN-SC_10_Q29	Natal	18260,50	0,00
MA-CO_00_0	São Luís	19456,61	0,00	RN-SC_15_Q21	Natal	18669,79	0,00
MA-CO_05_Q21	São Luís	19335,78	0,00	RN-SC_15_Q23	Natal	18618,86	0,00
MA-CO_05_Q23	São Luís	19223,09	0,00	RN-SC_15_Q25	Natal	18646,96	0,00
MA-CO_05_Q25	São Luís	19282,41	0,00	RN-SC_15_Q27	Natal	18297,68	0,00
MA-CO_05_Q27	São Luís	19039,38	0,00	RN-SC_15_Q29	Natal	18287,44	0,00
MA-CO_05_Q29	São Luís	19061,74	0,00	RN-SC_20_Q21	Natal	18736,01	0,00
MA-CO_10_Q21	São Luís	19294,02	0,00	RN-SC_20_Q23	Natal	18682,10	0,00
MA-CO_10_Q23	São Luís	19146,29	0,00	RN-SC_20_Q25	Natal	18709,96	0,00
MA-CO_10_Q25	São Luís	19242,54	0,00	RN-SC_20_Q27	Natal	18399,74	0,00

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
MA-CO_10_Q27	São Luís	18859,70	0,00	RN-SC_20_Q29	Natal	18391,92	0,00
MA-CO_10_Q29	São Luís	18888,19	0,00	RN-ST_00_0	Natal	19664,88	0,00
MA-CO_15_Q21	São Luís	19301,67	0,00	RN-ST_05_Q21	Natal	19386,53	0,00
MA-CO_15_Q23	São Luís	19150,25	0,00	RN-ST_05_Q23	Natal	19244,08	0,00
MA-CO_15_Q25	São Luís	19257,03	0,00	RN-ST_05_Q25	Natal	19312,37	0,00
MA-CO_15_Q27	São Luís	18846,83	0,00	RN-ST_05_Q27	Natal	18921,35	0,00
MA-CO_15_Q29	São Luís	18871,08	0,00	RN-ST_05_Q29	Natal	18940,27	0,00
MA-CO_20_Q21	São Luís	19341,88	0,00	RN-ST_10_Q21	Natal	19173,25	0,00
MA-CO_20_Q23	São Luís	19201,87	0,00	RN-ST_10_Q23	Natal	18971,30	0,00
MA-CO_20_Q25	São Luís	19302,46	0,00	RN-ST_10_Q25	Natal	19091,06	0,00
MA-CO_20_Q27	São Luís	18926,46	0,00	RN-ST_10_Q27	Natal	18356,14	0,00
MA-CO_20_Q29	São Luís	18948,10	0,00	RN-ST_10_Q29	Natal	18387,44	0,00
MA-SC_00_0	São Luís	18897,37	0,00	RN-ST_15_Q21	Natal	19010,72	0,00
MA-SC_05_Q21	São Luís	19077,12	0,00	RN-ST_15_Q23	Natal	18791,06	0,00
MA-SC_05_Q23	São Luís	19063,92	0,00	RN-ST_15_Q25	Natal	18934,13	0,00
MA-SC_05_Q25	São Luís	19068,18	0,00	RN-ST_15_Q27	Natal	18012,81	0,00
MA-SC_05_Q27	São Luís	18983,95	0,00	RN-ST_15_Q29	Natal	18045,63	0,00
MA-SC_05_Q29	São Luís	18979,16	0,00	RN-ST_20_Q21	Natal	18888,69	0,00
MA-SC_10_Q21	São Luís	19273,67	0,00	RN-ST_20_Q23	Natal	18671,78	0,00
MA-SC_10_Q23	São Luís	19251,48	0,00	RN-ST_20_Q25	Natal	18817,20	0,00
MA-SC_10_Q25	São Luís	19259,91	0,00	RN-ST_20_Q27	Natal	17895,47	0,00
MA-SC_10_Q27	São Luís	19156,36	0,00	RN-ST_20_Q29	Natal	17918,03	0,00
MA-SC_10_Q29	São Luís	19148,00	0,00	SE-CO_00_0	Aracaju	17972,54	0,00
MA-SC_15_Q21	São Luís	19470,13	0,00	SE-CO_05_Q21	Aracaju	17773,04	0,00
MA-SC_15_Q23	São Luís	19443,40	0,00	SE-CO_05_Q23	Aracaju	17639,25	0,00
MA-SC_15_Q25	São Luís	19453,72	0,00	SE-CO_05_Q25	Aracaju	17698,11	0,00
MA-SC_15_Q27	São Luís	19373,91	0,00	SE-CO_05_Q27	Aracaju	17373,26	0,00
MA-SC_15_Q29	São Luís	19365,57	0,00	SE-CO_05_Q29	Aracaju	17396,72	0,00
MA-SC_20_Q21	São Luís	19662,78	0,00	SE-CO_10_Q21	Aracaju	17625,12	0,00
MA-SC_20_Q23	São Luís	19636,44	0,00	SE-CO_10_Q23	Aracaju	17424,33	0,00
MA-SC_20_Q25	São Luís	19645,90	0,00	SE-CO_10_Q25	Aracaju	17531,48	0,00
MA-SC_20_Q27	São Luís	19607,52	0,00	SE-CO_10_Q27	Aracaju	16940,60	0,00
MA-SC_20_Q29	São Luís	19603,58	0,00	SE-CO_10_Q29	Aracaju	16977,98	0,00
MA-ST_00_0	São Luís	19379,79	0,00	SE-CO_15_Q21	Aracaju	17511,97	0,00
MA-ST_05_Q21	São Luís	19289,25	0,00	SE-CO_15_Q23	Aracaju	17279,48	0,00
MA-ST_05_Q23	São Luís	19186,14	0,00	SE-CO_15_Q25	Aracaju	17415,55	0,00
MA-ST_05_Q25	São Luís	19233,06	0,00	SE-CO_15_Q27	Aracaju	16677,20	0,00
MA-ST_05_Q27	São Luís	19044,26	0,00	SE-CO_15_Q29	Aracaju	16724,20	0,00
MA-ST_05_Q29	São Luís	19060,87	0,00	SE-CO_20_Q21	Aracaju	17425,43	0,00
MA-ST_10_Q21	São Luís	19258,04	0,00	SE-CO_20_Q23	Aracaju	17179,45	0,00
MA-ST_10_Q23	São Luís	19113,34	0,00	SE-CO_20_Q25	Aracaju	17330,98	0,00
MA-ST_10_Q25	São Luís	19196,19	0,00	SE-CO_20_Q27	Aracaju	16537,80	0,00
MA-ST_10_Q27	São Luís	18878,56	0,00	SE-CO_20_Q29	Aracaju	16592,63	0,00

<u>IDF</u>	<u>Cidade</u>	GHRm	GHAm	<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	GHAm
MA-ST_10_Q29	São Luís	18903,31	0,00	SE-SC_00_0	Aracaju	16880,43	0,00
MA-ST_15_Q21	São Luís	19266,94	0,00	SE-SC_05_Q21	Aracaju	16907,38	0,00
MA-ST_15_Q23	São Luís	19114,62	0,00	SE-SC 05 Q23	Aracaju	16864,88	0,00
MA-ST_15_Q25	São Luís	19211,20	0,00	SE-SC_05_Q25	Aracaju	16881,88	0,00
MA-ST_15_Q27	São Luís	18864,50	0,00	SE-SC_05_Q27	Aracaju	16768,48	0,00
MA-ST_15_Q29	São Luís	18889,63	0,00	SE-SC_05_Q29	Aracaju	16772,49	0,00
MA-ST_20_Q21	São Luís	19305,45	0,00	SE-SC_10_Q21	Aracaju	16951,59	0,00
MA-ST_20_Q23	São Luís	19162,66	0,00	SE-SC_10_Q23	Aracaju	16882,48	0,00
MA-ST_20_Q25	São Luís	19257,30	0,00	SE-SC_10_Q25	Aracaju	16915,56	0,00
MA-ST_20_Q27	São Luís	18949,47	0,00	SE-SC_10_Q27	Aracaju	16708,35	0,00
MA-ST_20_Q29	São Luís	18975,18	0,00	SE-SC_10_Q29	Aracaju	16716,29	0,00
PB-CO_00_0	João Pessoa	16836,69	0,00	SE-SC_15_Q21	Aracaju	17003,20	0,00
PB-CO_05_Q21	João Pessoa	16589,08	0,00	SE-SC_15_Q23	Aracaju	16917,69	0,00
PB-CO_05_Q23	João Pessoa	16409,57	0,00	SE-SC_15_Q25	Aracaju	16961,74	0,00
PB-CO_05_Q25	João Pessoa	16460,87	0,00	SE-SC_15_Q27	Aracaju	16702,96	0,00
PB-CO_05_Q27	João Pessoa	16310,93	0,00	SE-SC_15_Q29	Aracaju	16715,52	0,00
PB-CO_05_Q29	João Pessoa	16342,53	0,00	SE-SC_20_Q21	Aracaju	17059,77	0,00
PB-CO_10_Q21	João Pessoa	16410,83	0,00	SE-SC_20_Q23	Aracaju	16964,42	0,00
PB-CO_10_Q23	João Pessoa	16160,43	0,00	SE-SC_20_Q25	Aracaju	17014,50	0,00
PB-CO_10_Q25	João Pessoa	16260,33	0,00	SE-SC_20_Q27	Aracaju	16742,28	0,00
PB-CO_10_Q27	João Pessoa	15953,83	0,00	SE-SC_20_Q29	Aracaju	16760,91	0,00
PB-CO_10_Q29	João Pessoa	16006,96	0,00	SE-ST_00_0	Aracaju	17897,64	0,00
PB-CO_15_Q21	João Pessoa	16289,99	0,00	SE-ST_05_Q21	Aracaju	17723,22	0,00
PB-CO_15_Q23	João Pessoa	16018,18	0,00	SE-ST_05_Q23	Aracaju	17598,20	0,00
PB-CO_15_Q25	João Pessoa	16148,04	0,00	SE-ST_05_Q25	Aracaju	17645,84	0,00
PB-CO_15_Q27	João Pessoa	15759,64	0,00	SE-ST_05_Q27	Aracaju	17397,97	0,00
PB-CO_15_Q29	João Pessoa	15826,83	0,00	SE-ST_05_Q29	Aracaju	17416,69	0,00
PB-CO_20_Q21	João Pessoa	16211,27	0,00	SE-ST_10_Q21	Aracaju	17585,98	0,00
PB-CO_20_Q23	João Pessoa	15941,26	0,00	SE-ST_10_Q23	Aracaju	17386,84	0,00
PB-CO_20_Q25	João Pessoa	16086,97	0,00	SE-ST_10_Q25	Aracaju	17480,65	0,00
PB-CO_20_Q27	João Pessoa	15680,53	0,00	SE-ST_10_Q27	Aracaju	16984,72	0,00
PB-CO_20_Q29	João Pessoa	15758,47	0,00	SE-ST_10_Q29	Aracaju	17019,48	0,00
PB-SC_00_0	João Pessoa	15912,72	0,00	SE-ST_15_Q21	Aracaju	17474,87	0,00
PB-SC_05_Q21	João Pessoa	15986,69	0,00	SE-ST_15_Q23	Aracaju	17238,95	0,00
PB-SC_05_Q23	João Pessoa	15942,93	0,00	SE-ST_15_Q25	Aracaju	17363,87	0,00
PB-SC_05_Q25	João Pessoa	15954,87	0,00	SE-ST_15_Q27	Aracaju	16704,04	0,00
PB-SC_05_Q27	João Pessoa	15908,46	0,00	SE-ST_15_Q29	Aracaju	16750,96	0,00
PB-SC_05_Q29	João Pessoa	15912,83	0,00	SE-ST_20_Q21	Aracaju	17387,57	0,00
PB-SC_10_Q21	João Pessoa	16069,19	0,00	SE-ST_20_Q23	Aracaju	17135,70	0,00
PB-SC_10_Q23	João Pessoa	15998,01	0,00	SE-ST_20_Q25	Aracaju	17279,02	0,00
PB-SC_10_Q25	João Pessoa	16024,90	0,00	SE-ST_20_Q27	Aracaju	16546,06	0,00
PB-SC_10_Q27	João Pessoa	15948,04	0,00	SE-ST_20_Q29	Aracaju	16602,00	0,00
PB-SC_10_Q29	João Pessoa	15958,26	0,00				

6.1.3 Centro-oeste

Tabela 15: Resultados de GH para a região Centro-oeste

IDF	Cidade	GHRm	GHAm
DF-CO 00 0	Brasília	2059,58	113,28
DF-CO 05 Q21	Brasília	1577,03	48,75
DF-CO 05 Q23	Brasília	1407,82	64,34
DF-CO 05 Q25	Brasília	1394,60	64,67
DF-CO_05_Q27	Brasília	1521,13	76,36
DF-CO 05 Q29	Brasília	1549,59	76,37
DF-CO_10_Q21	Brasília	1222,51	16,46
DF-CO_10_Q23	Brasília	961,39	35,30
DF-CO_10_Q25	Brasília	957,74	36,37
DF-CO_10_Q27	Brasília	1095,26	50,16
DF-CO_10_Q29	Brasília	1143,41	50,05
DF-CO_15_Q21	Brasília	975,06	5,61
DF-CO_15_Q23	Brasília	695,45	19,50
DF-CO_15_Q25	Brasília	709,56	20,98
DF-CO_15_Q27	Brasília	803,10	32,44
DF-CO_15_Q29	Brasília	861,16	32,24
DF-CO_20_Q21	Brasília	797,08	1,37
DF-CO_20_Q23	Brasília	536,56	11,29
DF-CO_20_Q25	Brasília	566,49	12,77
DF-CO_20_Q27	Brasília	605,07	20,64
DF-CO_20_Q29	Brasília	666,03	20,36
DF-SC_00_0	Brasília	557,27	0,70
DF-SC_05_Q21	Brasília	492,38	0,02
DF-SC_05_Q23	Brasília	462,43	0,06
DF-SC_05_Q25	Brasília	460,81	0,06
DF-SC_05_Q27	Brasília	481,44	0,09
DF-SC_05_Q29	Brasília	485,59	0,09
DF-SC_10_Q21	Brasília	439,26	0,00
DF-SC_10_Q23	Brasília	388,91	0,00
DF-SC_10_Q25	Brasília	391,05	0,00
DF-SC_10_Q27	Brasília	400,63	0,00
DF-SC_10_Q29	Brasília	408,92	0,00
DF-SC_15_Q21	Brasília	396,92	0,00
DF-SC_15_Q23	Brasília	337,48	0,00
DF-SC_15_Q25	Brasília	344,84	0,00
DF-SC_15_Q27	Brasília	337,31	0,00
DF-SC_15_Q29	Brasília	348,59	0,00
DF-SC_20_Q21	Brasília	364,13	0,00
DF-SC_20_Q23	Brasília	301,75	0,00
DF-SC_20_Q25	Brasília	313,74	0,00
DF-SC_20_Q27	Brasília	293,10	0,00
DF-SC_20_Q29	Brasília	306,25	0,00

Centro-oeste IDF	Cidade	GHRm	GHAm
MS-CO 00 0	Campo Grande	8286,23	701,50
MS-CO 05 Q21	Campo Grande	7558,47	611,04
MS-CO 05 Q23	Campo Grande	7226,90	630,42
MS-CO 05 Q25	Campo Grande	7236,33	631,09
MS-CO 05 Q27	Campo Grande	7274,80	641,31
MS-CO 05 Q29	Campo Grande	7321,07	641,18
MS-CO 10 Q21	Campo Grande	6971,18	528,44
MS-CO 10 Q23	Campo Grande	6466,58	566,32
MS-CO 10 Q25	Campo Grande	6530,16	567,58
MS-CO 10 Q27	Campo Grande	6391,25	587,42
MS-CO 10 Q29	Campo Grande	6477,06	587,16
MS-CO 15 Q21	Campo Grande	6512,03	454,38
MS-CO 15 Q23	Campo Grande	5937,10	506,02
MS-CO 15 Q25	Campo Grande	6054,93	507,27
MS-CO 15 Q27	Campo Grande	5717,55	538,83
MS-CO 15 Q29	Campo Grande	5830,14	538,39
MS-CO_20_Q21	Campo Grande	6142,71	392,45
MS-CO_20_Q23	Campo Grande	5557,84	450,96
MS-CO_20_Q25	Campo Grande	5717,21	452,11
MS-CO_20_Q27	Campo Grande	5223,87	494,07
MS-CO_20_Q29	Campo Grande	5353,42	493,63
MS-SC_00_0	Campo Grande	5183,40	315,84
MS-SC_05_Q21	Campo Grande	4993,90	270,43
MS-SC_05_Q23	Campo Grande	4902,13	274,52
MS-SC_05_Q25	Campo Grande	4909,53	274,48
MS-SC_05_Q27	Campo Grande	4897,34	277,17
MS-SC_05_Q29	Campo Grande	4909,53	277,17
MS-SC_10_Q21	Campo Grande	4837,38	229,56
MS-SC_10_Q23	Campo Grande	4687,11	237,44
MS-SC_10_Q25	Campo Grande	4714,32	237,44
MS-SC_10_Q27	Campo Grande	4636,76	243,21
MS-SC_10_Q29	Campo Grande	4661,70	243,21
MS-SC_15_Q21	Campo Grande	4710,00	193,84
MS-SC_15_Q23	Campo Grande	4529,20	204,78
MS-SC_15_Q25	Campo Grande	4575,57	204,49
MS-SC_15_Q27	Campo Grande	4428,51	213,32
MS-SC_15_Q29	Campo Grande	4464,06	213,26
MS-SC_20_Q21	Campo Grande	4606,98	162,04
MS-SC_20_Q23	Campo Grande	4413,08	175,87
MS-SC_20_Q25	Campo Grande	4474,18	175,44
MS-SC_20_Q27	Campo Grande	4276,85	187,19
MS-SC_20_Q29	Campo Grande	4320,13	187,24

IDF	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	IDF	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
DF-ST_00_0	Brasília	2012,99	103,01	MS-ST_00_0	Campo Grande	8176,75	691,16
DF-ST_05_Q21	Brasília	1615,02	50,14	MS-ST_05_Q21	Campo Grande	7557,65	611,85
DF-ST_05_Q23	Brasília	1479,72	61,52	MS-ST_05_Q23	Campo Grande	7275,41	625,86
DF-ST_05_Q25	Brasília	1467,27	61,74	MS-ST_05_Q25	Campo Grande	7274,34	626,23
DF-ST_05_Q27	Brasília	1574,39	70,16	MS-ST_05_Q27	Campo Grande	7347,86	633,75
DF-ST_05_Q29	Brasília	1596,72	70,16	MS-ST_05_Q29	Campo Grande	7384,72	633,60
DF-ST_10_Q21	Brasília	1287,78	20,00	MS-ST_10_Q21	Campo Grande	7014,74	538,22
DF-ST_10_Q23	Brasília	1051,12	35,09	MS-ST_10_Q23	Campo Grande	6540,66	566,66
DF-ST_10_Q25	Brasília	1040,97	35,65	MS-ST_10_Q25	Campo Grande	6580,44	567,48
DF-ST_10_Q27	Brasília	1170,96	46,56	MS-ST_10_Q27	Campo Grande	6546,23	581,99
DF-ST_10_Q29	Brasília	1212,80	46,50	MS-ST_10_Q29	Campo Grande	6622,47	581,73
DF-ST_15_Q21	Brasília	1040,85	7,80	MS-ST_15_Q21	Campo Grande	6563,22	470,29
DF-ST_15_Q23	Brasília	757,25	19,90	MS-ST_15_Q23	Campo Grande	5994,27	511,63
DF-ST_15_Q25	Brasília	763,87	20,84	MS-ST_15_Q25	Campo Grande	6085,91	512,59
DF-ST_15_Q27	Brasília	868,78	30,39	MS-ST_15_Q27	Campo Grande	5867,33	535,16
DF-ST_15_Q29	Brasília	922,16	30,25	MS-ST_15_Q29	Campo Grande	5973,58	534,88
DF-ST_20_Q21	Brasília	852,62	2,60	MS-ST_20_Q21	Campo Grande	6189,63	410,81
DF-ST_20_Q23	Brasília	582,04	11,61	MS-ST_20_Q23	Campo Grande	5599,75	460,44
DF-ST_20_Q25	Brasília	607,91	12,64	MS-ST_20_Q25	Campo Grande	5737,09	461,39
DF-ST_20_Q27	Brasília	654,69	19,53	MS-ST_20_Q27	Campo Grande	5339,55	492,14
DF-ST_20_Q29	Brasília	713,37	19,35	MS-ST_20_Q29	Campo Grande	5464,53	491,80
GO-CO_00_0	Goiânia	7638,77	336,70	MT-CO_00_0	Cuiabá	29401,23	170,61
GO-CO_05_Q21	Goiânia	6768,51	220,90	MT-CO_05_Q21	Cuiabá	29119,22	147,52
GO-CO_05_Q23	Goiânia	6398,04	241,71	MT-CO_05_Q23	Cuiabá	28993,21	152,17
GO-CO_05_Q25	Goiânia	6381,37	240,63	MT-CO_05_Q25	Cuiabá	28999,83	152,26
GO-CO_05_Q27	Goiânia	6571,51	269,67	MT-CO_05_Q27	Cuiabá	28982,56	154,81
GO-CO_05_Q29	Goiânia	6619,83	270,20	MT-CO_05_Q29	Cuiabá	28992,73	154,68
GO-CO_10_Q21	Goiânia	6085,42	131,08	MT-CO_10_Q21	Cuiabá	28919,01	127,49
GO-CO_10_Q23	Goiânia	5493,70	169,40	MT-CO_10_Q23	Cuiabá	28725,06	136,43
GO-CO_10_Q25	Goiânia	5523,86	167,93	MT-CO_10_Q25	Cuiabá	28747,03	136,77
GO-CO_10_Q27	Goiânia	5632,44	216,21	MT-CO_10_Q27	Cuiabá	28680,30	141,04
GO-CO_10_Q29	Goiânia	5725,81	216,76	MT-CO_10_Q29	Cuiabá	28695,55	140,82
GO-CO_15_Q21	Goiânia	5566,04	75,50	MT-CO_15_Q21	Cuiabá	28772,48	110,12
GO-CO_15_Q23	Goiânia	4892,88	121,50	MT-CO_15_Q23	Cuiabá	28542,93	122,84
GO-CO_15_Q25	Goiânia	4983,25	121,43	MT-CO_15_Q25	Cuiabá	28580,23	123,45
GO-CO_15_Q27	Goiânia	4927,11	174,39	MT-CO_15_Q27	Cuiabá	28471,78	128,97
GO-CO_15_Q29	Goiânia	5054,71	174,65	MT-CO_15_Q29	Cuiabá	28490,55	128,63
GO-CO_20_Q21	Goiânia	5163,76	41,96	MT-CO_20_Q21	Cuiabá	28660,60	96,43
GO-CO_20_Q23	Goiânia	4483,59	89,13	MT-CO_20_Q23	Cuiabá	28417,33	110,95
GO-CO_20_Q25	Goiânia	4628,83	90,61	MT-CO_20_Q25	Cuiabá	28468,27	111,93
GO-CO_20_Q27	Goiânia	4415,43	140,88	MT-CO_20_Q27	Cuiabá	28334,25	118,12
GO-CO_20_Q29	Goiânia	4566,22	140,66	MT-CO_20_Q29	Cuiabá	28355,72	117,67
GO-SC_00_0	Goiânia	4308,88	27,58	MT-SC_00_0	Cuiabá	27957,84	78,41

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>		<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
GO-SC_05_Q21	Goiânia	4132,08	15,27		MT-SC_05_Q21	Cuiabá	27965,83	67,52
GO-SC_05_Q23	Goiânia	4030,70	16,80	İ	MT-SC_05_Q23	Cuiabá	27930,40	68,58
GO-SC_05_Q25	Goiânia	4029,82	16,74	İ	MT-SC_05_Q25	Cuiabá	27929,15	68,61
GO-SC_05_Q27	Goiânia	4064,93	18,69	İ	MT-SC_05_Q27	Cuiabá	27924,77	69,00
GO-SC_05_Q29	Goiânia	4076,28	18,71	İ	MT-SC_05_Q29	Cuiabá	27924,10	68,96
GO-SC_10_Q21	Goiânia	3990,18	7,41	İ	MT-SC_10_Q21	Cuiabá	27995,34	57,12
GO-SC_10_Q23	Goiânia	3821,81	9,94		MT-SC_10_Q23	Cuiabá	27931,95	59,54
GO-SC_10_Q25	Goiânia	3838,53	9,95	İ	MT-SC_10_Q25	Cuiabá	27934,04	59,66
GO-SC_10_Q27	Goiânia	3833,16	12,45	İ	MT-SC_10_Q27	Cuiabá	27941,25	60,45
GO-SC_10_Q29	Goiânia	3857,57	12,46	İ	MT-SC_10_Q29	Cuiabá	27942,30	60,38
GO-SC_15_Q21	Goiânia	3879,38	2,98	İ	MT-SC_15_Q21	Cuiabá	28031,72	47,85
GO-SC_15_Q23	Goiânia	3673,23	5,58	İ	MT-SC_15_Q23	Cuiabá	27950,29	51,55
GO-SC_15_Q25	Goiânia	3711,89	5,67	İ	MT-SC_15_Q25	Cuiabá	27958,53	51,75
GO-SC_15_Q27	Goiânia	3651,61	7,95		MT-SC_15_Q27	Cuiabá	27977,72	52,85
GO-SC_15_Q29	Goiânia	3688,22	7,97		MT-SC_15_Q29	Cuiabá	27982,84	52,76
GO-SC_20_Q21	Goiânia	3794,44	0,82		MT-SC_20_Q21	Cuiabá	28072,84	39,49
GO-SC_20_Q23	Goiânia	3573,99	2,83		MT-SC_20_Q23	Cuiabá	27980,06	44,52
GO-SC_20_Q25	Goiânia	3632,75	2,97	İ	MT-SC_20_Q25	Cuiabá	27994,77	44,76
GO-SC_20_Q27	Goiânia	3523,37	4,95	İ	MT-SC_20_Q27	Cuiabá	28021,31	46,12
GO-SC_20_Q29	Goiânia	3570,28	4,95		MT-SC_20_Q29	Cuiabá	28031,87	46,01
GO-ST_00_0	Goiânia	7500,02	313,36	İ	MT-ST_00_0	Cuiabá	29325,90	166,96
GO-ST_05_Q21	Goiânia	6771,11	219,86	İ	MT-ST_05_Q21	Cuiabá	29092,42	146,59
GO-ST_05_Q23	Goiânia	6467,20	235,20	İ	MT-ST_05_Q23	Cuiabá	28983,65	150,14
GO-ST_05_Q25	Goiânia	6445,43	234,51	İ	MT-ST_05_Q25	Cuiabá	28985,96	150,19
GO-ST_05_Q27	Goiânia	6641,99	254,38	İ	MT-ST_05_Q27	Cuiabá	28984,49	152,16
GO-ST_05_Q29	Goiânia	6679,66	254,70	İ	MT-ST_05_Q29	Cuiabá	28991,37	152,05
GO-ST_10_Q21	Goiânia	6144,73	143,03	İ	MT-ST_10_Q21	Cuiabá	28914,93	128,45
GO-ST_10_Q23	Goiânia	5605,40	172,36		MT-ST_10_Q23	Cuiabá	28737,62	135,65
GO-ST_10_Q25	Goiânia	5612,01	170,95		MT-ST_10_Q25	Cuiabá	28752,09	135,85
GO-ST_10_Q27	Goiânia	5800,15	206,60	İ	MT-ST_10_Q27	Cuiabá	28725,71	139,12
GO-ST_10_Q29	Goiânia	5880,77	206,90		MT-ST_10_Q29	Cuiabá	28739,31	138,91
GO-ST_15_Q21	Goiânia	5633,85	87,30		MT-ST_15_Q21	Cuiabá	28779,17	112,14
GO-ST_15_Q23	Goiânia	4975,41	125,27		MT-ST_15_Q23	Cuiabá	28562,41	122,74
GO-ST_15_Q25	Goiânia	5034,62	124,41		MT-ST_15_Q25	Cuiabá	28592,30	123,17
GO-ST_15_Q27	Goiânia	5093,57	167,59	İ	MT-ST_15_Q27	Cuiabá	28533,33	127,46
GO-ST_15_Q29	Goiânia	5210,52	167,87		MT-ST_15_Q29	Cuiabá	28552,26	127,16
GO-ST_20_Q21	Goiânia	5223,87	50,33		MT-ST_20_Q21	Cuiabá	28673,53	98,37
GO-ST_20_Q23	Goiânia	4538,20	91,91		MT-ST_20_Q23	Cuiabá	28443,31	111,09
GO-ST_20_Q25	Goiânia	4653,22	92,32		MT-ST_20_Q25	Cuiabá	28487,11	111,80
GO-ST_20_Q27	Goiânia	4547,43	135,76		MT-ST_20_Q27	Cuiabá	28405,85	116,93
GO-ST_20_Q29	Goiânia	4689,65	135,82		MT-ST_20_Q29	Cuiabá	28427,91	116,54

6.1.4 Sudeste

Tabela 16: Resultados de GH para a região Sudeste

IDF	<u>Cidade</u>	GHRm	GHAm
ES-CO_00_0	Vitória	11333,16	4,31
ES-CO_05_Q21	Vitória	10925,58	0,98
ES-CO 05 Q23	Vitória	10723,62	1,64
ES-CO_05_Q25	Vitória	10747,54	1,66
ES-CO_05_Q27	Vitória	10734,14	2,21
ES-CO_05_Q29	Vitória	10765,52	2,22
ES-CO_03_Q23 ES-CO_10_Q21	Vitória	10630,36	0,08
ES-CO_10_Q21 ES-CO_10_Q23	Vitória	10354,41	0,64
ES-CO_10_Q25	Vitória	10414,98	0,69
ES-CO_10_Q27	Vitória	10307,64	1,11
ES-CO_10_Q27 ES-CO_10_Q29	Vitória	10357,04	1,11
	Vitória		
ES-CO_15_Q21	Vitória	10426,96	0,00
ES-CO_15_Q23		10140,95	0,18
ES-CO_15_Q25	Vitória	10226,87 10052,55	0,23
ES-CO_15_Q27	Vitória	· ·	0,56
ES-CO_15_Q29	Vitória	10112,58	0,56
ES-CO_20_Q21	Vitória	10286,43	0,00
ES-CO_20_Q23	Vitória	10013,33	0,02
ES-CO_20_Q25	Vitória	10112,85	0,05
ES-CO_20_Q27	Vitória	9909,34	0,23
ES-CO_20_Q29	Vitória	9973,42	0,23
ES-SC_00_0	Vitória	9959,03	0,00
ES-SC_05_Q21	Vitória	9964,40	0,00
ES-SC_05_Q23	Vitória	9928,30	0,00
ES-SC_05_Q25	Vitória	9932,79	0,00
ES-SC_05_Q27	Vitória	9919,57	0,00
ES-SC_05_Q29	Vitória	9922,52	0,00
ES-SC_10_Q21	Vitória	9979,39	0,00
ES-SC_10_Q23	Vitória	9921,76	0,00
ES-SC_10_Q25	Vitória	9934,44	0,00
ES-SC_10_Q27	Vitória	9910,50	0,00
ES-SC_10_Q29	Vitória	9916,72	0,00
ES-SC_15_Q21	Vitória	10002,82	0,00
ES-SC_15_Q23	Vitória	9934,24	0,00
ES-SC_15_Q25	Vitória	9953,69	0,00
ES-SC_15_Q27	Vitória	9932,06	0,00
ES-SC_15_Q29	Vitória	9941,94	0,00
ES-SC_20_Q21	Vitória	10033,69	0,00
ES-SC_20_Q23	Vitória	9959,51	0,00
ES-SC_20_Q25	Vitória	9983,03	0,00
ES-SC_20_Q27	Vitória	9972,80	0,00
ES-SC_20_Q29	Vitória	9987,74	0,00

<u>IDF</u>	<u>Cidade</u>	GHRm	GHAm
RJ-CO_00_0	Rio de Janeiro	7770,00	269,99
RJ-CO_05_Q21	Rio de Janeiro	7354,10	163,58
RJ-CO_05_Q23	Rio de Janeiro	7164,55	191,17
RJ-CO_05_Q25	Rio de Janeiro	7175,25	191,87
RJ-CO_05_Q27	Rio de Janeiro	7218,80	210,03
RJ-CO_05_Q29	Rio de Janeiro	7247,45	209,94
RJ-CO_10_Q21	Rio de Janeiro	7034,70	89,61
RJ-CO_10_Q23	Rio de Janeiro	6747,70	135,47
RJ-CO_10_Q25	Rio de Janeiro	6787,62	137,84
RJ-CO_10_Q27	Rio de Janeiro	6784,59	162,86
RJ-CO_10_Q29	Rio de Janeiro	6836,95	162,53
RJ-CO_15_Q21	Rio de Janeiro	6794,87	46,08
RJ-CO_15_Q23	Rio de Janeiro	6473,53	96,23
RJ-CO_15_Q25	Rio de Janeiro	6541,54	100,28
RJ-CO_15_Q27	Rio de Janeiro	6481,74	125,97
RJ-CO_15_Q29	Rio de Janeiro	6549,50	125,32
RJ-CO_20_Q21	Rio de Janeiro	6615,08	21,35
RJ-CO_20_Q23	Rio de Janeiro	6285,35	68,69
RJ-CO_20_Q25	Rio de Janeiro	6373,02	73,80
RJ-CO_20_Q27	Rio de Janeiro	6273,24	96,55
RJ-CO_20_Q29	Rio de Janeiro	6351,47	95,66
RJ-SC_00_0	Rio de Janeiro	6085,86	21,51
RJ-SC_05_Q21	Rio de Janeiro	6032,09	9,73
RJ-SC_05_Q23	Rio de Janeiro	5985,61	11,69
RJ-SC_05_Q25	Rio de Janeiro	5988,48	11,81
RJ-SC_05_Q27	Rio de Janeiro	5998,16	12,78
RJ-SC_05_Q29	Rio de Janeiro	6003,33	12,77
RJ-SC_10_Q21	Rio de Janeiro	5992,65	3,94
RJ-SC_10_Q23	Rio de Janeiro	5913,13	6,20
RJ-SC_10_Q25	Rio de Janeiro	5924,86	6,39
RJ-SC_10_Q27	Rio de Janeiro	5930,78	7,46
RJ-SC_10_Q29	Rio de Janeiro	5942,04	7,45
RJ-SC_15_Q21	Rio de Janeiro	5963,97	1,35
RJ-SC_15_Q23	Rio de Janeiro	5862,77	3,22
RJ-SC_15_Q25	Rio de Janeiro	5883,40	3,43
RJ-SC_15_Q27	Rio de Janeiro	5887,97	4,20
RJ-SC_15_Q29	Rio de Janeiro	5905,77	4,19
RJ-SC_20_Q21	Rio de Janeiro	5945,54	0,28
RJ-SC_20_Q23	Rio de Janeiro	5829,16	1,55
RJ-SC_20_Q25	Rio de Janeiro	5856,57	1,76
RJ-SC_20_Q27	Rio de Janeiro	5866,01	2,27
RJ-SC_20_Q29	Rio de Janeiro	5890,25	2,24

IDF	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
ES-ST_00_0	Vitória	11263,02	3,70	RJ-ST_00_0	Rio de Janeiro	7697,58	250,74
ES-ST_05_Q21	Vitória	10926,87	1,02	RJ-ST_05_Q21	Rio de Janeiro	7351,01	161,60
ES-ST_05_Q23	Vitória	10751,20	1,53	RJ-ST_05_Q23	Rio de Janeiro	7188,36	182,14
ES-ST_05_Q25	Vitória	10765,19	1,55	RJ-ST_05_Q25	Rio de Janeiro	7192,18	182,61
ES-ST_05_Q27	Vitória	10783,87	1,95	RJ-ST_05_Q27	Rio de Janeiro	7254,41	196,18
ES-ST_05_Q29	Vitória	10807,86	1,95	RJ-ST_05_Q29	Rio de Janeiro	7276,73	196,09
ES-ST_10_Q21	Vitória	10657,06	0,16	RJ-ST_10_Q21	Rio de Janeiro	7061,60	95,73
ES-ST_10_Q23	Vitória	10393,02	0,62	RJ-ST_10_Q23	Rio de Janeiro	6795,60	131,17
ES-ST_10_Q25	Vitória	10438,62	0,65	RJ-ST_10_Q25	Rio de Janeiro	6823,34	132,64
ES-ST_10_Q27	Vitória	10395,40	0,99	RJ-ST_10_Q27	Rio de Janeiro	6863,48	152,61
ES-ST_10_Q29	Vitória	10441,42	0,98	RJ-ST_10_Q29	Rio de Janeiro	6909,05	152,35
ES-ST_15_Q21	Vitória	10456,73	0,00	RJ-ST_15_Q21	Rio de Janeiro	6830,35	52,16
ES-ST_15_Q23	Vitória	10171,68	0,19	RJ-ST_15_Q23	Rio de Janeiro	6518,59	93,48
ES-ST_15_Q25	Vitória	10243,83	0,21	RJ-ST_15_Q25	Rio de Janeiro	6573,14	96,13
ES-ST_15_Q27	Vitória	10134,95	0,49	RJ-ST_15_Q27	Rio de Janeiro	6565,75	118,21
ES-ST_15_Q29	Vitória	10192,42	0,49	RJ-ST_15_Q29	Rio de Janeiro	6628,09	117,73
ES-ST_20_Q21	Vitória	10313,80	0,00	RJ-ST_20_Q21	Rio de Janeiro	6650,50	25,44
ES-ST_20_Q23	Vitória	10039,92	0,02	RJ-ST_20_Q23	Rio de Janeiro	6331,52	66,32
ES-ST_20_Q25	Vitória	10128,08	0,04	RJ-ST_20_Q25	Rio de Janeiro	6407,06	69,82
ES-ST_20_Q27	Vitória	9984,95	0,20	RJ-ST_20_Q27	Rio de Janeiro	6354,26	90,70
ES-ST_20_Q29	Vitória	10048,05	0,20	RJ-ST_20_Q29	Rio de Janeiro	6427,39	90,08
MG-CO_00_0	Belo Horizonte	9477,68	60,03	SP-CO_00_0	São Paulo	1746,35	3614,40
MG-CO_05_Q21	Belo Horizonte	8675,07	35,11	SP-CO_05_Q21	São Paulo	1411,73	3202,96
MG-CO_05_Q23	Belo Horizonte	8338,18	39,49	SP-CO_05_Q23	São Paulo	1290,32	3292,11
MG-CO_05_Q25	Belo Horizonte	8336,81	39,41	SP-CO_05_Q25	São Paulo	1283,83	3297,12
MG-CO_05_Q27	Belo Horizonte	8466,96	44,65	SP-CO_05_Q27	São Paulo	1352,45	3332,13
MG-CO_05_Q29	Belo Horizonte	8515,85	44,73	SP-CO_05_Q29	São Paulo	1370,90	3331,02
MG-CO_10_Q21	Belo Horizonte	8020,62	19,00	SP-CO_10_Q21	São Paulo		2853,56
MG-CO_10_Q23	Belo Horizonte	7487,68	26,42	SP-CO_10_Q23	São Paulo	972,28	3017,22
MG-CO_10_Q25	Belo Horizonte	7539,16	26,37	SP-CO_10_Q25	São Paulo	976,23	3029,59
MG-CO_10_Q27	Belo Horizonte	7497,37	33,80	SP-CO_10_Q27	São Paulo		3080,13
MG-CO_10_Q29	Belo Horizonte	7593,17	33,84	SP-CO_10_Q29	São Paulo	1065,26	3077,44
MG-CO_15_Q21	Belo Horizonte	7509,96	9,48	SP-CO_15_Q21	São Paulo	972,86	2557,62
MG-CO_15_Q23	Belo Horizonte	6903,72	17,97	SP-CO_15_Q23	São Paulo	769,48	2778,47
MG-CO_15_Q25	Belo Horizonte	7014,97	18,16	SP-CO_15_Q25	São Paulo	786,08	2797,90
MG-CO_15_Q27	Belo Horizonte	6726,34	25,87	SP-CO_15_Q27	São Paulo	804,13	2854,31
MG-CO_15_Q29	Belo Horizonte	6853,04	25,87	SP-CO_15_Q29	São Paulo	845,07	2849,88
MG-CO_20_Q21	Belo Horizonte	7107,91	4,30	SP-CO_20_Q21	São Paulo	834,19	2296,91
MG-CO_20_Q23	Belo Horizonte	6495,12	12,49	SP-CO_20_Q23	São Paulo	623,69	2564,01
MG-CO_20_Q25	Belo Horizonte	6654,76	12,91	SP-CO_20_Q25	São Paulo	649,72	2590,13
MG-CO_20_Q27	Belo Horizonte	6155,10	20,01	SP-CO_20_Q27	São Paulo	649,13	2649,20
MG-CO_20_Q29	Belo Horizonte	6297,27	19,97	SP-CO_20_Q29	São Paulo	694,12	2643,13
MG-SC_00_0	Belo Horizonte	6430,03	1,99	SP-SC_00_0	São Paulo	567,64	2375,28

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	<u>IDF</u>	<u>Cidade</u>	GHRm	<u>GHAm</u>
MG-SC_05_Q21	Belo Horizonte	6255,41	0,56	SP-SC_05_Q21	São Paulo	504,61	2132,04
MG-SC_05_Q23	Belo Horizonte	6167,56	0,71	SP-SC_05_Q23	São Paulo	479,86	2150,27
MG-SC_05_Q25	Belo Horizonte	6170,83	0,71	SP-SC_05_Q25	São Paulo	479,16	2151,38
MG-SC_05_Q27	Belo Horizonte	6184,06	0,90	SP-SC_05_Q27	São Paulo	492,58	2156,61
MG-SC_05_Q29	Belo Horizonte	6194,59	0,90	SP-SC_05_Q29	São Paulo	495,99	2156,25
MG-SC_10_Q21	Belo Horizonte	6101,20	0,09	SP-SC_10_Q21	São Paulo	451,50	1910,43
MG-SC_10_Q23	Belo Horizonte	5951,21	0,24	SP-SC_10_Q23	São Paulo	409,41	1947,75
MG-SC_10_Q25	Belo Horizonte	5974,92	0,25	SP-SC_10_Q25	São Paulo	412,11	1950,32
MG-SC_10_Q27	Belo Horizonte	5914,23	0,40	SP-SC_10_Q27	São Paulo	417,78	1959,44
MG-SC_10_Q29	Belo Horizonte	5938,78	0,40	SP-SC_10_Q29	São Paulo	424,83	1958,74
MG-SC_15_Q21	Belo Horizonte	5972,91	0,00	SP-SC_15_Q21	São Paulo	406,92	1710,52
MG-SC_15_Q23	Belo Horizonte	5792,10	0,05	SP-SC_15_Q23	São Paulo	354,14	1765,14
MG-SC_15_Q25	Belo Horizonte	5836,70	0,06	SP-SC_15_Q25	São Paulo	360,53	1769,29
MG-SC_15_Q27	Belo Horizonte	5684,67	0,15	SP-SC_15_Q27	São Paulo	356,73	1781,55
MG-SC_15_Q29	Belo Horizonte	5722,20	0,16	SP-SC_15_Q29	São Paulo	366,82	1780,54
MG-SC_20_Q21	Belo Horizonte	5868,89	0,00	SP-SC_20_Q21	São Paulo	369,17	1528,59
MG-SC_20_Q23	Belo Horizonte	5674,60	0,00	SP-SC_20_Q23	São Paulo	309,47	1599,70
MG-SC_20_Q25	Belo Horizonte	5737,81	0,00	SP-SC_20_Q25	São Paulo	319,58	1605,39
MG-SC_20_Q27	Belo Horizonte	5514,39	0,03	SP-SC_20_Q27	São Paulo	311,90	1620,38
MG-SC_20_Q29	Belo Horizonte	5560,49	0,03	SP-SC_20_Q29	São Paulo	324,17	1619,06
MG-ST_00_0	Belo Horizonte	9426,33	55,94	SP-ST_00_0	São Paulo	1701,72	3565,92
MG-ST_05_Q21	Belo Horizonte	8751,44	35,49	SP-ST_05_Q21	São Paulo	1421,25	3199,54
MG-ST_05_Q23	Belo Horizonte	8467,23	38,58	SP-ST_05_Q23	São Paulo	1322,74	3264,64
MG-ST_05_Q25	Belo Horizonte	8458,16	38,47	SP-ST_05_Q25	São Paulo	1315,32	3268,06
MG-ST_05_Q27	Belo Horizonte	8606,36	42,40	SP-ST_05_Q27	São Paulo	1379,37	3292,98
MG-ST_05_Q29	Belo Horizonte	8644,51	42,45	SP-ST_05_Q29	São Paulo	1393,93	3292,00
MG-ST_10_Q21	Belo Horizonte	8145,17	21,28	SP-ST_10_Q21	São Paulo	1185,89	2875,10
MG-ST_10_Q23	Belo Horizonte	7647,19	27,05	SP-ST_10_Q23	São Paulo	1018,11	3000,10
MG-ST_10_Q25	Belo Horizonte	7675,98	26,93	SP-ST_10_Q25	São Paulo	1016,82	3008,33
MG-ST_10_Q27	Belo Horizonte	7727,23	32,91	SP-ST_10_Q27	São Paulo	1083,76	3047,57
MG-ST_10_Q29	Belo Horizonte	7812,30	32,93	SP-ST_10_Q29	São Paulo	1112,31	3045,39
MG-ST_15_Q21	Belo Horizonte	7639,89	11,55	SP-ST_15_Q21	São Paulo	1004,23	2591,13
MG-ST_15_Q23	Belo Horizonte	7035,32	18,99	SP-ST_15_Q23	São Paulo	809,44	2765,89
MG-ST_15_Q25	Belo Horizonte	7122,43	19,02	SP-ST_15_Q25	São Paulo	820,54	2779,25
MG-ST_15_Q27	Belo Horizonte	6953,39	25,52	SP-ST_15_Q27	São Paulo	851,42	2826,91
MG-ST_15_Q29	Belo Horizonte	7074,05	25,52	SP-ST_15_Q29	São Paulo	889,49	2823,45
MG-ST_20_Q21	Belo Horizonte	7228,09	5,55	SP-ST_20_Q21	São Paulo	865,34	2338,12
MG-ST_20_Q23	Belo Horizonte	6605,74	13,16	SP-ST_20_Q23	São Paulo	662,57	2555,90
MG-ST_20_Q25	Belo Horizonte	6746,62	13,39	SP-ST_20_Q25	São Paulo	685,42	2574,76
MG-ST_20_Q27	Belo Horizonte	6343,74	19,89	SP-ST_20_Q27	São Paulo	684,69	2626,02
MG-ST_20_Q29	Belo Horizonte	6484,47	19,88	SP-ST_20_Q29	São Paulo	726,80	2621,29

6.1.5 Sul

Tabela 17: Resultados de GH para a região Sul

IDF	Cidade	GHRm	<u>GHAm</u>
PR-CO_00_0	Curitiba	1202,40	10504,20
PR-CO_05_Q21	Curitiba	937,60	9744,19
PR-CO 05 Q23	Curitiba	866,19	9884,48
PR-CO 05 Q25	Curitiba	860,70	9889,14
PR-CO_05_Q27	Curitiba	907,21	9962,73
PR-CO_05_Q29	Curitiba	920,36	9960,52
PR-CO_10_Q21	Curitiba	735,61	9053,39
PR-CO_10_Q23	Curitiba	613,71	9335,45
PR-CO_10_Q25	Curitiba	611,48	9350,30
PR-CO_10_Q27	Curitiba	654,94	9470,68
PR-CO 10 Q29	Curitiba	677,78	9464,80
PR-CO_15_Q21	Curitiba	589,94	8460,77
PR-CO_15_Q23	Curitiba	444,67	8852,89
PR-CO_15_Q25	Curitiba	449,82	8881,35
PR-CO 15 Q27	Curitiba	475,89	9018,77
PR-CO_15_Q29	Curitiba	503,56	9008,44
PR-CO 20 Q21	Curitiba	480,46	7947,81
PR-CO_20_Q23	Curitiba	329,91	8420,36
PR-CO_20_Q25	Curitiba	342,34	8462,65
PR-CO_20_Q27	Curitiba	353,94	8600,98
PR-CO_20_Q29	Curitiba	384,88	8586,33
PR-SC_00_0	Curitiba	322,35	8050,68
PR-SC_05_Q21	Curitiba	276,84	7573,67
PR-SC_05_Q23	Curitiba	260,90	7601,96
PR-SC_05_Q25	Curitiba	260,28	7602,87
PR-SC 05 Q27	Curitiba	267,26	7615,21
PR-SC_05_Q29	Curitiba	269,62	7614,19
PR-SC 10 Q21	Curitiba	238,98	7129,80
PR-SC_10_Q23	Curitiba	210,41	7190,71
PR-SC_10_Q25	Curitiba	211,80	7193,84
PR-SC 10 Q27	Curitiba	210,95	7213,59
PR-SC_10_Q29	Curitiba	215,72	7211,56
PR-SC 15 Q21	Curitiba	207,88	6721,07
PR-SC_15_Q23	Curitiba	171,73	6812,01
PR-SC 15 Q25	Curitiba	176,12	6817,85
PR-SC_15_Q27	Curitiba	166,05	6842,46
PR-SC 15 Q29	Curitiba	172,73	6839,29
PR-SC 20 Q21	Curitiba	182,72	6345,32
PR-SC_20_Q23	Curitiba	142,37	6462,44
PR-SC_20_Q25	Curitiba	149,42	6471,22
PR-SC_20_Q27	Curitiba	135,38	6498,53
PR-SC_20_Q29	Curitiba	143,19	6494,12
		, = 0	/

IDF	<u>Cidade</u>	GHRm	GHAm
 RS-SC_15_Q21	Porto Alegre	3454,39	4202,61
RS-SC 15 Q23	Porto Alegre	3366,69	4251,06
RS-SC 15 Q25	Porto Alegre	3382,85	4254,13
 RS-SC_15_Q27	Porto Alegre	3353,87	4263,36
RS-SC_15_Q29	Porto Alegre	3367,49	4261,01
RS-SC_20_Q21	Porto Alegre	3411,12	3932,91
RS-SC_20_Q23	Porto Alegre	3314,39	3998,31
RS-SC_20_Q25	Porto Alegre	3337,11	4002,85
RS-SC_20_Q27	Porto Alegre	3296,44	4013,08
RS-SC_20_Q29	Porto Alegre	3314,18	4009,92
RS-ST_00_0	Porto Alegre	5105,66	6520,12
RS-ST_05_Q21	Porto Alegre	4796,19	6080,91
RS-ST_05_Q23	Porto Alegre	4671,39	6139,72
RS-ST_05_Q25	Porto Alegre	4668,09	6141,72
RS-ST_05_Q27	Porto Alegre	4712,46	6166,89
RS-ST_05_Q29	Porto Alegre	4727,55	6165,20
RS-ST_10_Q21	Porto Alegre	4527,74	5668,86
RS-ST_10_Q23	Porto Alegre	4310,33	5791,34
RS-ST_10_Q25	Porto Alegre	4321,41	5797,10
RS-ST_10_Q27	Porto Alegre	4343,14	5840,40
RS-ST_10_Q29	Porto Alegre	4374,27	5836,84
RS-ST_15_Q21	Porto Alegre	4307,49	5292,24
RS-ST_15_Q23	Porto Alegre	4043,10	5472,67
RS-ST_15_Q25	Porto Alegre	4076,13	5483,22
RS-ST_15_Q27	Porto Alegre	4037,19	5538,60
RS-ST_15_Q29	Porto Alegre	4082,08	5533,01
RS-ST_20_Q21	Porto Alegre	4128,20	4951,29
RS-ST_20_Q23	Porto Alegre	3848,49	5180,40
RS-ST_20_Q25	Porto Alegre	3901,27	5196,57
RS-ST_20_Q27	Porto Alegre	3802,90	5258,16
RS-ST_20_Q29	Porto Alegre	3857,75	5250,60
SC-CO_00_0	Florianópolis	4635,68	2149,90
SC-CO_05_Q21	Florianópolis	4350,27	1913,90
SC-CO_05_Q23	Florianópolis	4217,78	1963,42
SC-CO_05_Q25	Florianópolis	4227,12	1965,66
SC-CO_05_Q27	Florianópolis	4228,54	1987,60
SC-CO_05_Q29	Florianópolis	4250,47	1986,99
SC-CO_10_Q21	Florianópolis	4125,72	1706,48
SC-CO_10_Q23	Florianópolis	3926,07	1802,76
SC-CO_10_Q25	Florianópolis	3957,75	1808,88
SC-CO_10_Q27	Florianópolis	3894,65	1842,51
SC-CO_10_Q29	Florianópolis	3933,92	1841,07

IDF	<u>Cidade</u>	GHRm	<u>GHAm</u>	IDF	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
PR-ST_00_0	Curitiba	1177,88	10398,00	SC-CO_15_Q21	Florianópolis	3956,70	1531,35
PR-ST_05_Q21	Curitiba	957,73	9713,54	SC-CO_15_Q23	Florianópolis	3737,11	1663,45
PR-ST_05_Q23	Curitiba	900,22	9818,23	SC-CO_15_Q25	Florianópolis	3787,92	1673,91
PR-ST_05_Q25	Curitiba	895,49	9820,52	SC-CO_15_Q27	Florianópolis	3664,09	1712,37
PR-ST_05_Q27	Curitiba	930,16	9874,83	SC-CO_15_Q29	Florianópolis	3713,61	1709,87
PR-ST_05_Q29	Curitiba	940,50	9872,44	SC-CO_20_Q21	Florianópolis	3829,96	1379,18
PR-ST_10_Q21	Curitiba	773,01	9066,54	SC-CO_20_Q23	Florianópolis	3613,10	1541,19
PR-ST_10_Q23	Curitiba	663,00	9289,62	SC-CO_20_Q25	Florianópolis	3676,49	1555,93
PR-ST_10_Q25	Curitiba	659,21	9298,55	SC-CO_20_Q27	Florianópolis	3512,38	1594,48
PR-ST_10_Q27	Curitiba	695,04	9392,76	SC-CO_20_Q29	Florianópolis	3566,41	1590,96
PR-ST_10_Q29	Curitiba	714,76	9387,78	SC-SC_00_0	Florianópolis	3546,13	1386,00
PR-ST_15_Q21	Curitiba	627,97	8482,54	SC-SC_05_Q21	Florianópolis	3515,35	1241,46
PR-ST_15_Q23	Curitiba	486,67	8809,22	SC-SC_05_Q23	Florianópolis	3487,34	1254,81
PR-ST_15_Q25	Curitiba	489,36	8827,84	SC-SC_05_Q25	Florianópolis	3490,91	1255,61
PR-ST_15_Q27	Curitiba	514,55	8946,11	SC-SC_05_Q27	Florianópolis	3476,01	1259,89
PR-ST_15_Q29	Curitiba	540,01	8938,09	SC-SC_05_Q29	Florianópolis	3479,90	1259,66
PR-ST_20_Q21	Curitiba	514,72	7963,16	SC-SC_10_Q21	Florianópolis	3491,21	1111,53
PR-ST_20_Q23	Curitiba	365,25	8372,77	SC-SC_10_Q23	Florianópolis	3446,16	1138,92
PR-ST_20_Q25	Curitiba	376,80	8402,40	SC-SC_10_Q25	Florianópolis	3456,37	1140,76
PR-ST_20_Q27	Curitiba	385,08	8533,34	SC-SC_10_Q27	Florianópolis	3417,71	1147,79
PR-ST_20_Q29	Curitiba	414,48	8522,13	SC-SC_10_Q29	Florianópolis	3425,77	1147,30
RS-CO_00_0	Porto Alegre	5163,07	6571,34	SC-SC_15_Q21	Florianópolis	3475,62	995,93
RS-CO_05_Q21	Porto Alegre	4797,45	6088,83	SC-SC_15_Q23	Florianópolis	3418,81	1035,84
RS-CO_05_Q23	Porto Alegre	4648,19	6170,89	SC-SC_15_Q25	Florianópolis	3435,48	1038,91
RS-CO_05_Q25	Porto Alegre	4648,20	6174,25	SC-SC_15_Q27	Florianópolis	3382,98	1047,50
RS-CO_05_Q27	Porto Alegre	4685,49	6210,00	SC-SC_15_Q29	Florianópolis	3394,96	1046,74
RS-CO_05_Q29	Porto Alegre	4705,02	6208,04	SC-SC_20_Q21	Florianópolis	3466,07	892,40
RS-CO_10_Q21	Porto Alegre	4504,37	5648,02	SC-SC_20_Q23	Florianópolis	3403,44	943,76
RS-CO_10_Q23	Porto Alegre	4268,78	5812,05	SC-SC_20_Q25	Florianópolis	3424,43	948,25
RS-CO_10_Q25	Porto Alegre	4289,43	5821,38	SC-SC_20_Q27	Florianópolis	3366,85	957,78
RS-CO_10_Q27	Porto Alegre	4274,53	5877,90	SC-SC_20_Q29	Florianópolis	3381,89	956,79
RS-CO_10_Q29	Porto Alegre	4311,30	5873,71	SC-ST_00_0	Florianópolis	4603,83	2118,18
RS-CO_15_Q21	Porto Alegre	4278,07	5257,12	SC-ST_05_Q21	Florianópolis	4367,08	1906,76
RS-CO_15_Q23	Porto Alegre	4003,30	5488,30	SC-ST_05_Q23	Florianópolis	4253,74	1944,64
RS-CO_15_Q25	Porto Alegre	4046,02	5504,71	SC-ST_05_Q25	Florianópolis	4258,89	1946,27
RS-CO_15_Q27	Porto Alegre	3964,03	5571,59	SC-ST_05_Q27	Florianópolis	4271,94	1962,16
RS-CO_15_Q29	Porto Alegre	4013,42	5564,76	SC-ST_05_Q29	Florianópolis	4289,39	1961,53
RS-CO_20_Q21	Porto Alegre	4096,84	4908,31	SC-ST_10_Q21	Florianópolis	4162,73	1714,51
RS-CO_20_Q23	Porto Alegre	3806,32	5192,90	SC-ST_10_Q23	Florianópolis	3976,96	1790,37
RS-CO_20_Q25	Porto Alegre	3867,25	5216,84	SC-ST_10_Q25	Florianópolis	4000,76	1794,69
RS-CO_20_Q27	Porto Alegre	3735,59	5287,46	SC-ST_10_Q27	Florianópolis	3968,49	1820,73
RS-CO_20_Q29	Porto Alegre	3794,57	5278,02	SC-ST_10_Q29	Florianópolis	4003,22	1819,43
RS-SC_00_0	Porto Alegre	3659,39	5145,29	SC-ST_15_Q21	Florianópolis	3998,84	1546,18

<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>	<u>IDF</u>	<u>Cidade</u>	<u>GHRm</u>	<u>GHAm</u>
RS-SC_05_Q21	Porto Alegre	3577,18	4807,38	SC-ST_15_Q23	Florianópolis	3783,13	1653,17
RS-SC_05_Q23	Porto Alegre	3535,07	4821,48	SC-ST_15_Q25	Florianópolis	3825,50	1660,76
RS-SC_05_Q25	Porto Alegre	3535,77	4822,16	SC-ST_15_Q27	Florianópolis	3739,29	1692,69
RS-SC_05_Q27	Porto Alegre	3539,99	4826,96	SC-ST_15_Q29	Florianópolis	3785,99	1690,66
RS-SC_05_Q29	Porto Alegre	3544,29	4826,19	SC-ST_20_Q21	Florianópolis	3871,12	1396,65
RS-SC_10_Q21	Porto Alegre	3509,50	4493,08	SC-ST_20_Q23	Florianópolis	3655,75	1531,28
RS-SC_10_Q23	Porto Alegre	3438,62	4524,89	SC-ST_20_Q25	Florianópolis	3712,27	1542,17
RS-SC_10_Q25	Porto Alegre	3446,19	4526,67	SC-ST_20_Q27	Florianópolis	3583,89	1576,51
RS-SC_10_Q27	Porto Alegre	3435,22	4534,07	SC-ST_20_Q29	Florianópolis	3635,79	1573,64
RS-SC_10_Q29	Porto Alegre	3443,87	4532,53				

6.2 Resultados CT

6.2.1 Norte

Tabela 18: Resultados de CT para a região Norte

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
AC-CO_00_0	Rio Branco	5312,96	10,66
AC-CO_05_Q21	Rio Branco	5402,08	9,37
AC-CO_05_Q23	Rio Branco	5445,79	9,61
AC-CO_05_Q25	Rio Branco	5422,06	9,60
AC-CO_05_Q27	Rio Branco	5530,04	9,81
AC-CO_05_Q29	Rio Branco	5521,10	9,81
AC-CO_10_Q21	Rio Branco	5459,37	8,11
AC-CO_10_Q23	Rio Branco	5493,83	8,55
AC-CO_10_Q25	Rio Branco	5452,82	8,52
AC-CO_10_Q27	Rio Branco	5658,47	9,03
AC-CO_10_Q29	Rio Branco	5648,93	9,02
AC-CO_15_Q21	Rio Branco	5495,91	6,88
AC-CO_15_Q23	Rio Branco	5505,73	7,48
AC-CO_15_Q25	Rio Branco	5458,28	7,42
AC-CO_15_Q27	Rio Branco	5723,18	8,31
AC-CO_15_Q29	Rio Branco	5714,16	8,30
AC-CO_20_Q21	Rio Branco	5516,77	5,72
AC-CO_20_Q23	Rio Branco	5501,05	6,42
AC-CO_20_Q25	Rio Branco	5454,16	6,34
AC-CO_20_Q27	Rio Branco	5752,14	7,64
AC-CO_20_Q29	Rio Branco	5746,18	7,63
AC-SC_00_0	Rio Branco	5557,81	4,68
AC-SC_05_Q21	Rio Branco	5598,72	3,83
AC-SC_05_Q23	Rio Branco	5619,42	3,93
AC-SC_05_Q25	Rio Branco	5615,02	3,92
AC-SC_05_Q27	Rio Branco	5624,61	4,04

PA-SC_15_Q21 Belém 9248,71 0,00 PA-SC_15_Q23 Belém 9273,68 0,00 PA-SC_15_Q25 Belém 9255,65 0,00 PA-SC_15_Q27 Belém 9310,97 0,00 PA-SC_15_Q29 Belém 9298,37 0,00 PA-SC_20_Q21 Belém 9247,58 0,00 PA-SC_20_Q23 Belém 9270,81 0,00 PA-SC_20_Q25 Belém 9252,85 0,00 PA-SC_20_Q27 Belém 9315,18 0,00 PA-SC_20_Q29 Belém 9301,91 0,00 PA-ST_00_0 Belém 8433,39 0,00 PA-ST_05_Q21 Belém 8566,10 0,00 PA-ST_05_Q23 Belém 8647,73 0,00 PA-ST_05_Q23 Belém 8627,92 0,00 PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8676,00 0,00 PA-ST_10_Q23 Belém 8775,96 0,00 PA	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
PA-SC_15_Q25 Belém 9255,65 0,00 PA-SC_15_Q27 Belém 9310,97 0,00 PA-SC_15_Q29 Belém 9298,37 0,00 PA-SC_20_Q21 Belém 9247,58 0,00 PA-SC_20_Q23 Belém 9270,81 0,00 PA-SC_20_Q25 Belém 9252,85 0,00 PA-SC_20_Q27 Belém 9315,18 0,00 PA-SC_20_Q29 Belém 9301,91 0,00 PA-ST_00_0 Belém 8433,39 0,00 PA-ST_05_Q21 Belém 8566,10 0,00 PA-ST_05_Q23 Belém 8647,73 0,00 PA-ST_05_Q25 Belém 8627,92 0,00 PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8641,19 0,00 PA-ST_10_Q21 Belém 8676,00 0,00 PA-ST_10_Q23 Belém 875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-	PA-SC_15_Q21	Belém	9248,71	0,00
PA-SC_15_Q27 Belém 9310,97 0,00 PA-SC_15_Q29 Belém 9298,37 0,00 PA-SC_20_Q21 Belém 9247,58 0,00 PA-SC_20_Q23 Belém 9270,81 0,00 PA-SC_20_Q25 Belém 9252,85 0,00 PA-SC_20_Q27 Belém 9315,18 0,00 PA-SC_20_Q29 Belém 9301,91 0,00 PA-ST_00_0 Belém 8433,39 0,00 PA-ST_05_Q21 Belém 8566,10 0,00 PA-ST_05_Q23 Belém 8647,73 0,00 PA-ST_05_Q25 Belém 8627,92 0,00 PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8676,00 0,00 PA-ST_10_Q21 Belém 875,96 0,00 PA-ST_10_Q23 Belém 8729,49 0,00 PA-ST_10_Q25 Belém 8875,76 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-	PA-SC_15_Q23	Belém	9273,68	0,00
PA-SC_15_Q29 Belém 9298,37 0,00 PA-SC_20_Q21 Belém 9247,58 0,00 PA-SC_20_Q23 Belém 9270,81 0,00 PA-SC_20_Q25 Belém 9252,85 0,00 PA-SC_20_Q27 Belém 9315,18 0,00 PA-SC_20_Q29 Belém 9301,91 0,00 PA-ST_00_0 Belém 8433,39 0,00 PA-ST_05_Q21 Belém 8566,10 0,00 PA-ST_05_Q23 Belém 8647,73 0,00 PA-ST_05_Q23 Belém 8627,92 0,00 PA-ST_05_Q25 Belém 8656,44 0,00 PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8676,00 0,00 PA-ST_10_Q21 Belém 8676,00 0,00 PA-ST_10_Q21 Belém 8775,96 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q26 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q21 Belém 8850,85 0,00 PA-ST_15_Q23 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q26 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-SC_15_Q25	Belém	9255,65	0,00
PA-SC_20_Q21 Belém 9247,58 0,00 PA-SC_20_Q23 Belém 9270,81 0,00 PA-SC_20_Q25 Belém 9252,85 0,00 PA-SC_20_Q27 Belém 9315,18 0,00 PA-SC_20_Q29 Belém 9301,91 0,00 PA-ST_00_0 Belém 8433,39 0,00 PA-ST_05_Q21 Belém 8566,10 0,00 PA-ST_05_Q23 Belém 8647,73 0,00 PA-ST_05_Q25 Belém 8627,92 0,00 PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8641,19 0,00 PA-ST_10_Q21 Belém 8676,00 0,00 PA-ST_10_Q23 Belém 875,96 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8788,47 0,00 PA-	PA-SC_15_Q27	Belém	9310,97	0,00
PA-SC_20_Q23 Belém 9270,81 0,00 PA-SC_20_Q25 Belém 9252,85 0,00 PA-SC_20_Q27 Belém 9315,18 0,00 PA-SC_20_Q29 Belém 9301,91 0,00 PA-ST_00_0 Belém 8433,39 0,00 PA-ST_05_Q21 Belém 8566,10 0,00 PA-ST_05_Q23 Belém 8647,73 0,00 PA-ST_05_Q25 Belém 8627,92 0,00 PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8641,19 0,00 PA-ST_05_Q29 Belém 8676,00 0,00 PA-ST_10_Q21 Belém 8775,96 0,00 PA-ST_10_Q23 Belém 8729,49 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q21 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-SC_15_Q29	Belém	9298,37	0,00
PA-SC_20_Q25 Belém 9252,85 0,00 PA-SC_20_Q27 Belém 9315,18 0,00 PA-SC_20_Q29 Belém 9301,91 0,00 PA-ST_00_0 Belém 8433,39 0,00 PA-ST_05_Q21 Belém 8566,10 0,00 PA-ST_05_Q23 Belém 8647,73 0,00 PA-ST_05_Q25 Belém 8627,92 0,00 PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8641,19 0,00 PA-ST_10_Q21 Belém 8676,00 0,00 PA-ST_10_Q23 Belém 875,96 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8788,47 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-	PA-SC_20_Q21	Belém	9247,58	0,00
PA-SC_20_Q27 Belém 9315,18 0,00 PA-SC_20_Q29 Belém 9301,91 0,00 PA-ST_00_0 Belém 8433,39 0,00 PA-ST_05_Q21 Belém 8566,10 0,00 PA-ST_05_Q23 Belém 8647,73 0,00 PA-ST_05_Q25 Belém 8627,92 0,00 PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8641,19 0,00 PA-ST_10_Q21 Belém 8676,00 0,00 PA-ST_10_Q23 Belém 875,96 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8788,47 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-SC_20_Q23	Belém	9270,81	0,00
PA-SC_20_Q29 Belém 9301,91 0,00 PA-ST_00_0 Belém 8433,39 0,00 PA-ST_05_Q21 Belém 8566,10 0,00 PA-ST_05_Q23 Belém 8647,73 0,00 PA-ST_05_Q25 Belém 8627,92 0,00 PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8641,19 0,00 PA-ST_10_Q21 Belém 8676,00 0,00 PA-ST_10_Q23 Belém 875,96 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8788,47 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-SC_20_Q25	Belém	9252,85	0,00
PA-ST_00_0 Belém 8433,39 0,00 PA-ST_05_Q21 Belém 8566,10 0,00 PA-ST_05_Q23 Belém 8647,73 0,00 PA-ST_05_Q25 Belém 8627,92 0,00 PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8641,19 0,00 PA-ST_10_Q21 Belém 8676,00 0,00 PA-ST_10_Q23 Belém 8775,96 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-SC_20_Q27	Belém	9315,18	0,00
PA-ST_05_Q21 Belém 8566,10 0,00 PA-ST_05_Q23 Belém 8647,73 0,00 PA-ST_05_Q25 Belém 8627,92 0,00 PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8641,19 0,00 PA-ST_10_Q21 Belém 8676,00 0,00 PA-ST_10_Q23 Belém 875,96 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-SC_20_Q29	Belém	9301,91	0,00
PA-ST_05_Q23 Belém 8647,73 0,00 PA-ST_05_Q25 Belém 8627,92 0,00 PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8641,19 0,00 PA-ST_10_Q21 Belém 8676,00 0,00 PA-ST_10_Q23 Belém 8775,96 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8788,47 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-ST_00_0	Belém	8433,39	0,00
PA-ST_05_Q25 Belém 8627,92 0,00 PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8641,19 0,00 PA-ST_10_Q21 Belém 8676,00 0,00 PA-ST_10_Q23 Belém 8775,96 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q21 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-ST_05_Q21	Belém	8566,10	0,00
PA-ST_05_Q27 Belém 8656,44 0,00 PA-ST_05_Q29 Belém 8641,19 0,00 PA-ST_10_Q21 Belém 8676,00 0,00 PA-ST_10_Q23 Belém 8775,96 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q21 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-ST_05_Q23	Belém	8647,73	0,00
PA-ST_05_Q29 Belém 8641,19 0,00 PA-ST_10_Q21 Belém 8676,00 0,00 PA-ST_10_Q23 Belém 8775,96 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-ST_05_Q25	Belém	8627,92	0,00
PA-ST_10_Q21 Belém 8676,00 0,00 PA-ST_10_Q23 Belém 8775,96 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-ST_05_Q27	Belém	8656,44	0,00
PA-ST_10_Q23 Belém 8775,96 0,00 PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-ST_05_Q29	Belém	8641,19	0,00
PA-ST_10_Q25 Belém 8729,49 0,00 PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-ST_10_Q21	Belém	8676,00	0,00
PA-ST_10_Q27 Belém 8875,76 0,00 PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-ST_10_Q23	Belém	8775,96	0,00
PA-ST_10_Q29 Belém 8846,16 0,00 PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-ST_10_Q25	Belém	8729,49	0,00
PA-ST_15_Q21 Belém 8755,26 0,00 PA-ST_15_Q23 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-ST_10_Q27	Belém	8875,76	0,00
PA-ST_15_Q23 Belém 8850,85 0,00 PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-ST_10_Q29	Belém	8846,16	0,00
PA-ST_15_Q25 Belém 8788,47 0,00 PA-ST_15_Q27 Belém 9040,65 0,00	PA-ST_15_Q21	Belém	8755,26	0,00
PA-ST_15_Q27 Belém 9040,65 0,00	PA-ST_15_Q23	Belém	8850,85	0,00
	PA-ST_15_Q25	Belém	8788,47	0,00
PA-ST 15 O29 Belém 9003.91 0.00	PA-ST_15_Q27	Belém	9040,65	0,00
	PA-ST_15_Q29	Belém	9003,91	0,00

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
AC-SC_05_Q29	Rio Branco	5621,61	4,04	PA-ST_20_Q21	Belém	8811,31	0,00
AC-SC_10_Q21	Rio Branco	5630,87	3,16	PA-ST_20_Q23	Belém	8897,40	0,00
AC-SC_10_Q23	Rio Branco	5644,61	3,31	PA-ST_20_Q25	Belém	8828,40	0,00
AC-SC_10_Q25	Rio Branco	5632,47	3,30	PA-ST_20_Q27	Belém	9141,12	0,00
AC-SC_10_Q27	Rio Branco	5668,66	3,51	PA-ST_20_Q29	Belém	9106,75	0,00
AC-SC_10_Q29	Rio Branco	5664,90	3,51	RO-CO_00_0	Porto Velho	6431,43	0,00
AC-SC_15_Q21	Rio Branco	5650,65	2,56	RO-CO_05_Q21	Porto Velho	6595,43	0,00
AC-SC_15_Q23	Rio Branco	5644,63	2,79	RO-CO_05_Q23	Porto Velho	6674,18	0,00
AC-SC_15_Q25	Rio Branco	5629,75	2,77	RO-CO_05_Q25	Porto Velho	6651,43	0,00
AC-SC_15_Q27	Rio Branco	5691,87	3,09	RO-CO_05_Q27	Porto Velho	6732,12	0,00
AC-SC_15_Q29	Rio Branco	5688,07	3,09	RO-CO_05_Q29	Porto Velho	6717,54	0,00
AC-SC_20_Q21	Rio Branco	5659,84	1,96	RO-CO_10_Q21	Porto Velho	6717,35	0,00
AC-SC_20_Q23	Rio Branco	5633,17	2,26	RO-CO_10_Q23	Porto Velho	6806,55	0,00
AC-SC_20_Q25	Rio Branco	5620,49	2,23	RO-CO_10_Q25	Porto Velho	6762,65	0,00
AC-SC_20_Q27	Rio Branco	5702,17	2,72	RO-CO_10_Q27	Porto Velho	6938,02	0,00
AC-SC_20_Q29	Rio Branco	5699,63	2,72	RO-CO_10_Q29	Porto Velho	6918,72	0,00
AC-ST_00_0	Rio Branco	5309,91	10,45	RO-CO_15_Q21	Porto Velho	6805,48	0,00
AC-ST_05_Q21	Rio Branco	5390,46	9,30	RO-CO_15_Q23	Porto Velho	6880,57	0,00
AC-ST_05_Q23	Rio Branco	5435,99	9,49	RO-CO_15_Q25	Porto Velho	6826,36	0,00
AC-ST_05_Q25	Rio Branco	5416,62	9,49	RO-CO_15_Q27	Porto Velho	7060,78	0,00
AC-ST_05_Q27	Rio Branco	5485,23	9,65	RO-CO_15_Q29	Porto Velho	7040,04	0,00
AC-ST_05_Q29	Rio Branco	5476,50	9,64	RO-CO_20_Q21	Porto Velho	6867,29	0,00
AC-ST_10_Q21	Rio Branco	5447,93	8,19	RO-CO_20_Q23	Porto Velho	6923,38	0,00
AC-ST_10_Q23	Rio Branco	5485,75	8,55	RO-CO_20_Q25	Porto Velho	6866,91	0,00
AC-ST_10_Q25	Rio Branco	5447,10	8,53	RO-CO_20_Q27	Porto Velho	7130,82	0,00
AC-ST_10_Q27	Rio Branco	5615,10	8,91	RO-CO_20_Q29	Porto Velho	7111,57	0,00
AC-ST_10_Q29	Rio Branco	5601,31	8,90	RO-SC_00_0	Porto Velho	7003,74	0,00
AC-ST_15_Q21	Rio Branco	5484,85	7,11	RO-SC_05_Q21	Porto Velho	7062,87	0,00
AC-ST_15_Q23	Rio Branco	5496,48	7,62	RO-SC_05_Q23	Porto Velho	7092,04	0,00
AC-ST_15_Q25	Rio Branco	5449,51	7,57	RO-SC_05_Q25	Porto Velho	7088,18	0,00
AC-ST_15_Q27	Rio Branco	5695,88	8,22	RO-SC_05_Q27	Porto Velho	7091,42	0,00
AC-ST_15_Q29	Rio Branco	5681,22	8,21	RO-SC_05_Q29	Porto Velho	7086,79	0,00
AC-ST_20_Q21	Rio Branco	5505,45	6,07	RO-SC_10_Q21	Porto Velho	7109,56	0,00
AC-ST_20_Q23	Rio Branco	5489,33	6,70	RO-SC_10_Q23	Porto Velho	7139,25	0,00
AC-ST_20_Q25	Rio Branco	5441,67	6,64	RO-SC_10_Q25	Porto Velho	7127,70	0,00
AC-ST_20_Q27	Rio Branco	5734,39	7,59	RO-SC_10_Q27	Porto Velho	7154,91	0,00
AC-ST_20_Q29	Rio Branco	5724,24	7,58	RO-SC_10_Q29	Porto Velho	7148,82	0,00
AM-CO_00_0	Manaus	9088,87	0,00	RO-SC_15_Q21	Porto Velho	7141,23	0,00
AM-CO_05_Q21	Manaus	9196,67	0,00	RO-SC_15_Q23	Porto Velho	7160,43	0,00
AM-CO_05_Q23	Manaus	9256,24	0,00	RO-SC_15_Q25	Porto Velho	7145,95	0,00
AM-CO_05_Q25	Manaus	9229,38	0,00	RO-SC_15_Q27	Porto Velho	7193,57	0,00
AM-CO_05_Q27	Manaus	9347,09	0,00	RO-SC_15_Q29	Porto Velho	7186,09	0,00
AM-CO_05_Q29	Manaus	9335,19	0,00	RO-SC_20_Q21	Porto Velho	7161,48	0,00

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
AM-CO_10_Q21	Manaus	9274,82	0,00	RO-SC_20_Q23	Porto Velho	7168,63	0,00
AM-CO_10_Q23	Manaus	9347,29	0,00	RO-SC_20_Q25	Porto Velho	7155,31	0,00
AM-CO_10_Q25	Manaus	9301,56	0,00	RO-SC_20_Q27	Porto Velho	7213,94	0,00
AM-CO_10_Q27	Manaus	9515,24	0,00	RO-SC_20_Q29	Porto Velho	7206,89	0,00
AM-CO_10_Q29	Manaus	9497,25	0,00	RO-ST_00_0	Porto Velho	6428,90	0,00
AM-CO_15_Q21	Manaus	9329,08	0,00	RO-ST_05_Q21	Porto Velho	6574,56	0,00
AM-CO_15_Q23	Manaus	9399,95	0,00	RO-ST_05_Q23	Porto Velho	6650,05	0,00
AM-CO_15_Q25	Manaus	9345,46	0,00	RO-ST_05_Q25	Porto Velho	6633,03	0,00
AM-CO_15_Q27	Manaus	9606,97	0,00	RO-ST_05_Q27	Porto Velho	6669,31	0,00
AM-CO_15_Q29	Manaus	9584,33	0,00	RO-ST_05_Q29	Porto Velho	6656,38	0,00
AM-CO_20_Q21	Manaus	9366,19	0,00	RO-ST_10_Q21	Porto Velho	6690,85	0,00
AM-CO_20_Q23	Manaus	9432,10	0,00	RO-ST_10_Q23	Porto Velho	6778,56	0,00
AM-CO_20_Q25	Manaus	9375,81	0,00	RO-ST_10_Q25	Porto Velho	6739,56	0,00
AM-CO_20_Q27	Manaus	9650,12	0,00	RO-ST_10_Q27	Porto Velho	6865,03	0,00
AM-CO_20_Q29	Manaus	9629,00	0,00	RO-ST_10_Q29	Porto Velho	6842,65	0,00
AM-SC_00_0	Manaus	9696,80	0,00	RO-ST_15_Q21	Porto Velho	6776,91	0,00
AM-SC_05_Q21	Manaus	9697,05	0,00	RO-ST_15_Q23	Porto Velho	6850,44	0,00
AM-SC_05_Q23	Manaus	9712,46	0,00	RO-ST_15_Q25	Porto Velho	6799,10	0,00
AM-SC_05_Q25	Manaus	9705,38	0,00	RO-ST_15_Q27	Porto Velho	7004,01	0,00
AM-SC_05_Q27	Manaus	9735,44	0,00	RO-ST_15_Q29	Porto Velho	6977,07	0,00
AM-SC_05_Q29	Manaus	9732,78	0,00	RO-ST_20_Q21	Porto Velho	6837,86	0,00
AM-SC_10_Q21	Manaus	9696,49	0,00	RO-ST_20_Q23	Porto Velho	6890,83	0,00
AM-SC_10_Q23	Manaus	9715,20	0,00	RO-ST_20_Q25	Porto Velho	6835,90	0,00
AM-SC_10_Q25	Manaus	9702,88	0,00	RO-ST_20_Q27	Porto Velho	7089,30	0,00
AM-SC_10_Q27	Manaus	9760,47	0,00	RO-ST_20_Q29	Porto Velho	7064,82	0,00
AM-SC_10_Q29	Manaus	9755,45	0,00	RR-CO_00_0	Boa Vista	7804,52	0,00
AM-SC_15_Q21	Manaus	9691,86	0,00	RR-CO_05_Q21	Boa Vista	7938,37	0,00
AM-SC_15_Q23	Manaus	9709,90	0,00	RR-CO_05_Q23	Boa Vista	8007,73	0,00
AM-SC_15_Q25	Manaus	9695,55	0,00	RR-CO_05_Q25	Boa Vista	7984,02	0,00
AM-SC_15_Q27	Manaus	9765,85	0,00	RR-CO_05_Q27	Boa Vista	8074,10	0,00
AM-SC_15_Q29	Manaus	9758,55	0,00	RR-CO_05_Q29	Boa Vista	8061,54	0,00
AM-SC_20_Q21	Manaus	9684,20	0,00	RR-CO_10_Q21	Boa Vista	8035,18	0,00
AM-SC_20_Q23	Manaus	9700,85	0,00	RR-CO_10_Q23	Boa Vista	8115,28	0,00
AM-SC_20_Q25	Manaus	9686,34	0,00	RR-CO_10_Q25	Boa Vista	8071,80	0,00
AM-SC_20_Q27	Manaus	9756,46	0,00	RR-CO_10_Q27	Boa Vista	8251,71	0,00
AM-SC_20_Q29	Manaus	9748,63	0,00	RR-CO_10_Q29	Boa Vista	8233,35	0,00
AM-ST_00_0	Manaus	9084,49	0,00	RR-CO_15_Q21	Boa Vista	8101,86	0,00
AM-ST_05_Q21	Manaus	9176,12	0,00	RR-CO_15_Q23	Boa Vista	8175,62	0,00
AM-ST_05_Q23	Manaus	9231,18	0,00	RR-CO_15_Q25	Boa Vista	8122,80	0,00
AM-ST_05_Q25	Manaus	9209,16	0,00	RR-CO_15_Q27	Boa Vista	8348,07	0,00
AM-ST_05_Q27	Manaus	9288,46	0,00	RR-CO_15_Q29	Boa Vista	8325,06	0,00
AM-ST_05_Q29	Manaus	9277,95	0,00	RR-CO_20_Q21	Boa Vista	8147,11	0,00
AM-ST_10_Q21	Manaus	9247,45	0,00	RR-CO_20_Q23	Boa Vista	8211,20	0,00

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
AM-ST_10_Q23	Manaus	9316,21	0,00	RR-CO_20_Q25	Boa Vista	8156,52	0,00
AM-ST_10_Q25	Manaus	9274,64	0,00	RR-CO_20_Q27	Boa Vista	8394,58	0,00
AM-ST_10_Q27	Manaus	9451,04	0,00	RR-CO_20_Q29	Boa Vista	8372,16	0,00
AM-ST_10_Q29	Manaus	9430,91	0,00	RR-SC_00_0	Boa Vista	8401,33	0,00
AM-ST_15_Q21	Manaus	9298,31	0,00	RR-SC_05_Q21	Boa Vista	8419,47	0,00
AM-ST_15_Q23	Manaus	9365,40	0,00	RR-SC_05_Q23	Boa Vista	8438,68	0,00
AM-ST_15_Q25	Manaus	9313,77	0,00	RR-SC_05_Q25	Boa Vista	8433,58	0,00
AM-ST_15_Q27	Manaus	9555,59	0,00	RR-SC_05_Q27	Boa Vista	8452,81	0,00
AM-ST_15_Q29	Manaus	9530,70	0,00	RR-SC_05_Q29	Boa Vista	8450,16	0,00
AM-ST_20_Q21	Manaus	9333,40	0,00	RR-SC_10_Q21	Boa Vista	8433,45	0,00
AM-ST_20_Q23	Manaus	9395,07	0,00	RR-SC_10_Q23	Boa Vista	8454,97	0,00
AM-ST_20_Q25	Manaus	9340,26	0,00	RR-SC_10_Q25	Boa Vista	8443,86	0,00
AM-ST_20_Q27	Manaus	9606,38	0,00	RR-SC_10_Q27	Boa Vista	8485,92	0,00
AM-ST_20_Q29	Manaus	9584,20	0,00	RR-SC_10_Q29	Boa Vista	8481,21	0,00
AP-CO_00_0	Macapá	5863,78	0,00	RR-SC_15_Q21	Boa Vista	8440,02	0,00
AP-CO_05_Q21	Macapá	6008,95	0,00	RR-SC_15_Q23	Boa Vista	8458,01	0,00
AP-CO_05_Q23	Macapá	6082,17	0,00	RR-SC_15_Q25	Boa Vista	8444,75	0,00
AP-CO_05_Q25	Macapá	6060,26	0,00	RR-SC_15_Q27	Boa Vista	8497,31	0,00
AP-CO_05_Q27	Macapá	6136,25	0,00	RR-SC_15_Q29	Boa Vista	8490,23	0,00
AP-CO_05_Q29	Macapá	6122,25	0,00	RR-SC_20_Q21	Boa Vista	8441,09	0,00
AP-CO_10_Q21	Macapá	6126,72	0,00	RR-SC_20_Q23	Boa Vista	8454,39	0,00
AP-CO_10_Q23	Macapá	6214,75	0,00	RR-SC_20_Q25	Boa Vista	8441,94	0,00
AP-CO_10_Q25	Macapá	6172,71	0,00	RR-SC_20_Q27	Boa Vista	8493,04	0,00
AP-CO_10_Q27	Macapá	6332,06	0,00	RR-SC_20_Q29	Boa Vista	8485,50	0,00
AP-CO_10_Q29	Macapá	6311,84	0,00	RR-ST_00_0	Boa Vista	7801,87	0,00
AP-CO_15_Q21	Macapá	6217,48	0,00	RR-ST_05_Q21	Boa Vista	7917,30	0,00
AP-CO_15_Q23	Macapá	6294,13	0,00	RR-ST_05_Q23	Boa Vista	7982,02	0,00
AP-CO_15_Q25	Macapá	6240,90	0,00	RR-ST_05_Q25	Boa Vista	7963,36	0,00
AP-CO_15_Q27	Macapá	6455,46	0,00	RR-ST_05_Q27	Boa Vista	8015,83	0,00
AP-CO_15_Q29	Macapá	6431,97	0,00	RR-ST_05_Q29	Boa Vista	8004,87	0,00
AP-CO_20_Q21	Macapá	6284,46	0,00	RR-ST_10_Q21	Boa Vista	8007,45	0,00
AP-CO_20_Q23	Macapá	6339,83	0,00	RR-ST_10_Q23	Boa Vista	8084,67	0,00
AP-CO_20_Q25	Macapá	6282,99	0,00	RR-ST_10_Q25	Boa Vista	8045,43	0,00
AP-CO_20_Q27	Macapá	6531,53	0,00	RR-ST_10_Q27	Boa Vista	8186,43	0,00
AP-CO_20_Q29	Macapá	6508,40	0,00	RR-ST_10_Q29	Boa Vista	8165,19	0,00
AP-SC_00_0	Macapá	6391,47	0,00	RR-ST_15_Q21	Boa Vista	8071,36	0,00
AP-SC_05_Q21	Macapá	6453,77	0,00	RR-ST_15_Q23	Boa Vista	8141,99	0,00
AP-SC_05_Q23	Macapá	6486,45	0,00	RR-ST_15_Q25	Boa Vista	8092,08	0,00
AP-SC_05_Q25	Macapá	6484,43	0,00	RR-ST_15_Q27	Boa Vista	8299,34	0,00
AP-SC_05_Q27	Macapá	6467,17	0,00	RR-ST_15_Q29	Boa Vista	8272,93	0,00
AP-SC_05_Q29	Macapá	6462,17	0,00	RR-ST_20_Q21	Boa Vista	8115,25	0,00
AP-SC_10_Q21	Macapá	6509,40	0,00	RR-ST_20_Q23	Boa Vista	8175,41	0,00
AP-SC_10_Q23	Macapá	6544,50	0,00	RR-ST_20_Q25	Boa Vista	8122,33	0,00

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
AP-SC_10_Q25	Macapá	6533,52	0,00	RR-ST_20_Q27	Boa Vista	8356,23	0,00
AP-SC_10_Q27	Macapá	6537,12	0,00	RR-ST_20_Q29	Boa Vista	8332,72	0,00
AP-SC_10_Q29	Macapá	6528,94	0,00	TO-CO_00_0	Palmas	5865,76	0,00
AP-SC_15_Q21	Macapá	6549,84	0,00	TO-CO_05_Q21	Palmas	5957,04	0,00
AP-SC_15_Q23	Macapá	6572,90	0,00	TO-CO_05_Q23	Palmas	6004,74	0,00
AP-SC_15_Q25	Macapá	6557,64	0,00	TO-CO_05_Q25	Palmas	5984,21	0,00
AP-SC_15_Q27	Macapá	6586,22	0,00	TO-CO_05_Q27	Palmas	6087,75	0,00
AP-SC_15_Q29	Macapá	6575,80	0,00	TO-CO_05_Q29	Palmas	6079,42	0,00
AP-SC_20_Q21	Macapá	6576,89	0,00	TO-CO_10_Q21	Palmas	6024,41	0,00
AP-SC_20_Q23	Macapá	6586,52	0,00	TO-CO_10_Q23	Palmas	6077,43	0,00
AP-SC_20_Q25	Macapá	6571,68	0,00	TO-CO_10_Q25	Palmas	6040,88	0,00
AP-SC_20_Q27	Macapá	6616,57	0,00	TO-CO_10_Q27	Palmas	6224,47	0,00
AP-SC_20_Q29	Macapá	6606,20	0,00	TO-CO_10_Q29	Palmas	6213,19	0,00
AP-ST_00_0	Macapá	5837,19	0,00	TO-CO_15_Q21	Palmas	6071,91	0,00
AP-ST_05_Q21	Macapá	5964,27	0,00	TO-CO_15_Q23	Palmas	6117,88	0,00
AP-ST_05_Q23	Macapá	6034,77	0,00	TO-CO_15_Q25	Palmas	6073,76	0,00
AP-ST_05_Q25	Macapá	6018,63	0,00	TO-CO_15_Q27	Palmas	6296,65	0,00
AP-ST_05_Q27	Macapá	6048,40	0,00	TO-CO_15_Q29	Palmas	6282,43	0,00
AP-ST_05_Q29	Macapá	6035,47	0,00	TO-CO_20_Q21	Palmas	6104,40	0,00
AP-ST_10_Q21	Macapá	6076,48	0,00	TO-CO_20_Q23	Palmas	6140,03	0,00
AP-ST_10_Q23	Macapá	6163,81	0,00	TO-CO_20_Q25	Palmas	6094,21	0,00
AP-ST_10_Q25	Macapá	6126,66	0,00	TO-CO_20_Q27	Palmas	6331,54	0,00
AP-ST_10_Q27	Macapá	6236,77	0,00	TO-CO_20_Q29	Palmas	6317,65	0,00
AP-ST_10_Q29	Macapá	6213,49	0,00	TO-SC_00_0	Palmas	6245,46	0,00
AP-ST_15_Q21	Macapá	6165,43	0,00	TO-SC_05_Q21	Palmas	6269,81	0,00
AP-ST_15_Q23	Macapá	6241,79	0,00	TO-SC_05_Q23	Palmas	6289,19	0,00
AP-ST_15_Q25	Macapá	6191,38	0,00	TO-SC_05_Q25	Palmas	6284,93	0,00
AP-ST_15_Q27	Macapá	6379,01	0,00	TO-SC_05_Q27	Palmas	6303,57	0,00
AP-ST_15_Q29	Macapá	6349,72	0,00	TO-SC_05_Q29	Palmas	6300,80	0,00
AP-ST_20_Q21	Macapá	6231,77	0,00	TO-SC_10_Q21	Palmas	6290,41	0,00
AP-ST_20_Q23	Macapá	6286,37	0,00	TO-SC_10_Q23	Palmas	6309,86	0,00
AP-ST_20_Q25	Macapá	6230,60	0,00	TO-SC_10_Q25	Palmas	6298,67	0,00
AP-ST_20_Q27	Macapá	6473,31	0,00	TO-SC_10_Q27	Palmas	6343,92	0,00
AP-ST_20_Q29	Macapá	6445,39	0,00	TO-SC_10_Q29	Palmas	6339,47	0,00
PA-CO_00_0	Belém	8470,85	0,00	TO-SC_15_Q21	Palmas	6302,26	0,00
PA-CO_05_Q21	Belém	8627,87	0,00	TO-SC_15_Q23	Palmas	6314,65	0,00
PA-CO_05_Q23	Belém	8715,25	0,00	TO-SC_15_Q25	Palmas	6300,50	0,00
PA-CO_05_Q25	Belém	8687,70	0,00	TO-SC_15_Q27	Palmas	6362,88	0,00
PA-CO_05_Q27	Belém	8777,51	0,00	TO-SC_15_Q29	Palmas	6357,03	0,00
PA-CO_05_Q29	Belém	8759,89	0,00	TO-SC_20_Q21	Palmas	6307,39	0,00
PA-CO_10_Q21	Belém	8746,77	0,00	TO-SC_20_Q23	Palmas	6312,04	0,00
PA-CO_10_Q23	Belém	8849,46	0,00	TO-SC_20_Q25	Palmas	6298,45	0,00
PA-CO_10_Q25	Belém	8796,21	0,00	TO-SC_20_Q27	Palmas	6366,41	0,00

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
PA-CO_10_Q27	Belém	9018,40	0,00	TO-SC_20_Q29	Palmas	6360,55	0,00
PA-CO_10_Q29	Belém	8994,04	0,00	TO-ST_00_0	Palmas	5862,13	0,00
PA-CO_15_Q21	Belém	8829,67	0,00	TO-ST_05_Q21	Palmas	5939,97	0,00
PA-CO_15_Q23	Belém	8927,15	0,00	TO-ST_05_Q23	Palmas	5985,34	0,00
PA-CO_15_Q25	Belém	8860,67	0,00	TO-ST_05_Q25	Palmas	5968,14	0,00
PA-CO_15_Q27	Belém	9160,94	0,00	TO-ST_05_Q27	Palmas	6040,06	0,00
PA-CO_15_Q29	Belém	9131,49	0,00	TO-ST_05_Q29	Palmas	6032,08	0,00
PA-CO_20_Q21	Belém	8887,56	0,00	TO-ST_10_Q21	Palmas	6002,20	0,00
PA-CO_20_Q23	Belém	8976,24	0,00	TO-ST_10_Q23	Palmas	6052,60	0,00
PA-CO_20_Q25	Belém	8905,58	0,00	TO-ST_10_Q25	Palmas	6018,36	0,00
PA-CO_20_Q27	Belém	9237,47	0,00	TO-ST_10_Q27	Palmas	6176,34	0,00
PA-CO_20_Q29	Belém	9208,87	0,00	TO-ST_10_Q29	Palmas	6162,04	0,00
PA-SC_00_0	Belém	9226,38	0,00	TO-ST_15_Q21	Palmas	6046,93	0,00
PA-SC_05_Q21	Belém	9234,90	0,00	TO-ST_15_Q23	Palmas	6088,64	0,00
PA-SC_05_Q23	Belém	9257,15	0,00	TO-ST_15_Q25	Palmas	6045,73	0,00
PA-SC_05_Q25	Belém	9250,33	0,00	TO-ST_15_Q27	Palmas	6262,83	0,00
PA-SC_05_Q27	Belém	9257,29	0,00	TO-ST_15_Q29	Palmas	6245,25	0,00
PA-SC_05_Q29	Belém	9252,32	0,00	TO-ST_20_Q21	Palmas	6077,08	0,00
PA-SC_10_Q21	Belém	9245,01	0,00	TO-ST_20_Q23	Palmas	6107,73	0,00
PA-SC_10_Q23	Belém	9271,28	0,00	TO-ST_20_Q25	Palmas	6062,09	0,00
PA-SC_10_Q25	Belém	9256,53	0,00	TO-ST_20_Q27	Palmas	6304,14	0,00
PA-SC_10_Q27	Belém	9291,93	0,00	TO-ST_20_Q29	Palmas	6288,64	0,00
PA-SC_10_Q29	Belém	9283,06	0,00				

6.2.2 Nordeste

Tabela 19: Resultados de CT para a região Nordeste

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
AL-CO_00_0	Maceió	5729,56	0,00
AL-CO_05_Q21	Maceió	5874,60	0,00
AL-CO_05_Q23	Maceió	5939,97	0,00
AL-CO_05_Q25	Maceió	5912,97	0,00
AL-CO_05_Q27	Maceió	6029,20	0,00
AL-CO_05_Q29	Maceió	6015,41	0,00
AL-CO_10_Q21	Maceió	5975,34	0,00
AL-CO_10_Q23	Maceió	6042,78	0,00
AL-CO_10_Q25	Maceió	5994,98	0,00
AL-CO_10_Q27	Maceió	6226,95	0,00
AL-CO_10_Q29	Maceió	6209,04	0,00
AL-CO_15_Q21	Maceió	6044,82	0,00
AL-CO_15_Q23	Maceió	6098,51	0,00
AL-CO_15_Q25	Maceió	6041,66	0,00

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
PB-SC_15_Q21	João Pessoa	7270,42	0,00
PB-SC_15_Q23	João Pessoa	7277,23	0,00
PB-SC_15_Q25	João Pessoa	7261,63	0,00
PB-SC_15_Q27	João Pessoa	7365,12	0,00
PB-SC_15_Q29	João Pessoa	7360,15	0,00
PB-SC_20_Q21	João Pessoa	7271,02	0,00
PB-SC_20_Q23	João Pessoa	7271,96	0,00
PB-SC_20_Q25	João Pessoa	7258,34	0,00
PB-SC_20_Q27	João Pessoa	7360,39	0,00
PB-SC_20_Q29	João Pessoa	7355,82	0,00
PB-ST_00_0	João Pessoa	6651,44	0,00
PB-ST_05_Q21	João Pessoa	6753,25	0,00
PB-ST_05_Q23	João Pessoa	6802,00	0,00
PB-ST_05_Q25	João Pessoa	6775,83	0,00

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
AL-CO_15_Q27	Maceió	6336,91	0,00	PB-ST_05_Q27	João Pessoa	6888,52	0,00
AL-CO_15_Q29	Maceió	6317,36	0,00	PB-ST_05_Q29	João Pessoa	6877,86	0,00
AL-CO_20_Q21	Maceió	6092,82	0,00	PB-ST_10_Q21	João Pessoa	6828,33	0,00
AL-CO_20_Q23	Maceió	6128,90	0,00	PB-ST_10_Q23	João Pessoa	6882,44	0,00
AL-CO_20_Q25	Maceió	6070,82	0,00	PB-ST_10_Q25	João Pessoa	6836,02	0,00
AL-CO_20_Q27	Maceió	6393,45	0,00	PB-ST_10_Q27	João Pessoa	7066,16	0,00
AL-CO_20_Q29	Maceió	6375,79	0,00	PB-ST_10_Q29	João Pessoa	7047,18	0,00
AL-SC_00_0	Maceió	6310,33	0,00	PB-ST_15_Q21	João Pessoa	6881,76	0,00
AL-SC_05_Q21	Maceió	6358,87	0,00	PB-ST_15_Q23	João Pessoa	6927,94	0,00
AL-SC_05_Q23	Maceió	6382,72	0,00	PB-ST_15_Q25	João Pessoa	6872,79	0,00
AL-SC_05_Q25	Maceió	6375,69	0,00	PB-ST_15_Q27	João Pessoa	7176,07	0,00
AL-SC_05_Q27	Maceió	6406,42	0,00	PB-ST_15_Q29	João Pessoa	7153,28	0,00
AL-SC_05_Q29	Maceió	6402,52	0,00	PB-ST_20_Q21	João Pessoa	6918,89	0,00
AL-SC_10_Q21	Maceió	6393,84	0,00	PB-ST_20_Q23	João Pessoa	6954,71	0,00
AL-SC_10_Q23	Maceió	6416,01	0,00	PB-ST_20_Q25	João Pessoa	6898,85	0,00
AL-SC_10_Q25	Maceió	6400,63	0,00	PB-ST_20_Q27	João Pessoa	7228,36	0,00
AL-SC_10_Q27	Maceió	6470,43	0,00	PB-ST_20_Q29	João Pessoa	7209,30	0,00
AL-SC_10_Q29	Maceió	6464,90	0,00	PE-CO_00_0	Recife	6271,96	0,00
AL-SC_15_Q21	Maceió	6415,88	0,00	PE-CO_05_Q21	Recife	6385,35	0,00
AL-SC_15_Q23	Maceió	6426,69	0,00	PE-CO_05_Q23	Recife	6440,27	0,00
AL-SC_15_Q25	Maceió	6408,48	0,00	PE-CO_05_Q25	Recife	6413,67	0,00
AL-SC_15_Q27	Maceió	6505,06	0,00	PE-CO_05_Q27	Recife	6546,18	0,00
AL-SC_15_Q29	Maceió	6498,09	0,00	PE-CO_05_Q29	Recife	6535,56	0,00
AL-SC_20_Q21	Maceió	6428,36	0,00	PE-CO_10_Q21	Recife	6464,01	0,00
AL-SC_20_Q23	Maceió	6426,09	0,00	PE-CO_10_Q23	Recife	6524,65	0,00
AL-SC_20_Q25	Maceió	6409,68	0,00	PE-CO_10_Q25	Recife	6478,99	0,00
AL-SC_20_Q27	Maceió	6517,40	0,00	PE-CO_10_Q27	Recife	6724,19	0,00
AL-SC_20_Q29	Maceió	6510,88	0,00	PE-CO_10_Q29	Recife	6711,07	0,00
AL-ST_00_0	Maceió	5740,71	0,00	PE-CO_15_Q21	Recife	6517,99	0,00
AL-ST_05_Q21	Maceió	5872,44	0,00	PE-CO_15_Q23	Recife	6572,95	0,00
AL-ST_05_Q23	Maceió	5937,59	0,00	PE-CO_15_Q25	Recife	6518,43	0,00
AL-ST_05_Q25	Maceió	5915,58	0,00	PE-CO_15_Q27	Recife	6823,47	0,00
AL-ST_05_Q27	Maceió	5994,37	0,00	PE-CO_15_Q29	Recife	6806,41	0,00
AL-ST_05_Q29	Maceió	5982,39	0,00	PE-CO_20_Q21	Recife	6555,38	0,00
AL-ST_10_Q21	Maceió	5971,14	0,00	PE-CO_20_Q23	Recife	6600,52	0,00
AL-ST_10_Q23	Maceió	6040,10	0,00	PE-CO_20_Q25	Recife	6544,22	0,00
AL-ST_10_Q25	Maceió	5994,81	0,00	PE-CO_20_Q27	Recife	6872,01	0,00
AL-ST_10_Q27	Maceió	6190,71	0,00	PE-CO_20_Q29	Recife	6855,32	0,00
AL-ST_10_Q29	Maceió	6169,53	0,00	PE-SC_00_0	Recife	6875,95	0,00
AL-ST_15_Q21	Maceió	6040,72	0,00	PE-SC_05_Q21	Recife	6898,04	0,00
AL-ST_15_Q23	Maceió	6093,15	0,00	PE-SC_05_Q23	Recife	6916,71	0,00
AL-ST_15_Q25	Maceió	6037,01	0,00	PE-SC_05_Q25	Recife	6909,83	0,00
AL-ST_15_Q27	Maceió	6321,37	0,00	PE-SC_05_Q27	Recife	6952,59	0,00

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
AL-ST_15_Q29	Maceió	6295,59	0,00	PE-SC_05_Q29	Recife	6950,21	0,00
AL-ST_20_Q21	Maceió	6088,26	0,00	PE-SC_10_Q21	Recife	6911,43	0,00
AL-ST_20_Q23	Maceió	6120,24	0,00	PE-SC_10_Q23	Recife	6929,51	0,00
AL-ST_20_Q25	Maceió	6061,47	0,00	PE-SC_10_Q25	Recife	6915,31	0,00
AL-ST_20_Q27	Maceió	6392,68	0,00	PE-SC_10_Q27	Recife	6999,95	0,00
AL-ST_20_Q29	Maceió	6371,05	0,00	PE-SC_10_Q29	Recife	6996,85	0,00
BA-CO_00_0	Salvador	6110,49	0,00	PE-SC_15_Q21	Recife	6915,89	0,00
BA-CO_05_Q21	Salvador	6249,29	0,00	PE-SC_15_Q23	Recife	6926,16	0,00
BA-CO_05_Q23	Salvador	6311,08	0,00	PE-SC_15_Q25	Recife	6909,41	0,00
BA-CO_05_Q25	Salvador	6284,10	0,00	PE-SC_15_Q27	Recife	7016,91	0,00
BA-CO_05_Q27	Salvador	6404,02	0,00	PE-SC_15_Q29	Recife	7012,66	0,00
BA-CO_05_Q29	Salvador	6390,63	0,00	PE-SC_20_Q21	Recife	6913,54	0,00
BA-CO_10_Q21	Salvador	6347,53	0,00	PE-SC_20_Q23	Recife	6915,71	0,00
BA-CO_10_Q23	Salvador	6415,11	0,00	PE-SC_20_Q25	Recife	6900,04	0,00
BA-CO_10_Q25	Salvador	6368,63	0,00	PE-SC_20_Q27	Recife	7011,18	0,00
BA-CO_10_Q27	Salvador	6590,24	0,00	PE-SC_20_Q29	Recife	7006,68	0,00
BA-CO_10_Q29	Salvador	6573,31	0,00	PE-ST_00_0	Recife	6286,13	0,00
BA-CO_15_Q21	Salvador	6415,87	0,00	PE-ST_05_Q21	Recife	6386,28	0,00
BA-CO_15_Q23	Salvador	6472,63	0,00	PE-ST_05_Q23	Recife	6439,81	0,00
BA-CO_15_Q25	Salvador	6418,27	0,00	PE-ST_05_Q25	Recife	6417,36	0,00
BA-CO_15_Q27	Salvador	6693,04	0,00	PE-ST_05_Q27	Recife	6515,72	0,00
BA-CO_15_Q29	Salvador	6673,85	0,00	PE-ST_05_Q29	Recife	6506,56	0,00
BA-CO_20_Q21	Salvador	6463,31	0,00	PE-ST_10_Q21	Recife	6461,06	0,00
BA-CO_20_Q23	Salvador	6504,48	0,00	PE-ST_10_Q23	Recife	6520,27	0,00
BA-CO_20_Q25	Salvador	6450,84	0,00	PE-ST_10_Q25	Recife	6477,35	0,00
BA-CO_20_Q27	Salvador	6742,81	0,00	PE-ST_10_Q27	Recife	6693,63	0,00
BA-CO_20_Q29	Salvador	6726,96	0,00	PE-ST_10_Q29	Recife	6677,40	0,00
BA-SC_00_0	Salvador	6658,39	0,00	PE-ST_15_Q21	Recife	6513,13	0,00
BA-SC_05_Q21	Salvador	6696,94	0,00	PE-ST_15_Q23	Recife	6564,32	0,00
BA-SC_05_Q23	Salvador	6716,64	0,00	PE-ST_15_Q25	Recife	6511,24	0,00
BA-SC_05_Q25	Salvador	6708,37	0,00	PE-ST_15_Q27	Recife	6808,87	0,00
BA-SC_05_Q27	Salvador	6746,10	0,00	PE-ST_15_Q29	Recife	6787,98	0,00
BA-SC_05_Q29	Salvador	6742,33	0,00	PE-ST_20_Q21	Recife	6548,67	0,00
BA-SC_10_Q21	Salvador	6724,23	0,00	PE-ST_20_Q23	Recife	6588,09	0,00
BA-SC_10_Q23	Salvador	6743,14	0,00	PE-ST_20_Q25	Recife	6532,17	0,00
BA-SC_10_Q25	Salvador	6727,73	0,00	PE-ST_20_Q27	Recife	6866,44	0,00
BA-SC_10_Q27	Salvador	6799,83	0,00	PE-ST_20_Q29	Recife	6847,91	0,00
BA-SC_10_Q29	Salvador	6794,63	0,00	PI-CO_00_0	Teresina	8421,63	0,00
BA-SC_15_Q21	Salvador	6740,75	0,00	PI-CO_05_Q21	Teresina	8562,73	0,00
BA-SC_15_Q23	Salvador	6750,52	0,00	PI-CO_05_Q23	Teresina	8644,09	0,00
BA-SC_15_Q25	Salvador	6733,39	0,00	PI-CO_05_Q25	Teresina	8625,25	0,00
BA-SC_15_Q27	Salvador	6825,70	0,00	PI-CO_05_Q27	Teresina	8704,47	0,00
BA-SC_15_Q29	Salvador	6819,62	0,00	PI-CO_05_Q29	Teresina	8694,58	0,00

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	IDF	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
BA-SC_20_Q21	Salvador	6749,00	0,00	PI-CO_10_Q21	Teresina	8661,84	0,00
BA-SC_20_Q23	Salvador	6748,37	0,00	PI-CO_10_Q23	Teresina	8756,98	0,00
BA-SC_20_Q25	Salvador	6734,08	0,00	PI-CO_10_Q25	Teresina	8715,98	0,00
BA-SC_20_Q27	Salvador	6832,05	0,00	PI-CO_10_Q27	Teresina	8898,60	0,00
BA-SC_20_Q29	Salvador	6827,07	0,00	PI-CO_10_Q29	Teresina	8883,52	0,00
BA-ST_00_0	Salvador	6121,51	0,00	PI-CO_15_Q21	Teresina	8726,33	0,00
BA-ST_05_Q21	Salvador	6247,00	0,00	PI-CO_15_Q23	Teresina	8813,19	0,00
BA-ST_05_Q23	Salvador	6306,64	0,00	PI-CO_15_Q25	Teresina	8759,79	0,00
BA-ST_05_Q25	Salvador	6283,67	0,00	PI-CO_15_Q27	Teresina	9008,59	0,00
BA-ST_05_Q27	Salvador	6370,98	0,00	PI-CO_15_Q29	Teresina	8987,29	0,00
BA-ST_05_Q29	Salvador	6359,07	0,00	PI-CO_20_Q21	Teresina	8765,52	0,00
BA-ST_10_Q21	Salvador	6341,05	0,00	PI-CO_20_Q23	Teresina	8841,19	0,00
BA-ST_10_Q23	Salvador	6407,72	0,00	PI-CO_20_Q25	Teresina	8782,98	0,00
BA-ST_10_Q25	Salvador	6363,42	0,00	PI-CO_20_Q27	Teresina	9058,90	0,00
BA-ST_10_Q27	Salvador	6557,91	0,00	PI-CO_20_Q29	Teresina	9036,39	0,00
BA-ST_10_Q29	Salvador	6537,59	0,00	PI-SC_00_0	Teresina	9126,23	0,00
BA-ST_15_Q21	Salvador	6407,83	0,00	PI-SC_05_Q21	Teresina	9127,88	0,00
BA-ST_15_Q23	Salvador	6462,72	0,00	PI-SC_05_Q23	Teresina	9150,91	0,00
BA-ST_15_Q25	Salvador	6408,60	0,00	PI-SC_05_Q25	Teresina	9146,46	0,00
BA-ST_15_Q27	Salvador	6678,02	0,00	PI-SC_05_Q27	Teresina	9172,67	0,00
BA-ST_15_Q29	Salvador	6654,61	0,00	PI-SC_05_Q29	Teresina	9170,83	0,00
BA-ST_20_Q21	Salvador	6454,09	0,00	PI-SC_10_Q21	Teresina	9121,60	0,00
BA-ST_20_Q23	Salvador	6491,84	0,00	PI-SC_10_Q23	Teresina	9147,94	0,00
BA-ST_20_Q25	Salvador	6437,05	0,00	PI-SC_10_Q25	Teresina	9136,94	0,00
BA-ST_20_Q27	Salvador	6739,21	0,00	PI-SC_10_Q27	Teresina	9192,41	0,00
BA-ST_20_Q29	Salvador	6720,56	0,00	PI-SC_10_Q29	Teresina	9188,58	0,00
CE-CO_00_0	Fortaleza	7099,27	0,00	PI-SC_15_Q21	Teresina	9107,58	0,00
CE-CO_05_Q21	Fortaleza	7251,02	0,00	PI-SC_15_Q23	Teresina	9131,85	0,00
CE-CO_05_Q23	Fortaleza	7322,07	0,00	PI-SC_15_Q25	Teresina	9117,63	0,00
CE-CO_05_Q25	Fortaleza	7294,81	0,00	PI-SC_15_Q27	Teresina	9187,10	0,00
CE-CO_05_Q27	Fortaleza	7431,45	0,00	PI-SC_15_Q29	Teresina	9180,58	0,00
CE-CO_05_Q29	Fortaleza	7417,27	0,00	PI-SC_20_Q21	Teresina	9089,14	0,00
CE-CO_10_Q21	Fortaleza	7363,70	0,00	PI-SC_20_Q23	Teresina	9110,66	0,00
CE-CO_10_Q23	Fortaleza	7450,96	0,00	PI-SC_20_Q25	Teresina	9096,44	0,00
CE-CO_10_Q25	Fortaleza	7403,29	0,00	PI-SC_20_Q27	Teresina	9162,20	0,00
CE-CO_10_Q27	Fortaleza	7651,07	0,00	PI-SC_20_Q29	Teresina	9154,50	0,00
CE-CO_10_Q29	Fortaleza	7633,39	0,00	PI-ST_00_0	Teresina	8448,29	0,00
CE-CO_15_Q21	Fortaleza	7446,12	0,00	PI-ST_05_Q21	Teresina	8570,13	0,00
CE-CO_15_Q23	Fortaleza	7531,23	0,00	PI-ST_05_Q23	Teresina	8647,59	0,00
CE-CO_15_Q25	Fortaleza	7473,59	0,00	PI-ST_05_Q25	Teresina	8633,70	0,00
CE-CO_15_Q27	Fortaleza	7778,57	0,00	PI-ST_05_Q27	Teresina	8676,08	0,00
CE-CO_15_Q29	Fortaleza	7754,95	0,00	PI-ST_05_Q29	Teresina	8667,49	0,00
CE-CO_20_Q21	Fortaleza	7506,62	0,00	PI-ST_10_Q21	Teresina	8662,25	0,00

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
CE-CO_20_Q23	Fortaleza	7585,41	0,00	PI-ST_10_Q23	Teresina	8756,10	0,00
CE-CO_20_Q25	Fortaleza	7524,88	0,00	PI-ST_10_Q25	Teresina	8719,88	0,00
CE-CO_20_Q27	Fortaleza	7846,54	0,00	PI-ST_10_Q27	Teresina	8858,70	0,00
CE-CO_20_Q29	Fortaleza	7823,25	0,00	PI-ST_10_Q29	Teresina	8839,65	0,00
CE-SC_00_0	Fortaleza	7836,42	0,00	PI-ST_15_Q21	Teresina	8724,07	0,00
CE-SC_05_Q21	Fortaleza	7870,54	0,00	PI-ST_15_Q23	Teresina	8810,41	0,00
CE-SC_05_Q23	Fortaleza	7890,84	0,00	PI-ST_15_Q25	Teresina	8760,44	0,00
CE-SC_05_Q25	Fortaleza	7883,45	0,00	PI-ST_15_Q27	Teresina	8985,97	0,00
CE-SC_05_Q27	Fortaleza	7929,37	0,00	PI-ST_15_Q29	Teresina	8959,86	0,00
CE-SC_05_Q29	Fortaleza	7925,54	0,00	PI-ST_20_Q21	Teresina	8762,13	0,00
CE-SC_10_Q21	Fortaleza	7894,41	0,00	PI-ST_20_Q23	Teresina	8836,99	0,00
CE-SC_10_Q23	Fortaleza	7917,87	0,00	PI-ST_20_Q25	Teresina	8780,75	0,00
CE-SC_10_Q25	Fortaleza	7904,20	0,00	PI-ST_20_Q27	Teresina	9051,06	0,00
CE-SC_10_Q27	Fortaleza	7989,75	0,00	PI-ST_20_Q29	Teresina	9026,51	0,00
CE-SC_10_Q29	Fortaleza	7985,35	0,00	RN-CO_00_0	Natal	8139,20	0,00
CE-SC_15_Q21	Fortaleza	7909,05	0,00	RN-CO_05_Q21	Natal	8233,91	0,00
CE-SC_15_Q23	Fortaleza	7930,24	0,00	RN-CO_05_Q23	Natal	8288,12	0,00
CE-SC_15_Q25	Fortaleza	7914,38	0,00	RN-CO_05_Q25	Natal	8260,52	0,00
CE-SC_15_Q27	Fortaleza	8017,60	0,00	RN-CO_05_Q27	Natal	8392,67	0,00
CE-SC_15_Q29	Fortaleza	8011,36	0,00	RN-CO_05_Q29	Natal	8381,35	0,00
CE-SC_20_Q21	Fortaleza	7917,42	0,00	RN-CO_10_Q21	Natal	8304,91	0,00
CE-SC_20_Q23	Fortaleza	7935,47	0,00	RN-CO_10_Q23	Natal	8374,26	0,00
CE-SC_20_Q25	Fortaleza	7920,03	0,00	RN-CO_10_Q25	Natal	8327,24	0,00
CE-SC_20_Q27	Fortaleza	8021,84	0,00	RN-CO_10_Q27	Natal	8562,51	0,00
CE-SC_20_Q29	Fortaleza	8015,50	0,00	RN-CO_10_Q29	Natal	8544,00	0,00
CE-ST_00_0	Fortaleza	7114,34	0,00	RN-CO_15_Q21	Natal	8355,65	0,00
CE-ST_05_Q21	Fortaleza	7248,98	0,00	RN-CO_15_Q23	Natal	8426,93	0,00
CE-ST_05_Q23	Fortaleza	7315,03	0,00	RN-CO_15_Q25	Natal	8370,58	0,00
CE-ST_05_Q25	Fortaleza	7292,21	0,00	RN-CO_15_Q27	Natal	8656,62	0,00
CE-ST_05_Q27	Fortaleza	7391,41	0,00	RN-CO_15_Q29	Natal	8631,93	0,00
CE-ST_05_Q29	Fortaleza	7378,98	0,00	RN-CO_20_Q21	Natal	8391,42	0,00
CE-ST_10_Q21	Fortaleza	7354,55	0,00	RN-CO_20_Q23	Natal	8460,35	0,00
CE-ST_10_Q23	Fortaleza	7436,83	0,00	RN-CO_20_Q25	Natal	8401,96	0,00
CE-ST_10_Q25	Fortaleza	7392,95	0,00	RN-CO_20_Q27	Natal	8697,79	0,00
CE-ST_10_Q27	Fortaleza	7606,10	0,00	RN-CO_20_Q29	Natal	8674,54	0,00
CE-ST_10_Q29	Fortaleza	7585,68	0,00	RN-SC_00_0	Natal	8778,98	0,00
CE-ST_15_Q21	Fortaleza	7433,11	0,00	RN-SC_05_Q21	Natal	8777,66	0,00
CE-ST_15_Q23	Fortaleza	7512,70	0,00	RN-SC_05_Q23	Natal	8793,44	0,00
CE-ST_15_Q25	Fortaleza	7457,60	0,00	RN-SC_05_Q25	Natal	8786,49	0,00
CE-ST_15_Q27	Fortaleza	7749,11	0,00	RN-SC_05_Q27	Natal	8821,84	0,00
CE-ST_15_Q29	Fortaleza	7722,75	0,00	RN-SC_05_Q29	Natal	8819,45	0,00
CE-ST_20_Q21	Fortaleza	7491,23	0,00	RN-SC_10_Q21	Natal	8775,42	0,00
CE-ST_20_Q23	Fortaleza	7563,40	0,00	RN-SC_10_Q23	Natal	8795,43	0,00

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
CE-ST_20_Q25	Fortaleza	7504,46	0,00	RN-SC_10_Q25	Natal	8782,55	0,00
CE-ST_20_Q27	Fortaleza	7828,46	0,00	RN-SC_10_Q27	Natal	8847,07	0,00
CE-ST_20_Q29	Fortaleza	7804,56	0,00	RN-SC_10_Q29	Natal	8841,66	0,00
MA-CO_00_0	São Luís	8517,47	0,00	RN-SC_15_Q21	Natal	8768,87	0,00
MA-CO_05_Q21	São Luís	8665,69	0,00	RN-SC_15_Q23	Natal	8789,24	0,00
MA-CO_05_Q23	São Luís	8740,62	0,00	RN-SC_15_Q25	Natal	8774,11	0,00
MA-CO_05_Q25	São Luís	8711,53	0,00	RN-SC_15_Q27	Natal	8851,01	0,00
MA-CO_05_Q27	São Luís	8845,40	0,00	RN-SC_15_Q29	Natal	8842,02	0,00
MA-CO_05_Q29	São Luís	8830,45	0,00	RN-SC_20_Q21	Natal	8759,30	0,00
MA-CO_10_Q21	São Luís	8775,28	0,00	RN-SC_20_Q23	Natal	8779,24	0,00
MA-CO_10_Q23	São Luís	8866,38	0,00	RN-SC_20_Q25	Natal	8764,26	0,00
MA-CO_10_Q25	São Luís	8814,22	0,00	RN-SC_20_Q27	Natal	8835,89	0,00
MA-CO_10_Q27	São Luís	9066,45	0,00	RN-SC_20_Q29	Natal	8826,47	0,00
MA-CO_10_Q29	São Luís	9046,16	0,00	RN-ST_00_0	Natal	8131,89	0,00
MA-CO_15_Q21	São Luís	8853,08	0,00	RN-ST_05_Q21	Natal	8213,19	0,00
MA-CO_15_Q23	São Luís	8942,63	0,00	RN-ST_05_Q23	Natal	8263,98	0,00
MA-CO_15_Q25	São Luís	8879,14	0,00	RN-ST_05_Q25	Natal	8240,65	0,00
MA-CO_15_Q27	São Luís	9191,00	0,00	RN-ST_05_Q27	Natal	8334,28	0,00
MA-CO_15_Q29	São Luís	9163,92	0,00	RN-ST_05_Q29	Natal	8324,41	0,00
MA-CO_20_Q21	São Luís	8908,79	0,00	RN-ST_10_Q21	Natal	8278,98	0,00
MA-CO_20_Q23	São Luís	8993,09	0,00	RN-ST_10_Q23	Natal	8345,59	0,00
MA-CO_20_Q25	São Luís	8926,66	0,00	RN-ST_10_Q25	Natal	8301,99	0,00
MA-CO_20_Q27	São Luís	9255,17	0,00	RN-ST_10_Q27	Natal	8500,65	0,00
MA-CO_20_Q29	São Luís	9228,35	0,00	RN-ST_10_Q29	Natal	8478,49	0,00
MA-SC_00_0	São Luís	9301,19	0,00	RN-ST_15_Q21	Natal	8327,36	0,00
MA-SC_05_Q21	São Luís	9315,18	0,00	RN-ST_15_Q23	Natal	8395,69	0,00
MA-SC_05_Q23	São Luís	9333,75	0,00	RN-ST_15_Q25	Natal	8341,20	0,00
MA-SC_05_Q25	São Luís	9325,53	0,00	RN-ST_15_Q27	Natal	8613,25	0,00
MA-SC_05_Q27	São Luís	9365,97	0,00	RN-ST_15_Q29	Natal	8584,59	0,00
MA-SC_05_Q29	São Luís	9362,41	0,00	RN-ST_20_Q21	Natal	8361,82	0,00
MA-SC_10_Q21	São Luís	9325,07	0,00	RN-ST_20_Q23	Natal	8427,25	0,00
MA-SC_10_Q23	São Luís	9347,89	0,00	RN-ST_20_Q25	Natal	8369,15	0,00
MA-SC_10_Q25	São Luís	9333,21	0,00	RN-ST_20_Q27	Natal	8668,02	0,00
MA-SC_10_Q27	São Luís	9409,02	0,00	RN-ST_20_Q29	Natal	8643,04	0,00
MA-SC_10_Q29	São Luís	9403,25	0,00	SE-CO_00_0	Aracaju	7147,66	0,00
MA-SC_15_Q21	São Luís	9328,96	0,00	SE-CO_05_Q21	Aracaju	7229,36	0,00
MA-SC_15_Q23	São Luís	9351,77	0,00	SE-CO_05_Q23	Aracaju	7267,99	0,00
MA-SC_15_Q25	São Luís	9334,95	0,00	SE-CO_05_Q25	Aracaju	7240,43	0,00
MA-SC_15_Q27	São Luís	9425,76	0,00	SE-CO_05_Q27	Aracaju	7410,71	0,00
MA-SC_15_Q29	São Luís	9417,05	0,00	SE-CO_05_Q29	Aracaju	7400,59	0,00
MA-SC_20_Q21	São Luís	9328,74	0,00	SE-CO_10_Q21	Aracaju	7291,59	0,00
MA-SC_20_Q23	São Luís	9350,69	0,00	SE-CO_10_Q23	Aracaju	7339,49	0,00
MA-SC_20_Q25	São Luís	9334,37	0,00	SE-CO_10_Q25	Aracaju	7296,41	0,00

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
MA-SC_20_Q27	São Luís	9422,45	0,00	SE-CO_10_Q27	Aracaju	7574,71	0,00
MA-SC_20_Q29	São Luís	9413,54	0,00	SE-CO_10_Q29	Aracaju	7560,73	0,00
MA-ST_00_0	São Luís	8522,55	0,00	SE-CO_15_Q21	Aracaju	7337,86	0,00
MA-ST_05_Q21	São Luís	8652,14	0,00	SE-CO_15_Q23	Aracaju	7385,51	0,00
MA-ST_05_Q23	São Luís	8721,96	0,00	SE-CO_15_Q25	Aracaju	7337,01	0,00
MA-ST_05_Q25	São Luís	8698,42	0,00	SE-CO_15_Q27	Aracaju	7659,19	0,00
MA-ST_05_Q27	São Luís	8787,36	0,00	SE-CO_15_Q29	Aracaju	7644,19	0,00
MA-ST_05_Q29	São Luís	8774,84	0,00	SE-CO_20_Q21	Aracaju	7372,09	0,00
MA-ST_10_Q21	São Luís	8754,45	0,00	SE-CO_20_Q23	Aracaju	7416,76	0,00
MA-ST_10_Q23	São Luís	8842,16	0,00	SE-CO_20_Q25	Aracaju	7369,11	0,00
MA-ST_10_Q25	São Luís	8794,64	0,00	SE-CO_20_Q27	Aracaju	7690,14	0,00
MA-ST_10_Q27	São Luís	9000,15	0,00	SE-CO_20_Q29	Aracaju	7678,74	0,00
MA-ST_10_Q29	São Luís	8975,70	0,00	SE-SC_00_0	Aracaju	7717,28	0,00
MA-ST_15_Q21	São Luís	8829,22	0,00	SE-SC_05_Q21	Aracaju	7721,85	0,00
MA-ST_15_Q23	São Luís	8915,47	0,00	SE-SC_05_Q23	Aracaju	7731,16	0,00
MA-ST_15_Q25	São Luís	8854,73	0,00	SE-SC_05_Q25	Aracaju	7723,36	0,00
MA-ST_15_Q27	São Luís	9144,99	0,00	SE-SC_05_Q27	Aracaju	7778,86	0,00
MA-ST_15_Q29	São Luís	9113,93	0,00	SE-SC_05_Q29	Aracaju	7776,27	0,00
MA-ST_20_Q21	São Luís	8883,30	0,00	SE-SC_10_Q21	Aracaju	7725,30	0,00
MA-ST_20_Q23	São Luís	8963,41	0,00	SE-SC_10_Q23	Aracaju	7734,93	0,00
MA-ST_20_Q25	São Luís	8898,03	0,00	SE-SC_10_Q25	Aracaju	7722,28	0,00
MA-ST_20_Q27	São Luís	9224,64	0,00	SE-SC_10_Q27	Aracaju	7814,74	0,00
MA-ST_20_Q29	São Luís	9196,41	0,00	SE-SC_10_Q29	Aracaju	7811,47	0,00
PB-CO_00_0	João Pessoa	6644,39	0,00	SE-SC_15_Q21	Aracaju	7724,86	0,00
PB-CO_05_Q21	João Pessoa	6758,76	0,00	SE-SC_15_Q23	Aracaju	7731,33	0,00
PB-CO_05_Q23	João Pessoa	6809,39	0,00	SE-SC_15_Q25	Aracaju	7717,76	0,00
PB-CO_05_Q25	João Pessoa	6779,08	0,00	SE-SC_15_Q27	Aracaju	7823,03	0,00
PB-CO_05_Q27	João Pessoa	6926,22	0,00	SE-SC_15_Q29	Aracaju	7819,48	0,00
PB-CO_05_Q29	João Pessoa	6913,82	0,00	SE-SC_20_Q21	Aracaju	7721,22	0,00
PB-CO_10_Q21	João Pessoa	6837,64	0,00	SE-SC_20_Q23	Aracaju	7723,91	0,00
PB-CO_10_Q23	João Pessoa	6893,82	0,00	SE-SC_20_Q25	Aracaju	7712,12	0,00
PB-CO_10_Q25	João Pessoa	6845,00	0,00	SE-SC_20_Q27	Aracaju	7810,84	0,00
PB-CO_10_Q27	João Pessoa	7102,68	0,00	SE-SC_20_Q29	Aracaju	7807,85	0,00
PB-CO_10_Q29	João Pessoa	7086,68	0,00	SE-ST_00_0	Aracaju	7146,01	0,00
PB-CO_15_Q21	João Pessoa	6892,88	0,00	SE-ST_05_Q21	Aracaju	7216,69	0,00
PB-CO_15_Q23	João Pessoa	6943,54	0,00	SE-ST_05_Q23	Aracaju	7252,07	0,00
PB-CO_15_Q25	João Pessoa	6887,68	0,00	SE-ST_05_Q25	Aracaju	7227,29	0,00
PB-CO_15_Q27	João Pessoa	7196,32	0,00	SE-ST_05_Q27	Aracaju	7365,97	0,00
PB-CO_15_Q29	João Pessoa	7176,46	0,00	SE-ST_05_Q29	Aracaju	7356,67	0,00
PB-CO_20_Q21	João Pessoa	6931,82	0,00	SE-ST_10_Q21	Aracaju	7273,76	0,00
	João Pessoa	6974,37	0,00	SE-ST_10_Q23	Aracaju	7317,41	0,00
PB-CO_20_Q25	João Pessoa	6918,84	0,00	SE-ST_10_Q25	Aracaju	7276,14	0,00
PB-CO_20_Q27	João Pessoa	7238,85	0,00	SE-ST_10_Q27	Aracaju	7531,52	0,00

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u> </u>	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
PB-CO_20_Q29	João Pessoa	7221,35	0,00	9	SE-ST_10_Q29	Aracaju	7515,03	0,00
PB-SC_00_0	João Pessoa	7227,73	0,00	٩	SE-ST_15_Q21	Aracaju	7316,68	0,00
PB-SC_05_Q21	João Pessoa	7250,42	0,00	٩	SE-ST_15_Q23	Aracaju	7358,49	0,00
PB-SC_05_Q23	João Pessoa	7264,87	0,00	٩	SE-ST_15_Q25	Aracaju	7310,80	0,00
PB-SC_05_Q25	João Pessoa	7256,46	0,00	٩	SE-ST_15_Q27	Aracaju	7629,42	0,00
PB-SC_05_Q27	João Pessoa	7304,91	0,00	٩	SE-ST_15_Q29	Aracaju	7611,87	0,00
PB-SC_05_Q29	João Pessoa	7302,11	0,00	٩	SE-ST_20_Q21	Aracaju	7348,37	0,00
PB-SC_10_Q21	João Pessoa	7264,23	0,00	٩	SE-ST_20_Q23	Aracaju	7385,66	0,00
PB-SC_10_Q23	João Pessoa	7277,33	0,00	٩	SE-ST_20_Q25	Aracaju	7338,02	0,00
PB-SC_10_Q25	João Pessoa	7262,77	0,00	٩	SE-ST_20_Q27	Aracaju	7668,00	0,00
PB-SC_10_Q27	João Pessoa	7349,71	0,00	[SE-ST_20_Q29	Aracaju	7655,44	0,00
PB-SC_10_Q29	João Pessoa	7346,03	0,00					

6.2.3 Centro-oeste

Tabela 20: Resultados de CT para a região Centro-oeste

IDF	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
DF-CO_00_0	Brasília	915,43	17,94
DF-CO_05_Q21	Brasília	837,13	9,23
DF-CO_05_Q23	Brasília	816,30	11,49
DF-CO_05_Q25	Brasília	805,36	11,52
DF-CO_05_Q27	Brasília	888,65	13,22
DF-CO_05_Q29	Brasília	891,95	13,20
DF-CO_10_Q21	Brasília	755,14	3,80
DF-CO_10_Q23	Brasília	700,08	7,19
DF-CO_10_Q25	Brasília	681,59	7,36
DF-CO_10_Q27	Brasília	848,56	9,64
DF-CO_10_Q29	Brasília	857,25	9,58
DF-CO_15_Q21	Brasília	685,79	1,45
DF-CO_15_Q23	Brasília	608,79	4,52
DF-CO_15_Q25	Brasília	589,15	4,80
DF-CO_15_Q27	Brasília	808,54	6,94
DF-CO_15_Q29	Brasília	822,67	6,86
DF-CO_20_Q21	Brasília	629,29	0,53
DF-CO_20_Q23	Brasília	545,05	2,93
DF-CO_20_Q25	Brasília	528,39	3,26
DF-CO_20_Q27	Brasília	771,17	4,98
DF-CO_20_Q29	Brasília	789,74	4,89
DF-SC_00_0	Brasília	608,96	1,07
DF-SC_05_Q21	Brasília	596,55	0,46
DF-SC_05_Q23	Brasília	592,68	0,56
DF-SC_05_Q25	Brasília	589,00	0,56

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
MS-CO_00_0	Campo Grande	2732,02	33,12
MS-CO_05_Q21	Campo Grande	2732,35	27,13
MS-CO_05_Q23	Campo Grande	2739,47	28,58
MS-CO_05_Q25	Campo Grande	2722,90	28,64
MS-CO_05_Q27	Campo Grande	2824,30	29,45
MS-CO_05_Q29	Campo Grande	2821,81	29,43
MS-CO_10_Q21	Campo Grande	2716,60	21,91
MS-CO_10_Q23	Campo Grande	2702,93	24,64
MS-CO_10_Q25	Campo Grande	2675,41	24,75
MS-CO_10_Q27	Campo Grande	2866,92	26,31
MS-CO_10_Q29	Campo Grande	2867,36	26,27
MS-CO_15_Q21	Campo Grande	2697,69	17,28
MS-CO_15_Q23	Campo Grande	2665,45	21,03
MS-CO_15_Q25	Campo Grande	2633,72	21,16
MS-CO_15_Q27	Campo Grande	2875,83	23,55
MS-CO_15_Q29	Campo Grande	2879,77	23,50
MS-CO_20_Q21	Campo Grande	2678,54	13,41
MS-CO_20_Q23	Campo Grande	2632,67	17,72
MS-CO_20_Q25	Campo Grande	2601,87	17,83
MS-CO_20_Q27	Campo Grande	2867,65	21,05
MS-CO_20_Q29	Campo Grande	2874,68	20,99
MS-SC_00_0	Campo Grande	2714,67	12,02
MS-SC_05_Q21	Campo Grande	2719,44	9,74
MS-SC_05_Q23	Campo Grande	2726,25	10,06
MS-SC_05_Q25	Campo Grande	2721,63	10,07

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
DF-SC_05_Q27	Brasília	612,17	0,63	MS-SC_05_Q27	Campo Grande	2747,87	10,29
DF-SC_05_Q29	Brasília	612,49	0,63	MS-SC_05_Q29	Campo Grande	2746,58	10,28
DF-SC_10_Q21	Brasília	579,58	0,15	MS-SC_10_Q21	Campo Grande	2722,08	7,84
DF-SC_10_Q23	Brasília	560,84	0,28	MS-SC_10_Q23	Campo Grande	2721,45	8,41
DF-SC_10_Q25	Brasília	553,31	0,29	MS-SC_10_Q25	Campo Grande	2710,96	8,42
DF-SC_10_Q27	Brasília	606,12	0,37	MS-SC_10_Q27	Campo Grande	2767,98	8,86
DF-SC_10_Q29	Brasília	607,99	0,37	MS-SC_10_Q29	Campo Grande	2767,21	8,86
DF-SC_15_Q21	Brasília	560,80	0,05	MS-SC_15_Q21	Campo Grande	2720,73	6,21
DF-SC_15_Q23	Brasília	527,68	0,13	MS-SC_15_Q23	Campo Grande	2706,69	6,96
DF-SC_15_Q25	Brasília	518,72	0,14	MS-SC_15_Q25	Campo Grande	2693,19	6,96
DF-SC_15_Q27	Brasília	597,41	0,19	MS-SC_15_Q27	Campo Grande	2775,23	7,63
DF-SC_15_Q29	Brasília	601,24	0,19	MS-SC_15_Q29	Campo Grande	2775,31	7,63
DF-SC_20_Q21	Brasília	542,41	0,01	MS-SC_20_Q21	Campo Grande	2715,66	4,81
DF-SC_20_Q23	Brasília	501,96	0,06	MS-SC_20_Q23	Campo Grande	2687,96	5,65
DF-SC_20_Q25	Brasília	494,05	0,07	MS-SC_20_Q25	Campo Grande	2674,73	5,65
DF-SC_20_Q27	Brasília	588,28	0,10	MS-SC_20_Q27	Campo Grande	2774,26	6,56
DF-SC_20_Q29	Brasília	594,11	0,10	MS-SC_20_Q29	Campo Grande	2775,35	6,57
DF-ST_00_0	Brasília	910,43	16,66	MS-ST_00_0	Campo Grande	2727,29	32,38
DF-ST_05_Q21	Brasília	851,37	9,47	MS-ST_05_Q21	Campo Grande	2731,30	27,20
DF-ST_05_Q23	Brasília	838,74	11,08	MS-ST_05_Q23	Campo Grande	2743,41	28,31
DF-ST_05_Q25	Brasília	829,14	11,10	MS-ST_05_Q25	Campo Grande	2729,40	28,36
DF-ST_05_Q27	Brasília	896,75	12,40	MS-ST_05_Q27	Campo Grande	2807,95	28,97
DF-ST_05_Q29	Brasília	898,47	12,38	MS-ST_05_Q29	Campo Grande	2805,07	28,94
DF-ST_10_Q21	Brasília	779,91	4,52	MS-ST_10_Q21	Campo Grande	2721,11	22,62
DF-ST_10_Q23	Brasília	734,93	7,21	MS-ST_10_Q23	Campo Grande	2715,42	24,76
DF-ST_10_Q25	Brasília	716,09	7,31	MS-ST_10_Q25	Campo Grande	2688,74	24,85
DF-ST_10_Q27	Brasília	865,77	9,10	MS-ST_10_Q27	Campo Grande	2858,47	26,02
DF-ST_10_Q29	Brasília	871,78	9,05	MS-ST_10_Q29	Campo Grande	2856,10	25,98
DF-ST_15_Q21	Brasília	710,94	1,83	MS-ST_15_Q21	Campo Grande	2703,97	18,45
DF-ST_15_Q23	Brasília	636,84	4,65	MS-ST_15_Q23	Campo Grande	2675,81	21,53
DF-ST_15_Q25	Brasília	614,96	4,84	MS-ST_15_Q25	Campo Grande	2642,99	21,64
DF-ST_15_Q27	Brasília	827,92	6,60	MS-ST_15_Q27	Campo Grande	2876,02	23,42
DF-ST_15_Q29	Brasília	839,23	6,53	MS-ST_15_Q29	Campo Grande	2876,09	23,37
DF-ST_20_Q21	Brasília	651,52	0,65	MS-ST_20_Q21	Campo Grande	2684,19	14,73
DF-ST_20_Q23	Brasília	566,06	3,00	MS-ST_20_Q23	Campo Grande	2638,31	18,56
DF-ST_20_Q25	Brasília	547,84	3,24	MS-ST_20_Q25	Campo Grande	2605,94	18,67
DF-ST_20_Q27	Brasília	789,70	4,77	MS-ST_20_Q27	Campo Grande	2870,40	21,07
DF-ST_20_Q29	Brasília	805,95	4,69	MS-ST_20_Q29	Campo Grande	2874,34	21,01
GO-CO_00_0	Goiânia	2614,83	48,58	MT-CO_00_0	Cuiabá	8707,20	24,92
GO-CO_05_Q21	Goiânia	2571,10	34,80	MT-CO_05_Q21	Cuiabá	8738,97	21,81
GO-CO_05_Q23	Goiânia	2565,39	37,49	MT-CO_05_Q23	Cuiabá	8774,71	22,51
GO-CO_05_Q25	Goiânia	2545,45	37,39	MT-CO_05_Q25	Cuiabá	8755,78	22,55
GO-CO_05_Q27	Goiânia	2673,76	41,04	MT-CO_05_Q27	Cuiabá	8865,30	22,86

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
GO-CO_05_Q29	Goiânia	2673,65	41,08	MT-CO_05_Q29	Cuiabá	8861,19	22,84
GO-CO_10_Q21	Goiânia	2506,11	23,26	MT-CO_10_Q21	Cuiabá	8748,68	19,07
GO-CO_10_Q23	Goiânia	2454,85	28,35	MT-CO_10_Q23	Cuiabá	8781,80	20,47
GO-CO_10_Q25	Goiânia	2422,58	28,15	MT-CO_10_Q25	Cuiabá	8749,07	20,56
GO-CO_10_Q27	Goiânia	2673,39	34,80	MT-CO_10_Q27	Cuiabá	8945,94	21,08
GO-CO_10_Q29	Goiânia	2679,61	34,84	MT-CO_10_Q29	Cuiabá	8940,89	21,04
GO-CO_15_Q21	Goiânia	2441,35	15,60	MT-CO_15_Q21	Cuiabá	8743,50	16,69
GO-CO_15_Q23	Goiânia	2354,81	22,04	MT-CO_15_Q23	Cuiabá	8765,68	18,67
GO-CO_15_Q25	Goiânia	2321,53	22,01	MT-CO_15_Q25	Cuiabá	8727,26	18,81
GO-CO_15_Q27	Goiânia	2642,21	29,71	MT-CO_15_Q27	Cuiabá	8966,94	19,51
GO-CO_15_Q29	Goiânia	2655,53	29,72	MT-CO_15_Q29	Cuiabá	8960,23	19,45
GO-CO_20_Q21	Goiânia	2383,33	10,39	MT-CO_20_Q21	Cuiabá	8729,41	14,76
GO-CO_20_Q23	Goiânia	2278,14	17,66	MT-CO_20_Q23	Cuiabá	8740,02	17,10
GO-CO_20_Q25	Goiânia	2250,82	17,86	MT-CO_20_Q25	Cuiabá	8701,75	17,30
GO-CO_20_Q27	Goiânia	2600,04	25,52	MT-CO_20_Q27	Cuiabá	8947,05	18,12
GO-CO_20_Q29	Goiânia	2620,06	25,48	MT-CO_20_Q29	Cuiabá	8942,53	18,04
GO-SC_00_0	Goiânia	2352,26	15,58	MT-SC_00_0	Cuiabá	9010,98	15,67
GO-SC_05_Q21	Goiânia	2349,12	11,81	MT-SC_05_Q21	Cuiabá	8972,30	14,08
GO-SC_05_Q23	Goiânia	2352,68	12,39	MT-SC_05_Q23	Cuiabá	8982,07	14,34
GO-SC_05_Q25	Goiânia	2346,97	12,38	MT-SC_05_Q25	Cuiabá	8977,96	14,36
GO-SC_05_Q27	Goiânia	2379,30	13,08	MT-SC_05_Q27	Cuiabá	9012,00	14,43
GO-SC_05_Q29	Goiânia	2378,72	13,08	MT-SC_05_Q29	Cuiabá	9011,65	14,43
GO-SC_10_Q21	Goiânia	2339,96	8,80	MT-SC_10_Q21	Cuiabá	8934,52	12,61
GO-SC_10_Q23	Goiânia	2325,94	9,97	MT-SC_10_Q23	Cuiabá	8942,32	13,15
GO-SC_10_Q25	Goiânia	2313,52	9,98	MT-SC_10_Q25	Cuiabá	8934,03	13,18
GO-SC_10_Q27	Goiânia	2389,72	11,02	MT-SC_10_Q27	Cuiabá	8994,65	13,32
GO-SC_10_Q29	Goiânia	2390,41	11,01	MT-SC_10_Q29	Cuiabá	8993,94	13,30
GO-SC_15_Q21	Goiânia	2326,32	6,42	MT-SC_15_Q21	Cuiabá	8895,58	11,29
GO-SC_15_Q23	Goiânia	2292,43	8,10	MT-SC_15_Q23	Cuiabá	8897,21	12,08
GO-SC_15_Q25	Goiânia	2277,94	8,17	MT-SC_15_Q25	Cuiabá	8887,35	12,14
GO-SC_15_Q27	Goiânia	2386,67	9,29	MT-SC_15_Q27	Cuiabá	8959,60	12,32
GO-SC_15_Q29	Goiânia	2389,40	9,27	MT-SC_15_Q29	Cuiabá	8958,54	12,30
GO-SC_20_Q21	Goiânia	2311,15	4,60	MT-SC_20_Q21	Cuiabá	8856,42	10,10
GO-SC_20_Q23	Goiânia	2261,28	6,69	MT-SC_20_Q23	Cuiabá	8851,59	11,12
GO-SC_20_Q25	Goiânia	2249,46	6,82	MT-SC_20_Q25	Cuiabá	8842,17	11,20
GO-SC_20_Q27	Goiânia	2377,00	7,86	MT-SC_20_Q27	Cuiabá	8911,16	11,43
GO-SC_20_Q29	Goiânia	2382,08	7,83	MT-SC_20_Q29	Cuiabá	8910,30	11,39
GO-ST_00_0	Goiânia	2604,77	45,99	MT-ST_00_0	Cuiabá	8712,02	24,40
GO-ST_05_Q21	Goiânia	2573,37	34,79	MT-ST_05_Q21	Cuiabá	8737,33	21,64
GO-ST_05_Q23	Goiânia	2576,68	36,85	MT-ST_05_Q23	Cuiabá	8773,35	22,21
GO-ST_05_Q25	Goiânia	2559,51	36,79	MT-ST_05_Q25	Cuiabá	8757,32	22,24
GO-ST_05_Q27	Goiânia	2661,90	39,37	MT-ST_05_Q27	Cuiabá	8840,82	22,48
GO-ST_05_Q29	Goiânia	2660,22	39,38	MT-ST_05_Q29	Cuiabá	8836,64	22,46

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
GO-ST_10_Q21	Goiânia	2519,47	24,77	MT-ST_10_Q21	Cuiabá	8746,45	19,17
GO-ST_10_Q23	Goiânia	2482,75	29,01	MT-ST_10_Q23	Cuiabá	8781,93	20,33
GO-ST_10_Q25	Goiânia	2449,87	28,87	MT-ST_10_Q25	Cuiabá	8751,23	20,40
GO-ST_10_Q27	Goiânia	2679,21	33,79	MT-ST_10_Q27	Cuiabá	8925,67	20,81
GO-ST_10_Q29	Goiânia	2681,13	33,79	MT-ST_10_Q29	Cuiabá	8917,40	20,76
GO-ST_15_Q21	Goiânia	2457,51	16,82	MT-ST_15_Q21	Cuiabá	8741,27	16,95
GO-ST_15_Q23	Goiânia	2377,97	22,85	MT-ST_15_Q23	Cuiabá	8765,93	18,64
GO-ST_15_Q25	Goiânia	2340,53	22,77	MT-ST_15_Q25	Cuiabá	8728,19	18,75
GO-ST_15_Q27	Goiânia	2659,00	29,02	MT-ST_15_Q27	Cuiabá	8961,70	19,31
GO-ST_15_Q29	Goiânia	2667,22	29,01	MT-ST_15_Q29	Cuiabá	8952,13	19,25
GO-ST_20_Q21	Goiânia	2397,22	10,91	MT-ST_20_Q21	Cuiabá	8727,24	15,02
GO-ST_20_Q23	Goiânia	2290,70	18,18	MT-ST_20_Q23	Cuiabá	8740,07	17,12
GO-ST_20_Q25	Goiânia	2258,48	18,27	MT-ST_20_Q25	Cuiabá	8701,58	17,28
GO-ST_20_Q27	Goiânia	2617,22	24,97	MT-ST_20_Q27	Cuiabá	8951,30	17,97
GO-ST_20_Q29	Goiânia	2633,01	24,93	MT-ST_20_Q29	Cuiabá	8945,59	17,89

6.2.4 Sudeste

Tabela 21: Resultados de CT para a região Sudeste

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
ES-CO_00_0	Vitória	4319,47	1,12
ES-CO_05_Q21	Vitória	4364,73	0,43
ES-CO_05_Q23	Vitória	4391,87	0,61
ES-CO_05_Q25	Vitória	4370,77	0,61
ES-CO_05_Q27	Vitória	4487,34	0,73
ES-CO_05_Q29	Vitória	4481,69	0,73
ES-CO_10_Q21	Vitória	4383,36	0,11
ES-CO_10_Q23	Vitória	4397,29	0,32
ES-CO_10_Q25	Vitória	4359,96	0,33
ES-CO_10_Q27	Vitória	4587,45	0,48
ES-CO_10_Q29	Vitória	4581,70	0,48
ES-CO_15_Q21	Vitória	4389,65	0,02
ES-CO_15_Q23	Vitória	4386,74	0,16
ES-CO_15_Q25	Vitória	4342,68	0,18
ES-CO_15_Q27	Vitória	4637,46	0,29
ES-CO_15_Q29	Vitória	4632,42	0,28
ES-CO_20_Q21	Vitória	4389,38	0,00
ES-CO_20_Q23	Vitória	4373,04	0,09
ES-CO_20_Q25	Vitória	4328,61	0,11
ES-CO_20_Q27	Vitória	4655,61	0,16
ES-CO_20_Q29	Vitória	4653,47	0,16
ES-SC_00_0	Vitória	4539,40	0,00

<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
Rio de Janeiro	2891,02	44,83
Rio de Janeiro	2907,39	31,66
Rio de Janeiro	2924,40	35,25
Rio de Janeiro	2908,16	35,33
Rio de Janeiro	3001,63	37,86
Rio de Janeiro	2998,32	37,82
Rio de Janeiro	2904,37	21,49
Rio de Janeiro	2905,64	27,93
Rio de Janeiro	2876,19	28,23
Rio de Janeiro	3061,53	32,10
Rio de Janeiro	3059,72	32,01
Rio de Janeiro	2893,73	14,70
Rio de Janeiro	2874,71	22,54
Rio de Janeiro	2839,55	23,11
Rio de Janeiro	3086,11	27,30
Rio de Janeiro	3086,30	27,16
Rio de Janeiro	2879,23	9,96
Rio de Janeiro	2843,84	18,50
Rio de Janeiro	2808,29	19,30
Rio de Janeiro	3090,26	23,29
Rio de Janeiro	3093,55	23,09
Rio de Janeiro	2917,02	15,33
	Rio de Janeiro Rio de Janeiro	Rio de Janeiro 2891,02 Rio de Janeiro 2907,39 Rio de Janeiro 2924,40 Rio de Janeiro 2908,16 Rio de Janeiro 3001,63 Rio de Janeiro 2998,32 Rio de Janeiro 2904,37 Rio de Janeiro 2905,64 Rio de Janeiro 2876,19 Rio de Janeiro 3061,53 Rio de Janeiro 3059,72 Rio de Janeiro 2893,73 Rio de Janeiro 2874,71 Rio de Janeiro 2839,55 Rio de Janeiro 3086,11 Rio de Janeiro 3086,30 Rio de Janeiro 2879,23 Rio de Janeiro 2843,84 Rio de Janeiro 2808,29 Rio de Janeiro 3090,26 Rio de Janeiro 3093,55

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
ES-SC_05_Q21	Vitória	4549,42	0,00	RJ-SC_05_Q21	Rio de Janeiro	2926,69	11,21
ES-SC_05_Q23	Vitória	4558,62	0,00	RJ-SC_05_Q23	Rio de Janeiro	2934,54	12,07
ES-SC_05_Q25	Vitória	4552,30	0,00	RJ-SC_05_Q25	Rio de Janeiro	2929,70	12,11
ES-SC_05_Q27	Vitória	4589,95	0,00	RJ-SC_05_Q27	Rio de Janeiro	2955,89	12,54
ES-SC_05_Q29	Vitória	4588,41	0,00	RJ-SC_05_Q29	Rio de Janeiro	2954,68	12,53
ES-SC_10_Q21	Vitória	4551,28	0,00	RJ-SC_10_Q21	Rio de Janeiro	2928,86	8,01
ES-SC_10_Q23	Vitória	4552,38	0,00	RJ-SC_10_Q23	Rio de Janeiro	2928,62	9,53
ES-SC_10_Q25	Vitória	4539,47	0,00	RJ-SC_10_Q25	Rio de Janeiro	2917,73	9,63
ES-SC_10_Q27	Vitória	4616,57	0,00	RJ-SC_10_Q27	Rio de Janeiro	2977,55	10,26
ES-SC_10_Q29	Vitória	4614,93	0,00	RJ-SC_10_Q29	Rio de Janeiro	2976,44	10,23
ES-SC_15_Q21	Vitória	4546,09	0,00	RJ-SC_15_Q21	Rio de Janeiro	2924,77	5,54
ES-SC_15_Q23	Vitória	4535,88	0,00	RJ-SC_15_Q23	Rio de Janeiro	2911,72	7,53
ES-SC_15_Q25	Vitória	4520,27	0,00	RJ-SC_15_Q25	Rio de Janeiro	2897,51	7,70
ES-SC_15_Q27	Vitória	4624,86	0,00	RJ-SC_15_Q27	Rio de Janeiro		8,38
ES-SC_15_Q29	Vitória	4623,32	0,00	RJ-SC_15_Q29	Rio de Janeiro	2985,44	8,34
ES-SC_20_Q21	Vitória	4536,95	0,00	RJ-SC_20_Q21	Rio de Janeiro	2916,70	3,70
ES-SC_20_Q23	Vitória	4517,78	0,00	RJ-SC_20_Q23	Rio de Janeiro		5,95
ES-SC_20_Q25	Vitória	4502,72	0,00	RJ-SC_20_Q25	Rio de Janeiro	2877,56	6,17
ES-SC_20_Q27	Vitória	4620,70	0,00	RJ-SC_20_Q27	Rio de Janeiro		6,81
ES-SC_20_Q29	Vitória	4619,94	0,00	RJ-SC_20_Q29	Rio de Janeiro	2985,64	6,76
ES-ST_00_0	Vitória	4326,55	1,01	RJ-ST_00_0	Rio de Janeiro		42,34
ES-ST_05_Q21	Vitória	4371,84	0,45	RJ-ST_05_Q21	Rio de Janeiro	2913,80	31,36
ES-ST_05_Q23	Vitória	4401,97	0,58	RJ-ST_05_Q23	Rio de Janeiro	2934,13	34,05
ES-ST_05_Q25	Vitória	4384,19	0,58	RJ-ST_05_Q25	Rio de Janeiro	2920,44	34,11
ES-ST_05_Q27	Vitória	4471,10	0,67	RJ-ST_05_Q27	Rio de Janeiro	2990,62	36,02
ES-ST_05_Q29	Vitória	4465,62	0,67	RJ-ST_05_Q29	Rio de Janeiro	2986,90	35,98
ES-ST_10_Q21	Vitória	4393,47	0,14	RJ-ST_10_Q21	Rio de Janeiro	2916,02	22,28
ES-ST_10_Q23	Vitória	4412,58	0,31	RJ-ST_10_Q23	Rio de Janeiro	2923,91	27,44
ES-ST_10_Q25	Vitória	4376,88	0,32	RJ-ST_10_Q25	Rio de Janeiro	2895,89	27,64
ES-ST_10_Q27	Vitória	4574,37	0,44	RJ-ST_10_Q27	Rio de Janeiro	3055,78	30,68
ES-ST_10_Q29	Vitória	4565,07	0,44	RJ-ST_10_Q29	Rio de Janeiro	3051,12	30,60
ES-ST_15_Q21	Vitória	4400,37	0,03	RJ-ST_15_Q21	Rio de Janeiro	2907,77	15,33
ES-ST_15_Q23	Vitória	4400,08	0,16	RJ-ST_15_Q23	Rio de Janeiro	2894,65	22,23
ES-ST_15_Q25	Vitória	4355,65	0,18	RJ-ST_15_Q25	Rio de Janeiro	2859,19	22,62
ES-ST_15_Q27	Vitória	4637,18	0,26	RJ-ST_15_Q27	Rio de Janeiro	3089,35	26,16
ES-ST_15_Q29	Vitória	4627,12	0,26	RJ-ST_15_Q29	Rio de Janeiro	3085,67	26,04
ES-ST_20_Q21	Vitória	4399,32	0,00	RJ-ST_20_Q21	Rio de Janeiro	2894,26	10,19
ES-ST_20_Q23	Vitória	4383,54	0,09	RJ-ST_20_Q23	Rio de Janeiro	2863,21	18,10
ES-ST_20_Q25	Vitória	4338,02	0,10	RJ-ST_20_Q25	Rio de Janeiro	2826,70	18,66
ES-ST_20_Q27	Vitória	4663,15	0,15	RJ-ST_20_Q27	Rio de Janeiro	3098,86	22,35
ES-ST_20_Q29	Vitória	4657,38	0,15	RJ-ST_20_Q29	Rio de Janeiro	3098,42	22,19
MG-CO_00_0	Belo Horizonte	3262,35	1,96	SP-CO_00_0	São Paulo	697,45	226,29
MG-CO_05_Q21	Belo Horizonte	3236,44	0,49	SP-CO_05_Q21	São Paulo	649,44	199,85

IDF	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	IDF	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
MG-CO_05_Q23	Belo Horizonte		0,75	SP-CO_05_Q23	São Paulo	638,53	206,29
MG-CO_05_Q25		3218,42	0,75	SP-CO_05_Q25	São Paulo	631,92	206,74
MG-CO_05_Q27	Belo Horizonte	3321,96	1,07	SP-CO_05_Q27	São Paulo	684,48	208,91
MG-CO_05_Q29	Belo Horizonte	3319,90	1,07	SP-CO_05_Q29	São Paulo	686,78	208,74
MG-CO_10_Q21	Belo Horizonte	3184,12	0,05	SP-CO_10_Q21	São Paulo	600,65	177,99
MG-CO_10_Q23	Belo Horizonte	3148,24	0,19	SP-CO_10_Q23	São Paulo	570,47	189,52
MG-CO_10_Q25	Belo Horizonte	3120,08	0,18	SP-CO_10_Q25	São Paulo	559,31	190,53
MG-CO_10_Q27	Belo Horizonte	3317,14	0,53	SP-CO_10_Q27	São Paulo	661,21	193,77
MG-CO_10_Q29	Belo Horizonte	3319,51	0,54	SP-CO_10_Q29	São Paulo	666,83	193,42
MG-CO_15_Q21	Belo Horizonte	3130,82	0,00	SP-CO_15_Q21	São Paulo	557,91	160,50
MG-CO_15_Q23	Belo Horizonte	3066,39	0,04	SP-CO_15_Q23	São Paulo	515,20	175,28
MG-CO_15_Q25	Belo Horizonte	3036,44	0,04	SP-CO_15_Q25	São Paulo	502,93	176,82
MG-CO_15_Q27	Belo Horizonte	3283,99	0,24	SP-CO_15_Q27	São Paulo	636,57	180,45
MG-CO_15_Q29	Belo Horizonte	3291,35	0,25	SP-CO_15_Q29	São Paulo	645,26	179,93
MG-CO_20_Q21	Belo Horizonte	3081,85	0,00	SP-CO_20_Q21	São Paulo	522,33	145,83
MG-CO_20_Q23	Belo Horizonte	3003,88	0,00	SP-CO_20_Q23	São Paulo	473,06	162,87
MG-CO_20_Q25	Belo Horizonte	2978,25	0,00	SP-CO_20_Q25	São Paulo	461,30	164,87
MG-CO_20_Q27	Belo Horizonte	3244,68	0,11	SP-CO_20_Q27	São Paulo	612,93	168,62
MG-CO_20_Q29	Belo Horizonte	3256,71	0,12	SP-CO_20_Q29	São Paulo	624,18	167,95
MG-SC_00_0	Belo Horizonte	3115,44	0,00	SP-SC_00_0	São Paulo	496,44	172,77
MG-SC_05_Q21	Belo Horizonte	3125,45	0,00	SP-SC_05_Q21	São Paulo	485,47	157,22
MG-SC_05_Q23	Belo Horizonte	3134,20	0,00	SP-SC_05_Q23	São Paulo	484,12	159,18
MG-SC_05_Q25	Belo Horizonte	3129,19	0,00	SP-SC_05_Q25	São Paulo	482,02	159,34
MG-SC_05_Q27	Belo Horizonte	3154,80	0,00	SP-SC_05_Q27	São Paulo	497,58	159,72
MG-SC_05_Q29	Belo Horizonte	3153,17	0,00	SP-SC_05_Q29	São Paulo	498,07	159,65
MG-SC_10_Q21	Belo Horizonte	3121,43	0,00	SP-SC_10_Q21	São Paulo	473,15	143,51
MG-SC_10_Q23	Belo Horizonte	3116,20	0,00	SP-SC_10_Q23	São Paulo	464,16	147,23
MG-SC_10_Q25	Belo Horizonte	3105,44	0,00	SP-SC_10_Q25	São Paulo	459,71	147,55
MG-SC_10_Q27	Belo Horizonte	3167,59	0,00	SP-SC_10_Q27	São Paulo	492,63	148,21
MG-SC_10_Q29	Belo Horizonte	3166,90	0,00	SP-SC_10_Q29	São Paulo	493,98	148,08
MG-SC_15_Q21	Belo Horizonte	3109,84	0,00	SP-SC_15_Q21	São Paulo	459,93	131,57
MG-SC_15_Q23		3088,37	0,00	SP-SC_15_Q23	São Paulo	442,41	136,74
MG-SC_15_Q25	Belo Horizonte	3075,74	0,00	SP-SC_15_Q25	São Paulo	436,41	137,22
MG-SC_15_Q27	Belo Horizonte	3164,07	0,00	SP-SC_15_Q27	São Paulo	485,58	138,06
MG-SC_15_Q29	Belo Horizonte	3165,15	0,00	SP-SC_15_Q29	São Paulo	487,98	137,88
MG-SC_20_Q21	Belo Horizonte	3095,33	0,00	SP-SC_20_Q21	São Paulo	446,47	121,14
MG-SC_20_Q23	Belo Horizonte	3062,49	0,00	SP-SC_20_Q23	São Paulo	422,57	127,36
MG-SC_20_Q25	Belo Horizonte	3051,88	0,00	SP-SC_20_Q25	São Paulo	416,36	127,99
MG-SC_20_Q27	Belo Horizonte	3153,40	0,00	SP-SC_20_Q27	São Paulo	477,92	129,03
MG-SC_20_Q29	Belo Horizonte	3156,39	0,00	SP-SC_20_Q29	São Paulo	481,35	128,81
MG-ST_00_0	Belo Horizonte	3265,88	1,72	SP-ST_00_0	São Paulo	691,88	222,45
MG-ST_05_Q21	Belo Horizonte	3255,77	0,54	SP-ST_05_Q21	São Paulo	654,32	199,08
MG-ST_05_Q23	Belo Horizonte	3264,62	0,74	SP-ST_05_Q23	São Paulo	647,99	204,05

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
MG-ST_05_Q25	Belo Horizonte	3248,88	0,74	SP-ST_05_Q25	São Paulo	642,31	204,39
MG-ST_05_Q27	Belo Horizonte	3332,80	0,97	SP-ST_05_Q27	São Paulo	684,76	205,90
MG-ST_05_Q29	Belo Horizonte	3329,65	0,97	SP-ST_05_Q29	São Paulo	686,17	205,74
MG-ST_10_Q21	Belo Horizonte	3215,19	0,08	SP-ST_10_Q21	São Paulo	611,87	178,76
MG-ST_10_Q23	Belo Horizonte	3191,57	0,21	SP-ST_10_Q23	São Paulo	587,32	188,11
MG-ST_10_Q25	Belo Horizonte	3162,39	0,21	SP-ST_10_Q25	São Paulo	576,26	188,87
MG-ST_10_Q27	Belo Horizonte	3348,97	0,49	SP-ST_10_Q27	São Paulo	666,61	191,33
MG-ST_10_Q29	Belo Horizonte	3348,03	0,50	SP-ST_10_Q29	São Paulo	670,63	191,03
MG-ST_15_Q21	Belo Horizonte	3165,54	0,00	SP-ST_15_Q21	São Paulo	570,38	161,64
MG-ST_15_Q23	Belo Horizonte	3107,63	0,05	SP-ST_15_Q23	São Paulo	530,36	174,23
MG-ST_15_Q25	Belo Horizonte	3074,43	0,05	SP-ST_15_Q25	São Paulo	517,32	175,40
MG-ST_15_Q27	Belo Horizonte	3329,37	0,23	SP-ST_15_Q27	São Paulo	643,99	178,43
MG-ST_15_Q29	Belo Horizonte	3332,94	0,23	SP-ST_15_Q29	São Paulo	650,85	178,00
MG-ST_20_Q21	Belo Horizonte	3115,98	0,00	SP-ST_20_Q21	São Paulo	534,08	147,08
MG-ST_20_Q23	Belo Horizonte	3038,45	0,00	SP-ST_20_Q23	São Paulo	486,59	162,10
MG-ST_20_Q25	Belo Horizonte	3009,45	0,00	SP-ST_20_Q25	São Paulo	474,45	163,66
MG-ST_20_Q27	Belo Horizonte	3291,55	0,11	SP-ST_20_Q27	São Paulo	620,38	166,95
MG-ST_20_Q29	Belo Horizonte	3301,01	0,11	SP-ST_20_Q29	São Paulo	630,01	166,40

6.2.5 Sul

Tabela 22: Resultados de CT para a região Sul

	sarrage ac		regiuo su
<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
PR-CO_00_0	Curitiba	733,43	663,29
PR-CO_05_Q21	Curitiba	674,83	616,18
PR-CO_05_Q23	Curitiba	663,90	624,91
PR-CO_05_Q25	Curitiba	656,93	625,42
PR-CO_05_Q27	Curitiba	713,14	629,00
PR-CO_05_Q29	Curitiba	715,41	628,66
PR-CO_10_Q21	Curitiba	612,27	575,77
PR-CO_10_Q23	Curitiba	579,97	592,02
PR-CO_10_Q25	Curitiba	568,39	593,24
PR-CO_10_Q27	Curitiba	678,48	598,85
PR-CO_10_Q29	Curitiba	685,50	598,15
PR-CO_15_Q21	Curitiba	558,06	542,04
PR-CO_15_Q23	Curitiba	507,53	563,61
PR-CO_15_Q25	Curitiba	495,22	565,65
PR-CO_15_Q27	Curitiba	642,31	572,06
PR-CO_15_Q29	Curitiba	653,36	571,03
PR-CO_20_Q21	Curitiba	512,57	513,69
PR-CO_20_Q23	Curitiba	452,55	538,75
PR-CO_20_Q25	Curitiba	441,95	541,56
PR-CO_20_Q27	Curitiba	609,27	547,98

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
RS-SC_15_Q21	Porto Alegre	1694,91	312,51
RS-SC_15_Q23	Porto Alegre	1681,50	318,18
RS-SC_15_Q25	Porto Alegre	1674,14	318,68
RS-SC_15_Q27	Porto Alegre	1725,36	319,37
RS-SC_15_Q29	Porto Alegre	1726,30	319,04
RS-SC_20_Q21	Porto Alegre	1682,00	296,17
RS-SC_20_Q23	Porto Alegre	1661,15	303,25
RS-SC_20_Q25	Porto Alegre	1654,12	303,93
RS-SC_20_Q27	Porto Alegre	1714,60	304,73
RS-SC_20_Q29	Porto Alegre	1716,46	304,31
RS-ST_00_0	Porto Alegre	1798,97	428,91
RS-ST_05_Q21	Porto Alegre	1786,43	398,72
RS-ST_05_Q23	Porto Alegre	1790,98	403,58
RS-ST_05_Q25	Porto Alegre	1782,58	403,89
RS-ST_05_Q27	Porto Alegre	1831,69	405,38
RS-ST_05_Q29	Porto Alegre	1830,84	405,13
RS-ST_10_Q21	Porto Alegre	1764,30	372,11
RS-ST_10_Q23	Porto Alegre	1754,40	381,29
RS-ST_10_Q25	Porto Alegre	1738,35	381,96
RS-ST_10_Q27	Porto Alegre	1843,01	384,52

IDF	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	IDF	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
PR-CO 20 Q29	Curitiba	623,78	546,66	RS-ST 10 Q29	Porto Alegre	1843,14	384,04
PR-SC_00_0	Curitiba	494,85	585,97	RS-ST_15_Q21	Porto Alegre	1738,61	348,84
PR-SC 05 Q21	Curitiba	484,88	553,85	RS-ST_15_Q23	Porto Alegre	1713,54	361,52
PR-SC_05_Q23	Curitiba	483,16	556,93	RS-ST_15_Q25	Porto Alegre	1694,75	362,55
PR-SC_05_Q25	Curitiba	481,20	557,14	RS-ST_15_Q27	Porto Alegre	1837,87	365,85
PR-SC_05_Q27	Curitiba	494,78	557,89	RS-ST_15_Q29	Porto Alegre	1839,91	365,18
PR-SC 05 Q29	Curitiba	495,26	557,74	RS-ST_20_Q21	Porto Alegre	1712,65	328,28
PR-SC_10_Q21	Curitiba	471,18	525,05	RS-ST_20_Q23	Porto Alegre	1678,21	343,87
PR-SC_10_Q23	Curitiba	459,22	531,19	RS-ST_20_Q25	Porto Alegre	1660,22	345,29
PR-SC_10_Q25	Curitiba	455,26	531,67	RS-ST_20_Q27	Porto Alegre	1823,04	349,04
PR-SC_10_Q27	Curitiba	486,79	532,85	RS-ST_20_Q29	Porto Alegre	1827,73	348,18
PR-SC_10_Q29	Curitiba	488,97	532,57	SC-CO_00_0	Florianópolis	2419,26	171,56
PR-SC_15_Q21	Curitiba	455,86	499,59	SC-CO_05_Q21	Florianópolis	2406,59	153,56
PR-SC_15_Q23	Curitiba	433,39	508,15	SC-CO_05_Q23	Florianópolis	2406,83	157,79
PR-SC_15_Q25	Curitiba	428,86	508,92	SC-CO_05_Q25	Florianópolis	2394,59	158,10
PR-SC_15_Q27	Curitiba	476,15	510,34	SC-CO_05_Q27	Florianópolis	2467,68	159,44
PR-SC_15_Q29	Curitiba	479,88	509,96	SC-CO_05_Q29	Florianópolis	2466,57	159,31
PR-SC_20_Q21	Curitiba	440,71	477,03	SC-CO_10_Q21	Florianópolis	2380,09	138,50
PR-SC_20_Q23	Curitiba	411,51	487,40	SC-CO_10_Q23	Florianópolis	2359,17	146,22
PR-SC_20_Q25	Curitiba	407,46	488,46	SC-CO_10_Q25	Florianópolis	2338,19	146,88
PR-SC_20_Q27	Curitiba	466,03	490,04	SC-CO_10_Q27	Florianópolis	2484,93	148,94
PR-SC_20_Q29	Curitiba	471,09	489,56	SC-CO_10_Q29	Florianópolis	2486,45	148,68
PR-ST_00_0	Curitiba	729,66	655,58	SC-CO_15_Q21	Florianópolis	2352,62	126,27
PR-ST_05_Q21	Curitiba	686,58	612,69	SC-CO_15_Q23	Florianópolis	2314,69	136,46
PR-ST_05_Q23	Curitiba	679,84	619,68	SC-CO_15_Q25	Florianópolis	2291,23	137,49
PR-ST_05_Q25	Curitiba	673,91	620,06	SC-CO_15_Q27	Florianópolis	2483,88	139,73
PR-ST_05_Q27	Curitiba	719,35	622,75	SC-CO_15_Q29	Florianópolis	2488,32	139,34
PR-ST_05_Q29	Curitiba	720,73	622,45	SC-CO_20_Q21	Florianópolis	2327,39	116,15
PR-ST_10_Q21	Curitiba	632,79	574,43	SC-CO_20_Q23	Florianópolis	2280,33	127,98
PR-ST_10_Q23	Curitiba	606,35	588,16	SC-CO_20_Q25	Florianópolis	2258,06	129,37
PR-ST_10_Q25	Curitiba	595,07	589,10	SC-CO_20_Q27	Florianópolis	2473,61	131,58
PR-ST_10_Q27	Curitiba	693,43	593,48	SC-CO_20_Q29	Florianópolis	2481,41	131,07
PR-ST_10_Q29	Curitiba	698,57	592,89	SC-SC_00_0	Florianópolis	2364,15	134,56
PR-ST_15_Q21	Curitiba	580,60	541,17	SC-SC_05_Q21	Florianópolis	2372,27	123,60
PR-ST_15_Q23	Curitiba	534,46	560,24	SC-SC_05_Q23	Florianópolis	2375,97	125,03
PR-ST_15_Q25	Curitiba	521,17	561,83	SC-SC_05_Q25	Florianópolis	2372,54	125,14
PR-ST_15_Q27	Curitiba	661,20	567,23	SC-SC_05_Q27	Florianópolis	2389,84	125,41
PR-ST_15_Q29	Curitiba	670,33	566,36	SC-SC_05_Q29	Florianópolis	2389,13	125,36
PR-ST_20_Q21	Curitiba	534,07	512,43	SC-SC_10_Q21	Florianópolis	2372,96	113,87
PR-ST_20_Q23	Curitiba	474,90	535,35	SC-SC_10_Q23	Florianópolis	2367,79	116,67
PR-ST_20_Q25	Curitiba	463,31	537,59	SC-SC_10_Q25	Florianópolis	2360,66	116,91
PR-ST_20_Q27	Curitiba	627,22	543,58	SC-SC_10_Q27	Florianópolis	2401,38	117,36
PR-ST_20_Q29	Curitiba	640,18	542,48	SC-SC_10_Q29	Florianópolis	2401,17	117,25

<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)	<u>IDF</u>	<u>Cidade</u>	CRt.(kWh)	CAt.(kWh)
RS-CO_00_0	Porto Alegre	1801,55	434,35	SC-SC_15_Q21	Florianópolis	2369,06	105,31
RS-CO_05_Q21	Porto Alegre	1782,93	401,11	SC-SC_15_Q23	Florianópolis	2353,28	109,30
RS-CO_05_Q23	Porto Alegre	1783,68	407,40	SC-SC_15_Q25	Florianópolis	2344,77	109,66
RS-CO_05_Q25	Porto Alegre	1773,92	407,82	SC-SC_15_Q27	Florianópolis	2405,48	110,22
RS-CO_05_Q27	Porto Alegre	1837,05	409,94	SC-SC_15_Q29	Florianópolis	2406,09	110,08
RS-CO_05_Q29	Porto Alegre	1836,84	409,65	SC-SC_20_Q21	Florianópolis	2362,83	97,75
RS-CO_10_Q21	Porto Alegre	1755,78	372,82	SC-SC_20_Q23	Florianópolis	2340,20	102,73
RS-CO_10_Q23	Porto Alegre	1740,61	384,12	SC-SC_20_Q25	Florianópolis	2332,30	103,23
RS-CO_10_Q25	Porto Alegre	1724,38	385,00	SC-SC_20_Q27	Florianópolis	2405,94	103,83
RS-CO_10_Q27	Porto Alegre	1842,26	388,39	SC-SC_20_Q29	Florianópolis	2407,63	103,65
RS-CO_10_Q29	Porto Alegre	1844,69	387,83	SC-ST_00_0	Florianópolis	2419,44	168,63
RS-CO_15_Q21	Porto Alegre	1728,03	348,72	SC-ST_05_Q21	Florianópolis	2416,80	152,60
RS-CO_15_Q23	Porto Alegre	1700,02	363,83	SC-ST_05_Q23	Florianópolis	2422,41	155,91
RS-CO_15_Q25	Porto Alegre	1681,71	365,21	SC-ST_05_Q25	Florianópolis	2411,98	156,14
RS-CO_15_Q27	Porto Alegre	1831,80	369,22	SC-ST_05_Q27	Florianópolis	2467,77	157,11
RS-CO_15_Q29	Porto Alegre	1836,34	368,41	SC-ST_05_Q29	Florianópolis	2466,19	156,99
RS-CO_20_Q21	Porto Alegre	1701,72	327,75	SC-ST_10_Q21	Florianópolis	2397,74	138,59
RS-CO_20_Q23	Porto Alegre	1664,88	345,88	SC-ST_10_Q23	Florianópolis	2383,61	144,90
RS-CO_20_Q25	Porto Alegre	1647,56	347,74	SC-ST_10_Q25	Florianópolis	2363,04	145,41
RS-CO_20_Q27	Porto Alegre	1814,27	352,01	SC-ST_10_Q27	Florianópolis	2491,73	146,97
RS-CO_20_Q29	Porto Alegre	1821,24	351,00	SC-ST_10_Q29	Florianópolis	2490,68	146,74
RS-SC_00_0	Porto Alegre	1720,77	374,38	SC-ST_15_Q21	Florianópolis	2372,75	126,63
RS-SC_05_Q21	Porto Alegre	1715,19	351,37	SC-ST_15_Q23	Florianópolis	2339,04	135,34
RS-SC_05_Q23	Porto Alegre	1717,59	353,37	SC-ST_15_Q25	Florianópolis	2314,58	136,14
RS-SC_05_Q25	Porto Alegre	1714,77	353,53	SC-ST_15_Q27	Florianópolis	2498,12	138,01
RS-SC_05_Q27	Porto Alegre	1732,21	353,87	SC-ST_15_Q29	Florianópolis	2499,29	137,68
RS-SC_05_Q29	Porto Alegre	1731,88	353,75	SC-ST_20_Q21	Florianópolis	2347,56	116,57
RS-SC_10_Q21	Porto Alegre	1706,31	330,79	SC-ST_20_Q23	Florianópolis	2302,31	126,94
RS-SC_10_Q23	Porto Alegre	1701,93	334,79	SC-ST_20_Q25	Florianópolis	2278,73	128,03
RS-SC_10_Q25	Porto Alegre	1695,80	335,13	SC-ST_20_Q27	Florianópolis	2491,59	130,05
RS-SC_10_Q27	Porto Alegre	1732,42	335,67	SC-ST_20_Q29	Florianópolis	2496,79	129,62
RS-SC_10_Q29	Porto Alegre	1732,71	335,43				