
Approximate Computing: Contributions to
the Design of Arithmetic Circuits and

Instruction-Set Architectures

Daniela Luiza Catelan

Advisor: Dr. Ricardo Ribeiro dos Santos

Federal University of Mato Grosso do Sul - UFMS
College of Computing - FACOM

January 15, 2025

Approximate Computing: Contributions to
the Design of Arithmetic Circuits and

Instruction-Set Architectures

Daniela Luiza Catelan

Advisor: Dr. Ricardo Ribeiro dos Santos

A thesis presented to the Ph.D. Pro-
gram in Computer Science at the Col-
lege of Computing of the Federal Uni-
versity of Mato Grosso do Sul, as a par-
tial requirement for attaining the Doc-
torate degree.

Thesis Committee:

Prof. Dr. Ricardo Ribeiro dos Santos - FACOM/UFMS - Advisor

Prof. Dra. Liana Dessandre Duenha Garanhani - FACOM/UFMS - Internal Member

Prof. Dr. Lucas Francisco Wanner - IC/UNICAMP - External Member

Prof. Dr. Ricardo dos Santos Ferreira - DPI/UFV - External Member

Prof. Dr. Edson Antonio Batista - FAENG/UFMS - External Member

Prof. Dra. Nahri Balesdent Moreano - FACOM/UFMS - Substitute Member

Federal University of Mato Grosso do Sul - UFMS
College of Computing - FACOM

January 15, 2025

2

Abstract

The growing demand for computing power, coupled with the limitations of the end of
the Dennard scale, has challenged designers to find alternative solutions to maintain
performance within energy and cost limits. Approximate computing (AC) has emerged
as a promising approach to balance performance and energy efficiency in error-tolerant
applications. However, many AC techniques focus on specific problems or require much
intervention from the programmer. This work identified gaps that were transformed into
research opportunities. One is related to approximate arithmetic circuits, which focus
on single-bit operations, limiting the analysis of these circuits’ physical behavior, accu-
racy, and performance on real platforms with larger inputs and outputs. There are also
limitations in the loop perforation technique since once the perforation degree (pd) is
established, the application metrics will improve only at the cost of accuracy. Adopting a
strategy in which pd can use approximate hardware resources would overcome this limi-
tation, and greater flexibility would be obtained without forcing additional compilation
steps. There is little exploration of the use of approximate instructions, especially in the
context of floating point operations, leaving an implementation gap that can be solved
by introducing an additional level of approximation, replacing precise (non-approximate)
instructions with approximate instructions, thus offering a hardware-level approximate
technique over a source code that is already (or not) approximated by a software-level
technique. Thus, this work aims at design space exploration (DSE) at different levels of
abstraction, investigating the impact of AC on approximate arithmetic circuits, approxi-
mate instructions, loop perforation techniques, and approximate mathematical functions.
In addition, extensions of the RISC-V architecture instruction set with support for AC
are designed. AC techniques were integrated into a widely used platforms, such as SPIKE
and ACCEPT, to provide a flexible and efficient infrastructure for developing of approx-
imate systems. The results demonstrate that AC can significantly improve performance
and energy efficiency without substantially compromising the accuracy of the systems.
This work contributes to new approximate instructions, arithmetic circuits, and an en-
ergy model for approximate instructions. It explores the feasibility of these techniques in
mathematical functions and control structures (loop) in applications that demand high
performance but tolerate controlled errors.

Keywords: approximate computing, approximate arithmetic circuits, approxi-
mate instructions, loop perforation, approximate mathematical functions

3

Resumo

O crescimento da demanda por poder computacional, aliado às limitações do fim da
escala de Dennard, desafiou os projetistas a encontrar soluções alternativas para manter
o desempenho dentro dos limites de energia e custo. A computação aproximada (CA)
emerge como uma abordagem promissora para equilibrar desempenho e eficiência ener-
gética em aplicações que toleram erros. No entanto, muitas técnicas de CA focam em
problemas espećıficos ou exigem muita intervenção do programador. Este trabalho iden-
tificou lacunas que foram transformadas em oportunidades de pesquisa. Uma delas está
relacionada aos circuitos aritméticos aproximados, que focam em operações de um único
bit, limitando a análise do comportamento fisico, da precisão e do desempenho desses
circuitos em plataformas reais com entradas e sáıdas maiores. Há também limitações na
técnica de perfuração de loops, visto que uma vez que o grau de perfuração (pd) é estabe-
lecido, as métricas do aplicativo melhorarão apenas ao custo da precisão. Ao adotar uma
estratégia em que o pd possa usar recursos de hardware aproximado, esta limitação seria
mitigada, além de obter uma maior flexibilidade sem forçar nenhuma etapa de compilação
adicional. Há pouca exploração sobre o uso de instruções aproximadas, especialmente
no contexto de operações de ponto flutuante, deixando uma lacuna de implementação,
que poder ser resolvida com a introdução de um ńıvel adicional de aproximação, subs-
tituindo instruções precisas (não aproximadas) por instruções aproximadas, oferecendo
desta forma, uma técnica aproximada de ńıvel de hardware sobre um código-fonte que já
é (ou não) aproximado por uma técnica de ńıvel de software. Desta forma, este trabalho
tem por objetivo a exploração do espaço de projeto (DSE) em diferentes ńıveis de abs-
tração, investigando o impacto da CA em circuitos aritméticos aproximados, instruções
aproximadas e técnicas de perfuração de loops e de funções matemáticas aproximadas.
Além disso, são projetadas extensões do conjunto de instruções da arquitetura RISC-V
com suporte à CA. A integração de técnicas de CA foi realizada em plataformas ampla-
mente utilizadas, como SPIKE e ACCEPT, para proporcionar uma infraestrutura flex́ıvel
e eficiente no desenvolvimento de sistemas aproximados. Os resultados demonstram que
a CA pode melhorar significativamente o desempenho e a eficiência energética, sem com-
prometer substancialmente a precisão dos sistemas. Este trabalho contribui com novas
instruções aproximadas, circuitos aritméticos e um modelo energético para instruções
aproximadas, além de explorar a viabilidade dessas técnicas em funções matemáticas
e estruturas de controle (loop) em aplicações que exigem alto desempenho, mas que
toleram erros controlados.

Palavras-Chave: computação aproximada, circuitos aritméticos aproximados,
instruções aproximadas, loop perforation, funções matemáticas aproximadas

4

Acknowledgements

I could not begin my thanks without first thanking God. There were countless challenges
during my doctorate, but God was always with me, blessing me and covering me with
wisdom to overcome each obstacle that appeared.

I thank my children, José Luiz and Maria Luiza, for understanding my moments
of absence, lousy mood, and impatience. But I am even more grateful for their encour-
agement, support, and strength.

I am immensely grateful to my parents, Luiz and Neuza, who were my support
network. They found a way to be there even when busy with their tasks, making the
path easier.

From the bottom of my heart, I thank Professor Ricardo for his excellent guidance,
the weekly meetings that kept me focused, and his patience and dedication to under-
standing the delays in completing the scheduled activities and for never giving up on
guiding me.

I must thank my lab colleagues, such as Samuel, who played a valuable role in part
of my project, and Guilherme Gloriano, for the chats to relax and share the worries of
doctoral students and for the countless help with Overleaf.

I would also like to thank Professor Liana for her participation and support through-
out the entire process of my doctorate.

Finally, so as not to run the risk of forgetting anyone and before the tears flow, I
would like to thank all those who, directly or indirectly, were with me on this journey.

5

Contents

List of Figures 9

List of Tables 13

List of Acronyms 14

1 Introduction 19

2 Approximate Computing 22

2.1 Contextualization . 22

2.2 Organization of AC Techniques . 23

2.3 Software Support for Approximate Computing 26

2.4 Hardware Support for Approximate Computing 28

2.5 Software/Hardware Support for Approximate Computing 30

2.6 Architectural Support for Approximate Computing 33

2.7 Final Remarks . 33

3 Design of Approximate Arithmetic Circuits 35

3.1 Contextualization . 35

3.2 Approximate Arithmetic Circuit Designs 36

3.3 Experimental Setup, Results, and Discussion 38

3.3.1 Accuracy Results . 42

6

3.3.2 Area Usage . 45

3.3.3 Power Dissipation . 47

3.4 Final Remarks . 50

4 Approximate Instructions 52

4.1 Contextualization . 52

4.2 RISC-V Instruction Set . 53

4.3 Approximate Instructions Design . 54

4.3.1 Approximate Integer Instructions 54

4.3.2 Approximate Floating Point Instruction 58

4.4 Tools Extension . 60

4.4.1 SPIKE ISA SIM . 60

4.4.2 Prof5 . 66

4.4.3 ACCEPT . 69

4.5 Final Remarks . 71

5 Approximate Computing Software-Hardware Approach 72

5.1 Contextualization . 72

5.2 Instruction-Level Loop Perforation - ILLP 74

5.2.1 Loop Perforation Approximation Technique 74

5.2.2 Instruction-Level Loop Perforation Design 75

5.2.3 Experimental Setup . 77

5.2.4 Results and Discussion . 79

5.3 Instruction-Level Approximate Function - ILAF 86

5.3.1 Instruction-Level Approximate Functions Design 87

5.3.1.1 Approximate Functions Design 88

5.3.2 Experimental Setup . 89

7

5.3.3 Results and Discussion . 90

5.4 Final Remarks . 95

6 Conclusions 96

6.1 Specific Conclusions . 96

6.2 Limitations of the Study . 97

6.3 Thesis Contributions . 98

6.4 Future Work . 99

8

List of Figures

1.1 Examples of approximate computing techniques: software, hardware, ar-
chitecture, and software/hardware. Source: author. 20

1.2 Overall structural diagram of the thesis chapters. Source: author. 21

2.1 Classification of AC proposed by Palem and Lingamneni. Source: [49]. . . 24

2.2 Classification of AC techniques proposed by Shafique et al. Source: [63]. . 24

2.3 Classification of AC techniques proposed by Vasileios et al. and Xu et al.
Source: [32, 79]. 25

2.4 Proposed taxonomy for approximate computing. Source: author. 26

2.5 EnerJ hardware model. Source: [59]. 31

2.6 RISK-5 hardware schematic. Source: [21]. 31

2.7 QUORA microarchitecture. Source: [73]. 32

3.1 1-bit accuracy adder in VHDL code. Source: author. 40

3.2 1-bit approximate adder InXA3 in VHDL code. Source: author. 40

3.3 2-bit mixed circuit in VHDL code. Source: author. 41

3.4 Accuracy result (relative error percentage) for adder circuits. Source:
author. 42

3.5 Accuracy result (relative error) for subtractor circuits. Source: author. . 43

3.6 Accuracy result (relative error percentage) for multiplier circuits. Source:
author. 44

3.7 Accuracy results (relative error percentage) for divider circuits. Source:
author. 44

9

3.8 Percentage of relative area of approximate circuits for 8-bit adders with
relative error. Source: author. 45

3.9 Percentage of relative area of approximate circuits for 8-bit subtractor
with relative error. Source: author. 46

3.10 Percentage of relative area of approximate circuits for 8-bit multiplier with
relative error. Source: author. 47

3.11 Percentage of relative area of approximate circuits for 8-bit divider with
relative error. Source: author. 47

3.12 Percentage of relative power of approximate circuits for 8-bit adder with
relative error. Source: author. 48

3.13 Percentage of relative power of approximate circuits for 8-bit subtractor
with relative error. Source: author. 48

3.14 Percentage of relative power of approximate circuits for 8-bit multiplier
with relative error. Source: author. 49

3.15 Percentage of relative power of approximate circuits for 8-bit divider with
relative error. Source: author. 50

4.1 Workflow for approximate instructions design and evaluation. Source:
author. 53

4.2 Percentages of relative area, relative power, and relative error in approxi-
mate adder circuits. Source: author. 55

4.3 32-bits full adder (FA). Source: Based on [52]. 56

4.4 4-bits multiplication. Source: author. 56

4.5 8x4-bits divider. Source: [13]. 57

4.6 Exact subtractor block for division. Source: [13]. 57

4.7 Block diagram: FP addition and subtraction hardware. Source: Based
on [52]. 59

4.8 Block diagram: FP multiplier hardware. Source: Based on [52]. 59

4.9 Block diagram: FP divider hardware. Source: Based on [52]. 60

4.10 Flowchart for the design and implementation of approximate instructions.
Source: author. 61

4.11 Mask and match approximate instructions. Source: author. 62

10

4.12 Functionality of the approximate addx instruction. Source: author. . . . 62

4.13 Functionality of the approximate subx instruction. Source: author. . . . 63

4.14 Functionality of the approximate mulx instruction. Source: author. . . . 64

4.15 Functionality of the approximate divx instruction. Source: author. . . . 66

4.16 Functionality of the approximate remx instruction. Source: author. . . . 67

4.17 Approximate addition operations used in the BIG ALU of the approximate
FP addition hardware. Source: author. 68

4.18 Approximate subtraction operations used in the BIG ALU of the approx-
imate FP subtraction hardware. Source: author. 68

4.19 Approximate multiply operations of the approximate FP multiplier hard-
ware. Source: author. 69

4.20 Approximate division operations of the approximate FP divider hardware.
Source: author. 69

4.21 ACCEPT. Source: author. 71

5.1 Original loop and after applying loop perforation. Source: author. 74

5.2 LP with ADDX function call and ADDX function. Source: author. . . . 75

5.3 Workflow and toolset to apply the ILLP technique. Source: author. . . . 76

5.4 RISC-V assembly code result of the LP. Source: author. 77

5.5 AS and ILLP instructions percentage reduction for each application.
Source: author. 81

5.6 AS and ILLP cycle improvement percentage for each application. Source:
author. 82

5.7 AS and ILLP energy saving percentage for each application. Source: author. 84

5.8 Percentage reduction for instructions, cycles, and energy by technique.
Source: author. 85

5.9 ILAF design workflow. Source: author. 87

5.10 Code snippet of the FastLog2 function. Source: author. 88

5.11 ACCEPT approximate functions workflow. Source: author. 91

11

5.12 Call flow of the cosine function of CUBIC using Baseline, FastApprox,
and ILAF. Source: author. 93

12

List of Tables

2.1 Applications, platforms, domains, and metrics of AxBench. Source: [81]. . 28

2.2 Comparison among AXA, AMA, and InXA adders. Source: [80, 67]. . . . 29

2.3 Comparison between AXSC and APSC subtractor. Source: [24]. 29

3.1 Logical expressions for approximate adders. Source: author. 37

3.2 Logical expressions for the approximate subtractors. Source: author. . . . 37

3.3 Approximate 2× 2 multiplier truth table. Source: [31]. 38

4.1 RISC-V instruction formats. Source: [52]. 54

4.2 Layout of some RISC-V arithmetic instructions. Source: [52]. 54

4.3 Logical expressions of the subtractor block used in division. Source: author. 58

4.4 Approximate instruction opcodes. Source: author. 61

4.5 Cycles and power results of non-approximate and approximate instruc-
tions. Source: author. 70

5.1 Applications summary. Input apps, Output apps, LP in Hotspots, Has
nested loops, Position LP. Source: author. 78

5.2 Output, number of instructions, number of cycles, and energy. Source:
author. 79

5.3 Relative Error. Source: author. 80

5.4 Selected approximate instructions and MAPE of each mathematical func-
tion. Source: author. 89

5.5 Summary of mathematical functions in each application. Source: author. 90

13

5.6 Percentage improvements of the applications running the ILAF approach
compared to the BL. Source: author. 91

5.7 Coverage and power improvement of ILAF compared to FAl. Source:
author. 92

5.8 Excerpt from the code of the “transit surface” function (FBENCH appli-
cation) using the FastApprox library. Source: author. 94

5.9 Excerpt from the code of the “transit surface” function (FBENCH appli-
cation) using ILAF. Source: author. 94

14

List of Acronyms

AC - Approximate Computing

ALE - Total Logic Elements Approximate

AMA - Approximate Mirror Adder

ANN - Artificial Neural Networks

AO - Approximate Output

AP - Power Approximate Circuits

APDr - Approximate Divider

APE - Approximate Processing Elements

APSC - Approximate Subtractor

AS - ACCEPT-SPIKE

ASIC - Application Specific Integrated Circuits

AXA - Approximate XOR/XNOR - based Adder

AXSC - Approximate Subtractor Cell

BL - Baseline

BO - Output Baseline

CAPE - Completely Accurate Processing Element

CF - Correction Factor

CPU - Central Process Unit

DCT - Discrete Cosine Transform

DP - Dynamic Power

15

DRAM - Dynamic Random Access Memory

DSE - Design Space Exploration

ED - Error Distance

EDP - Energy Delay Product

ELE - Total Logic Elements Accurate

EO - Accurate Circuit Outputs

EP - Power Accurate Circuits

ER - Error Rate

ESA - Equal Segmentation Adder

FA - Full Adder

FAl - FastApprox library

FP - Floating Point

FPGA - Field Programmable Gate Array

GPU - Graphics Processing Unit

HW/SW - Hardware-Software Interface

I - Innermost

IApprox - Floating Point Approximate Instructions

IC - Inexact Computation

ILAF - Instruction-Level Approximate Functions

ILLP - Instruction-Level Loop Perforation

InXA - Inexact Adder Cells

IOP - I/O Power

IR - Replaced Instructions

ISA - Instruction Set Architecture

LI - Loop Interpolation

LOA - Lower Part or Adder

16

LP - Loop Perforation

LSB - Least Significant Bit

MAPE - Mixed Accuracy Processing Elements

MLC - Multi-Level Cell Model

MRED - Mean Relative Error Distance

NED - Normalized Error Distance

NN - Nearest Neighbor

O - Outermost

PD - Power Dissipation

Pinstr - Percentage Instruction Group

Powerap - Power Instruction Approximate

PowerDiff - Difference in Percentage

Powerimp - Power Improvement

Powernap - Non-approximated Instructions

Q - Quotient

QUORA - Quality Programmable Vector Processors for Approximate Computing

R - Remainder

RA - Relative Area

rd - Destination Registers

RE - Relative Error

REACT - Rapid Exploration of Approximate Computing Techniques

REp - Relative Error Percentage

RISC-V - Reduced Instruction Set Computer V

rm - Rounding Mode

RP - Relative Power

RPcircuit - Relative Power Approximate Circuit

17

RPprog - Relative Power per Program

rs - Source Registers

SDRAM - Synchronous Dynamic Random Access Memory

SoC - System-on-chip

SP - Static Power

SRAM - Static Random Access Memory

TA - Fully Approximate Circuits

TP - Total Power Dissipation

TI - Total of Instructions

TILAF - Total ILAF Approximate Instructions

VHDL - Very High Speed Integrated Circuits Language

18

Chapter 1

Introduction

The exponential growth in computing power demand and the limitations imposed by the
end of the Dennard scale [16], have challenged designers to find alternative solutions to
maintain system performance within limited energy and cost budgets. Precise computing
requires high resources to ensure the accuracy of results. However, many applications,
such as image processing, data mining, and machine learning, can tolerate a certain
degree of inaccuracy in calculations without significantly compromising the quality of
the final results.

In this context, approximate computing (AC) emerges as a promising approach to
balance the need for performance and energy efficiency in applications that tolerate ac-
ceptable error margins. Approximate computing encompasses a range of techniques that
vary from the circuit level to the application level, enabling the development of hardware
and software that perform calculations with reduced precision but with significant gains
in energy consumption and performance [79].

Figure 1.1 presents examples of approximate computing approaches. In software,
the Loop Perforation technique modifies the loops increment, reducing runtime. In
hardware, approximate circuits minimize the area usage, and potentially, the power con-
sumption, by simplifying the number of logical components. At the architectural level,
approximations allow the creation of approximate cores. Software/Hardware approxi-
mation techniques can be exemplified combining approximate instructions and software
techniques offers performance/power consumption gains.

At the circuit level, several proposals for approximate arithmetic circuits, such
as adders, subtractors, multipliers, and dividers [30, 24, 31], have been widely studied.
These circuits aim to reduce the circuit’s area, energy consumption, and delay time at the
cost of lower calculation precision. Most current proposals focus on small-scale circuits
with single-bit operations, needing deeper analyses of the behavior of such circuits in real
platforms and with larger inputs. Furthermore, when evaluating small circuits, these
works do not have the opportunity to analyze the circuit accuracy and physical behavior
in the presence of long inputs and outputs or even on a real-world design platform.

19

Figure 1.1: Examples of approximate computing techniques: software, hardware, archi-
tecture, and software/hardware. Source: author.

On the other hand, at the software level, most AC techniques aim to solve specific
problems or require intervention from the programmer, who should identify which appli-
cation parts are susceptible to approximations [53]. AC techniques also target identifying
parts of an application that can be approximated, allowing for resource savings while
maintaining the application’s proper functionality.

One opportunity to advance in approximate computing lies in introducing an ad-
ditional level of approximation with the combined usage of hardware and software tech-
niques. From this perspective, this thesis presents a set of studies and approaches for
exploiting hardware/software approximate techniques. Specifically, this research work
has investigated and designed a range of approximate arithmetic circuits to work as build-
ing blocks of new instructions. These instructions show their applicability in different
software techniques such as loop perforation and approximate mathematical functions.
To carry out this research, we have extended a toolchain based on the RISC-V processor
architecture [56]. Concerning the research goals, this thesis has the following:

• Explore the impact of approximate computing at different levels of abstraction,
focusing on the implications of accuracy, power consumption, and performance;

• Investigate and propose innovative approximate computing techniques at different
levels of abstraction (software and hardware);

• Integrate AC techniques into widely adopted platforms, such as the RISC-V archi-
tecture, providing an infrastructure for developing approximate systems;

• Investigate the feasibility of approximation techniques in mathematical functions
and control structures, such as loops, for applications that require high performance
but tolerate controlled errors;

• Analyze the impact of approximate computing techniques in real applications,
seeking a balance between efficiency and precision.

20

This manuscript is structured as illustrated in Figure 1.2, which presents the pub-
lished papers as outcomes of each research step. The papers present the physical char-
acterization and evaluation of approximate arithmetic circuits [7, 8], the instruction-
level approach to loop perforation [9], and the instruction-level approach to approximate
mathematical functions [10]. Other publications carried out along this work present
the exploration of dark silicon-aware GPU-based system designs [62] and design space
exploration in dark-silicon-aware heterogeneous architectures [6].

Figure 1.2: Overall structural diagram of the thesis chapters. Source: author.

21

Chapter 2

Approximate Computing

Approximate computing offers techniques ranging from the circuit level to the application
level, providing benefits on energy efficiency, faster runtime, and even circuits’ area
shrinking. This chapter introduces AC concepts and techniques, classifying them into
physical, logical, and architectural levels. This chapter also highlights the need to balance
precision and performance when adopting AC techniques.

2.1 Contextualization

Approximate computing is an emerging paradigm that proposes the introduction of
insignificant and controlled inaccuracies so that significant savings can be achieved in
design metrics such as execution time, design area, and energy efficiency [14]. According
to Palem and Lingamneni [49], the first idea of approximate computing was used in
approximate signal processing, where approximation was approached to design systems
with limited resources in the areas of artificial intelligence and real-time computing. The
second idea came from algorithmic noise tolerance, allowing circuits to be unreliable in
the first instance but to use algorithmic error control schemes based on system statistics
and input and output behavior to fix resulting errors. From these ideas, inaccurate
design began to be applied at the physical design level, logical design, and architectural
layers. Many computing processes and/or tasks may require little precision in their
results. Some applications of machine learning, signal processing, database analysis,
computer vision, and natural language processing do not require an exact answer but a
“good enough” result for their purpose [2].

AC provides greater freedom to explore the design space, as it allows compromising
computational precision to obtain new regions of performance that were not possible in
the traditional way. However, the challenge is the difficulty of determining how safe an
approach is for a system or application and predicting how it behaves in synergy with
other systems participating in the collaboration. Although promising, effective use of

22

AC requires carefully selecting the parts of the system (circuit, hardware, or software)
that can be approximated and the approximation strategies. Inappropriate use of AC
may lead to an unacceptable quality loss.

The related research presents different AC metrics, such as minimum acceptable
precision, amplitude precision, information precision, average error distance, normalized
error distance, error rate, error significance, maximum error, and magnitude, among oth-
ers [63, 20, 79]. Most metrics compare some output items in the approximate calculation
with the exact calculation.

AC presents differs characteristic terminology, such as the term error, which indi-
cates that the result with AC from the result without AC, differentiating itself from the
meaning of fail in which it is commonly used, when referring to the fact that the result
did not come out as expected. Another characteristic term is accuracy, a crucial concept
that refers to the distance between the approximate and exact result (this distance is
calculated using error metrics, such as Relative Error). The terms exact/accurate/non-
approximate refer to an application or result without approximation techniques, generally
used as a comparison reference for results with approximate techniques.

2.2 Organization of AC Techniques

Many research works focus on organizing the set of AC techniques into specific cate-
gories. Palem and Lingamneni [49] divide AC into Physical, Logical, and Architecture
(Figure 2.1). The physical category concerns methods that change the operating con-
ditions of a circuit, such as voltage and energy consumption. At the logical category,
methods to change the logical functions of a computational block, such as an adder or
multiplier, are applied to reduce the complexity of the circuit, area, or energy consump-
tion. Finally, the architectural category refers to methods that somehow change the
architecture of a system, removing components and/or connections to save resources.

Shafique et al. [63] classify AC approaches into Software, Hardware/Circuits, and
Architecture (Figure 2.2). The software category approach encompasses manual and au-
tomatic annotation techniques to skip code snippets and parallels and exchange precise
modules for approximate ones. Despite recognizing the potential to use multiple tech-
niques simultaneously at different categories, the work maintains its classification into
only three main categories. Approximations at the hardware/circuit category include
designing approximate versions of logic circuits using algorithms or designing arithmetic
datapaths with approximate adders or multipliers, supply voltage reduction techniques,
minimize the number of transistors, and reduction in memory units. Approximations at
the architectural category can be made with complex algorithms using Artificial Neural
Networks (ANNs) to identify critical neurons with approximate instructions and trun-
cation of critical paths.

Leon et al. [32] proposed a classification of AC approaches divided into software,

23

Figure 2.1: Classification of AC proposed by Palem and Lingamneni. Source: [49].

Figure 2.2: Classification of AC techniques proposed by Shafique et al. Source: [63].

hardware, and architecture, considering the techniques of approximate programming
languages, loop perforation, and memory access skipping as approximate software me-
thods. Approximate hardware comprises arithmetic circuits (addition, multiplication,
and division) and approximate synthesis (automatic approach to generating inexact cir-

24

cuits). Approximate architecture are approximate processors and approximate data
storage (Figure 2.3). Xu et. al [79] use the same approach to organize AC techniques
but add Instruction Set Architecture (ISA) extensions to the architecture category.

Figure 2.3: Classification of AC techniques proposed by Vasileios et al. and Xu et al.
Source: [32, 79].

The scientific work proposing taxonomies for AC, classifies approximate com-
putation reflecting the technological developments of their time and specific con-
texts [42, 27, 2]. However, as one may notice, the authors adopt the same standard
categories (software, hardware, architecture) to organize the techniques. Classifications
are expected to cover as many techniques as possible in the least general way; after all,
classifying with hardware and software is already a common classification. The classi-
fications should evolve as new challenges and solutions emerge, reflecting the diversity
of applications and the interdisciplinary nature of approximate computing. For exam-
ple, the AC approaches presented in [59, 21, 73] whose proposals simultaneously employ
multiple techniques. Regarding new AC techniques that may find difficult to fit into
the previous classifications, Figure 2.4 presents a new extended taxonomy for AC tech-
niques. The new techniques are represented in double borders. The novelty is on the
Software/Hardware category, which covers software techniques relying on approximate
hardware.

The Loop Perforation (LP) technique is widely used in AC, since any modification
in the loop increment already makes it approximate. Several software techniques are
employed for this purpose; however, the use of hardware techniques to complement LP
is still in the development phase. Catelan et al. [9], who exploit approximate instructions

25

in hardware to modify the LP increment. Similarly, approximate mathematical functions
have several software-based approximation techniques, but also allow the replacement of
exact instructions by approximate instructions in hardware, as demonstrated by Catelan
et al. [10].

Figure 2.4: Proposed taxonomy for approximate computing. Source: author.

2.3 Software Support for Approximate Computing

The objective of software approximate computing techniques is to improve programs’
runtime and/or energy consumption. Typical software techniques are approximated
libraries/frameworks, compiler extensions, precision tuning tools, runtime systems, and
language annotations [32].

REACT (Rapid Exploration of Approximate Computing Techniques) [77] is a
modeling framework that allows researchers to rapidly evaluate approximate compu-
ting techniques for achieving energy efficiency and modeling through user-initiated error
injection. Techniques that REACT can evaluate include data approximation, which
introduces controlled errors to reduce energy consumption; operations approximation,
which uses simplified arithmetic operations; and circuit approximation, where delibera-
te faults are introduced to reduce area or energy consumption; control approximation,
which modifies the program control flow to avoid complex computations; and error mode-
ling, which allows controlled injection of errors to study the impact of approximations on

26

the quality of results. REACT employs a custom linear energy model to estimate energy
savings. It allows accurate and rapid exploration of the energy-quality trade-off space of
approximate computing. The paper lists eight approximate computing techniques, such
as DRAM Refresh Rate, Neural Acceleration, and Precision Scaling. The tests were
performed using applications with varying AC techniques. The results show an average
error of 0.87%, ranging from 0.31% to 1.38%, depending on the AC technique and the
application under analysis.

FlexJava [51] features a small set of extensions that reduce annotation effort for ap-
proximate programming, allowing programmers to annotate outputs that exhibit approx-
imation tolerance. Programmers need to manually write down all approximate variables,
statements, and safe operations to approximate. The FlexJava compiler, equipped with
an approximation safety analysis, automatically infers operations and data that affect
these outputs and selectively marks them as approximations, giving safety guarantees.
The results achieved energy reduction when exchanging precise computation for approxi-
mate computation. FlexJava results are based on comparisons to EnerJ [59]. FlexJava
reduced the number of annotations between 2 and 17× and a reduction in annotation
time between 6 and 12×, keeping the same level of energy savings.

AppSyn [4] is a synthesizer program that can take specific input, an input-output
set, or a complete implementation reference. AppSyn searches among the implementa-
tions to find a program that meets a given specification. The programmer only needs
to provide a reference and a desired precision value. The synthesizer will try to find an
approximate implementation that satisfies the given limits. The synthesizer also vali-
dates whether the approximate program result is more efficient than the reference. The
output is the approximate implementation, and a table with speedup results.

ACCEPT [58] compiler introduces specific annotations to show the programmer
which code regions are more suitable for approximation and which techniques would be
most promising. The ACCEPT offers a set of techniques to users interested in applying
approximations in a program: loop perforation, loop parallelization, neural acceleration,
and approximate functions. The compiler evaluates the approximation techniques in the
code and presents performance and accuracy results, thus allowing the programmer to
analyze the impact of the approximations.

Loop Perforation (LP) is an AC software technique that has been gaining apprecia-
tion among designers because it is simple, general purpose, and is widely applicable. LP
consists of skipping loop iterations to reduce computational workload and gain perfor-
mance. A simple change in the loop step variable is enough to change its performance,
but manually changing one or more loops of an application sometimes becomes more
costly than the loop execution itself. ACCEPT compiler automatizes the process to find
suitable loops for perforation. The tool considers only canonical loops fitted for perfo-
ration, which have a precise body without early exits and conditionals. The ACCEPT
divides the loop into three blocks: the header, the body, and the latch. Loop calculations
are performed inside the body, and the header and latch are responsible for changing
condition variables and checking jump conditions. Other techniques are also applied to

27

find loops for perforation, such as: perforation space exploration algorithm [64], selec-
tive dynamic [34], time redundancy [44], polyhedral compilation [3], Linear Interpolation
(LI), and LP with Nearest Neighbor (NN) [57].

Most software techniques found in the literature seek to find code sections that
can be automatically [59, 58] or manually [4] carried out inserting approximate code,
variables, loops, and functions. There are also benchmarks capable of approximate com-
puting to ensure fairer and more reproducible comparisons. AxBench [81] has a repre-
sentative set of applications for a fair evaluation of different approximation techniques.
It contains applications for Central Process Unit (CPU) (C/C++), Graphics Proces-
sing Unit (GPU) (CUDA), and hardware (Verilog). Table 2.1 presents 21 applications,
platforms, domains, and metrics from AxBench.

Table 2.1: Applications, platforms, domains, and metrics of AxBench. Source: [81].

Applications Platforms Domains Metrics
binarization GPU Image Processing Image Difference
blackscholes CPU, GPU Finance Average Relative Error
brent-kung Hardware Computational Arithmetic Average Relative Error

cannel CPU Computational Arithmetic Average Relative Error
convolution GPU Machine Learning Average Relative Error
fastwalsh GPU Signal Processing Image Difference

fft CPU Signal Processing Average Relative Error
fir Hardware Signal Processing Average Relative Error

forwardk2j CPU, Hardware Robotics Average Relative Error
inversek2j CPU, GPU, Hardware Robotics Average Relative Error
jmeint CPU, GPU Games 3D Loss Rate
jpeg CPU Image Processing Image Difference

kmeans CPU, Hardware Machine Learning Image Difference
kogge-stone Hardware Computational Arithmetic Average Relative Error
laplacian GPU Image Processing Image Difference
meanfilter GPU Machine Vision Image Difference

neural network Hardware Machine Learning Average Relative Error
newton-raph GPU Numerical Analysis Average Relative Error

sobel CPU, GPU, Hardware Image Processing Image Difference
srad GPU Medical Images Image Difference

wallace-tree Hardware Computational Arithmetic Average Relative Error

2.4 Hardware Support for Approximate Computing

One of the AC hardware techniques consists of modifying logical functions to reduce
the circuits’ complexity and thus reduce area and energy consumption. It is essential to
highlight that errors will be introduced into the circuit when modifying logical functions.
However, these errors occur in just a few combinations, and the designer considers re-
ducing complexity or energy consumption favorable. In that case, these circuits will be
advantageous for approximate applications [74].

Various works propose different techniques (voltage over-scaling, speculative carry
select addition, and memristor) for the development of approximate adders [38, 83, 43,
82, 36, 33, 18]. The commonly used technique is circuit minimization, which reduces the

28

number of logical components in the circuit. Gupta et al. [26] presented an Approximate
Mirror Adder (AMA), which, with the removal of transistors and the insertion of minimal
errors in the truth table, derives four different circuits for an approximate Full Adder
(FA): AMA1, AMA2, AMA3, and AMA4. Compared to other approximate adders,
the Inexact Adder Cells (InXA) [1] have fewer transistors on their three terminals, thus
occupying a smaller area, in the three designed models, InXA1, InXA2, and InXA3. The
Approximate XOR/XNOR-based Adder (AXA) [80] is based on exact adders with XOR
and XNOR gates, with a reduction in the number of transistors and the production of
three new approximate adders (AXA1, AXA2, and AXA3).

Table 2.2 shows the number of transistors and the number of errors of AXA, AMA,
and InXA adders. Note that AXA2, InXA1, and InXA3 adders have the same number
of transistors; however, the number of errors is significantly different.

Table 2.2: Comparison among AXA, AMA, and InXA adders. Source: [80, 67].

Adder Number of Transistors Number of errors - SUM
AMA1 16 2
AMA2 14 2
AMA3 11 3
AXA1 8 4
AXA2 6 4
AXA3 8 2
InXA1 6 0
InXA3 6 2

Approximate subtractor circuits also use the circuit minimization technique, in-
troducing controlled errors into the truth table and obtaining the logical expression
through the Karnaugh Map. Examples of such circuits are the Approximate Subtractor
Cell (AXSC) [12] and Approximate Subtractor (APSC) [24] subtractors. The AXSC
presents three derivations of approximate subtractors, with the insertion of errors va-
rying between the SUM and Cout outputs for 2 to 4 errors. APSC has four subtractor
derivations, with the insertion of 1 error only in the SUM output. Table 2.3 presents the
number of errors inserted in each subtractor and the area (µm2), using a 45nm transis-
tor. It is noted that the AXSC2 subtractor presents the largest insertion of errors in its
outputs, with the smallest area size. The APSC4 subtractor only presents one error in
its output, and the area is just one unit larger than that of the AXSC2.

Table 2.3: Comparison between AXSC and APSC subtractor. Source: [24].

Subtractor Number of errors Area (µm2)
AXSC1 2 16
AXSC2 4 8
AXSC3 2 14
APSC4 1 9
APSC5 1 15
APSC6 1 19
APSC7 1 17

In multipliers, the insertion of errors in the truth table is also viable. Kulkarni

29

et al. [31] presented a conversion of a precise 2 × 2 multiplier to an approximate 2 ×
2 multiplier. A single entry in the multiplier truth table was modified. The change
reduced the number of logic gates required to implement the multiplier. The proposed
approximate multiplier presented an average energy saving between 31.78% and 45.4%,
with an average error variation between 1.39% and 3.35%. The average relative error
increases with the number of operand bits but saturates between 3.3% and 3.35%.

Another technique used for approximate arithmetic circuits is to replace part of
the operation hardware with approximate components. Gorantla and Deepa [24] re-
placed the subtraction hardware in the divider circuit with the approximate subtractors
(APSC), thus obtaining four types of approximate dividers (APDr4-APDr7). These di-
viders showed low power consumption (APDr4 = 71%), lower delay (APDr6 = 40%) and
smaller area (APDr4 = 29%) compared to the exact divider.

EvoApprox8b [45] is an 8-bit approximate adder designed to improve speed and
power consumption efficiency, especially in embedded systems and mobile devices. Ins-
tead of providing exact results, EvoApprox8b uses hardware approximation techniques to
simplify addition operations, which reduces the number of transistors and signal propa-
gation time. This is achieved by modifying the digital circuit architecture, including
reducing the complexity of logic gates and eliminating intermediate operations. This
approach results in an adder that sacrifices some accuracy in favor of faster performance
and lower power consumption. By employing approximation directly at the hardware
level, EvoApprox8b provides an efficient solution for applications where absolute accu-
racy is not critical, but system efficiency is paramount. EvoApprox8b is a benchmark
for circuit approximation methods, having a library with 430 approximate adders and
471 approximate multipliers, both 8 bits, with models in Verilog, Matlab, and C of all
circuits approximate, in addition to presenting seven different error metrics, area, delay,
and power. The use of EvoApprox8b allows the integration of hardware and software
design circuits.

2.5 Software/Hardware Support for Approximate

Computing

The category of software/hardware support for AC is comprised of frameworks, such as
EnerJ [59], RISK-5 [21], and QUORA [73], which have software for control approximation
depending on approximate hardware, such as SRAM, DRAM, and operations units (with
integers and floating point numbers).

The EnerJ simulator is a Java extension that allows the addition of approximate
data types. The model proposes using qualifiers to declare data that can be subject
to approximate calculation. EnerJ automatically maps approximate variables to low-
power storage and utilizes low-power operations. Figure 2.5 presents the hardware model
assumed in the EnerJ system, where the shaded areas indicate approximate components.

30

The SRAM cells in the register and data caches reduce the supply voltage. The floating
point unit performs approximation using reduced mantissa. The reduction in the update
rate makes the main memory (DRAM) approximate.This allows the programmer to
explicitly control how information flows from approximate data to precise data.

Figure 2.5: EnerJ hardware model. Source: [59].

RISK-5 [21] is an extension of RISC-V ISA for approximate hardware unit control.
RISK-5 extends the RISC-V architecture, implementing control mechanisms combining
several approximation techniques. The approximate hardware resources are informed
to the software, that in turn, has control of what and how much approximation will
be used in an application. This control can range from turning approximate hardware
on/off to configure allowable error levels and probabilistic error configuration operating
parameters, such as the refresh rate for approximate SDRAM. Approximations can be
configured dynamically, allowing for simplified design space exploration. Figure 2.6
provides a visual representation of the RISK-5 hardware. The key component is the
status register, which is responsible for the approximation control of each unit.

Figure 2.6: RISK-5 hardware schematic. Source: [21].

Quality programmable vector processors for approximate computing (QUORA) [73]
is a programmable processor that expresses its tolerance for AC at the hardware-software

31

interface (HW/SW), having as its main components a quality programmable ISA (QP
-ISA) and a microarchitecture (QP-uArch). QUORA features precision scaling-based
hardware mechanisms with error monitoring and compensation to facilitate configurable
quality execution across these processing elements and demonstrate significant energy
benefits. The HW/SW interface allows approximate instructions to be identified and
specifies the amount of error each instruction can tolerate during its execution. Figu-
re 2.7 presents the QUORA microarchitecture. The QUORA design has three hierarchy
levels: APE - Approximate Processing Elements, MAPE - Mixed Accuracy Processing
Elements, and CAPE - Completely Accurate Processing Element. These levels provide
different trade-offs between power and quality, and the hardware mechanisms are based
on precision scaling with monitoring and error compensation.

Figure 2.7: QUORA microarchitecture. Source: [73].

32

2.6 Architectural Support for Approximate Com-

puting

This section presents the architectural support for AC regarding strategies using ap-
proximate memories. When an application can tolerate occasional errors in some data,
approximate storage is used, and data recovery errors may occur. In either case, soft-
ware must determine which data can tolerate errors and which needs accuracy. There
are several propositions for adopting approximate memories [39]. The Unreliable Reten-
tion technique is the most used. This technique is restricted to DRAM and consists of
updating at longer intervals than the maximum guaranteed retention of the cells. As a
result, the bits that store 1 can lose their stored value due to capacitor discharge.

Sampson et al. [60] propose two approximated memory techniques. The first uses
multi-level cells (MLC - Multi-Level Cell Model) to allow greater density or better per-
formance, considering the cost of imprecise errors caused in data recovery. The other
technique uses of faulty bit blocks to store approximate data. MLC storage blocks that
have faults. When the first uncorrectable block fails, the memory will issue an interrupt
and indicate the failed block, which will be used as a temporary storage block. The au-
thors conclude that approximate storage helps mitigate the disadvantages of solid-state
systems and non-volatile memories, as there is no significant compromise in storage
quality for write acceleration and lifetime extension criteria.

Another approach of approximate memories was demonstrated in [37]. The discrete
cosine transform (DCT) was applied to a dimension between the cache and main memory
to reduce memory traffic while maintaining acceptable quality degradation using natural
sampled data such as sound, sensor data, and images.The DCT performs an orthogonal
transformation that preserves energy, and its transformation matrix is orthonormal, thus
allowing an approximate DCT matrix to be written. The approximate DCT was used
in an approximate memory based on lossy compression, performing transformations of
memory blocks. As a result, the authors point out that a DCT of approximately 8 points
has better compression performance for approximate memory than a DCT of 16 points.

2.7 Final Remarks

This chapter presented an overview of approximate computing, demonstrating its main
techniques and applications in both software and hardware levels. AC is still an un-
derexploited area with diverse research possibilities, given that most existing work is
related to specific applications, a limited set of bits, or requires much knowledge from
the programmer. Regarding approximate circuits, there is great potential for exploiting
mixed exact/approximate circuits that provide a balance between precision and energy
efficiency. Another promising field is the development of approximate instruction sets
combining integer and approximate floating point instructions, which would allow the

33

execution of complex mathematical operations with less consumption of computational
resources. The diversity of AC techniques reflects the interdisciplinary nature of this
subject, requiring a constant evolution of classifications and approaches.

34

Chapter 3

Design of Approximate Arithmetic
Circuits

This chapter studies approximate arithmetic circuits. We discuss the design, develop-
ment, and evaluation of approximate arithmetic circuits developed as part of this the-
sis. The chapter also presents experiments and results of prototyping those circuits on
Field-Programmable Gate Array (FPGA) platforms. The results present the trade-offs
between accuracy, resource usage, and energy efficiency.

3.1 Contextualization

The difficulty of accommodating more cores in constrained power budgets threatens even
the multicore scaling paradigm. Thus, designers seek new computing sources to deliver
better performance with power and cost constraints. The workloads that drive com-
puting demand have also fundamentally changed across the computing spectrum, from
mobile devices to the cloud. Such workloads exhibit intrinsic resilience to approxima-
tions and an ability to produce acceptable outputs even when some of their calculations
are inaccurate [72].

Some authors [27, 49] indicate that AC techniques can be applied at the logical
level that cover methods to approximate logic functions in digital circuits. There is a
diversity of proposals for approximate circuits [30, 24, 31, 13], mainly for approximate
adders, subtractors, multipliers, and dividers. Most of these studies present circuits with
just 1-bit, showing details such as error placement, area usage, power, and delay. When
evaluating small circuits, these works need more opportunities to analyze how circuit
accuracy and physical behavior will perform in the presence of larger inputs and outputs
and even in a real-world design platform.

The following sections will present an analysis of the behavior of a wide range of

35

precision-controlled approximate arithmetic circuits. An evaluation of those circuits on
flexible prototyping platforms, such as FPGAs, is also presented and discussed.

3.2 Approximate Arithmetic Circuit Designs

There are many proposals of approximate circuit designs [26, 80, 1, 30, 47, 24, 13], mainly
focusing on approximate arithmetic circuits such as adders, subtractors, multipliers, and
dividers. Some studies present circuits with just 1-bit, evaluating their features regarding
error positioning, area usage, power, and delay.

Most research presents only a single circuit to control accuracy. For example,
Gorantla and Deepa [24] present four types of subtractors (APSC4-APSC7), where the
difference between them is only the position where the error was inserted in the truth
table. Although the APSC circuit is visibly larger than the exact subtractor, there
are considerable power gains. The APSC4, with 90nm transistors, achieves a power of
891nW compared to the 3475nW of the exact subtractor [24].

Approximate subtractors AXSC1, AXSC2, and AXSC3 are based on XOR and
XNOR cells with transistor reduction in each cell. Chen et al. [13] indicated that the
precision of the Cout output is more important than the S output. Cout remains un-
changed in AXSC1 and AXSC3, and a combination of the outputs S and Cout, aiming
to reduce the delay, is proposed in AXSC2 and AXSC3. AXSC approximate subtractors
have an absolute error distance between 2 and 4. The logic circuits of the AXSC sub-
tractors are smaller than the exact subtractor, which is consistent with the reduction in
the size of the area, with 180nm transistors of the AXSC2 of 50µm2 compared to the
exact subtractor that has 90µm2 of area [24].

The approximate adder designs of AMA type (Approximate Mirror Adder -
AMA) [26] is based on the Mirror Adder. In an AMA design, the transistors of the
conventional circuit were removed one by one, always ensuring that for any combination
of the inputs A, B and Cin would not result in a short circuit or open circuit. A few
errors in the truth table were inserted and a set of approximate adder circuits were de-
rived (AMA1, AMA2, AMA3, and AMA4). However, taking into account the size of the
logical expression, only the approximate adders AMA1, AMA3, and AMA4 were used
for the tests. Compared to the full adder that has an area of 40.66µm2, the AMA3 and
AMA4 adders have an area, respectively, of 22.56µm2 and 23.91µm2 [26].

The AXA adder (Approximate XOR/XNOR - based Adder) [80] was designed based
on the transistor removal technique. The complete AXA1 adder is an exact adder with
XOR gates and its implementation uses 8 transistors. The AXA2 adder is based on
XNOR ports requiring 6 transistors. The AXA3 adder was based on the AXA2 adder
with two more transistors for better accuracy. The three models were evaluated in this
work. Concerning the exact adder, the AXA2 improves 65.45% in static power [80].

36

The approximate InXA1, InXA2, and InXA3 adder models [1] were developed with
inexact adder cells with less circuit complexity compared to other approximate circuits
found in the area (AMA, AXA, LOA, and ESA). The InXA1 adder has an approximate
design on the Cout output. InXA2 and InXA3 have approximate designs on the S output.
InXA1 and InXA3 were evaluated in this work. Analyzing delay, energy dissipation, and
the energy-delay-product (EDP), the InXA1 and InXA2 adders outperform the AMAs
and AXAs adders in all metrics; however, the InXA3, despite dissipating less energy,
incurs a higher amount of delay [1].

Table 3.1 presents the logical expressions of the approximate adder circuits. The
S output is different among the circuits once it is focused on approximate designs.
Regarding the Cout output, one may also observe that the AXA1 adder has a more
complex logic; AMA1, AMA3, AXA2, and AXA3 have the same expression in the Cout
output.

Table 3.1: Logical expressions for approximate adders. Source: author.

Circuits Output Logical Expression Circuits Output Logical Expression

AMA1 S A.B.Cin+A.B.Cin AXA2 S (A⊕B)

Cout A.Cin+B Cout (A⊕B).Cin+A.B

AMA3 S (A.Cin+B) AXA3 S (A⊕B).Cin

Cout A.Cin+B Cout (A⊕B).Cin+A.B

AMA4 S A.Cin+B.Cin InXA1 S A⊕B ⊕ Cin

Cout A Cout Cin

AXA1 S Cin InXA3 S Cout

Cout ((A⊕B).Cin+A.B) Cout (A⊕B).Cin+A.B

Approximate subtractors APSC4-APSC7 have a single error inserted in output
S and output Cout is the same for all subtractors, so the absolute error distance is
1. Approximate subtractors AXSC1-AXSC3 have the same Cout output in AXSC1 and
AXSC3, and the same as the S output in AXSC2. Table 3.2 shows the logical expressions
of the approximate subtractor circuits.

Table 3.2: Logical expressions for the approximate subtractors. Source: author.

Circuits Logical Expression Circuits Logical Expression

APSC4 A.B +B.Cin+A.Cin+A.B.Cin AXSC1 A⊕B + Cin

APSC5 A.B +B.Cin+A.B.Cin+A.Cin AXSC2 A⊕B ⊕ Cin

APSC6 A.B.Cin+A.B.Cin+A.B.Cin AXSC3 Cout

APSC7 A.B.Cin+A.B.Cin+A.B.Cin

The subtractors APSC4-APSC7, AXSC1, and AXSC3 designs have the same logical
expression for the Cout output:

Cout = (A⊕B).Cin+ A.B

37

Kulkarni [31] presents the conversion of a precise 2×2 multiplier to an approximate
2×2 multiplier. A single entry of the multiplier truth table was modified for the conver-
sion, as highlighted (bold) in Table 3.3. The modified entry in the truth table refers to
the multiplication of 112 by 112, whose precise result is 10012, and whose approximate
result equals 1112. This change reduced the number of logic gates required to implement
the multiplier. The approximate multiplier showed an average energy saving between
31.78% and 45.4%, with the average error variation of 1.39% and 3.35%. The average
relative error increases according to the number of operand bits; however, it saturates
between 3.3% and 3.35%.

Table 3.3: Approximate 2× 2 multiplier truth table. Source: [31].

Input Output
A1 A0 B1 B0 Out2 Out1 Out0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 0 1 0 0 1
0 1 1 0 0 1 0
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 0 1 0 1 0
1 0 1 0 1 0 0
1 0 1 1 1 1 0
1 1 0 0 0 0 0
1 1 0 1 0 1 1
1 1 1 0 1 1 0
1 1 1 1 1 1 1

The division process includes subtraction, shifting, and comparison. Gorantla and
Deepa [24] replaced the subtraction hardware in the divider circuit with the approximate
subtractors (APSCs) they proposed, thus obtaining four types of approximate dividers
(APDr4-APDr7). Validation of approximate dividers was implemented in Verilog HDL
using transistor libraries with 180nm, 90nm, and 45nm technologies in the Cadence RTL
compiler. The approximate dividers showed low power consumption (APDr4 = 71%),
shorter delay (APDr6 = 40%), and smaller area (APDr4 = 29%) compared to the exact
divider.

3.3 Experimental Setup, Results, and Discussion

We performed experiments to evaluate precise, approximate, and mixed arithmetic cir-
cuits. The approximate arithmetic circuits were built with a reconfigurable FPGA plat-
form and were organized into 4 circuit types: adders, subtractors, multipliers, and di-
viders with different bit widths (8-, 16-, 32-, and 64-bits). The analyzed circuits were
compared in accuracy, area usage, and power dissipation metrics.

The experiments were performed considering precise circuits, approximate circuits,

38

and mixed circuits (precise and approximate). The mixed circuits were designed so
that the bit width design was divided into first and second halves. The first half (least
significant bits) comprised precise circuits and the second half (most significant bits) of
approximate circuits. The results of mixed circuits will be represented with a capital
“M” as the first letter.

The experiments used 8 approximate adder circuits and 7 approximate subtractor
circuits. The design of the approximate multiplier circuits was built based on the ap-
proximate adders as building blocks. Approximate divider circuits were developed based
on the approximate subtractors. The complete experimentation with the approximate
arithmetic circuits, with detailed information about the procedures used, tools, data for
circuit evaluation, complete tables with results, and metrics used, can be found in the
paper [7, 8]. This section will present the main results with their respective analyses and
discussions.

All circuits were designed in VHDL, synthesized on the Cyclone IV GX FPGA with
the ALTERA Quartus II Web Edition 13.1 IDE tool. Simulation scripts and testbenches
were simulated using the Altera-ModelSim 10 tool. The area usage results come from the
number of FPGA logic elements used by the circuit design. The total power dissipated
was obtained by the PowerPlay Power Analyzer tool. PowerPlay estimates the design
power dissipation (PD) by the sum of static power (SP), dynamic power (DP), and
I/O power (IOP).

Figure 3.1 presents the VHDL code of the exact 1-bit adder. In lines 16 and 17,
there are the logical output expressions Cout and S. Figure 3.2 presents the VHDL code
of the approximate adder with the 1-bit InXA3, identified by the entity Adder InXA3 1,
where “1” is the number of bits in the adder in question. Lines 16 to 21 express the logical
output functions Cout and S. To change the type of approximate adder, simply replace
the code section of these lines with the logical expressions of the adder outputs—desired
approximate value, as well as the entity’s name1.

Figure 3.3 shows the design of the mixed approximate adder with 2 bits InXA3,
identified by the entity Adder M InXA3 2, where “2” refers to 2-bits. Note that the
component Adder InXA3 1 (line 17) represents the approximate adder and the com-
ponent Adder Accuracy 1 (line 22) is the exact adder. Both make up the structure of
the mixed adder. FA0 (line 28) represents the least significant bit and is composed of
the exact adder, while FA1 (line 30) is the most significant bit and is composed of the
InXA3 approximate adder. To increase the number of bits in the mixed adder, increase
the number of FA. Similarly, the operation of the other proposed approximate arithmetic
circuits works.

The accuracy metric is based on the relative error percentage (REp = 1 − AO
EO

)
of the approximate circuits over the accurate circuits. To calculate the relative error
percentage, we developed a testbench performing a line-by-line comparison between the

1Arithmetic circuits from 1 to 32 bits are available at: https://github.com/danielacatelan/Circuits-
Approximate

39

Figure 3.1: 1-bit accuracy adder in VHDL code. Source: author.

Figure 3.2: 1-bit approximate adder InXA3 in VHDL code. Source: author.

40

Figure 3.3: 2-bit mixed circuit in VHDL code. Source: author.

accurate and approximate circuit results. The area usage results were based on the
relative area (RA = ALE

ELE
) metric calculated from the number of total logic elements

used by the approximate circuit design (ALE) and the accurate circuit (ELE). Total
power was the base metric for calculating the relative power (RP = AP

EP
) of circuits,

considering Approximate Power Circuits (AP) and Precise Power Circuits (EP). Error
metrics such as Error Distance (ED), Error Rate (ER), Mean Relative Error Distance
(MRED), and Normalized Error Distance (NED) [35] were also used to analyze the
inaccuracy of the proposed approximate arithmetic circuits.

41

The results presented in this section are divided into experiments on accuracy, area
usage, and power dissipation in approximate circuits.

3.3.1 Accuracy Results

Relative error percentage (REp) for the approximate adders from 8- to 64-bits are pre-
sented in Figure 3.4. With the exception of the M AMA1 and M AXA3 circuits that
showed REp of 99.5%, the other circuits showed REp of 100%. The results on 8-bits
circuits present high accuracy (some circuits have small relative errors percentage of
21.9%) when compared to the 64-bits circuits. The ripple carry effect of an error that
is propagated to the most significant bits is the reason behind the best performance of
short bit-width adder circuits.

Figure 3.4: Accuracy result (relative error percentage) for adder circuits. Source: author.

Mixed circuits have a smaller number of errors (lesser REp) compared to the ap-
proximate circuits of the same type. The 8-bits AMA1 approximate adder circuit has
76% of REp while its mixed type (M AMA1) has 54.7%. Mixed circuits also show better
results for 16-, 32-, and 64-bits circuits. This behavior was expected as the insertion
of precise circuits decreases the error propagation and consequently decreases the REp.
AMA1 and M AMA1 circuits achieved NED values of 0.21 while InXA1 and M InXA1
have 0.29, thus proving the reliability of an approximate adder circuit with approximate
cells of the AMA1 and InXA1 type, regardless of the size of the adder circuit.

Figure 3.5 presents the relative error percentage for the subtractor circuits. One
may observe that all the mixed subtractor circuits had better results than fully approx-
imated circuits. The 8-bits fully approximated APSC4 subtractor has a relative error

42

percentage of 57.6% while the mixed subtractor has 36.5%. The same behavior is ob-
served for all the subtractor circuits even when circuits bit-width get larger. Circuits
APSC4 and M APSC4 showed low values of NED and MRED.

Figure 3.5: Accuracy result (relative error) for subtractor circuits. Source: author.

Figure 3.6 presents the multiplier relative error percentage. The M InXA1 mixed
circuit had the best accuracy result for the 8- and 16-bits circuits. The 64-bits multiplier
circuits have 4032 adders, so the error propagation negatively impacts on the multiplier
accuracy. In order to analyze the best configuration for the mixed multiplier circuits,
we have evaluated them with the least significant adders comprised of exact circuits
(M E/A) and mixed circuits with the least significant adders of the approximate type
(M A/E). Most circuits show better results with the M E/A 4-bits configuration; only
AMA4 and InXA1 circuits show better results in the M A/E configuration. For 16-bits,
the AMA3 and InXA3 circuits have the same result regardless of the order of the accurate
and approximate adder designs.

Figure 3.7 shows the relative error percentage for approximate divider circuits. The
bars represent the REp of the quotient and the line plot the REp of the remainder. The
mixed approximate circuits were designed by substituting the least significant bits of
the accurate subtractor circuits by approximate subtractor circuits. Such approximation
settings improve the accuracy results in the Q (quotient) output signal, once this is the
most affected with the approximation settings. The R (remainder) output presents a
greater error due to its dependence on the Q output. The best accuracy results come
from the mixed divider circuits, such as the M APSC4, which presents 21.2% relative
error percentage (output Q) for the 8× 4 organization. Circuit M APSC6 achieved the
best accuracy result on the R output (59.3%). The REp of the 16×8 organization ranges
from 97% up to 99% on the Q output for fully approximated circuits.

43

Figure 3.6: Accuracy result (relative error percentage) for multiplier circuits. Source:
author.

Figure 3.7: Accuracy results (relative error percentage) for divider circuits. Source:
author.

Some approximate arithmetic designs have very close relative error percentage val-
ues. We carry out the analysis of variance (ANOVA) and statistical tests followed by
family pairwise tests (Tukey’s test) to verify whether there are a statistically significant

44

difference among those circuits accuracy. The tests were performed with the approximate
16-bits circuits that have the smallest relative error percentage values. The approximate
adder circuits M AMA1, M InXA1, M AXA3, and M InXA1, the subtractors M APSC4
and M APSC6, and dividers M APSC4 and M APSC6 have p− values < 0.001 thus
showing a statistically significant difference. The approximate multiplier circuits InXA1
and M InXA1 have p− values equal to 0.9964, thus showing that both designs have no
statistically significant differences. The statistical tests were performed for a significance
level α = 0.05.

3.3.2 Area Usage

Figure 3.8 shows the RA results of 8-bit adders2, where the white bars represent approxi-
mate adders and the gray bars represent mixed adders. The line on the graph indicates
the REp of each adder. It can be seen that there is no direct relationship between a
lower RA and a lower REp. For example, the adder AMA4 has the lowest RA but has
a high REp. Likewise, the opposite occurs: adders such as AXA3 and AMA1 have a
higher RA but a relatively lower REp than the other adders.

Figure 3.8: Percentage of relative area of approximate circuits for 8-bit adders with
relative error. Source: author.

Among all the adder circuits, the AMA4 approximate adder circuit shows better
area usage results once output S is formed by just 3 logic gates (S = A.Cin+B.Cin) and
the Cout output is formed only by the A input of the circuit. This fact occurred in all the
bit configurations analyzed. At first glance, the InXA1 seemed more promising, due to
its configuration being only an XOR gate (S = A⊕B⊕Cin), but its area results were 50%

2The table with the full RA data can be viewed in papers [7, 8].

45

of the area of the exact adder circuit. Circuits such as AMA1, AXA2, and AXA3 have a
larger relative area but with significantly better accuracy than circuit AMA4. Regarding
the relative area, the AMA4 and M AMA4 approximate adder circuits present the best
results, with expressive area reductions in FPGA.

Figure 3.9 presents the RA results of the 8-bit subtractors2. As in the adding
circuits, RA and REp have no direct relationship. It can be seen that the subtractors
AXSC2 and AXSC3 have the lowest RA but with a high REp, while APSC6, despite
having the second highest RA, has a lower REp.

Figure 3.9: Percentage of relative area of approximate circuits for 8-bit subtractor with
relative error. Source: author.

Despite the reduction in RA, the multiplier circuits do not present good results in
terms of REp. Figure 3.10 shows the graph that relates RA and REp, for 8-bit3, where it
can be seen that, although the multiplier circuits have RA lower than 80%, REp remains
high, varying between 80% and 100%.

Figure 3.11 shows the relationship between RA and REp (quotient) for 8-bit divider
circuits3. Since these circuits are composed of subtractors, RA reaches values above 60%
in most dividers. The exception is the divider with the AXSC2 subtractor, which presents
a lower RA but maintains high REp values in both configurations.

The trade-off between accuracy and area usage on the approximate designs when
prototyped in FPGA. AMA1 and AXA3 achieved good accuracy results but the area
usage in FPGA does not provide any benefit compared to the accurate design (100%
area usage or more).

3The table with the full RA data can be viewed in papers [7, 8].

46

Figure 3.10: Percentage of relative area of approximate circuits for 8-bit multiplier with
relative error. Source: author.

Figure 3.11: Percentage of relative area of approximate circuits for 8-bit divider with
relative error. Source: author.

3.3.3 Power Dissipation

Figure 3.12 the relative power of 8-bit adder circuits4 (bar graph) with their respective
REp (line graph). Approximate circuit AMA4 presents better results, which corroborates
the use of area, since circuits with small area will have lower static power, thus impacting
the total power dissipation of the final circuit.

4The table with the full RP data can be viewed in papers [7, 8].

47

Figure 3.12: Percentage of relative power of approximate circuits for 8-bit adder with
relative error. Source: author.

Figure 3.13 presents the relative power of the 8-bit subtractor’s approximate4 ex-
periments with their respective REp values. The approximate subtractor circuits have
a larger relative area than the exact subtractor circuits, except for AXSC2 and AXSC3,
thus increasing static power dissipation and decreasing the energy-saving benefits of
coarse designs. Due to its smaller relative area, the AXSC2 and its respective mixed
circuit present the best relative power results. Static and I/O power dissipation were
quite akin so that only the average dynamic power has a small difference between the
fully approximate circuit (8.10mW) to the mixed circuit (8.89mW).

Figure 3.13: Percentage of relative power of approximate circuits for 8-bit subtractor
with relative error. Source: author.

Figure 3.14 shows the relative power results of the approximate multiplier circuits4.

48

Even being built on the top of approximate adder building blocks, most of the approxi-
mate multiplier circuits had better relative power than the accurate multiplier circuit.
For complex arithmetic circuits such as multipliers, the power saving can be an issue on
the decision to adopt an approximate design.

Figure 3.14: Percentage of relative power of approximate circuits for 8-bit multiplier
with relative error. Source: author.

One may note that the 8-bits AMA4 relative power is 19.6% while the 32-bits
configuration is 98.2%. We observed that the 5× relative power increase was mostly due
to the increase in I/O power dissipation. Large circuits designed on an FPGA platform
will require more logical blocks and the routing among them, thus increasing of I/O
power and its impact on the circuit’s total power.

Figure 3.15 presents the approximate relative power of the 8-bit divider circuits5

and the REp. The logical elements and routing resource usage are the key points to the
high relative power for all the circuits. The regularity of the logical blocks and routing
available in the FPGA platform did not improve the relative area and power usage for
the divider circuits.

As in the RA and REp relationship, there is no relationship between the results
in the RP and REp relationship; however, RP has a direct relationship with RA since
circuits with smaller areas present lower static power. The adder circuit with AMA4
presents a lower RP but a high REp; the same happens with the AXSC2 subtractor and
the multiplier with AMA4. The divider circuits present high RP values and good REp
results with the quotient for the mixed circuits.

The accuracy behavior is quite akin among all the circuits. There is a linear
increase in relative error percentage according to the circuit size. The relative power

5The table with the full RP data can be viewed in papers [7, 8].

49

Figure 3.15: Percentage of relative power of approximate circuits for 8-bit divider with
relative error. Source: author.

has a different behaviour on divider circuits. For adders, subtractors, and multipliers,
the relative power increases following the area usage from 8- to 16-bits. There is not
a significant power increase from 16- to 32-bits. For the divider circuits there is a
highlighted relative power decrease from 8 × 4 to 16 × 8 circuits. The reason is that
as the replacement depth increases, the energy consumption (and power dissipation)
decreases [13].

There are many proposals presenting circuits and results on power and area bene-
fits greater than 50%. Some of those proposals present results based on simulations
or even approximate prototyped circuits. Our results show that general-purpose imple-
mentation hardware platform such as FPGAs, despite loosing the flexibility to control
or regulate the input voltage and hardware elements to fit and placement, are viable
rapid-prototyping technological alternatives for implementing approximate designs.

3.4 Final Remarks

This chapter addressed the evaluation and characterization of approximate and mixed
(accuracy and approximate) arithmetic circuits, ranging from 8- to 64-bits. The main
contributions include the analysis of the accuracy and physical characterization of these
circuits, highlighting the importance of evaluation methods to guarantee the efficiency
and reliability of approximate circuits. The circuits have been evaluated on FPGA
platforms, which provide significant energy efficiency and resource usage benefits. The
results from the proposed approximate circuits show promising error rates, significant
area usage, and energy dissipation savings, demonstrating the proposal’s potential for

50

practical applications.

51

Chapter 4

Approximate Instructions

Based on the arithmetic circuits presented in the previous chapter, we have extended the
RISC-V instruction set with the design new approximate arithmetic instructions. This
chapter presents the design and evaluation of these approximate instructions. We also
extend the SPIKE simulator, the Prof5 energy model, and the ACCEPT compiler to
design, evaluate, and compile program sources to use the proposed instructions.

4.1 Contextualization

Reduced Instruction Set Computer V (RISC-V) [56] architecture is known for its flexibil-
ity and modularity, which facilitate the incorporation of new instructions. Its open-source
code makes it easy to adapt, expand, and implement new instructions, allowing the hard-
ware to adapt to the specific needs of an approximation. The SPIKE ISA-SIM [69] sim-
ulator is a RISC-V architecture software infrastructure that offers a robust environment
for testing and validating the design of new instructions. To evaluate the performance
of applications with approximate instructions, the Prof5 [65], a RISC-V profiling tool,
has been used. Prof5 allows for detailed profiling of RISC-V programs from the SPIKE
log. The outcomes from Prof5 are the number of cycles, instructions, power, energy, and
average power per cycle. The ACCEPT [58] compiler is also part of our approximate
source-code generation infrastructure. ACCEPT introduces specific annotations to show
the programmer which code regions are most suitable for approximation and which tech-
niques would be most promising. ACCEPT offers a set of techniques: loop perforation
(LP), loop parallelization, neural acceleration, and approximate functions [53, 58]. The
compiler evaluates the techniques and presents performance results (time and accuracy),
thus allowing the programmer to analyze the impact of the approximations [54].

Figure 4.1 sketches the workflow to design and evaluate approximated instructions
in this work. We design the instruction format, opcodes, and instruction parameters
using the RISC-V simulator, SPIKE ISA-SIM (step 1). Prof5 (step 2) was extended to

52

recognize the new instructions’ energy model and evaluate them. ACCEPT (step 3) is
responsible for applying built-in approximation techniques.

Figure 4.1: Workflow for approximate instructions design and evaluation. Source: au-
thor.

4.2 RISC-V Instruction Set

The RISC-V instruction set is divided into six formats: R, I, U, S, SB, and UJ. R-type
instructions feature register operations and are comprised of arithmetic instructions, such
as add and fadd. I-type instructions use short immediate values and load memory, such
as addi and lw (load word). U-type instructions use long immediate values, such as liu
and auipc. S-type instructions are for store instructions (sb and sw). The conditional
branch and unconditional jump instructions are SB and UJ (beq and jal), respectively.

Table 4.1 shows the format of RISC-V instructions, showing the types, fields, and
groups of instructions represented. Regarding that each instruction has 32-bits size,
each format has a set of fixed-size fields. The Type-R format, for example, has two data
registers (rs1 and rs2) with 5-bits each and a destination register (rd) with 5-bits. The
opcode field is the operation code and is the same for all instructions in the format. The
joint-usage of funct7 and funct3 fields combined with the opcode represent the operation
to be performed. Floating point instructions use rounding mode (rm), with their funct3
field intended for selecting the type of rounding. Instructions not affected by rounding
mode use the field with the setting 000.

Table 4.2 shows the layout of some integer and floating point arithmetic instructions
of the RISC-V ISA, with the bits of the funct7, funct3, and opcode fields. Note that the
opcode is the same for the integer instructions (add, sub, mul, div, and rem), and the
floating point instructions (fadd, fsub, fmul, and fdiv) share the same opcode.

RISC-V ISA is open to incorporating new instructions. Adding an instruction not
part of the instruction set starts by selecting the format that best adapts to the new

53

Table 4.1: RISC-V instruction formats. Source: [52].

Type 7 Bits 5 Bits 5 Bits 3 Bits 5 Bits 7 Bits Group
R funct7 rs2 rs1 funct3 rd opcode Arithmetic
I immediate rs1 funct3 rd opcode Loads and Immediate Arithmetic
S immediate rs2 rs1 funct3 immediate opcode Stores
SB immediate rs2 rs1 funct3 immediate opcode Conditional Branch
UJ immediate rd opcode Unconditional Jump
U immediate rd opcode Upper Immediate

Table 4.2: Layout of some RISC-V arithmetic instructions. Source: [52].

Instructions funct7 rs2 rs1 funct3 rd opcode
add 0000000 rs2 rs1 000 rd 0110011
sub 0100000 rs2 rs1 000 rd 0110011
mul 0000001 rs2 rs1 000 rd 0110011
div 0000001 rs2 rs1 100 rd 0110011
rem 0000001 rs2 rs1 110 rd 0110011
fadd 0000000 rs2 rs1 rm rd 1010011
fsub 0000100 rs2 rs1 rm rd 1010011
fmul 0001000 rs2 rs1 rm rd 1010011
fdiv 0001100 rs2 rs1 rm rd 1010011

instruction, choose an opcode that is not in use, or set a new opcode. In addition, the
funct7 and/or funct3 fields should be set, since they are used to differentiate the new
instruction from the existing ones.

4.3 Approximate Instructions Design

This section presents the design of the approximate instructions. From the design of
approximate arithmetic circuits (chapter 3), we designed the approximate integer ins-
tructions, named addx, subx, mulx, divx, and remx. The approximate floating point
instructions were designed by replacing parts of their integer operations with the ap-
proximate integer instructions and were named faddx, fsubx, fmulx, and fdivx.

4.3.1 Approximate Integer Instructions

Choosing the most suitable adder and subtractor for the approximate instruction design
is a matter of careful design analysis. The adder/subtractor circuits with the smallest
relative area did not bring the best accuracy results, just as the adder/subtractor with
the best accuracy did not present good area and/or power results. Therefore, we chose
the one that presented the best balance between accuracy and relative area.

Figure 4.2 summarizes the best results from the adder circuits about relative area,
relative power, and relative error for sizes of 8-, 16- and 32-bits, highlighting the lowest
values of each metric. When analyzing Figure 4.2, considering only RE, the AMA1

54

and AXA3 adders have the best results for 8-, 16-, and 32-bits. However, both have a
larger relative area than the exact adder. The AMA4 adder has the smallest relative
area among the adders, followed by the InXA1 and InXA3 adders, which have the same
size. However, the InXA1 adder offers the best precision results among the three despite
presenting a relative power peak for 8-bits. Given that, the InXA1 adder was chosen to
compose the approximate add instruction because it presents a better balance between
precision and relative area. However, the idea of composing new approximate instructions
with other adders is not ruled out.

Figure 4.2: Percentages of relative area, relative power, and relative error in approximate
adder circuits. Source: author.

The same design context is observed in the subtractors, where the AXSC type
subtractors present a smaller relative area than the APSC types; however, APSC circuits
present better accuracy results. The APSC4 and APSC6 subtractors present the same
accuracy results, with the APSC4 having the smallest relative area, thus being chosen
as the building-block for the approximate subtraction instruction. It is known that a
32-bit full adder circuit is comprised of 1-bit full adder (FA) associations, as exemplified
in Figure 4.3, therefore the structure of the approximate add instruction is designed
with the FA blocks composed of the adder InXA1. The same behaviour happens to the
subtractor. The approximate subtractor APSC4 forms the full subtractor blocks.

Regarding the multiplier, the general architecture uses the shift and add algorithms.
Depending on the value of the multiplier’s least significant bits (LSB), a value of the
multiplicand is added and accumulated. At each clock cycle, the multiplier is shifted
one bit to the right, and its value is tested. If is “0”, then only one shift operation is
performed. If the value is “1”, the multiplicand is added to the accumulator and shifted

55

Figure 4.3: 32-bits full adder (FA). Source: Based on [52].

one bit to the right. The product is in the accumulator after all the multiplier bits have
been tested [52].

Another way to perform binary multiplication is by following the same procedures
as decimal multiplication. Given the multiplicand and the multiplier, we perform the
multiplication of each bit of the multiplier by each operand of the multiplicand. Then,
we perform the partial sums of each multiplication set and obtain the output results,
called the product, where the size of the product is the sum of the multiplicand and the
multiplier. Figure 4.4 represents the 4-bit multiplication operation, where the multipli-
cand is represented by a3-a0, the multiplier by b3-b0, and the product by S7-S0. The
approximate multiplication instruction follows the format of decimal multiplication. We
used the AND operator (&) to perform multiplications between the multiplicand and
multiplier, and the additions were performed with the approximate adder InXA1.

Figure 4.4: 4-bits multiplication. Source: author.

The division operation has operands called dividend and divisor, and its result is
called quotient, in addition to a second result called the remainder. Division can be
expressed by the equation (4.1) and can also be performed in a similar way to decimal
division. The division algorithm can be implemented by a series of subtractions and
displacements.

Dividend = Quotient ∗Divisor +Remainder (4.1)

56

For the design of the approximate division instruction, we used the division model
proposed in Chen et at. [13], as shown in Figure 4.5, using the approximate subtractor
APSC4. The proposed divisor has a size restriction. The size of the divisor can be
expanded, however, the divisor (represented by Y[3:0]) must have half the size of the
dividend (X[7:0]). The quotient (Q[3:0]) and the remainder (R[3:0]) have the same size.

Figure 4.5: 8x4-bits divider. Source: [13].

The authors designed the EXDCnr blocks with exact subtractors and the insertion
of an XOR gate, having as input the value of the divisor (Y) and the quotient (Q), as
shown in Figure 4.6.The new logical expression of the exact subtractor is in Table 4.3.

Figure 4.6: Exact subtractor block for division. Source: [13].

57

Table 4.3: Logical expressions of the subtractor block used in division. Source: author.

Out Logical Expression

R X ⊕ (Y ⊕Q)⊕Bin

Bout (X ⊕ (Y ⊕Q)).Bin+X.(Y ⊕Q)

4.3.2 Approximate Floating Point Instruction

A floating point number can be represented with 32-bits (single precision) or with 64-bits
(double precision) and follows a standard called IEEE 754-2008 [68]. Single precision has
its 32-bits divided into three parts, with 1-bit representing the sign, 8-bits representing
the exponent, and 23-bits representing the fractional part of the number, called the
mantissa. Double precision has a representation similar to single precision but with a
larger number of bits (1-bit for the sign, 11-bits for the exponent, and 52-bits for the
mantissa).

Floating point arithmetic operations involve operations between the mantissa and
the exponents. In multiplication, the mantissa is multiplied, and the exponents are
added. Division involves subtracting the exponents and dividing the mantissa. Addition
and subtraction involve equality between the exponents (equaling the value of the smaller
exponent to the larger one) and the addition or subtraction of the mantissa. Each of
these operations has its own hardware because despite the simplified explanation of the
operations, there are still steps of shifting and rounding the mantissa and exponent.

Figure 4.7 shows the floating point hardware block diagram for addition and sub-
traction, and the highlighted block (BIG ALU) is where the addition or subtraction
operations of the mantissa are performed. Figure 4.8 shows the FP hardware block di-
agram for multiplication. The highlighted blocks, Adder, Shift left or Shift right, and
Rounding hardware, perform, respectively, the sum of the exponents, the shift of the
mantissa bits after multiplication, and the rounding of the mantissa and exponent. The
FP hardware block diagram for division is shown in Figure 4.9. Similarly to multipli-
cation, the highlighted blocks, Sub, Shift left or Shift right, and Rounding hardware,
perform, respectively, the subtraction of the exponents, shifting the mantissa bits after
the division, and rounding the mantissa and the exponent.

FP instructions in RISC-V use integer operations to manipulate exponents, man-
tissa, shift, and rounding. Thus, our strategy for designing new approximate FP instruc-
tions was to replace some of the original (precise) integer operations with approximate
integer instructions. The decision about which integer operations and instructions to
replace was made after performing a design space exploration (DSE) greedy-approach
on these operations and evaluating the impact on precision, power, and performance.

58

Figure 4.7: Block diagram: FP addition and subtraction hardware. Source: Based
on [52].

Figure 4.8: Block diagram: FP multiplier hardware. Source: Based on [52].

59

Figure 4.9: Block diagram: FP divider hardware. Source: Based on [52].

4.4 Tools Extension

This section presents the technical details and steps to support approximate insructions
into the toolset

4.4.1 SPIKE ISA SIM

Figure 4.10 shows the flowchart used to develop the approximate instructions. In step
1, the format of the instruction to be used is defined. The opcode may be a new opcode
class or just an adaptation of it, with the combination of funct7 and funct3 fields. Masks
and matches are defined and added to the RISC-V Toolchain. The opcode, mask, and
match definition need to be incorporated into the RISC-V PK [55] (RISC-V ELF binary
application execution environment), step 2. Step 3 represents the instruction behavior
implementation in the SPIKE ISA SIM simulator.

RISC-V arithmetic instructions are Type-R and have the values of the address fields
funct7, funct3, and opcodes already defined. To insert new instructions, new opcode
values must be set. Table 4.4 shows the values for the fields of the approximate arithmetic
instructions. Just as the RISC-V ISA has two instructions for the division operation, we
defined the divx instruction to the division quotient and the remx instruction calculates
the remainder of the division.

For the addx and subx instructions, the funct7 and opcode fields were changed
(the changed bits are highlighted in bold). In the divx and remx instructions, the

60

Figure 4.10: Flowchart for the design and implementation of approximate instructions.
Source: author.

funct3 and opcode fields were changed (in bold). Only one bit of the opcode field was
changed (in bold) in the mulx instruction. In the floating point instructions, only the
most significant bit of the funct7 field was changed (in bold) when compared with the
RISC-V opcodes (Table 4.2).

Table 4.4: Approximate instruction opcodes. Source: author.

Instructions funct7 rs2 rs1 funct3 rd opcode
addx 0000001 rs2 rs1 000 rd 0101011
subx 0000001 rs2 rs1 000 rd 0101111
mulx 0000001 rs2 rs1 000 rd 1110011
divx 0000001 rs2 rs1 000 rd 1110111
remx 0000001 rs2 rs1 000 rd 1111011
faddx 1000000 rs2 rs1 rm rd 1010011
fsubx 1000100 rs2 rs1 rm rd 1010011
fmulx 1001000 rs2 rs1 rm rd 1010011
fdivx 1001100 rs2 rs1 rm rd 1010011

With the opcodes of the approximate instructions, the mask and match were de-
fined and inserted into the RISC-V toolchain. Figure 4.11 shows the mask and match
of the approximate instructions6. In SPIKE, the mask and match are inserted, and the
insertion of the files with the functionality of each instruction is required7.

The addx instruction is the simplest, as it uses the approximate adder InXA1 in
its design. The difference between the exact adder and InXA1 is only in the output
Cout, where in InXA1 Cout receives the value of Cin. In our design, we consider that
Cin will always be equal to zero. Thus, since the RISC-V add instruction already uses
32-bit registers, we adapt it with our approximate adder and replace the “ + ” sign with

6The detailed procedures for extending the RISC-V Toolchain are presented at:
https://github.com/danielacatelan/Approximate-Instructions

7The detailed procedures for the extension of the SPIKE ISA SIM and the files with the approximate
instructions designed can be found at: https://github.com/danielacatelan/Approximate-Instructions

61

Figure 4.11: Mask and match approximate instructions. Source: author.

the XOR gate sign “ ˆ ”, thus the functionality of the approximate addx instruction is
defined as shown in Figure 4.12.

Figure 4.12: Functionality of the approximate addx instruction. Source: author.

The functionality of the approximate instruction subx was designed based on the
association of subtractors (similar to that shown in Figure 4.3), where each subtractor
block operates a bit with the approximate subtractor APSC4. Figure 4.13 presents
the functionality of the instruction subx. The block named B0 (Bit 0, lines 6 to 12)
represents the complete approximate subtractor block with the least significant APSC4,
and the block B31 (Bit 31, lines 28 to 34) represents the block with the most significant
bit. The variable S (line 36) represents the final result of the subtraction and is composed
by the union of the 32-bits of the outputs of each subtractor block.

The functionality of the approximate multiplication instruction, mulx, required
several steps because it was performed similarly to the decimal multiplication operation,
as shown in Figure 4.4 and it has 32-bit operators with a 64-bit product. Figure 4.14
shows a code excerpt of the functionality of the approximate instruction mulx. The
blocks named B0, B1, and B63 (lines 7, 13, and 23) represent the result of the product
of bit 0, bit 1, and bit 63. It is noted that in block B1, the multiplication between the
multiplicand and the multiplier (lines 14 and 19) is first performed using the AND gate
(&), and the sum of these multiplications is performed by the XOR operator, coming
from the approximate adder InXA1 (line 18). The variable S (line 28) represents the

62

Figure 4.13: Functionality of the approximate subx instruction. Source: author.

final result of the approximate multiplication.

Figure 4.15 shows the code snippet of the approximate instruction functionali-
ty divx. The snippet presents the functionality of the approximate divisor of size 64×32
(this size is derived from the approximate divisor model used in Figure 4.5). Note that

63

Figure 4.14: Functionality of the approximate mulx instruction. Source: author.

the output “R0”, “R31”, “R992,” and “R1023” (lines 7, 15, 26, and 32) represents the
remainder of the division (in partial steps of the approximate divisor), having the logical
expression of the output “S” of the approximate subtractor APSC4, where the term “B”
is replaced by the expression Y ⊕Q. The same replacement occurs in the output Cout,
in the divisor called Bout (lines 6, 14, 25, and 31). The instruction output will present
the result of the quotient of the operation (line 40).

The functionality of the remx instruction is shown in the Figure 4.16. The remx

64

instruction has all the functionality of the divx instruction, but only the part related
to remainder correction is highlighted. The remainder correction uses an AND gate,
receiving the values of the remainders and the dividend (lines 8 - 13) as input. After the
remainder correction, the instruction shows the result of the remainder of the division
operation (line 32).

In order to design the functionality of the floating point instructions, it was neces-
sary, in order to make the decision, to perform a design space exploration (DSE) on the
blocks of the arithmetic operations hardware diagram to decide which and how many
integer instructions would be replaced by approximate integer instructions, evaluating
the impact on precision, power, and performance8.

In the highlighted block, BIG ALU, in Figure 4.7, six integer addition operations
were replaced by approximate integer operations, thus becoming a BIG ALU APPROX
block. The approximate add FP instruction that uses this new hardware is named faddx.
The design of the new fsubx instruction has also changed the BIG ALU hardware block,
using three approximate integer operations (two add and one sub).

The new six approximate integer addition operations used in the BIG ALU of the
approximate FP addition hardware block are shown in Figure 4.17. Lines 1, 4, 7, and 10
present the original (non-approximate) integer addition operations (represented by the
sign “ + ”), and lines 2, 5, 8, and 11 present the approximate operations addition sign
(“ ˆ ”). A similar procedure was performed with the fsubx instruction, as can be seen
in Figure 4.18, where lines 1, 5, and 8 present integer operations, and lines 2, 6, and 9
feature the exchange for approximate instructions. It should be noted that the original
integer subtraction operation (“ - ”) is replaced by the logical function of the APSC4
subtractor.

The new approximate FP multiplication fmulx instruction has three approximate
add operations (Figure 4.19, lines 2, 13, and 17) and one approximate subtraction oper-
ation (Figure 4.19, line 6). The Adder block (add the 2 exponents) has one approximate
add operation, becoming an approximate exponent adder block. The other approximate
integer operations are on the mantissa side (Shift left or Shift right block) and rounding
hardware block.

The new approximate FP instruction fdivx, features three integer instruction
swaps per approximate instruction. The exponent subtraction block (Sub), the man-
tissa shift block (Shift left or Shift right), and the rounding block have two approximate
addition operations and one approximate subtraction operation, as shown in Figure 4.20
(lines 2, 5, and 9).

8Due to the development of the RISC-V FP instructions and the results of the DSE,
several files needed to be modified. Description of files and changes can be found at:
https://github.com/danielacatelan/Approximate-Instructions

65

Figure 4.15: Functionality of the approximate divx instruction. Source: author.

4.4.2 Prof5

The performance and power results were acquired from the Prof5 [65] tool. Prof5 is a
RISC-V profiling that uses the SiFive E24 RV32IMAFBC microcontroller. The SiFive

66

Figure 4.16: Functionality of the approximate remx instruction. Source: author.

E24 is a high-performance RISC-V microcontroller design model with a 3 stage pipeline
running at 125 MHz and was used to perform power modeling of some instructions.
Prof5 allows the user to create detailed profiles of RISC-V programs from the SPIKEX
log, generating profiles that include the number of cycles, instructions, and power con-
sumption of each instruction and function. The Prof5 energy model was customized to
calculate the power of all approximate instructions. The approximate integer instructions
have an average power gain (compared to the non-approximate instruction) of 1.3% [8],
single-precision approximate FP instructions have an average power gain of 1.2% [28].

Table 4.5 presents the results from the Prof5 tool on the number of cycles, power

67

Figure 4.17: Approximate addition operations used in the BIG ALU of the approximate
FP addition hardware. Source: author.

Figure 4.18: Approximate subtraction operations used in the BIG ALU of the approxi-
mate FP subtraction hardware. Source: author.

(µW) and power difference (%) of non-approximated and approximated instructions.
Columns 2-3 present the number of cycles and power of the non-approximate instruc-
tions. The number of cycles is the same for non-approximation and approximate instruc-
tions. Column 5 shows the power of the approximate instructions designed in this work.
Equation (4.2) was used to calculate the power difference in percentage (PowerDiff) bet-
ween the non-approximated instructions (Powernap) and approximated (Powerap) and
the results are presented in column 6.

PowerDiff =
(Powernap − Powerap)

Powernap
× 100 (4.2)

68

Figure 4.19: Approximate multiply operations of the approximate FP multiplier hard-
ware. Source: author.

Figure 4.20: Approximate division operations of the approximate FP divider hardware.
Source: author.

4.4.3 ACCEPT

After inserting the approximate instructions into the RISC-V and SPIKE and extending
the mathematical model of the instructions, a tool for testing (compilation) is needed.
ACCEPT framework was chosen because it presents the user with code snippets suitable
for approximation.

Figure 4.21 shows a code snippet from the log file generated by ACCEPT after

69

Table 4.5: Cycles and power results of non-approximate and approximate instructions.
Source: author.

Instructions Cycles
Powernap
(µW)

Instructions
Powerap
(µW)

PowerDiff(%)

add 1 2.80 addx 2.76 1.43
sub 1 2.86 subx 2.82 1.40
mul 1 3.09 mulx 3.05 1.29
div 1 3.09 divx 3.05 1.29
fadd 2 3.36 faddx 3.18 5.36
fsub 2 3.43 fsubx 3.34 2.62
fmul 2 3.71 fmulx 3.52 5.12
fdiv 2 3.71 fdivx 3.61 2.70

compiling the application. In this example, the column highlighted by arrow 1 presents
mathematical functions (exp, log, and pow) suitable for approximation. The column
pointed to by arrow 2 presents the line number where the functions are in the application
source code. Arrow 3 is used by the user to choose the approximation level. Level “0”, in
this example, the mathematical function will be executed using the math.h library, in our
context, it will be executed without approximation, that is, exactly. If approximation
level “1” is chosen, the mathematical function will be executed using the approximate
mathematical function of the FastApprox library [41]. The column with the arrow 4
was a contribution of our work, where the user can choose the Loop Perforation (LP)
approximation with the approximate instructions, opting for three approximation levels:
without LP approximation, LP approximation via ACCEPT, and LP approximation
with approximate instructions9.

9The details of the functionality of the FastApprox library and the Loop Perforation with approximate
instructions will be presented in chapter 5.

70

Figure 4.21: ACCEPT. Source: author.

4.5 Final Remarks

This chapter presented the implementation of instructions that use approximate com-
puting techniques in a RISC-V toolset. The RISC-V architecture was chosen for its
flexibility and modularity. The SPIKE simulator was used, as it is a robust tool for test-
ing and validating these new instructions. The extension of the Prof5 energy model to
include the new instructions demonstrated a commitment to performance analysis and
energy efficiency. In addition, the performance evaluation was discussed, emphasizing
the relevance of considering the effectiveness and efficiency of these instructions in the
context of approximate computing. The contributions of this chapter are significant, as
they not only introduce a new set of approximate instructions but also establish a ro-
bust workflow for the design, evaluation, and validation of these instructions. Also, the
proposal of instructions such as addx, subx, mulx, divx, and remx, as well as their
floating point counterparts, represent an important advance in the practical application
of approximate computing. The discussion on tools extension reveals the importance of
adapting development systems, including software and hardware, to support this new
class of instructions. This emphasizes that the successful implementation of approximate
instructions requires not only innovations at the circuit level but also a coordinated effort
in adapting tools that allow their integration into real systems. Furthermore, the research
carried out in this chapter paves the way for new investigations and developments in the
area.

71

Chapter 5

Approximate Computing
Software-Hardware Approach

This chapter exploits the design of code optimization techniques built with the new ap-
proximate instructions. From the classical Loop Perforation technique, we developed a
new Instruction-Level Loop Perforation (ILLP) approach, using approximate instructions
to perform the loop increment. We also redesigned the technique of approximate math-
ematical functions by implementing Instruction-Level Approximate Functions (ILAF),
where original non-approximate instructions were replaced by their approximated coun-
terparts.

5.1 Contextualization

Most AC software techniques aim to solve specific problems or require excessive interven-
tion from the programmer, who needs to identify which application parts are susceptible
to approximations [53]. The Loop Perforation (LP) technique is widely used in AC.
LP is simple and effective in reducing the amount of computational work by skipping
loop iterations and trading precision for other benefits such as performance and power
consumption. Research papers [53, 64, 34, 44, 57] have proposed different ways of ap-
plying LP, from a simple loop step to adopting heuristic approaches to find the suitable
increment value.

A common limitation of LP is that once the perforation degree (pd) is established,
application metrics (performance, energy) will only improve at the cost of accuracy.
One way to overcome this limitation would be to adopt a strategy where pd could use
approximate hardware resources. A hardware-supported approach could minimize power
consumption or improve performance without forcing additional compilation steps or
changes to the application code.

72

We developed the Instruction-Level Loop Perforation (ILLP) approach that relies
on approximate hardware instructions. The idea is to use approximate instructions for
calculating the next loop iteration. Unlike software-only LP, ILLP calculates the next
loop iteration value using approximate hardware. The direct impact of the technique is
on application performance when the approximate hardware runs faster than the exact
hardware.

The FastApprox library [41] (FAl) is a tool that provides approximated and vec-
torized versions of mathematical functions that can be used by applications that support
approximations. The ACCEPT framework adopts this library to provide approximated
versions of well-known mathematical functions in the application source code. Previous
experiments with approximate functions on applications achieved speedups ranging from
1.22× to 634×, with a maximum loss of precision of 30% [53]. These approximate results
come only from the software technique since the application hardware is unaware of any
approximate approach.

From the previous results on AC applied to mathematical functions, we observed
an opportunity to improve performance and reduce power consumption by introducing
an additional level of approximation by replacing precise (non-approximated) operations
with approximate floating point instructions. This new technique offers a hardware-
level (instructions) approximation technique over a source code that is already (or not)
approximated by a software-level technique. From this insight, we developed Instruction-
Level Approximate Functions (ILAF), which incorporate approximate floating point
(FP) instructions into FastApprox mathematical functions such as sine, cosine, tangent,
exponential, and logarithmic.

To design both approaches (ILLP and ILAF), the ACCEPT compiler, SPIKE simu-
lator, and RISC-V toolchain needed to be extended to support new approximate instruc-
tions, generate approximate source code, and simulate approximate applications. To
implement these new capabilities, we extended ACCEPT with a new workflow that
allows users to annotate the perforation degree, the loop to be perforated, the choice
of looping technique (ILLP or software), the choice of which mathematical function(s)
to approximate, and the choice of approximation form for the mathematical functions:
exact (math.h), fast and faster (FastApprox), and ILAF.

To evaluate ILLP, we conducted experiments on 13 general-purpose applications
and subjected each to different pd using the original LP software and ILLP. Our approach
demonstrated a reduction in the number of instructions for all applications at all drilling
levels while maintaining the same level of accuracy.

ILAF was evaluated and tested on six different applications that apply mathe-
matical functions. The results are organized into three versions: the baseline (BL),
FastApprox (FAl), and ILAF approach. The experiments evaluated accuracy, execution
cycles, and power (µW).

73

5.2 Instruction-Level Loop Perforation - ILLP

A more detailed exposition of the ILLP technique is covered by presenting the Loop
Perforation technique in subsection 5.2.1; The instruction-level LP design is shown in
subsection 5.2.2; Subsection 5.2.3 describes the applications and experiments performed
to evaluate and validate the approximation techniques; The results and discussion are
in subsection 5.2.4.

5.2.1 Loop Perforation Approximation Technique

AC is a design alternative that offers performance with increasingly stringent energy and
cost constraints. The of exchanging to exchange reduced accuracy in results for gains in
performance and energy consumption has increased interest in this field of study [64].
AC presents approximation techniques for hardware and software designs. In hardware,
techniques range from the circuit level to architecture, offering reductions in area and
energy consumption in the integrated circuit by employing approximate logic circuits,
voltage scaling, and memory density. In software, it achieves better system performance
by performing less computational work and reducing memory access [8].

LP is an AC technique that has been gaining appreciation among designers because
it is simple, has a general purpose, and is widely applicable to different applications [34].
LP consists of skipping loop iterations to reduce computational workload and gain perfor-
mance. A simple change in the loop step variable is enough to change its performance,
but manually changing one or more loops of an application sometimes becomes more
costly than the loop execution itself.

The LP requires a pd parameter that indicates how often to skip an iteration at
runtime. Figure 5.1 shows an original loop (Fig. 5.1(a)), suitable for perforation, along
with a code snippet of the perforated loop (Fig. 5.1(b)) based on a pd. The larger the
value of pd, the fewer iterations the loop will execute, affecting performance and energy
consumption.

(a) Original loop. (b) Loop perforation.

Figure 5.1: Original loop and after applying loop perforation. Source: author.

Common challenges in adopting LP rely on discovering which loop to perforate
and how much to perforate. These challenges are the motivation for a variety of research
work that focuses on automatizing the process of finding loops able to be perforated or
even adopting different approaches to set the perforation level.

74

5.2.2 Instruction-Level Loop Perforation Design

Once the compiler selects the loop to be the puncture loop, the iteration value for the
variable will be equal to 2pd, Figure 5.1(b). The pd is the exponent for the loop iterator
to be 2pd, so when pd = 1, in the application, the iteration of the “real” loop will be 21

= 2. The values of pd adopted in the applications are 1, 2, 4, and 8. Actual perforation
values are 2, 4, 16, and 256. It is important to note that code approximation only occurs
when pd differs from the initial loop iteration step.

Our proposal presents a new LP in which the loop iteration value is not fixed but de-
termined by an approximate instruction. Figure 5.2(a) provides an example of the ILLP
technique is inserted into a loop with an incremental loop step. The original operation
for the loop step is replaced with a function that invokes an approximate instruction.
The approximate function ADDX performs the approximate adder instruction (addx).

(a) Loop perforation with ADDX.

(b) ADDX approximate function.

Figure 5.2: LP with ADDX function call and ADDX function. Source: author.

Figure 5.2(b) presents the assembly code (command volatile asm) for the ADDX
function. Lines 4-8 indicate that an instruction called addx will be executed where
parameters i and pd will be placed in registers x and y, respectively. The result of the
instruction (register z) will be available in the ADDX variable. An offset code (lines
10-11) is used to correct the statement result when it is less than or equal to the current
loop step. Note that this offset code is applied to loops with increasing iterator. For a
descending loop step, line 10 should evaluate whether the result is greater than or equal
to i, and line 11 must be changed to a subtraction operation.

The correction factor (CF), lines 10-11, could be performed directly in the hard-

75

ware, but the designer should be aware that CF is only valid to ensure that increment
(i) is always progressing. A CF in hardware will be unnecessary for applications that
may use the approximate instruction outside the context of LP. Our motivation in de-
signing the addx instruction was to keep it very similar to the exact corresponding
(add) instruction design. It should also be noted that calling the ADDX function in the
software was the way to use the approximate instruction.

We extended the ACCEPT to allow users to choose the ILLP in a loop. The first
step consists of choosing which loop to perforate. Figure 5.3 illustrates the steps to use
ILLP. Given a source code, ACCEPT will analyze the code and identify all loops that
can be perforated. A text file is generated presenting the candidate loops to the user
(2). In step (3), the user chooses the loop, the pd, and the LP: ACCEPT SPIKE (AS)
or Instruction-Level Loop Perforation (ILLP).

Figure 5.3: Workflow and toolset to apply the ILLP technique. Source: author.

At this point, the compilation flow is divided into two paths: step (4) means that
the ILLP now executes the LP, and the output is RISC-V assembly code; step (5) is the
standard LP available in ACCEPT. Step (6) is carried out when the AS is chosen. The
conversion is required once that ACCEPT is integrated into LLVM version 3.2 which
only generates x86 code. Step (7) converts the assembly to machine code. In step
(8), the application can be simulated in the SPIKEX simulator (our extension for the
SPIKE simulator). SPIKEX supports approximate instructions, such as addx, and is
fully compatible with the original SPIKE.

76

The code snippet in Figure 5.4(a) shows a RISC-V assembly code with LP and
pd = 2 after using the compilation workflow in Figure 5.1(b). The loop control is
represented in lines 3-9, while lines 10-13 are part of the loop body. Assuming a loop
bound of 100, the main function runs 973 instructions. It is worth mentioning that
the workflow conversion step (6) does not introduce additional instructions to the AS
assembly code. However, we have observed that using the ACCEPT LP can increase the
number of instructions to ensure that the loop body is not affected by the perforation.

Figure 5.4(b) presents the RISC-V assembly code of the loop from Figure 5.2(a)
after applying the ILLP with pd = 2. Lines 8-11 are part of the loop body, line 12
stores the value of pd, and line 14 calls the approximated (ADDX) function. Line 5
in the function is the CF, which is carried out only when the result of the approximate
instruction (line 3) is less than the current value of the loop control variable stored in
register a5.

(a) Original LP. (b) LP with the ILLP technique.

Figure 5.4: RISC-V assembly code result of the LP. Source: author.

When analyzing a RISC-V assembly code snippet with LP, with pd = 2 and a loop
limit of 100, for both techniques, we verify that the conversion step of the AS workflow
does not introduce additional instructions to the assembly code. However, we noticed
that using ACCEPT can increase the number of instructions to ensure that puncture does
not affect the loop body. In this example, ILLP code executes 28.7% fewer instructions
(693) than AS (973).

5.2.3 Experimental Setup

We have designed and conducted experiments to evaluate and validate the ILLP
by comparing its accuracy, number of instructions, cycles, and energy (µWsec) to
the LP in the ACCEPT (AS) and the original code (baseline - BL). The experi-

77

ments were performed across a set of 13 applications10: BINARY SEARCH (BS) [65],
CONV1D [65], CONV2D [65], DIJKSTRA (DIJ) [23], FANNKUCH-REDUX (FAN) [22],
FFT [61], FIBONACCI (FIB) [65], FLOYD-WARSHALL (FLOYD) [5], MEDIAN [65],
MULT100X100 (MULT) [author], NBODY [22], PI [70], and SPECTRALNORM (SPEC-
TRAL) [22].

We have identified the hotspot function in each application using GProf [25]. For
applications such as BS, FAN, FFT, and SPECTRAL, which did not have a loop in
their hotspot functions, we added perforation to the loop where the hotspot function
is called to enhance the use of LP. In cases where the function had a nested loop, we
selected the loop with the least impact on accuracy. Table 5.1 provides a summary of
each application, including information on the presence of input and output vectors or
matrices, the existence of LP in the hotspots function, whether there is a nested loop,
and where the LP is placed (innermost (I) or outermost (O)).

Table 5.1: Applications summary. Input apps, Output apps, LP in Hotspots, Has nested
loops, Position LP. Source: author.

APPS Input Output LP in Hot-spots Nested loop Position LP
BINARY SEARCH ✓ ✓

CONV1D ✓ ✓ ✓ ✓ O
CONV2D ✓ ✓ ✓ ✓ O
DIJKSTRA ✓ ✓ ✓
FANNKUCH

FFT ✓ ✓ ✓ O
FIBONACCI ✓

FLOYD ✓ ✓ ✓ ✓ I
MEDIAN ✓ ✓ ✓

MULT100X100 ✓ ✓ ✓ ✓ O
NBODY ✓ ✓ O

PI ✓
SPECTRALNORM ✓ I

Our experiments used the infrastructure provided by the ACCEPT to insert LP in
the code. We simulated all the applications in the SPIKEX RISC-V simulator, following
the workflow illustrated in Figure 5.3. We evaluated the perforation on four degrees
(pd = 1, 2, 4, and 8). Our comparison involved the ILLP results with the ACCEPT LP
and the original (BL) code. Importantly, we inserted perforations on the same loops of
each application for both the ACCEPT and the ILLP approaches.

We gathered all the necessary information about the application’s performance
using Prof5. We emphasize here that the simulation of the applications was carried
out by SPIKE, which follows the design of a 5-stage RISC-V. Prof5 uses the executable
file generated by the SPIKE. Prof5 allowed us to create detailed profiles of RISC-V
programs from the SPIKEX log. The profile data generated by Prof5 is the number
of cycles, instructions, power, energy, and average power per cycle. We also customize
the energy model by entering new instructions and creating custom ones. Approximate
instructions like addx have also been added to the power model, with an energy savings
of 13.92% [8] compared to the default add custom instruction by Prof5.

10Applications are available for download at: https://github.com/lscad-facom-ufms/ILLP-
Loop Perforation

78

Table 5.2 presents the results of output, number of instructions, number of cycles,
and energy (µWsec) of the original applications (BL). It may be observed that the FAN
application has the highest number of instructions among all applications (1,072,887,156)
and the highest number of cycles. The FAN, FFT, NBODY, and SPECTRAL applica-
tions have the highest energy values.

Table 5.2: Output, number of instructions, number of cycles, and energy. Source: author.

Applications Output Instructions Cycles Energy (µWsec)
BINARY SEARCH 500 2,259,486 2,993,337 56.89

CONV1D 1,002 5,144,208 7,180,610 155.20
CONV2D 100 207,223 277,491 5.67
DIJKSTRA 100 1,087,879 1,380,358 27.86
FANNKUCH 38 1,072,887,156 1,274,710,666 25,210.72

FFT 1,024 541,575,553 700,790,974 14,111.47
FIBONACCI 102,334,155 82,678 106,175 2.10

FLOYD 324 253,433 316,767 6.48
MEDIAN 1,000 2,232,393 2,879,240 53.48

MULT100X100 10,000 7,496,393 8,599,491 185.89
NBODY -0.1690876 318,869,815 422,378,381 8,565.30

PI 3.1480 24,378,464 32,613,086 654.97
SPECTRALNORM 1.2741930 331,087,512 447,130,079 8,932.78

Column Output represents the original (Baseline - BL) output of each application.
BS, CONV1D, CONV2D, DIJ, FFT, FLOYD, MEDIAN, and MULT have matrices or
arrays elements as outcomes. BS original output has 500 elements, CONV1D has 1,002,
CONV2D has 100, DIJ has 100, FFT has 1,024, FLOYD has 324, MEDIAN has 1,000,
and MULT has 10,000 elements. FAN, FIB, NBODY, PI, and SPECTRAL have a single
number of the output result. When using the LP, we performed the comparison element
by element. For example, the MULT application with LP and pd = 1 has an output of
5,000 elements, an accuracy loss of 50%.

The precision metric is the first to consider when comparing approximate opti-
mization techniques. We calculated the relative error (RE = |AO−BO|

|BO|) of the LP and

comparing them to the output results of the baseline (BO) and the Approximate Output
(AO). A larger RE indicates greater imprecision.

5.2.4 Results and Discussion

Table 5.3 presents the RE of the applications in each of the techniques. Note that with
pd = 1, the BS application presented an RE of 0.5000, which is consistent with the
drilling that was drilled at 50% of its BL. As the value of pd increases, the RE also
increases, causing a significant precision loss, as in CONV1D, which presents an RE of
0.9960 with pd = 8.

Figure 5.5 presents the percentage reduction of AS and ILLP instructions compared
to BL with pd = 1 and pd = 8. The reference (zero) represents the instructions of the
BL application. Upside-down columns indicate that the number of run instructions of
the LP is greater than the BL application. The circled line shows the error percentage of

79

Table 5.3: Relative Error. Source: author.

Applications pd = 1 pd = 2 pd = 4 pd = 8
BINARY SEARCH 0.5000 0.7500 0.9360 0.9960

CONV1D 0.5000 0.7495 0.9371 0.9960
CONV2D 0.5000 0.7000 0.9000 0.9000
DIJKSTRA 0.8500 0.8600 0.8600 0.9100
FANNKUCH 0.5000 0.7368 0.7632 0.7632

FFT 0.5000 0.7500 0.9375 0.9961
FIBONACCI 0.9999 1.0000 1.0000 1.0000

FLOYD 0.4722 0.6420 0.7253 0.7438
MEDIAN 0.5000 0.7500 0.9360 0.9960

MULT100X100 0.5000 0.7500 0.9300 0.9900
NBODY 0.0002 0.0002 0.0002 0.0002

PI 0.2379 0.3784 0.8420 0.9885
SPECTRALNORM 0.6424 0.6557 0.6579 0.6579

each application and technique, allowing us to evaluate the instruction reduction and the
impact on the RE. There is a decrease in the number of instructions in most applications
as pd increases, just as expected. There is a decrease in the number of instructions in
11 out of 13 applications (highlighted) by the ILLP compared to the BL.

Application DIJ had no significant reduction in instructions over the pd. This
application has loops with a small number of iterations so that the pd level does not
impact the number of generated instructions. The ILLP has shown increased instructions
compared to BL for DIJ and FLOYD applications. Specifically, the DIJ application had
an increase of 2.30% in ILLP 1, while AS 1 had an increase of 41.48%, where 1 is the
value of pd.

The AS presents an instruction increase in 6 applications compared to BL. The
MULT application has an unexpectedly large number of instructions. One explanation
for this behavior could be the ACCEPT workflow that makes excessive calls to the
internal functions mulsi3 (5016 times) and muldi3 (1,000,280 times), while the ILLP
calls the mulsi3 function 16 times and the function muldi3 is not used. Application
CONV2D shows an increase of 98.66%. In contrast, CONV2D with the ILLP reduced
27.46%. The FFT application presents a decrease of 51.19% (ILLP 1) compared to the
BL code. Meanwhile, the AS technique reduced 29.55% (AS 1) compared to BL.

Figure 5.5(b) shows a significant reduction in instructions with pd = 8 in most
applications. The FAN application achieves a reduction of 25.22% with ILLP but an
increase of 8.08% with AS. On the other hand, the FLOYD application shows an increase
in the number of instructions with AS (for all pd) but an instruction decrease using ILLP
with pd = 2, 4, 8.

Figure 5.6 presents the cycle improvement percentage for each application using
pd = 1 and pd = 8. The reference (zero) represents the cycles of the BL application.
Figure 5.6(a) shows both AS and ILLP able to achieve a similar cycle reduction for the
MEDIAN application, with values of 48.39% and 48.06%, respectively. CONV2D, DIJ,
FAN, FLOYD, and MULT applications showed an increase in the number of instruc-
tions, leading to an increase in the number of cycles when running on AS. On the other

80

(a) pd = 1.

(b) pd = 8.

Figure 5.5: AS and ILLP instructions percentage reduction for each application. Source:
author.

hand, most of the applications that used ILLP showed cycle improvements. The FFT
application, in particular, achieved the most significant cycle reduction (51.40%). The
cycle improvement percentage with pd = 8 (Figure 5.6(b)) is quite impressive. Notably,
cycle reduction gains are greater than 50% and even reach 99.10% for the PI application.

81

The BS, CONV1D, MEDIAN, NBODY, PI, and SPECTRAL applications have similar
values, with a slight advantage for the ILLP.

(a) pd = 1.

(b) pd = 8.

Figure 5.6: AS and ILLP cycle improvement percentage for each application. Source:
author.

In Figure 5.7, one can see the percentage of energy savings for each application
using AS and ILLP with pd = 1 and pd = 8. Figure 5.7(a) highlights that the ILLP

82

provides better energy reduction values. For instance, the CONV1D application achieved
a reduction of 49.11% with ILLP and pd = 1 and 11.93% with AS and pd = 1. Figu-
re 5.7(b) presents the percentage of energy saving with pd = 8, which shows similar
behavior to the instructions and cycle metrics. The AS and ILLP results were quite
akin in 6 out of 13 applications, whereas ILLP achieved better results in the other 6
applications.

Figure 5.8 presents the boxplot for the reduction in instructions, cycles, and energy
metrics, in both techniques, for all pd values (1, 2, 4, 8). Each column presents the results
by ordering the lowest to the highest value and organizing the data into quartiles and
median. The results indicate that the ILLP outperforms the AS in all metrics and pd.
For instance, with a pd = 1, ILLP presents an average instruction reduction of 22.55%,
whereas the AS only shows a reduction of −1.52%. This trend continues for cycle and
energy, where ILLP reaches a reduction of 23% with pd = 2 in the number of cycles.
However, it is important to note that most results with pd = 8 are the same for both
techniques, indicating that this pd may be an upper bound for general performance gains
(instructions and cycles) and energy savings.

The results brought from the ILLP have proven to be effective in improving several
aspects of performance while maintaining accuracy levels equal to the AS. Specifically,
the ILLP approach was able to achieve a significant reduction in the number of instruc-
tions, cycles, and energy consumption for various applications compared to the BL. For
example, the PI application with a pd = 2 achieves a 74.61% reduction in the number of
instructions, while the FFT application with pd = 1 showed a 51.40% reduction in the
number of cycles. The PI application using ILLP and pd = 2 has 74.49% energy saving
compared to the original baseline code.

83

(a) pd = 1.

(b) pd = 8.

Figure 5.7: AS and ILLP energy saving percentage for each application. Source: author.

84

(a) Reduction of Instructions.

(b) Cycle Improvement.

(c) Energy Saving.

Figure 5.8: Percentage reduction for instructions, cycles, and energy by technique.
Source: author.

85

5.3 Instruction-Level Approximate Function - ILAF

This section introduces the Instruction-Level Approximate Functions (ILAF), which in-
corporates floating point (FP) approximate instructions into FastApprox’s mathematical
functions such as sine, cosine, tangent, exponential, and logarithmic.

The Instruction-Level Approximate Function design is presented in subsec-
tion 5.3.1. Subsection 5.3.2 describes the applications and the experiments carried out
to evaluate and validate the approximation technique. The results and discussion are
presented in subsection 5.3.3.

In the era of high-performance computing, the quest for greater efficiency, reduced
power consumption, and accuracy in arithmetic operations is a constant challenge, es-
pecially in floating point and fixed point computing, where balancing accuracy, perfor-
mance, and power consumption is crucial. The innovative works [78], [71], and [29]
delve into these areas, focusing on pioneering techniques for keeping the accuracy while
optimizing the runtime and power consumption of floating point, mixed-precision, and
fixed point operations.

The three previous work share a common focus on optimizing arithmetic opera-
tions to control accuracy and improve performance and energy efficiency in computing
systems. They explore techniques that balance the accuracy with efficient performance,
through modeling and mitigating noise in floating point computing, the dynamic flexibili-
ty of floating point, or the efficient implementation of fixed point trigonometric functions
using the algorithm CORDIC [75]. Each work contributes to enhance computational ef-
ficiency, regarding power consumption, hardware resource usage, or arithmetic accuracy,
demonstrating the practical implications of these approaches in real-world computing
systems.

There are yet other approaches using AC techniques but acting straightly on the
mathematical functions accuracy and performance instead of looking only at the opera-
tions. The authors in [46], [11], [50], and [66] propose techniques and tools for approxi-
mating mathematical functions, all aimed at optimizing computational efficiency while
maintaining precision.

When comparing the proposal of this work with those presented previously, one
may observe that, unlike other approaches, the proposal seeks to add an instruction
level of approximate computing by identifying and replacing accurate (non-approximate)
mathematical operations with approximate floating point instructions. Similar to the
related research, our technique also works on mathematical functions of an applica-
tion but is practical to be applied whether as a first approximation step on accurate
(non-approximate) functions or even as a second approximation step on software-level
approximated mathematical functions.

86

5.3.1 Instruction-Level Approximate Functions Design

As part of the ILAF design workflow, we adopted a three-level space exploration (DSE)
approach (Figure 5.9). At the first level, we focused on how to explore the design of new
floating point (FP) approximate instructions (step 1). The focus is to analyze all the set
of operations that comprise a complex floating point and replace some of these operations
by their approximate versions to improve performance and/or power consumption while
keeping controlled accuracy levels. After having new approximate floating point instruc-
tions, the second level (step 2) works in the source code of mathematical functions,
identifying non-approximate FP instructions that could be replaced with approximate
ones. Again, the building of the new approximate mathematical function is guided by
the gains in performance and reduced power consumption and looking at the accuracy
losses. At the third level (step 3), we aimed to identify and evaluate the functions
in the application’s source code and determine which ones could be replaced with the
approximate mathematical functions. Step 1 was presented in chapter 4. Step 2 will be
presented in the following subsection 5.3.1.1. The mapping of approximate functions in
the source code of some application (step 3) is presented in Section 5.3.2.

Figure 5.9: ILAF design workflow. Source: author.

ILAF has adopted the RISC-V instruction-set as the reference ISA to design and
evaluate new approximate instructions. The FP instructions in RISC-V use integer
operations to manipulate exponents, mantissa, shift, and rounding. Our strategy to
design new approximate FP instructions was to exchange some original (accurate) integer
operations for approximate integer instructions. The decision-making on which integer
operations and instructions should be replaced was done after performing a DSE on
those operations and evaluating the impact in accuracy, power, and performance.

The approximate integer operations adopted in this work were first introduced in
Catelan et al. [9]. The approximate integer addition follows the RISC-V instruction-set
format and is implemented using the InXA1 [1] approximate adder. The approximate
integer subtraction was designed and implemented using the APSC4 approximate sub-

87

tractor [24, 8].

5.3.1.1 Approximate Functions Design

The second step of the design and implementation of ILAF is built on the top of the
ACCEPT compiler using the following mathematical functions of the FastApprox library
(FAl): SIN, COS, TAN, EXP, LOG, and LOG2. When the user starts the compilation
process, ACCEPT presents a list of mathematical functions able to apply approximate
optimization. The user may choose 3 options: non-approximate, fast, and faster. The
first option uses the non-approximate mathematical functions from the math.h library.
fast and faster options apply versions of the approximated functions from the FastApprox
library [53, 41].

We redesign the mathematical functions of FastApprox (fast version) by replacing
some of the original FP instructions to the new approximate instructions. As an exam-
ple, Figure 5.10(a) presents a code snippet of the FastLog2 function (log2 approximate
mathematical function of FAl). In the FastLog2 function, replacing the original FP di-
vision operation/instruction (line 6) to the new FDIVX approximate FP instruction
(Figure 5.10(b)) could meet the compromise between accuracy, power, and performance.
The preliminary experiments improved the number of cycles, instructions, and power,
keeping the same accuracy of the original FastLog2 function.

(a) FastLog2 function.

(b) FastLog2 with FDIVX instruction.

Figure 5.10: Code snippet of the FastLog2 function. Source: author.

Each mathematical function implemented in the fast version of FAl was submitted
to the same design procedure: original FP instructions were replaced to approximate
FP instructions. The decision-making on the number of FP instructions to be replaced
and where (in the function’s source code) to be placed has considered the results of a
comprehensive set of DSE experiments. Each experiment is a scenario, a combination of

88

candidate FP instructions, where the approximate instructions were placed in the func-
tions. Each possible scenario has been evaluated looking at the accuracy, performance
increase, and power consumption reduction.

From all the evaluated functions, the TAN function had the most significant number
of scenarios (10). The chosen scenario was based on the best (lesser) mean absolute
percentage error (MAPE) value:

MAPE =
1

n

n∑
i=1

|Ei − Ai

Ei

| (5.1)

where:

• n is the sample size;

• Ei is the original (accurate) value/output;

• Ai is the approximate value/output.

Table 5.4 displays the scenario (the amount of approximate instructions) and its
MAPE value for each mathematical function. The best scenario of the SIN function had
the most significant number of approximate FP instructions (three FADDX and three
FMULX). The COS and TAN functions had one FADDX instruction, the LOG and
LOG2 functions had one FDIVX instruction and the EXP function had one FSUBX.

Table 5.4: Selected approximate instructions and MAPE of each mathematical function.
Source: author.

Functions FADDX FSUBX FMULX FDIVX MAPE
SIN 3 3 0.15
COS 1 0.03
TAN 1 0.14
EXP 1 0.00
LOG 1 0.00
LOG2 1 0.00

5.3.2 Experimental Setup

ILAF has been evaluated and tested on six different applications that apply mathematical
functions11: CUBIC [40], FFBENCH [76], FBENCH [76], BLACKSCHOLE [15], LOG2,
and IDENTITY LOG2.

11Applications are available for download at: https://github.com/lscad-facom-ufms/ILAF-
ApproxFunction

89

The type of mathematical functions present in each of the applications, the number
of functions, the number of functions replaced by ILAF (number in parenthesis), and
the number of executions (bold) are summarized in Table 5.5. For example, the CUBIC
application presents three cosine functions, each one run once, but only two were replaced
by ILAF.

Table 5.5: Summary of mathematical functions in each application. Source: author.

Applications SIN COS TAN EXP LOG LOG2

CUBIC - 3 (2) - - - -
3

FFBENCH 2 (2) - - - - -
64

FBENCH 6 (0) 2 (2) 1 (0) - - -
12 2 4

BLACKSCHOLE - - - 3 (3) 4 (4) -
6 4

LOG2 - - - - - 1 (1)
50

IDENTITY LOG2 - - - - - 2 (2)
5000

Figure 5.11 illustrates the ACCEPT compiler approximate workflow where a user
can choose between the FAl or the ILAF approaches. Given a source code (step 1), the
ACCEPT compiler will analyze the code and identify all mathematical functions able
to approximation (step 2). In step 3, the user will choose the approximate function
model. When choosing ILAF (step 4), the mathematical functions of the source code
will be replaced by the ones from the FAl with approximate instructions. In step 5,
the mathematical functions will be from the FastApprox library. Step 6 translates the
assembly to machine code RISC-V. Step 7 is the code simulation using the SPIKEX
simulator. SPIKEX is built on top of the SPIKE simulator and it supports all the
approximate instructions we have designed in this work.

5.3.3 Results and Discussion

The results and discussion presented in this section are based on a set of applications
organized into three different versions: the baseline (BL) where the applications have
non-approximate mathematical functions; the FastApprox (FAl), where the applications
had the approximate functions from the FastApprox library, and the ILAF approach
where the applications used ILAF approximate functions built on the top of the FastAp-
prox library. The experiments evaluated accuracy, running cycles, and power (µW)
comparing the original (non-approximate) application to the FAl and ILAF.

The relative error (RE = |AO−BO|
|BO|) is the metric adopted to evaluate the application

accuracy when using the approximate functions optimization. RE is calculated from
the baseline output results (BO) representing the non-approximate applications. The

90

Figure 5.11: ACCEPT approximate functions workflow. Source: author.

Approximate Output (AO) is the output result of the ILAF or the FAl approaches. In the
experiments, only two applications (CUBIC and FBENCH) had a maximum RE = 0.3
(30%). The remaining applications presented RE = 0, meaning no lack of accuracy in
using the approximate functions approaches.

The results have shown that the approximate techniques directly impact appli-
cations highly dependent on the math function. Other applications may have limited
benefits when looking at the performance and power consumption of the whole running
code. Table 5.6 shows the percentage improvement of instructions, power, and cycles in
each application by using ILAF over BL.

Table 5.6: Percentage improvements of the applications running the ILAF approach
compared to the BL. Source: author.

Applications Instructions Power Cycles
CUBIC 94.77 94.18 95.19

FFBENCH 0.02 0.01 0.01
FBENCH 63.10 56.83 76.01

BLACKSCHOLE 88.17 88.71 90.81
LOG2 49.08 23.38 66.62

IDENTITY LOG2 76.95 77.16 78.39

An improvement of 94.77% in the number of instructions can be seen in the CUBIC
application compared to the baseline (BL) version, meaning that 94.77% fewer instruc-
tions in the cosine function using our ILAF approach. Figure 5.12 sketches the functions

91

called by the cosine function in each version of the application. One may notice that there
is a large difference between instructions (in parenthesis) of the cosine function in Figu-
re 5.12(a) and Figure 5.12(c). This discrepancy was caused by the additional functions
brought to the application by the math.h library. In Figure 5.12(a), CUBIC runs three
calls to cosine that, in turn, calls three other functions (ieee754 rem pio2, Kernel sin,
and Kernel cos). Figure 5.12(b) represents the CUBIC using the approximate cosine
function (fast cos) from the FastApprox library. When using ILAF (Figure 5.12(c)),
CUBIC performs one calls to fast cos and two call to fast cos1, which is the cosine from
ILAF.

An analysis was performed regarding the applications code region where ILAF was
applied. The goal was to observe how many instructions (at runtime) of the math func-
tions of FastApprox could be impacted by ILAF. The code coverage metric is presented
in equation (5.2), where T ILAF is the number of ILAF approximate instructions applied
in a mathematical function. (T I) is the total of instructions of a given FastApprox func-
tion. The power improvement (Powerimp) is also calculated in equation (5.3). Each
instruction of the set of replaced instructions (IR) of a given function is multiplied by
its power (Poweri), and IApprox is the set of FP approximate instructions of ILAF that
replaces the instructions of IR.

Coverage =
T ILAF

T I

(5.2)

Powerimp =

IR∑
i

i× Poweri

IApprox∑
j

j × Powerj

(5.3)

Table 5.7 displays the coverage, power improvement, and speedup cycle comparing
ILAF to FastApprox. The results are based on the instructions of the mathematical
functions that are impacted by our approach.

Table 5.7: Coverage and power improvement of ILAF compared to FAl. Source: author.

Applications
Coverage

(%)
Power

Improvement
CUBIC 7.50 1.58

FFBENCH 30.60 1.03
FBENCH 1.30 1.04

BLACKSCHOLE 19.00 3.02
LOG2 4.00 1.03

IDENTITY LOG2 3.80 1.03

The coverage achieved in the FFBENCH application means that the ILAF ap-
proximate instructions covers 30.60% of all instructions (at runtime) of the FastApprox

92

(a) Cosine function call flow in the math.h library (base-
line).

(b) Cosine function call flow in the FastApprox library.

(c) Cosine function call flow in the ILAF.

Figure 5.12: Call flow of the cosine function of CUBIC using Baseline, FastApprox, and
ILAF. Source: author.

93

sine function. Specifically, FFBENCH uses two sine functions which are run 64×. Each
sine function of ILAF has three FADDX and three FMULX instructions, so that 384
(6× 64 = 384) instructions, at runtime, were replaced.

The BLACKSCHOLE application had the largest number of functions impacted
by the ILAF technique (three exponentials and four logarithms). The larger use of the
ILAF approximate functions is the responsible for the best power improvement (3.02×)
among the applications.

Table 5.8 shows a code snippet of the transit surface function that is part of the
cosine function of FastApprox. Table 5.9 depicts the transit surface function of the ILAF
approach. Both Tables highlight some floating point instructions, the number of run-
ning instructions, power, and cycles. The FBENCH application source code has 6 sine
functions, 2 cosines, and 1 tangent, but the best results are found when ILAF is applied
only on the cosine functions. Both functions have the same number of instructions (72)
in the code snippet, but ILAF reduces the total power consumption (calculated by mul-
tiplying the number of instructions by power). FastApprox had 12 fadd.s instructions,
while ILAF replaced 8 with faddx.s, resulting in 4 remaining fadd.s instructions.

Table 5.8: Excerpt from the code of the “transit surface” function (FBENCH applica-
tion) using the FastApprox library. Source: author.

transit surface: Instructions Power Cycles

...
...

...
...

fadd.s 12 3.36 2
fdiv.s 4 3.71 2
flt.s 8

c.bnez 20
ret 16 1.82 2
c.j 12

Table 5.9: Excerpt from the code of the “transit surface” function (FBENCH applica-
tion) using ILAF. Source: author.

transit surface: Instructions Power Cycles

...
...

...
...

fadd.s 4 3.36 2
fdiv.s 4 3.71 2
flt.s 8

c.bnez 20
faddx.s 8 3.19 2

ret 16 1.82 2
c.j 12

Experiments were performed on applications with mathematical functions, obser-
ving the impacts of the ILAF approach and comparing them to non-approximated ap-
plications (baseline) and an approximate approach using the FastApprox library. The

94

CUBIC application using ILAF achieved a power improvement of 94.18% and a reduc-
tion of 95.19% in cycles compared to the baseline. The BLACKSCHOLE application
using ILAF achieved a power improvement of 3.02× with only 19% code coverage. These
results showed that ILAF significantly improved performance and energy consumption
compared to non-approximated and even software-level approximate versions of the ap-
plications. Comparison with the FastApprox library revealed that our approximate ins-
truction approach provides power improvement for all applications while maintaining
the accuracy levels achieved by the software technique (FastApprox).

The adoption of ILAF poses a challenging task to attain better performance, power
improvement, and keeping accepted levels of accuracy. The benefits of ILAF relies on
the right decision-making on approximate instruction replacement in the mathemati-
cal functions. This challenge comes from the difficulty of performing the design space
exploration, given that this task has an exponential complexity. This work applied
design space exploration in three levels: the design of the approximate floating point
instructions, the design of the approximate functions, and the design of the approximate
applications. We had to explore the space of the floating point instructions to choose
the proper replacements of the original floating point instructions to the approximate
ones. Also, it was necessary to perform the design space exploration in the mathematical
functions to identify the instructions that the approximate ones should replace. Lastly, a
third exploration step was performed in the applications to evaluate which mathematical
functions should be replaced by their approximate counterparts.

5.4 Final Remarks

This chapter presented the design and results of approximate computing approaches in-
tegrating software and hardware techniques. The techniques are the Instruction-Level
Loop Perforation (ILLP) and Instruction-Level Approximate Functions (ILAF). The
results demonstrated that these techniques effectively optimize performance and reduce
energy consumption in several applications while maintaining accuracy within acceptable
limits. The detailed analysis of the techniques revealed that the strategic combination
of software and hardware methods can lead to a better computational resources usage,
especially in scenarios where absolute accuracy is not critical. ILLP proved to be particu-
larly advantageous in identifying and optimizing critical loops. At the same time, ILAF
stood out in replacing mathematical functions with instructions-approximated versions,
offering savings in power consumption. These advances reinforce the potential of ap-
proximate computing as a viable solution to modern systems’ performance and energy
consumption challenges. However, there is room for future improvements and expan-
sions, such as applying ILLP and ILAF techniques in other AC techniques, developing
automated tools for identifying approximation opportunities, and exploring other hard-
ware components that can be approximated.

95

Chapter 6

Conclusions

Approximate computing presents itself as an innovative and promising approach to ad-
dress the physical challenges of the end of Dennard scale. It allows optimizations in
terms of energy consumption, area usage, and performance through controlled trade-offs
in computational precision. This thesis investigated AC techniques, from hardware to
software, offering research contributions on both levels. Approximate arithmetic cir-
cuits and techniques for applying approximate computing in software were designed and
evaluated, such as instruction-level loop perforation (ILLP) and approximate arithmetic
functions (ILAF).

As a first general research contribution, this thesis comprehensively reviews ap-
proximate arithmetic circuits. The research showed advances in proposing new mixed
circuits that accommodate accurate and non-accurate components to control output in-
accuracy while improving power consumption. Those circuits worked as building blocks
for introducing specific instructions for approximate computing in the RISC-V instruc-
tion set. Those instructions, in turn, were used to design new approaches for well-known
software techniques: loop-perforation and approximated mathematical functions.

6.1 Specific Conclusions

In the Approximate Computing chapter (chapter 2), a detailed review of the AC state-
of-the-art was conducted, addressing its techniques and categorization at software, hard-
ware, and architecture levels. The methodology consisted of a critical analysis of the
existing literature, with the organization of the techniques into categories based on dif-
ferent authors. Despite the number of AC taxonomies, there was a gap in the repre-
sentation of solutions that adopted hardware and software techniques. We have filled
this gap up by proposing a new taxonomy encompassing hardware/software techniques
regarding the most recent advances in the field.

96

The work on AC circuits ended up designing and implementing new mixed arith-
metic circuits and evaluating their features on FPGA platforms. The results brought
evidence that mixed circuits can be an option to balance energy efficiency and accu-
racy. The experience in designing and evaluating approximate circuits was the moti-
vation to look at the design of new instructions using those circuits. To this end, the
RISC-V ISA was extended to support new approximate instructions. The methodology
included building new arithmetic instructions (integer and floating point) and adjusting
the compiler, toolchain, and simulation tools, thus offering a toolset that automates the
approximate code-generation process.

From the new approximate RISC-V instruction-set, we advanced a step further
by integrating techniques at software and hardware levels, focusing on instruction-level
loop perforation (ILLP) and approximate functions (ILAF). Integrating these techniques
in an automated way contributed to evaluating those AC techniques in a larger set of
applications.

6.2 Limitations of the Study

During the development of the work, there were several technical challenges:

• Lack of design tools. Sometimes, existing tools were outdated or adopted discon-
tinued resources;

• Constrained applications set. As the tool’s outdated features required applications
to be highly specific and adaptable to different contexts;

• Extensive data exploration (at up to three levels: instruction, mathematical func-
tion, and application) was required to develop approximate mathematical func-
tions.

Some studies were conducted during the work to find better applicability for ap-
proximate arithmetic circuits and approximate instructions. One of these studies was
the design of an approximate processor using the NEORV32 RISC-V[48] VHDL design.
The first results achieved satisfactory accuracy results; however, there was a lack of
tools for evaluating other metrics. Another study performed was the adoption of ap-
proximate floating point instructions in the Taylor’s mathematical functions[84], which
presented many possibilities of exchanging accurate instructions for approximate ones,
thus requiring a great effort in exploring of the design space.

Another technical challenge in this work was using the ACCEPT framework to
generate the RISC-V code. When carrying out our tests with ACCEPT, converting the
x86 object file to an RISC-V object file was necessary. Some applications showed a non-
compatible increase in the number of instructions; others raised errors in variables that
did not convert, thus constraining the applications that could be evaluated.

97

6.3 Thesis Contributions

This work contributed to an in-depth study of approximate computing, focusing on
hardware and software techniques. New methods of designing approximate arithmetic
circuits and instructions were exploited, thus combining hardware and software tech-
niques. Among the specific contributions, the following stand out:

• Proposal for an expanded taxonomy, introducing the category of combined software
and hardware support for AC techniques;

• Characterization of a wide range of approximate arithmetic circuits, showing im-
pacts on accuracy, area usage, frequency, and power dissipation;

• New approximate mixed designs to improve (minimize) the trade-off between rela-
tive error and area usage;

• Physical experiments in FPGA platform, revealing that approximate circuits can
take advantage of prototyping technologies to achieve better area usage and energy
savings;

• Design of approximate integer and floating point instructions incorporated into the
RISC-V instruction set;

• A new approximate technique that uses approximate instructions in Loop Perfo-
ration;

• A new approximate technique that uses approximate integer and/or floating point
instructions in mathematical functions;

• An infrastructure for approximate experimentation using hardware/software tools:
the SPIKE simulator with new approximate instructions, the ACCEPT compiler
to use the approximate RISC-V instructions, and the Prof5 profiling tool for power
estimation of those instructions.

The following articles were published and highlight the advances and results from
the research:

• Santos, R.; Sonahata, R.; Krebs, C.; Catelan, D.; Duenha, L; Segovia, D.; Santos,
M.. Exploração do projeto de sistemas baseados em GPU ciente de dark silicon.
In: Simpósio em Sistemas Computacionais de Alto Desempenho (SSCAD), 20. ,
2019, Campo Grande. Porto Alegre: Sociedade Brasileira de Computação, 2019 .
p. 358-369. doi: https://doi.org/10.5753/wscad.2019.8682 [62];

• Catelan, D.; Santos, R.. Exploração do espaço de projeto em arquiteturas het-
erogêneas cientes de dark silicon e utilizando computação aproximada. In: Escola

98

Regional de Alto Desempenho do Centro-Oeste (ERAD-CO), 3. , 2020, Campo
Grande. Anais. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 5-8.
doi: https://doi.org/10.5753/eradco.2020.12644 [6];

• Catelan, D.; Duenha, L.; Santos, R.. Accuracy and physical characterization of
approximate arithmetic circuits. In Anais do XXI Simpósio em Sistemas Com-
putacionais de Alto Desempenho, pages 143–154, Porto Alegre, RS, Brasil, 2020.
SBC. doi: https://doi.org/10.5753/wscad.2020.14065 [7];

• Catelan, D.; Duenha, L.; Santos, R.. Evaluation and characterization of approxi-
mate arithmetic circuits. In Concurrency and Computation: Practice and Expe-
rience, page e6865. Special Issue: WSCAD 2020. PDCAT 2020/PDCAT-PAAP
2020, 2022. https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.6865 [8];

• Catelan, D.; Duenha, L.; Wanner, L.; Santos, R.. Instruction-level Loop
Perforation. In Anais do XXIV Simpósio em Sistemas Computacionais de
Alto Desempenho, pages 37–48, Porto Alegre, RS, Brasil, 2023. SBC.
https://sol.sbc.org.br/index.php/sscad/article/view/26507 [9];

• Catelan, D.; Sovernigo, F.; Duenha, L.; Santos, R.., An Instruction-Set Ex-
tension to Support Approximate Multicore Processors, 2024 International Sym-
posium on Computer Architecture and High Performance Computing Work-
shops (SBAC-PADW), Hilo, HI, USA, 2024, pp. 23-32, doi: 10.1109/SBAC-
PADW64858.2024.00015. https://ieeexplore.ieee.org/document/10764671

6.4 Future Work

Given the advances and challenges observed throughout this work, several opportunities
emerge to deepen and expand the contributions. The following suggestions seek to
address some gaps and explore new approaches and techniques that can improve the
results from this thesis.

• Explore the new Verilog version of the NEORV32 processor, to enable the usage of
the analysis resources available in the Qflow [19] tool. Evaluate how Qflow analy-
sis tools (timing, power consumption, and area utilization estimates) can be used
to optimize NEORV32 performance in different configurations. Such an approach
could not only validate the processor’s compatibility with the tool and provide
insights on improving future implementations. With the information obtained, it
would be possible to create an approximation core and insert it into frameworks
such as MultiExplorer [17];

• Design and carry out an automated design space exploration heuristic on the Tay-
lor’s series mathematical functions. The goal would be to identify optimal settings
for parameters, such as the number of terms in the series, numerical precision, and

99

possibilities for exchanging exact instructions for approximate instructions, in or-
der to optimize the accuracy and efficiency of the calculation. This approach would
include the formulation of criteria for performance evaluation, such as accuracy,
resource consumption (time and space), number of instructions, cycles, and power;

• Extend the approximate RISC-V ISA by designing new approximate instructions.
Likewise, to design new approximate mathematical functions, such as pow and
sqrt. This approach would involve defining criteria to balance the accuracy of
calculations with system’s efficiency, and evaluating the impact of the new instruc-
tions and functions on different applications. The goal is to explore the potential of
approximate computing for error-tolerant applications, expanding the possibilities
of using RISC-V in systems with performance and power constraints.

• Development of a framework based on approximate computing, enabling the
adaptation of classical Machine Learning algorithms (K-means, SVM, KNN, and
DBSCAN) to scenarios with variable computational constraints, prioritizing the
preservation of result quality, reduction of time and resource consumption, and
facilitating its use in embedded devices and real-time systems.

100

Bibliography

[1] H. A. F. Almurib, T. N. Kumar, and F. Lombardi. Inexact designs for approximate
low power addition by cell replacement. In Proceedings of the 2016 Conference on
Design, Automation & Test in Europe, DATE ’16, page 660–665, San Jose, CA,
USA, 2016. EDA Consortium.

[2] H. Barua and D. Mondal. Approximate computing: A survey of recent
trends—bringing greenness to computing and communication. The Journal of the
Institution of Engineers (India): Electronics and Telecommunication Division, 06
2019.

[3] A. I. Barvinok. A polynomial time algorithm for counting integral points
in polyhedra when the dimension is fixed. In Annual Foundations of Com-
puter Science, SFCS ’93, page 566–572, USA, 1993. IEEE Computer Society.
https://doi.org/10.1109/SFCS.1993.366830.

[4] J. Bornholt, E. Torlak, L. Ceze, and D. Grossman. Approximate program synthesis.
Workshop on Approximate Computing Across the Stack (WAX), 2015.

[5] K. Boyini. Floyd warshall algorithm, 2022. https://www.tutorialspoint.com/Floyd-
Warshall-Algorithm. Accessed: March/2023.

[6] D. Catelan and R. Dos Santos. Exploração do espaço de projeto em arquiteturas
heterogêneas cientes de dark silicon e utilizando computação aproximada. In Anais
da III Escola Regional de Alto Desempenho do Centro-Oeste, pages 5–8, Porto Ale-
gre, RS, Brasil, 2020. SBC.

[7] D. Catelan, L. Duenha, and R. Dos Santos. Accuracy and physical characterization
of approximate arithmetic circuits. In Anais do XXI Simpósio em Sistemas Com-
putacionais de Alto Desempenho, pages 143–154, Porto Alegre, RS, Brasil, 2020.
SBC. https://sol.sbc.org.br/index.php/wscad/article/view/14065.

[8] D. Catelan, L. Duenha, and R. Dos Santos. Evaluation and characterization of
approximate arithmetic circuits. In Concurrency and Computation: Practice and
Experience, page e6865. Special Issue:WSCAD 2020. PDCAT 2020/PDCAT-PAAP
2020, 2022. https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.6865.

101

[9] D. Catelan, L. Duenha, L. Wanner, and R. Dos Santos. Instruction-level
loop perforation. In Anais do XXIV Simpósio em Sistemas Computacionais
de Alto Desempenho, pages 37–48, Porto Alegre, RS, Brasil, 2023. SBC.
https://sol.sbc.org.br/index.php/sscad/article/view/26507.

[10] D. Catelan, F. Sovernigo, L. Duenha, and R.. Dos Santos. An instruction-set exten-
sion to support approximate multicore processors. In 2024 International Symposium
on Computer Architecture and High Performance Computing Workshops (SBAC-
PADW), pages 23–32, 2024.

[11] D. Cattaneo, M. Chiari, G. Magnani, N. Fossati, S. Cherubin, and G. Agosta. Fixm:
Code generation of fixed point mathematical functions. Sustainable Computing:
Informatics and Systems, 29:100478, 2021.

[12] L. Chen, J. Han, W. Liu, and F. Lombardi. Design of approximate unsigned integer
non-restoring divider for inexact computing. In Proceedings of the 25th Edition on
Great Lakes Symposium on VLSI, GLSVLSI ’15, page 51–56, New York, NY, USA,
2015. Association for Computing Machinery.

[13] L. Chen, J. Han, W. Liu, and F. Lombardi. On the design of approximate resto-
ring dividers for error-tolerant applications. IEEE Transactions on Computers,
65(8):2522–2533, 2016.

[14] V. Chippa, D. Mohapatra, K. Roy, S. Chakradhar, and A. Raghunathan. Sca-
lable effort hardware design. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 22:2004–2016, 09 2014.

[15] T. DiPasqueale (codeslinger). Black-scholes option pricing model in c.
https://gist.github.com/codeslinger/472083/. Accessed: September/2023.

[16] R. Dennard, F. Gaensslen, H. Yu, L. Rideout, E. Bassous, and A. Leblanc. Design
of ion-implanted mosfets with very small physical dimensions. IEEE Journal of
Solid-Circuits, pages 256–267, 1974.

[17] R. Devigo, L. Duenha, R. Azevedo, and R. Santos. Multiexplorer: A tool set for
multicore system-on-chip design exploration. In IEEE 26th International Conference
on Application-specific Systems, Architectures and Processors (ASAP), pages 160–
161. IEEE, 2015.

[18] K. Du, P. Varman, and K. Mohanram. High performance reliable variable latency
carry select addition. In 2012 Design, Automation Test in Europe Conference Exhi-
bition (DATE), pages 1257–1262, March 2012.

[19] R. T. Edwards. Qflow: An open-source digital synthesis flow, 2021. Available online
at http://opencircuitdesign.com/qflow/. Accessed: November/2022.

[20] H. Esmaeilzadeh, A. Sampson, M. Ringenburg, L. Ceze, D. Grossman, and
D. Burger. Addressing dark silicon challenges with disciplined approximate com-
puting. Proc. 4th Workshop on Energy-Efficient Design, 01 2012.

102

[21] I. Felzmann, J. F. Filho, and L. Wanner. Risk-5: Controlled approximations for
risc-v. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 39(11):4052–4063, 2020.

[22] Benchmarks Game, 2022. https://benchmarksgame-
team.pages.debian.net/benchmarksgame. Accessed: March/2023.

[23] GeeksforGeeks. Dijkstra’s shortest path algorithm, 2022.
https://www.geeksforgeeks.
org/dijkstras-shortest-path-algorithm-greedy-algo-7/. Accessed: March/2023.

[24] A. Gorantla and P. Deepa. Design of approximate subtractors and dividers for error
tolerant image processing applications. Journal of Electronic Testing, pages 1–7, 10
2019.

[25] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph execution
profiler. In Symposium on Compiler Construction, page 120–126, NY, USA, 1982.
Association for Computing Machinery.

[26] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. Low-power digital signal
processing using approximate adders. IEEE Trans. on CAD of Integrated Circuits
and Systems, 32(1):124–137, 2013.

[27] J. Han and M. Orshansky. Approximate computing: An emerging paradigm for
energy-efficient design. In 18th IEEE European Test Symposium, ETS 2013, Avig-
non, France, May 27-30, 2013, pages 1–6, 2013.

[28] M. Horowitz. 1.1 computing’s energy problem (and what we can do about it). In
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pages 10–14, 2014.

[29] N. Iwanaga, T. Abe, and A. Yamawaki. Development of fixed-point trigonometric
function library for high-level synthesis. 1st IEEE/IIAE International Conference
on Intelligent Systems and Image Processing, pages 91–94, 2013.

[30] H. Jiang, J. Han, and F. Lombardi. A comparative review and evaluation of ap-
proximate adders. In Proceedings of the 25th Edition on Great Lakes Symposium
on VLSI, GLSVLSI ’15, page 343–348, New York, NY, USA, 2015. Association for
Computing Machinery.

[31] P. Kulkarni, P. Gupta, and M. Ercegovac. Trading accuracy for power in a multiplier
architecture. J. Low Power Electronics, 7:490–501, 12 2011.

[32] V. Leon, M. Hanif, G. Armeniakos, X. Jiao, M. Shafique, K. Pekmestzi, and
D. Soudris. Approximate computing survey, part i: Terminology and software e
hardware approximation techniques, 2023.

[33] L. Li and H. Zhou. On error modeling and analysis of approximate adders. In 2014
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
511–518, Nov 2014.

103

[34] S. Li, S. Park, and S. Mahlke. Sculptor: Flexible approximation with selective
dynamic loop perforation. In International Conference on Supercomputing, page
341–351, NY, USA, 2018. Association for Computing Machinery.

[35] J. Liang, J. Han, and F. Lombardi. New metrics for the reliability of approximate
and probabilistic adders. IEEE Transactions on Computers, 62(9):1760–1771, 2013.

[36] I. Lin, Y. Yang, and C. Lin. High-performance low-power carry speculative addition
with variable latency. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 23(9):1591–1603, Sep. 2015.

[37] S. Ma and P. Ampadu. Approximate memory with approximate dct. In Proceedings
of the 2019 on Great Lakes Symposium on VLSI, GLSVLSI ’19, page 355–358, New
York, NY, USA, 2019. Association for Computing Machinery.

[38] H.R. Mahdiani, S.M. Fakhraie, and Cameron Lucas. Bio-inspired imprecise com-
putational blocks for efficient vlsi implementation of soft-computing applications.
Circuits and Systems I: Regular Papers, IEEE Transactions on, 57:850 – 862, 05
2010.

[39] A. Mativi, D. Silveira, and S. Bampi. A survey on approximate
memory techniques for error-tolerant applications. In UFRGS, 2019.
http://www.inf.ufrgs.br/ acmsouza/files/2019-SIM.pdf.

[40] MiBENCH. Solve a cubic polynomial. https://github.com/embecosm/mibench.
Accessed: September/2023.

[41] P. Mineiro. Fastapprox library. https://code.google.com/archive/p/fastapprox/.
Accessed: August/2024.

[42] S. Mittal. A survey of techniques for approximate computing. ACM Comput. Surv.,
48(4):62:1–62:33, March 2016.

[43] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy. Design of voltage-
scalable meta-functions for approximate computing. In 2011 Design, Automation
Test in Europe, pages 1–6, March 2011.

[44] A. Moreno, F. Calle, and C. Pedraza. A low-cost fault tolerance method for arm and
risc-v microprocessor-based systems using temporal redundancy and approximate
computing through simplified iterations. Journal of Integrated Circuits and Systems,
16(3), 2021.

[45] V. Mrázek, R. Hrbáček, Z. Vaš́ıček, and L. Sekanina. Evoapprox8b: Library of
approximate adders and multipliers for circuit design and benchmarking of approxi-
mation methods. In Proc. of the 2017 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pages 258–261. European Design and Automation
Association, 2017.

104

[46] J. Muller. Elementary functions and approximate computing. Proceedings of the
IEEE, 108(12):2136–2149, 2020.

[47] S. Muthulakshmi, Chandra Dash, and S. Prabaharan. Memristor augmented ap-
proximate adders and subtractors for image processing applications: An approach.
AEU - International Journal of Electronics and Communications, 91, 05 2018.

[48] S. Nolting. The neorv32 risc-v processor. https://github.com/stnolting/neorv32/tree/
v1.10.4. Accessed: June/2022.

[49] K. Palem and A. Lingamneni. Ten years of building broken chips: The physics and
engineering of inexact computing. ACM Trans. Embed. Comput. Syst., 12(2s):87:1–
87:23, May 2013.

[50] K. Parasyris, J. Diffenderfer, H. Menon, I. Laguna, J. Vanover, R. Vogt, and D. Osei-
Kuffuor. Approximate computing through the lens of uncertainty quantification.
In SC22: International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–14, 2022.

[51] J. Park, H. Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris. Flexjava: language
support for safe and modular approximate programming. Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pages 745–757, 08 2015.

[52] D. A. Patterson and J. L. Hennessy. Computer Organization and Design RISC-V
Edition: The Hardware Software Interface. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 2017.

[53] L. Reis and L. Wanner. Functional approximation and approximate parallelization
with the accept compiler. In IEEE 33rd International Symposium on Computer
Architecture and High Performance Computing, pages 188–197, 2021.

[54] L. O. P. Reis. Targeting broad software approximations with the accept compiler.
Master’s thesis, Campinas State University, Campinas, SP, Brazil, 2021.

[55] RISC-V. Risc-v pk, 2022. Available at: https://github.com/riscv-software-src/riscv-
pk. Accessed: September/2023.

[56] RISC-V. Risc-v toolchain, 2022. Available at: https://github.com/riscv-
collab/riscv-gnu-toolchain. Accessed: November/2023.

[57] M. Rodriguez-Cancio, B. Combemale, and B. Baudry. Approximate loop
unrolling, 2019. Association for Computing Machinery. pages 94-105. 2019.
https://doi.org/10.1145/3310273.3323841.

[58] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, and M. Oskin.
Accept: A programmer-guided compiler framework for practical approximate com-
puting. University of Washington Technical Report UW-CSE-15-01, 1:1–14, 2015.

105

[59] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Gross-
man. Enerj: Approximate data types for safe and general low-power computation.
SIGPLAN Not., 46(6):164–174, June 2011.

[60] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate storage in solid-
state memories. In 2013 46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 25–36, 2013.

[61] F. Santos. Cfast fourier transform, 2022. https://github.com/riscv-software-
src/riscv-isa-sim. Accessed: March/2023.

[62] R. Santos, R. Sonohata, C. Krebs, D. Catelan, L. Duenha, D. Segovia, and M. San-
tos. Exploração do projeto de sistemas baseados em gpu ciente de dark silicon.
In 31st International Symposium on Computer Architectura and High Performance
Computing (WSCAD-SSC), 2019.

[63] M. Shafique, O. Hasan, R. Hafiz, S. Mazahir, M. A. Hanif, and S. Rehman. Approxi-
mate computing across the hardware and software stacks. Institution of Engineering
and Technology, pages 497–522, 2019.

[64] S. Sidirogloy-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard. Managing per-
formance vs. accuracy trade-offs with loop perforation. Association for Computing
Machinery, pages 124–134, 2011.

[65] J. Silveira, L. Castro, V. Araújo, R. Zeli, D. Lazari, M. Guedes, R. Azevedo, and
L. Wanner. Prof5: A risc-v profiler tool. In International Symposium on Computer
Architecture and High Performance Computing, pages 201–210, 2022.

[66] G. Singh, B. Kundu, H. Menon, A. Penev, D. J. Lange, and V. Vassilev. Fast and
automatic floating point error analysis with chef-fp. In 2023 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 1018–1028, 2023.

[67] J. Singh and J. Kedia. A comparative analysis of different approximate adders
used for image compression and image addition. International Journal of Advanced
Research in Electronics and Communication Engineering (IJARECE), 7, 2018.

[68] IEEE Computer Society. Ieee standard for floating-point arithmetic, aug 2008.

[69] SPIKE. Spike risc-v isa simulator, 2019. Available at: https://github.com/riscv-
software-src/riscv-isa-sim. Accessed: September/2023.

[70] A. Statescu. Program to compute pi using a monte carlo method, 2022.
https://gist.github.com/thinkphp/0d56dfd5eb5f91da029a91d4c7676f12. Accessed:
March/2023.

[71] G. Tagliavini, A. Marongiu, and L. Benini. Flexfloat: A software library for trans-
precision computing. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(1):145–156, 2020.

106

[72] S. Venkataramani, S. Chakradhar, K.k Roy, and A. Raghunathan. Approximate
computing and the quest for computing efficiency. In 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2015.

[73] S. Venkataramani, V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan. Quali-
ty programmable vector processors for approximate computing. MICRO 2013 -
Proceedings of the 46th Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 1–12, 12 2013.

[74] T. G. Viegas. Técnicas de Computação Aproximada para Implementação de Filtros
FIR. PhD thesis, Técnico Lisboa, 2016.

[75] J. E. Volder. The cordic trigonometric computing technique. IRE Transactions on
Electronic Computers, EC-8(3):330–334, 1959.

[76] J. Walker. Floating point benchmarks. https://www.fourmilab.ch/fbench/. Ac-
cessed: September/2023.

[77] M. Wyse, A. Baixo, T. Moreau, B. Zorn, J. Bornholt, A. Sampson, L. Ceze, and
M. Oskin. React: A framework for rapid exploration of approximate computing
techniques. WAX 2015 (colocated with PLDI), 2015.

[78] Y. Xiang, L. Li, S. Yuan, W. Zhou, and B. Guo. Metrics, noise propagation models,
and design framework for floating-point approximate computing. IEEE Access,
9:71039–71052, 2021.

[79] Q. Xu, T. Mytkowicz, and N. Kim. Approximate computing: A survey. IEEE
Design and Test, 33(1):8–22, 2 2016.

[80] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi. Approximate xor/xnor-based
adders for inexact computing. Proceedings of the IEEE Conference on Nanotech-
nology, pages 690–693, 08 2013.

[81] A. Yazdanbakhsh, D. Mahajan, P. Lotfi-Kamran, and H. Esmaeilzadeh. Axbench: A
benchmark suite for approximate computing across the system stack. IEEE Design
& Test, 34:60–68, 2017.

[82] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. On reconfiguration-oriented
approximate adder design and its application. In 2013 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 48–54, Nov 2013.

[83] N. Zhu, W. L. Goh, G. Wang, and K. S. Yeo. Enhanced low-power high-speed adder
for error-tolerant application. In 2010 International SoC Design Conference, pages
323–327, Nov 2010.

[84] H. Zitane and D.F.M Torres. Generalized taylor’s formula for power fractional
derivatives. In Bol. Soc. Mat. Mex. 29, 68, 2023. https://doi.org/10.1007/s40590-
023-00540-0.

107

