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Abstract

The Border Gateway Protocol (BGP) orchestrates Internet communications be-

tween Autonomous Systems (ASes). BGP’s flexibility allows operators to express

complex policies and deploy advanced traffic engineering systems. A key mechanism

for this flexibility is tagging route announcements with BGP communities, which

have arbitrary, operator-defined semantics, to pass information or requests from

router to router. Typical uses of BGP communities include attaching metadata to

route announcements, such as where a route was learned or whether it was received

from a customer, and controlling route propagation, for example, to steer traffic to

preferred paths or blackhole DDoS traffic. However, there is no standard for speci-

fying the semantics nor a centralized repository that catalogs the meaning of BGP

communities. The lack of standards and central repositories complicates the use of

communities by the operator and research communities.

The main goal of this thesis is to develop techniques to infer the semantics of BGP

communities using publicly available data from BGP collectors. We first propose a

set of techniques to infer location communities. Our techniques infer communities

related to the entities or locations traversed by a route by correlating communities

with AS paths. We also propose a set of heuristics to filter incorrect inferences

introduced by misbehaving networks, sharing of BGP communities among sibling

autonomous systems, and inconsistent BGP dumps. We apply our techniques to

billions of routing records from public BGP collectors and make available a pub-

lic database with more than 15 thousand location communities. Our comparison

with manually-built databases shows our techniques provide high precision (93%),

better coverage (81% recall), and dynamic updates, complementing operators’ and

researchers’ abilities to reason about BGP community semantics.

i



We also design and evaluate algorithms to automatically uncover BGP action

communities and ASes that violate standard practices by consistently using the

informational communities of other ASes, revealing undocumented relationships

between them (e.g., siblings). Our experimental evaluation with billions of route

announcements from public BGP route collectors from 2018 to 2023 uncovers pre-

viously unknown AS relationships and shows that our algorithm to identify action

communities achieves average precision and recall of 92.5% and 86.5%, respectively.

Keywords: Internet routing, BGP Communities, AS Relationships
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Chapter 1

Introduction

Some things in life can never be fully appreciated nor understood unless

experienced firsthand. Some things in networking can never be fully under-

stood by someone who neither builds commercial networking equipment nor

runs an operational network.

– RFC 1925, The Twelve Networking Truths

The Internet is a complex system composed of Autonomous Systems (ASes) that

exchange reachability information using the Border Gateway Protocol (BGP) [79,80,

82], its de facto interdomain routing protocol. The construction of a route in BGP

starts from an origin AS, which controls and announces an IP prefix to its neigh-

boring ASes over BGP. Routes are propagated by BGP updates, routing messages

composed of mandatory and optional attributes. Mandatory attributes include, e.g.,

the destination IP prefix announced by the origin, the next-hop router’s IP address,

and the AS-path. The AS-path is the sequence of ASes traversed by the route un-

til it reaches the origin AS. The AS-path is employed by BGP to prevent loops,

and more rarely by operators to specify complex routing policies [34]. Optional at-

tributes can be transitive or non-transitive depending on whether they are carried

over by a neighboring AS to the next AS and include communities and multi-exit
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Introduction 2

discriminators.

The BGP best-path selection algorithm is flexible and allows network operators

to rank routes based on policies and economic agreements. BGP offers various pa-

rameters to control routing decisions, such as setting route preferences (LocalPref),

signaling preferred interconnections between neighboring ASes (MEDs), and mini-

mizing intradomain traffic costs. However, these mechanisms are coarse-grained and

primarily control decisions for routes received from neighboring ASes. The increas-

ing demand for reliability and performance has led to more dynamic and complex

routing policies [37, 85,93,105], exposing the limitations of a protocol that was last

updated more than two decades ago [79].

To overcome the limitations in BGP expressiveness, network operators have in-

creasingly relied on the optional BGP communities attribute to convey information

in their route announcements. A BGP community is a 32-bit tag whose meaning

(i.e., semantics) is defined independently by each network. However, network oper-

ators generally group BGP communities into two types: informational and action.

A network tags a route with an informational community1 to convey information

to its neighbors, such as the country, city, PoP, or router where it learned the

route [36,63] or the business relationship with the neighboring network from where

it received the route [37,50,64]. On the other hand, a network tags a route with an

action community to request an action from an upstream network [17, 93, 108]. An

action community can request the network to prepend its AS number to the BGP

AS path to make a route artificially longer and less attractive, or to not advertise a

particular prefix to one of the newtork’s peers to steer traffic destined to that prefix

away from a low-performance AS.

BGP communities provide various options for traffic engineering. For instance,

Figure 1.1 illustrates an example where AS V uses a location community, which

is a type of informational community, to control route selection. The origin AS O

1In this thesis, we use the term informational community interchangeably with information
community.
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Origin
AS O 

B

A
L1

L2
V

A:L
1

A:L2

Import filters at V:
if contains A:L1 then
    LocalPref ← 120
else if from B then
    LocalPref ← 100
else
    LocalPref ← 80

Figure 1.1: Example of traffic engineering using BGP communities. AS V prefers
routes from AS B, but may configure import filters to prefer routes from A when
they traverse location L1, e.g., when performance through AS A and location L1

justifies choosing the less preferred neighbor. This policy can be implemented in
AS V by inspecting the location communities in AS A’s route announcements.

announces its prefixes to AS A at different locations L1 and L2, and to AS B at

location L2. AS A tags routes received at L1 and L2 with communities A:L1 and

A:L2, respectively. AS A announces to AS V only the route it selects as the best,

according to its internal policies, i.e., AS V receives one route from AS A with either

tag A:L1 or A:L2. Suppose that AS V has a policy that dictates that routes learned

from AS B should have higher priority than routes learned from AS A, e.g., because

B’s transit costs are cheaper than A’s. However, AS V may decide to use routes

received from A that traverse L1, e.g., because they have better performances that

justify the higher cost. To implement this policy, AS V sets LocalPref to 120 in all

routes received from AS A with location community A:L1, sets LocalPref to 100 for

routes learned from AS B, and sets LocalPref of other routes to 80 (including routes

from A tagged with A:L2). As BGP uses LocalPref as the first criterion to decide the

best route, AS V selects the high-performance route from AS A when it traverses

L1 and the cheaper route from AS B otherwise. Routes from AS A with tag A:L2

are chosen only when no route is available from B (e.g., due to failures).

Unfortunately, the BGP communities attribute is an opaque identifier and its

semantics are neither standardized nor follow any universal rule. Therefore, network

operators are free to decide community values and semantics. A network A may use

facom-ufms
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community A:X for triggering BGP AS path prepending, while another network B

may use community B:X for a completely different purpose, e.g., signal that a route

was learned in New York. Some networks catalog their communities in Internet

Routing Registry (IRR) databases [99] or webpages (e.g., [32]), but most of the

communities observed in public route announcements are undocumented.

The lack of standardization and public databases mapping community values to

their semantics hinders the manipulation of routes for traffic engineering or the de-

velopment of tools that take advantage of metadata in BGP communities. Operators

have to rely on ad-hoc information in IRR databases or webpages, which may be

incomplete, outdated, or available only by contacting the network operators of the

particular AS. This manual process increases the effort required to integrate com-

munity information in routing decisions, degrades user quality of experience when

BGP chooses suboptimal routes, and limits researchers’ understanding of routing.

1.1 Problem Statement and Research Questions

A recent study introduces a mining tool designed to automatically build a database

of BGP community semantics by extracting information from IRR records and sup-

port webpages of network providers [35]. The tool uses natural language processing

to infer the meaning of each documented community within these data sources.

Although the study [35] shows that the tool achieves high precision in identifying

communities, its approach has two fundamental limitations: (i) it can only infer a

restricted number of communities, as it depends on free text descriptions provided

by network operators; and (ii) it is constrained by the quality of data sources, which

may be incomplete, outdated, or entirely missing, leading to reduced precision and

limited coverage of communities used across the Internet. Additionally, an AS can

use the BGP communities of a related AS, such as a sibling AS. This practice compli-

cates the understanding of BGP community usage, as an informational community

may appear in a route announcement even when the AS that originally defined it

facom-ufms



Introduction 5

is not present in the announcement. Consequently, network operators still have

to rely on manually created documentation provided by each individual AS about

their BGP communities and relationships with other ASes, which is often incomplete

and insufficient for effective troubleshooting and understanding of Internet routing.

Thus, our problem statement can be summarized as follows:

Problem Statement 1: Networks do not publicly provide necessary and suf-

ficient information about their BGP communities and relationships with other net-

works for effective troubleshooting and understanding of Internet routing.

Many studies have identified the lack of data documentation as a major problem

in troubleshooting Internet routing issues [22,25,35,36,60,75,93]. In this thesis, we

contribute to partially close this gap by automatically building reliable databases to

document a subset of communities that are actively being used on the Internet, i.e.,

communities that appear in public BGP route collectors. We also present mecha-

nisms to uncover an undocumented type of confounding use of BGP communities

in the wild in which an AS consistently uses the informational communities of an-

other AS, which might help operators understand BGP community uses or uncover

undocumented AS relationships. This behavior can impact previous research that

infers AS relationships or the semantics of BGP communities [37, 59, 60, 64, 89, 93].

More specifically, we focus on the following two research questions:

Research Question 1: Can we build reliable databases of BGP community

semantics using public routing data?

In this thesis, we address this research question by developing techniques to

automatically infer the semantics of specific types of BGP communities directly

from publicly available route announcements collected by route collectors. We ini-

tially target location communities (Chapter 4), defined as communities that carry

metadata about the location (e.g., city, country, continent, router, PoP, link, or

interconnection) where a route was learned. Location communities allow richer ma-

nipulation inside the tagging AS, but they would also be helpful to neighboring

facom-ufms



Introduction 6

and remote ASes if their semantics were publicly available. We focus initially on

location communities because they represent the majority of publicly-documented

communities (§4.2) as well as a significant fraction of communities observed in route

announcements (§4.3). Also, the flattening of the Internet hierarchy has led net-

works to interconnect through multiple physical links, and information about loca-

tions traversed by routes improves operators’ ability to monitor policy compliance,

detect unexpected behavior such as route changes, and troubleshoot anomalous be-

havior such as congestion. For example, operators could use a tool that correlates

BGP location communities and performance (e.g., latency, jitter, etc.) to tune their

route selection preferences at a finer granularity than possible with just AS paths,

as exemplified by Figure 1.1.

In Chapter 5, we also present algorithms for identifying action communities from

public routing data. Recall that an action community is a tag that an AS inserts

in a route announcement to request an action from an upstream network. Our

algorithms provide automatically updated metadata (i.e., a database of action com-

munities) that can benefit novel tools and models. For example, action community

information can help operators troubleshoot routing anomalies, e.g., when routes

that follow an unexpected or undesired path carry specific action communities, and

identify opportunities for traffic engineering, e.g., when an operator observes prefer-

able routes induced by action communities not publicly documented. Our results

can also be used to help identify and flag announcements carrying BGP communities

to perform route manipulation attacks [4, 5, 70].

In Chapters 4 and 5, we show through longitudinal studies that our algorithms

perform well over the years even when ASes add new communities or decomission

old ones, attesting to their robustness over time and the reliability of the generated

databases.

facom-ufms
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Research Question 2: Can we use BGP communities to identify AS rela-

tionships?

The main goal of this thesis is to determine the semantics of BGP communities.

However, in our analysis of routing announcements, we observed that, although rare,

different ASes can use each other’s communities even when they are not siblings.

Operationally, this behavior is more commonly expected from sibling ASes, as the

same organization manages them. Yet, during our inference process, we found that

nonsibling ASes also exhibited this behavior, complicating the inference of location

communities. This complication arises because the location community appears in

route announcements without its corresponding AS being present in the AS path,

which deviates from the expected behavior.

In Chapter 4, we build a heuristic based on the hitting set algorithm [31] (equiv-

alent to the NP-complete vertex cover problem [31, 54]) to detect the presence of

these ASes that use the communities of others and prevent that their presence ex-

cludes location communities from the inference. As we deepened our understanding

of community usage, we discovered that these relationships were not limited to sib-

ling ASes, as some ASes use the communities of other ASes even when they are not

siblings. We call this behavior community squatting2 and identify the ASes involved

as AS squatters.

In Chapter 5, we use BGP communities to identify squatting relationships and

reduce the noise they introduce into the inference of action communities. Informa-

tional communities are helpful for this task because they are expected to appear

consistently with their respective ASes (or related ASes) in the AS path. However,

our algorithm does not need to know the type of a community to infer the squatting

relationships.

Although there is no ground-truth dataset on AS squatting relationships, we

2We borrow the term squat and its derived forms from “IP address squatting” [83], where a
network uses another’s IP address space internally for its own purposes. In this work, however, an
AS may squat the communities of another AS legitimately, e.g., the communities of a sibling AS.
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were able to compare our inferred AS relationships with techniques that use pub-

lic data and databases such as PeeringDB [3]. Our inference mechanism captured

relationships in the wild that the existing techniques missed, thus addressing Re-

search Question 2. Additionally, our algorithm to uncover squatting relationships

can complement techniques for validating AS-relationship inferences and tracking

route changes.

1.2 Main Contributions

In this section, we present our main contributions to the automatic identification of

location (a sub set of the information communities) and action communities on the

Internet. We treat these sets separately because they require different techniques

and use BGP dumps from different time periods. For location communities, we

analyze data from 2017 to 2020, while for action communities, we analyze data from

2018 to 2023. Chapters 4 and 5 detail the algorithms and techniques developed in

this work.

We also design algorithms to identify ASes that engage in uncommon practices

by consistently squatting on the BGP communities of other ASes, which we refer to

as a squatting relationship. This behavior can affect the validity of previous research

that relies on BGP communities [37,59,60,64,89,93].

1.2.1 Location Communities

Our approach to infer location communities is fundamentally different from previ-

ous efforts, as our algorithms automatically infer communities from public route

announcements observed by BGP route collectors (e.g., RouteViews [68], RIPE

RIS [81], and Isolario [42]) and generate databases of communities that can be re-

generated any time to reflect additions of new communities or assignment changes.

Our work is the first to show that we can use routing announcements to infer, even

at a coarse level, the semantics of BGP communities. Our key insight for inferring
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location communities is to use the sequence of ASes connecting a tagging AS (i.e., an

AS that tags routes with its location communities) to origin ASes as a reliable marker

for routes crossing specific interconnection points. We use BGP route collector peers

as vantage points from which we observe tagging ASes and correlate BGP commu-

nities with AS paths in route announcements. We also propose a set of heuristics

to filter noise introduced by misbehaving networks, sharing of BGP communities

among sibling autonomous systems, and inconsistent BGP dumps. We process over

two billion route announcements from three route collector projects [42, 68, 81] and

infer 15,505 location communities across 1,120 ASes, wich represents 19.67% of the

communities that appeared in the BGP dumps in 2020.

We evaluate our inference methodology for identifying location communities us-

ing a manually built ground-truth dataset with 39,308 communities from Tier-1 and

Tier-2 autonomous systems that publicize the semantics of their communities on

IRR databases or webpages. Our experimental evaluation shows that our methodol-

ogy yields high precision (from 87% to 93%) and recall (from 72% to 81%) depending

on the parameters used. We compare our results with CAIDA’s manually-built pub-

lic database of BGP communities [7] and show that our technique has higher recall

and similar precision, with the advantage that it can be automatically updated as

new BGP communities are defined or as definitions change over time. Our code

and databases of inferred and ground-truth BGP communities is available online to

allow for reproducibility of our results and enhance the understanding of Internet

routing by network operators and researchers [53].

1.2.2 Action Communities and AS Squatters

Our approach to infer action communities relies on public route announcements ob-

served by BGP route collectors (e.g., RouteViews [68] and RIPE RIS [81]). It funda-

mentally differs from previous efforts that rely on public documentation about BGP

communities—published by the networks on Internet Routing Registries (IRRs) or

web pages—as a basis for classifying undocumented communities [60] or to extract
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community semantics using natural language processing [35, 38]. As discussed pre-

viously, these approaches do not generalize well to ASes that do not follow common

practices to define their communities or are limited in the number of communities

they can infer because they depend on free text descriptions provided by network

operators, which may be incomplete or outdated.

Our key insight lies in the fundamental difference between the usage of infor-

mational and action communities. Informational communities are used by ASes to

pass information to other ASes, such as where the AS learned a route or its busi-

ness relationship (customer, provider, or peer) with the previous AS on the route.

Consequently, an informational community should appear on routes that traverse

the community’s AS, as the AS is in charge of tagging routes with the relevant

information. In contrast, an action community is less likely to be tagged on the

routes where its AS is present, as the community sends a request to and is tagged

by a network other than the AS that defines the community, which we refer to as

controlling AS. Furthermore, RFC7454 prescribes that the controlling AS remove an

action community from a route after performing the requested action [23]. There-

fore, if the AS that defines the community is on the route, it should have removed

its action communities. As such, an action community should only appear if the

route does not traverse its AS. Our algorithms rely on this fundamental difference

to build reliable classifiers of action communities and to identify potential squatters.

While our insight is simple to state, designing algorithms that perform well in

the wild presents significant challenges, such as ASes that squat the information

communities of other ASes, ASes that do not remove their action communities after

performing the requested actions, route announcements with a large number of

communities, and limited visibility of the existing BGP route collectors. We address

these challenges by identifying squatting relationships based on how routes with

informational communities propagate on the Internet. Then, we build an initial set

with action communities that are mostly absent from routes traversing the ASes that

define them. Using this initial set, we construct an efficient data structure to identify
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action communities in route announcements where the ASes that define them can

be present in the AS-paths. Although we cannot control how manufacturers set the

default behavior on their devices, it is possible that removing communities from the

BGP announcements is related to security concerns. However, this claim requires

further investigation and is outside the scope of our current work. We contacted

multiple network operators to understand their reasons for removing or not removing

action communities to no avail.

Our experimental evaluation with billions of route announcements from 2018

to 2023 shows that the algorithm to identify action communities achieves average

precision and recall of 92.5% and 86.5%, respectively, over all communities in BGP

dumps covered by our ground truth in the longitudinal study. We also analyzed

over 739 million announcements from December 2023 and inferred 19,564 action

communities from 2,099 autonomous systems. We excluded 14.86% of the commu-

nities (15,800 out of 106,262) from our evaluation in 2023 due to their association

with private ASNs. Our algorithm for uncovering potential squatters found 54 pair-

wise squatting relationships involving 105 ASes that systematically used other AS’s

communities in December 2023. These identified squatting relationships may un-

cover undocumented relationships between the ASes. For example, we identified

five sibling relationships that the state-of-the-art technique described in [12] did not

detect.

Our algorithms provide automatically updated metadata (i.e., a database of

action communities and potential squatters) that can benefit novel tools and models.

For example, action community information can help operators troubleshoot routing

anomalies, e.g., when routes that follow an unexpected or undesired path carry

specific action communities, and identify opportunities for traffic engineering, e.g.,

when an operator observes preferable routes induced by action communities not

publicly documented. Our results show that operators use action communities much

more extensively than publicly available documentation would indicate.
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1.3 Thesis Roadmap

The remainder of this thesis is organized as follows. Chapter 2 presents an overview

of the BGP protocol and introduces concepts and terms used in the subsequent chap-

ters. In Chapter 3, we review related work, including recent efforts to characterize

community usage, standardization initiatives, methods to infer community seman-

tics, and various applications of BGP communities. Chapter 4 outlines our tech-

niques for inferring location communities, discussing the underlying assumptions,

datasets, and the performance of these techniques. Chapter 5 presents our methods

for detecting AS squatters and identifying BGP action communities, together with

a discussion of our assumptions, datasets, and evaluation results. Finally, Chapter 6

presents the thesis’s conclusions and suggests directions for future research.
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Chapter 2

Background

“Begin at the beginning,” the King said, gravely, “and go on till you come

to an end; then stop.”

– Lewis Carroll, Alice in Wonderland

This chapter introduces the key characteristics of the Border Gateway Protocol

(BGP), the role of commercial relationships in traffic exchange between Autonomous

Systems (ASes), and the impact of certain optional BGP attributes on routing

decisions. These concepts are crucial to understanding the techniques discussed

in this thesis.

2.1 BGP Protocol

BGP is the de facto interdomain routing protocol on the Internet, used to exchange

reachability information across ASes. It combines scalability to large numbers of pre-

fixes and routes with flexibility to support complex routing policies and protect busi-

ness secrets. The proof of BGP’s Turing completeness [15] attests to its flexibility.

BGP’s flexibility is manifested by its best-path selection algorithm, which AS

routers use to choose one among multiple routes available towards a prefix. The BGP
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path selection algorithm is a multi-stage decision process that starts by comparing

the local preference attribute (LocalPref) of known routes. The LocalPref is an

operator-defined integer used to rank routes in a way that captures business interests.

Most commonly, LocalPref is set to implement policies that follow the Gao-Rexford

model [30] (Section 2.2), where an AS prefers income-generating routes received from

customers, then routes received from settlement-free peers, and finally cost-incurring

routes from transit providers. As a result, the most important property in choosing

routes in BGP is performance-oblivious, as discussed in previous works [63, 85, 94,

105].

The second stage in the BGP path selection algorithm compares the length of

the AS-paths of the available routes, with the shortest AS-path being preferred. A

common practice in the Internet is BGP AS-path prepending [17, 65, 76, 107, 108],

where an AS purposefully prepends its AS number multiple times to the AS-path,

making it artificially longer and thus less preferred.

The BGP path selection algorithm proceeds with a sequence of tie-breakers in

case multiple equally-preferred routes of equal length are available. Notable among

them are the comparison of Multi-Exit Discriminators (MED) [79] of multiple routes

received from one neighboring AS over distinct links, and the comparison of the cost

metric of the intradomain routing protocol. These two stages consider intradomain

routing and control which link is used between two ASes to exchange traffic. Com-

mon policies implemented through MEDs and intradomain costs include hot- and

cold-potato routing, which reflect whether an AS tries to shed traffic to other ASes

as soon as possible (e.g., to minimize cost) or is willing to carry the traffic towards

the destination as far as it can (e.g., to improve performance) [24,96]. The algorithm

concludes with tie-breakers that introduce randomness: prefer the oldest route (i.e.,

the one received first), prefer the route received from the router with the lowest

identifier, or simply choosing a route at random.
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2.2 AS Relationships

The Gao-Rexford model [30] defines two types of business relationships for neigh-

boring ASes: customer-provider and peer-to-peer. A customer AS pays a provider

AS for transit, i.e., accessing the Internet (ISP), while peer-to-peer relationships

occur when ASes have a settlement-free peering agreement where they exchange

traffic free-of-charge. Autonomous systems can also have a sibling relationship [29].

Two autonomous systems are siblings if they are owned or operated by the same

organization, share operational practices, and exchange traffic without cost or rout-

ing restrictions. The number of sibling ASes in the Internet has grown significantly

in the last few years due to acquisition or merging operations between network

providers [20,40,64].

To implement economically favorable policies, an AS usually sets local prefer-

ences so that the BGP best-path selection algorithm prefers routes learned from

customers over routes learned from peers, and prefers routes learned from peers

over routes learned from providers. In the Gao-Rexford model [29], the type of

neighbor also determines how routes are exported. An AS exports routes learned

from its customers to all neighbors, but it exports routes learned from providers and

peers only to customers. Exporting routes learned from a provider or peer to other

providers or peers is normally undesirable, as it would make the AS offer transit to

peers and providers without monetary compensation.

2.2.1 Valley-free Routing

As customer networks pay providers for transit, money flows up in the AS hierarchy.

As a result, Internet routes usually traverse a sequence of customer-to-provider links,

zero or one peer-to-peer link, and a sequence of provider-to-customer links [29,

30]. Routes with this property are called valley-free, and often described as a hill:

The uphill region starts at the origin AS and includes consecutive AS-pairs with

customer-to-provider links; it captures the region of the path when traffic is going

facom-ufms



Background 16

up the AS hierarchy and traveling towards the “core” of the Internet. The peak

is either the single AS at the top of the hill when no peer-to-peer link exists, or

the AS-pair at the top of the hill if a peer-to-peer link exists. The downhill region

includes the remaining consecutive AS-pairs with provider-to-customer links up to

the last AS; it captures the region of the path when traffic is going down the AS

hierarchy, away from the “core”.

Valley-free routing has positive implications as it implies BGP converges to a

stable solution [30]. Violations of valley-free routing can be caused by complex

AS relationships [37], e.g., partial transit, sibling ASes, Research and Education

Networks (REN) exporting routes from one peering REN to another peering REN,

and misconfigurations like route leaks [93,106] or prefix hijacks [97, 106]).

C

B

A

Origin 
AS O

No Export:
Affected routers in green
Not exported through red lines

Figure 2.1: ASes A and B distribute the routes received from Origin AS O tagged
with no-export locally but do not export them to their neighboring ASes.

2.3 BGP Communities

The use of BGP communities has increased significantly in the past few years

(§5.5, [93]). However, determining the semantics of each community value is a daunt-

ing task. Previous efforts have proposed standardization and better use of BGP

communities to improve security [77], but operators have not fully embraced these

proposals. Only a handful of community values have been standardized [46, 56, 62].

For example, 65535:666 (blackhole) signals a request to an upstream network that

traffic to a destination prefix should be dropped [56], 65535:65281 (no-export) signals
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that the prefix should not be exported outside the AS (Figure 2.1), and 65535:65284

(no-advertise) signals a request to a provider that a route should not be advertised

further [62] (Figure 2.2). Standardized communities cover only a tiny fraction of the

communities visible in route announcements. Unfortunately, no central database ex-

ists with the documentation of the existing communities. Network providers catalog

their communities in ad-hoc documents or in IRR databases; and some third-party

websites such as One Step aggregate this information [91]. The lack of documenta-

tion on communities and the ad-hoc nature of available documentation constrains

our understanding of Internet routing.

C

B

A

Origin 
AS O

No Advertise:
Affected routers in green
Not advertised through red lines

Figure 2.2: BGP border routers that receive an announcement with community
no-advertise learn the route but do not forward the announcement even inside their
ASes.

Despite the flexibility built into the BGP best path selection algorithm, BGP

communities provide additional flexibility to support, e.g., more complex or fine-

grained traffic engineering policies [62]. A BGP community is a 32-bit tag1 that

can be attached to an announcement, and an announcement can carry an arbitrary

number of BGP communities. They are an optional transitive attribute, meaning

BGP communities should propagate broadly. However, all router vendors provide

configuration options to remove communities from the announcements, and some

vendors remove communities by default, possibly due to security concerns (e.g.,

Cisco [47]). This limits community propagation and visibility in an uncontrolled

manner [59], which imposes a challenge to inferring BGP community semantics and
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to our work.

Network operators have flexibility in defining semantics for BGP communities,2

and are limited only by the (increasing) community-handling capabilities of BGP

routers. The semantics of the BGP community fits into two classes [22,58,59,67]:

• Informational communities add metadata to a route announcement. Use cases

include assisting operators with traffic engineering [63], troubleshooting issues,

refining policies, and capacity planning [36, 64, 104]. Example metadata in

informational communities include specifying whether a route was originated

either internally or learned externally; whether external routes were learned

from a customer, provider, or peer; or the location (city, country, or region)

where the route was learned or originated. Informational communities may be

used by the controlling AS itself as well as downstream ASes.

In Chapter 4, we infer location communities, which are information communi-

ties that indicate where a route was learned. Location communities can tag

specific links, routers, Points of Presence (PoPs), Internet Exchange Points

(IXPs), or geographical locations (e.g., city, state, country, or continent). We

define a geolocation community as one that indicates a geographical location.

• Action communities signal an action that an AS executes on behalf of an-

other AS and are usually used to trigger actions at a provider on behalf of

a customer. Action communities generally influence the BGP path selection

process or how routing announcements propagate to realize some traffic engi-

neering policy [5, 59, 67]. Examples include adjusting LocalPref to make the

route less preferable at the transit provider, prepending the BGP AS-path to

make it longer and thus less preferable for other ASes (often used for backup

routes), and constraining route propagation to a subset (or none) of the transit

1We consider only 32-bit communities [62], which work better for ASes with 2-byte AS num-
bers. BGP extended communities [95] and BGP large communities [43] are 64- and 96-bit long,
respectively, and include support for 4-byte ASNs. Although we do not analyze extended or large
communities in this work as their use is incipient, our techniques can be applied to them.

2Only 15 “well-known” communities have predefined semantics in IETF standards [48].
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provider’s neighbors. BGP communities can even impact traffic forwarding on

the data plane, as it is commonly used to blackhole malicious traffic [38,93].

In Chapter 5, we show how we identify action communities. These communi-

ties work to modify Internet routing announcements to improve or control the

flow of traffic across the network. However, these communities can make traffic

analysis challenging because they can tag links that are never visible to route

collectors. To address this challenge, we investigate hidden relationships (e.g.,

AS squatters) and identify those that actively influence route announcements.

The standards suggest, and most operators (but not all) follow the convention

that the first 16 bits represent the AS number (ASN, a number that identifies the

AS) of the AS that defines the community’s semantics, in this thesis referred to

as the controlling AS, and that the last 16 bits is an arbitrary operator-defined

value [62]. For example, 3356:70 is an action community that asks Level 3 (now

Lumen Networks, AS3356) to decrease the LocalPref of a route to 70 (from the

default 100), making the route less preferable; while 3356:2009 is an informational

community added by Level 3 to routes learned at San Francisco.

In recent years, network operators have seen an increase in the adoption of BGP

communities [22, 93]. The percentage of routes received by BGP collectors with at

least one community increased from 59% in 2018 to 71% in 2023, even taking into

account the 3,07× increase (from 161,878,003 to 496,846,470) in the number of BGP

routes in public table dumps across all RouteViews and RIPE RIS collectors [68,81].

There is also ongoing effort to increase the capabilities of BGP communities, such as

the new proposal of arbitrary length wide. BGP communities under standardization

by the IETF [78].

2.3.1 Route Collectors

Research on Internet routing requires access to routes distributed by the BGP proto-

col. Existing platforms, such as the University of Oregon Route Views (RV) [68], and
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RIPE NCC Routing Information Service (RIS) [81], deploy tens of routers strategi-

cally positioned to collect BGP updates from hundreds of collaborating ASes, gen-

erating datasets with millions of records every day. These openly accessible datasets

help researchers and network operators gain insights into the propagation of BGP

announcements and reason about the dynamics of Internet routing. The routers of

these projects are distributed across diverse physical locations worldwide and offer

opportunities for observing how routes tagged with BGP communities propagate

and how the ASes along a path deal with them. One AS may have multiple routers

peering with BGP collectors located at different geographical locations, providing

enhanced visibility to its routing policies. We denote each of these routers as a

vantage point (VP).

2.4 Summary

This chapter discusses BGP, the protocol that coordinates Internet routing. BGP is

designed with attributes that facilitate the distribution of prefix reachability infor-

mation across the Internet. The complex relationships between ASes on the Internet

are implemented by carefully crafting the information that each BGP announcement

should carry.

Operators can use the BGP attributes of route announcements to collect infor-

mation or influence protocol decisions, allowing them to partially control traffic flow

to their ASes.
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Chapter 3

Related Work

Every old idea will be proposed again with a different name and a different

presentation, regardless of whether it works.

– RFC 1925, The Twelve Networking Truths

This chapter presents recent efforts to define, standardize, and understand the

semantics of BGP communities, and their legitimate and malicious uses. We also

discuss recent work to infer AS relationships, which is relevant for understanding

routing policies and dealing with ASes that use communities of their siblings.

3.1 Characterization of Community Usage

The use of BGP communities has been explored in several ways. We first discuss

some works that explore and characterize how operators use BGP communities.

Streibelt et al. [93] present an extensive study of BGP community usage on the

Internet. The study shows the growing use of communities in the last few years

and how communities propagate much further than previously believed, sometimes

reaching ASes several hops away from the intended target of the community. Over

half of the communities traverse more than four ASes, with 10% exceeding six. Un-
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intended forwarding of communities to upstream neighbors allows adversaries to

trigger remote blackholing to disconnect destinations or to influence route propa-

gation to steer traffic through malicious actors without resorting to a prefix hijack.

The authors argue that standardization and better documentation of BGP com-

munities could prevent such abuses. Our work is one step in this direction, as it

provides a database of community semantics that can be automatically and period-

ically updated.

Krenc et al. [59] propose an algorithm that uses only passive measurements,

just like ours, to infer how ASes handle communities. BGP communities are a

transitive attribute of BGP updates, which means that they should propagate from

one AS to the next; however, routers can be configured to filter them. The proposed

algorithm infers whether an AS forwards or discards communities from the BGP

announcements.

3.2 Standardization efforts

Due to the increasing use of BGP communities, there have been several efforts to

standardize their use or, at least, to classify how operators are using communities

on the Internet.

Quotin and Bonaventure [75] identify two main uses for BGP communities on

the Internet: provide information or instruct a network on how to handle a route.

Informational communities are tagged on routes to, for example, specify the type

of neighbor that exported a route or a location where a route was received. Action

communities, on the other hand, instruct a neighbor or remote network on how to

handle a route to, for example, perform traffic engineering.

Donnet and Bonaventure [22] extend the classification proposed in [75] and in-

vestigate the use of BGP communities in the wild. Their findings reveal a significant

increase in the use of BGP communities, suggesting that network operators recog-

nize their potential value for influencing routing behavior. However, the study also
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identifies a critical limitation: the lack of standardized definitions for these com-

munities. The effectiveness of community use is hampered without understanding

what the community values mean. This lack of definitions highlights the need for

better practices and standardization of BGP community semantics to unlock their

full potential for improving Internet routing control and optimization.

3.3 Inference of Community Semantics

Recent efforts use natural language processing (NLP) to automatically identify the

semantics of BGP communities from Internet Routing Registries and support web-

pages of network providers [35,38]. These data sources are generally incomplete and

outdated, significantly limiting the number of communities that approaches based

on NLP can achieve. These approaches report high precision, but their coverage is

very limited, as only a small number of ASes document their communities in public

repositories. On the other hand, our approach automatically generates an up-to-

date database from BGP dumps that contains BGP communities currently in use

by the network operators, increasing, therefore, coverage and precision. As the time

to generate the database is not significant (just a few hours), we can regenerate the

database as needed.

Krenc et al. [60] propose a clustering algorithm for classifying information and

action communities that depends on a ground-truth database to define the param-

eters that separate the two types of clusters. The paper shows high precision for

the algorithm. However, the evaluation uses the same communities that were used

to define the parameters of the algorithm, i.e., it doesn’t split the communities

into training and test datasets to determine if the parameters generalize to the test

dataset. As we show in Section 5.5, their approach may not generalize to other

ASes, resulting in lower precision and recall for the action communities than the

ones reported in [60].

The approaches of Giotsas et al. [35, 38] and Krenc et al. [60] depend on the
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availability of documentation from the ASes, which is sometimes incomplete, out-

dated, or nonexistent. In our work, we use the existing documentation only to build

the ground-truth database and evaluate the results of our inference algorithms. Our

inference algorithm use public information from route collectors to infer location

communities (Chapter 4), which are information communities that tell where a

route is learned, and action communities (Chapter 5) used to manipulate, tuning

and improve the route announcements on the Internet.

3.4 Legitimate Uses of BGP Communities

Determining the relationship between two ASes is a hard problem, but it has many

important applications [64]. In particular, network operators can detect if route

announcements do not violate practical norms, such as advertising routes from a

peer to a provider, that may lead to route leaks and disrupt the traffic of large

portions of the Internet. While network operators can request community lists and

semantics from their direct providers, challenges remain when they need semantic

information for ASes that are not directly connected to their own networks. This

issue is even more pronounced for passive observers, such as researchers, who observe

routing announcements without actively participating in the routing process.

Feldman et al. [25] use BGP communities to monitor updates across observation

points and prefixes to detect route instabilities. They observe changes in AS path,

origin, MED, next-hop, and communities to determine a faulty set of links. The main

idea is that changes in the best path for a prefix may indicate routing instabilities.

We explain in Chapter 4 a method that can significantly improve the detection

process. We built a dictionary of location communities that can be used to track

changes in internal routes even if the AS path does not change.

Giotsas et al. [35] shows that a reliable dictionary of BGP communities can

significantly improve the detection of infrastructure outages. They propose Kepler,

a tool that uses public data sources (RIPE Atlas, Routeviews, PeeringDB, and
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DataCenterMap) to correlate BGP information from BGPStream and PathCache to

build a map of buildings and routing systems around the world to find outages. They

discovered that the number of public outages reported is significantly smaller than

the real number of problems in network infrastructure places. To create a map and

a base of communities to find outages, Kepler first extracts tokens with the names

of cities and airports from IRR (Internet Routing Registry), websites, and possible

communities that determine location. Next, Kepler observes communities related to

geolocation or facility location to infer Internet Exchange Points (IXP) and Network

Facilities. Kepler uses traceroute to build the network topology with the paths that

are considered normal. When something changes, Kepler runs traceroutes again

and collects BGP data to observe modifications (AS-path or communities with local

information).

The work in [36] aims to identify changes within a network domain (intrado-

main path changes) by looking for modifications in BGP communities. The goal

is to maintain an up-to-date collection of traceroutes to help in traffic engineering,

ultimately improving the performance of Content Delivery Networks (CDNs), for

example. As using random traceroutes is expensive to detect changes in the Inter-

net topology, Giotsas et al. [36] use BGP feeds to identify these changes and trigger

reruns of traceroutes. However, correlating BGP feed changes with actual network

topology modifications is challenging, as traceroute probes are not guaranteed to

be located in the same places as the BGP collectors. To address this limitation,

the authors propose using changes in BGP communities that might signal a switch

in the border router, prompting new traceroutes. Our work can significantly im-

prove this technique by providing a comprehensive dictionary of location and traffic

engineering communities.

Li et al. [63] present a measurement study that reveals that anycast paths can

suffer from path inflation, meaning that the chosen path to a replica server may

not be the most efficient (shortest latency or fewest hops). Although anycast is

widely used for critical network infrastructure due to its ability to provide one-to-
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any communication, its performance can fall short of expectations, as BGP routing

lacks mechanisms to prioritize paths based on performance. For instance, path

inflation occurs when BGP selects suboptimal routes with the same AS path length

when presented with multiple announcements. The authors propose an improvement

that encodes replica servers’ geographic coordinates within BGP community tags.

This encoding would allow BGP to select nearby replicas during the route selection

process.

3.5 Malicious Uses of BGP Communities

Some works have shown that BGP communities can be a vector for malicious at-

tacks [5,93]. Figure 3.1 illustrates an example using the blackhole community. Using

BGP communities for this purpose is justified because intercept attacks based on

prefix hijacking generally disrupt significant parts of the Internet [84], which induces

rapid detection and remediation by network operators. SICO [5], on the other hand,

builds community-based intercept attacks that target small parts of the Internet and

are harder to detect. The attack focuses on hijacking a BGP prefix and intercept-

ing its traffic, but ensuring the traffic flows between source and destination. The

attacker makes a bogus announcement—i.e., a path that includes its AS to reach

the victim AS—to an upstream provider and a legitimate one to another provider.

The attacker uses do-not-export communities to limit the propagation of the bogus

announcement and intercept selected prefixes only. It also keeps a path to the actual

origin to forward the intercepted traffic.

Streibelt et al. [93] present several scenarios in which a malicious actor can abuse

BGP communities to launch several types of attack, as we mentioned above, such

as remotely triggering blackholing, steering traffic away from its normal trajectory,

and route manipulation. These attacks generally rely on action communities, such

as the blackhole and no-export communities, and improperly configured routers that

forward non-transitive communities. We infer location and action communities.
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C B

Origin 
AS O

Malicious 
AS X

Prefix: Po

Community: B:blackhole

Prefix: Po

Prefix Po traffic being 
discarded

Prefix Hijack:
Prefix announcement maliciously 
with blackhole community in red
Traffic being discarded in blue

Figure 3.1: Origin AS O advertises its prefix. A malicious AS X injects a blackhole
community for the same prefix, causing AS B to drop traffic destined for the prefix.
This results in AS C being unable to reach the origin AS O.

Although the first improves route visibility, its effectiveness as an attack vector is

limited because it does not directly trigger actions on remote networks. However,

attackers can exploit the second method if they understand the specific meaning of

the action communities. Our work does not provide the specific semantics of the

action communities, so a malicious actor would have extra work to find them out.

3.6 Inference of AS Relationships

Over the past two decades, researchers have proposed several techniques to infer

relationships between ASes [29, 37, 41, 50]. These techniques often rely on the as-

sumption that BGP paths follow the valley-free property, meaning a path consists

of zero or more customer-to-provider (c2p) links, followed by zero or one optional

peer-to-peer (p2p) link, and then zero or more provider-to-customer (p2c) links [29].

However, a key challenge lies in the limited availability of data on these business

relationships. Autonomous systems rarely disclose this information, hindering the

ability to accurately annotate the Internet’s AS graph. This lack of data compli-

cates the deployment of many network applications, such as congestion detection

between specific peering partners (e.g., identifying congestion detection between

ASes with specific peering agreements [19]), malicious AS identification, and even

the deployment of BGP security mechanisms [33,57,87].
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Jin et al. [50] propose a probabilistic algorithm (ProbLink) to detect complex

relationships between ASes, which are characterized by non-obvious routing paths

and unconventional peering practices. While existing algorithms, such as AS-Rank,

excel at identifying standard relationships that follow expected patterns, they strug-

gle with these complexities. ProbLink shares similarities with our approach, as it

also uses the CAIDA AS-to-Org dataset [9] to identify sibling ASes. However, unlike

our method, ProbLink does not use community information or consider the location

of vantage points in its relationship inference, as we explain in Chapter 4.

Giotsas et al. [37, 50] argue that AS relationships are more complex than tradi-

tional models capture. They propose algorithms to identify non-conventional peer-

ing practices, such as hybrid relationships (where ASes have different relationships

at different peering locations) and partial transit relationships (where a provider’s

transit service is limited to its customer cone). Their analysis of data from March

2014 revealed that 4.5% (or 4,026) of the 90,272 provider-customer relationships

were complex, with 1,071 hybrid and 2,955 partial transit. They also observed that

while some relationships are easy to infer, others are more challenging to determine.

Feng et al. [26] infer links between ASes that are difficult to detect because of

the uncertainty of the relationships. They show that changes in the coverage of the

route collectors when adding or removing new collectors can lead to uncertainties

in the inference process. Some other efforts [75,100,104] propose or discuss the use

of BGP communities to infer AS relationships and show that they enable better

accuracy.

We present in Chapter 4 a heuristic for detecting the existence of sibling ASes

on a set of route announcements from BGP route collectors. The algorithm uses

CAIDA’s AS-to-Org database [9,74] to detect sibling ASes, but does not rely on AS

relationship inferences. The approach, however, detects the relationship’s existence

without identifying the ASes involved. In Chapter 5 we also uses data from route

collectors but goes beyond detection and identifies the ASes squatting the commu-

nities of other ASes, which can indicate sibling ASes or some other agreed-upon
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relationship between the ASes.

A recent work [74] shows that the state-of-the-art algorithms for inferring AS

relationships lack ground truth validation and present similar results of the evalua-

tion for regions like ARIN and LACNIC, but with validation that covers only 31%

for the first and less than 1% for the second. Other research aims to infer sibling

relationships using multiple data sources provided by network operators, such as

IRR, websites, public documents, and PeeringDB [3, 12]. The difference from our

algorithm for AS squatters in Chapter 5 is that we infer AS relationships in the real

world using publicly available data.

3.7 Summary

This chapter examines the significant effort that the research community has in-

vested in determining the semantics of BGP communities and understanding their

use by network operators. BGP’s flexibility, driven by politics and agreements rather

than fixed rules, allows operators substantial freedom in modifying export and im-

port routing policies. However, this flexibility also complicates the task of accurately

interpreting the usage of BGP communities, especially when dealing with outdated

information.

In the following chapters, we detail our approaches to inferring location and

action communities. In Chapter 4, we present our contributions to inferring BGP

communities related to locations, and in Chapter 5, we introduce a method for

correlating ASes using informational communities to improve the identification of

action communities. Our work is a step toward helping both the research community

and network operators understand and define the usage of communities in real-world

scenarios.
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Chapter 4

Location Communities

It is always possible to agglutinate multiple separate problems into a single

complex interdependent solution. In most cases this is a bad idea.

– RFC 1925, The Twelve Networking Truths

In this chapter, we present an algorithm for inferring location communities from

publicly available BGP dumps collected by different projects, such as RouteViews,

RIPE RIS, and Isolario. Recall that a location community is a tag that identifies the

location (e.g., city, country, continent, router, PoP, link, or interconnection) where

a route was learned. We also present a set of heuristics to improve our algorithm’s

precision and filter out noises introduced by misbehaving ASes.

We evaluate the performance of our algorithm and the effectiveness of our heuris-

tics using the CAIDA dataset of BGP communities and a manually-built ground-

truth dataset from Tier-1 and Tier-2 ASes that publicize the semantics of their

communities.
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4.1 Inferring BGP Location Communities

We infer location communities based on the fact that ASes peer at a finite set of

locations and enforce dynamic but deterministic routing policies [2, 30, 37, 50, 64].

We first provide an overview of the key ideas in our inference algorithm using the

example in Figure 4.1 (§4.1.1) and then present our algorithm formally (§4.1.2).

4.1.1 Overview

Consider a target AS T that tags received routes with location communities (see

Figure 4.1). If AS T and AS N1 interconnect at a single location, then T will tag all

routes received from N1 with the location community corresponding to their single

interconnection. The idea that all routes received at a specific location will have the

corresponding location communities is the core of our algorithm. Unfortunately, we

cannot simply infer communities that appear on all routes received from a neighbor

N1 as location communities. First, neighbor N1 may tag all of its announcements

with AS T traffic engineering communities, which would be incorrectly inferred as

location communities. Second, when AS T and AS N2 interconnect at multiple dif-

ferent locations (indicated by the multiple links between T and N2 in Figure 4.1),

then T may choose routes received from N2 at any of these locations. Each chosen

route will have a different location community corresponding on the interconnection

over which it was received. No community will appear in all routes, and no location

community would be inferred. It is challenging to infer the number of interconnec-

tions between two ASes [39], and so we do not want our approach to rely on that

information.

We relax the requirement of a single interconnection and avoid the need for

quantifying the number of interconnections between the target AS T and neighboring

ASes by looking at paths that traverse multiple interconnections. Suppose that AS

T and AS N3 interconnect at multiple locations and that AS T receives a route with

AS path ⟨N3, N4, N5⟩ (blue dashed line in Figure 4.1). Let IT,3, I3,4, and I4,5 be the
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V T N3 N5

N1 N2

N4

N6
N7 N8

I4,5I3,4IT,3A
B

…

… … …

Figure 4.1: Example of how long sequences of ASes between origins and a target AS
T constrains the set of locations of routes received and chosen by AS T . Example
of how long sequences of ASes between origins and a target AS T constrain the
set of locations of routes received and chosen by AS T . We denote the (possibly
empty) sequence of ASes between the BGP collector peer V and target AS T as
A and the nonempty sequence of ASes constraining the locations where T may
receive a BGP announcement as B (highlighted in gray). Solid black lines denote
interconnections between ASes. In this example we assume that interconnections
are at different locations, but this is not required by our algorithm.

interconnections traversed by the route. Interconnection IT,3 is constrained by the

set of interconnections between ASes T and N3 and their routing policies. Here is

a non-exhaustive list of such constraints:

1. AS T might use multi-exit discriminators (MEDs) as a tie-breaker [79] and

choose routes from N3 received at a particular interconnection. For example,

if N3 prefers to receive traffic from AS T towards I3,4 at IT,3, it may set lower

MED values on routes exported at IT,3, leading AS T to choose routes received

at IT,3 over routes received at other interconnections.

2. Routers systematically choose routes from the closest (lowest IGP cost [79])

interconnection. For example, if IT,3 is the closest interconnection to AS T ’s

egress router towards the vantage point at V , then the egress router will choose

and export routes from N3 received at IT,3.

3. Routes may not be accepted by AS T or exported by AS N3 at some intercon-

nections, particularly when ASes T and N3 have a complex peering relation-

ship [37]. For example, if T and N3 peer in Europe, but T buys transit from

N3 in the US, T will receive routes from N3’s peers and providers only in the
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Figure 4.2: Example of how sequences of ASes with different origins and a target
AS T constrain the set of locations of routes received and chosen by AS T .

US (e.g., IT,3).

The constraints imposed by the set of interconnections and routing policies be-

tween each pair of ASes in a route compound over consecutive AS hops. In other

words, interconnection I3,4 is also constrained by the interconnections between ASes

N3 and N4 and their routing policies. The same constraints apply to I4,5. The im-

plication is that chosen routes traversing a sequence of ASes (like ⟨N3, N4, N5⟩) will

only be received by AS T at a small set of locations, possibly a single one. Look-

ing at the problem another way, for AS T to receive routes traversing ⟨N3, N4, N5⟩

at different interconnections, then N3 needs to receive and choose routes through

⟨N4, N5⟩ at different interconnections, which implies N4 receives and chooses routes

from N5 at different interconnections.

We sidestep incorrect inferences for origins that tag all their announcements
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Table 4.1: Summary of Notation.

Var Description
V AS hosting a BGP vantage point
T Target AS whose location communities we are inferring
A Sequence of ASes between V and a target AS T
B Sequence of ASes after AS T constraining route propagation
S Suffix containing all ASes after B up to the origin AS
R Set of routes traversing a sequence of ASes
Rc Set of routes tagged with community c
RT Set of routes traversing AS T or any of T ’s siblings
Korigins Minimum number of distinct origins in R for inference
Kprev Minimum fraction of routes in R with community for inference (prevalence)
Kfilter Maximum hitting set size over routes with location communities that do not

traverse the community’s AS or any of its siblings

with traffic engineering communities by combining observations on multiple routes

from different origins. Figure 4.2 illustrates the idea. In the figure example, the

routes originated by ASes N6, N7, and N8 reach AS T through the same sequence

of transit ASes. The chance that all these origins tag their announcements with

AS T traffic engineering communities is low, which allows us to correctly remove

traffic engineering communities from the set of inferred location communities. In

our algorithm, we require routes from a configurable number of different origin ASes

to infer location communities.

4.1.2 Inference Algorithm

Our algorithm looks for routes from multiple origins traversing an overlapping se-

quence of ASes before reaching a target AS T , and infers communities from T that

appear on a significant fraction of routes as location communities.

We split a route’s AS path into five segments ⟨V,A, T,B,S⟩, where V is the

AS containing the vantage point, T is the target AS whose location communities

we will infer, A is a sequence of ASes between V and T , B is a sequence of ASes

following T , and S is a suffix containing all ASes after B up to the origin AS. We

consider that B constrains route propagation and the interconnections where AS

T ’s chosen routes are received. A can be empty and AS V may be considered the

target T , in which case V = T and A = ∅. For inferring communities, we require
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that B is nonempty, i.e., contains at least one AS because we need to track the

interconnection points between the ASes. An announcement needs to have an AS

path with at least three ASNs to support inferences. In the cases with exactly three

ASNs, we have |⟨V,A, T,B,S⟩| = 3, where V = T , A = ∅, |B| = 1, and |S| = 1.

We denote by R(V,A, T,B) the set of routes from one specific vantage point

that traverse the sequence of ASes given by ⟨V,A, T,B⟩. Each route r ∈ R has a

different nonempty suffix Sr. Table 4.1 summarizes the notation, and Algorithm 1

shows the pseudocode.

Minimum number of origins

For any combination of V , A, T , and B from each vantage point, we consider the set

of routes R(V,A, T,B) for inferring location communities of AS T if R(V,A, T,B)

contains at least Korigins distinct routes. In other words, we require announcements

by at least Korigins distinct origin ASes to avoid incorrect inferences when origin

ASes tag all their announcements with AS T traffic engineering communities (Lines

3–6 in Algorithm 1.)

Community prevalence

One could require a BGP community from the target AS T to appear on all routes in

R(V,A, T,B) in order to infer it as a location community. However, Internet routing

information is often incomplete or inconsistent, e.g., due to delayed route propaga-

tion [55] or ASes that remove BGP communities from announcements.1 Rather than

requiring a community to appear on all routes, we relax this requirement to allow

for incompleteness and inconsistency in BGP dumps or route propagation, and infer

any community from AS T or its siblings that appears on at least a fraction Kprev

of routes in R as a location community (Lines 7–13 in Algorithm 1).

1BGP communities are a transitive attribute and ASes are not supposed to arbitrarily remove
them from routes [11]. However, filtering of BGP communities is available as a router configuration
option from most vendors. Recent work reports that 25% of ASes filter communities from routes [58,
59].
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Algorithm 1: Inference of Location Communities

1: for each vantage point v do
2: Lv ← ∅ {Set of location communities inferred from v’s routes}
3: for each R(V,A, T,B) in routes from v do
4: if |R(V,A, T,B)| < Korigins then
5: continue
6: end if
7: C ← all communities from AS T or of a sibling of T appearing in

R(V,A, T,B)
8: for each community c ∈ C do
9: Nc ← number of routes in R(V,A, T,B) with c
10: if Nc ÷ |R(V,A, T,B)| ≥ Kprev then
11: Lv ← Lv ∪ {c}
12: end if
13: end for
14: end for
15: for each community c ∈ Lv do
16: Rc ← set of routes with c
17: RT ← set of routes whose AS paths traverse c’s AS or any of its siblings
18: Fc ← Rc \ RT

19: if size of the minimum hitting set of Fc ≥ Kfilter then
20: Lv ← Lv \ {c}
21: end if
22: end for
23: end for
24: return

⋃
Lv for all vantage points v

Removing communities unrelated to location

We develop a heuristic to filter out BGP communities that are unlikely to be location

communities. We expect a location community to be tagged when an AS receives a

route. Thus, a location community from AS T should only appear on routes whose

AS path includes AS T or one of its siblings.

Unfortunately, databases identifying sibling ASes are challenging to build and

may be incomplete, leading direct application of the heuristic to incorrectly discard

inferred location communities. For example, we observed several routes traversing

AS286 and AS5580 tagged with location communities from GTT’s AS3257. Manual

querying of ARIN’s IRR indicates that these three ASes are siblings, but they are
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not identified as such in CAIDA’s sibling database (Section 4.2).

Another issue is that there are ASes that seem to tag routes with location com-

munities of other ASes, with no apparent sibling relationship. For example, we

observed announcements traversing AS20473 (Constant) tagged with location com-

munities from AS1299 (Telia).2

We relax the heuristic to allow for missing sibling ASes and ASes that reuse or

incorrectly tag announcements with another AS’s location communities. We try to

identify cases where a small set of ASes can be blamed for the tagging of a target

AS T ’s communities on routes that do not traverse T or any of T ’s known siblings.

In these cases, we do not filter out inferred location communities.

More precisely, let Rc be the set of routes tagged with community c from AS T

(Rc is a superset of, and usually much larger than, the setR(V,A, T,B) used to infer

c as a location community), and let RT be the set of routes whose AS paths traverse

AS T or any of T ’s known siblings. We ignore routes that traverse T or any of T ’s

siblings, and consider the route announcements Fc = Rc\RT when deciding whether

to discard an inferred location community. We compute the minimum hitting set of

Fc and discard c as a location community if the set contains more than Kfilter ASes

(Lines 15–22 in Algorithm 1).

In other words, we keep location community inferences only when few ASes are

to blame for AS T ’s communities showing up on routes that do not contain T or any

of T ’s siblings. The minimum hitting set is the smallest set of ASes W such that

the intersection of W and each route r ∈ Fc is nonempty. The minimum hitting

set problem is equivalent to the NP-complete minimum set cover problem [31, 54],

and we solve it using a greedy heuristic, which provides a tight approximation of

the optimal solution [90].

2Although we could not establish a sibling relationship between AS20473 and AS1299, we
plan to investigate this further as BGP community cross-tagging might be a possible vector for
identifying sibling ASes.
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Joining inferences across collectors

We infer location communities from route announcements observed by each vantage

point in isolation (loop in Line 1, Algorithm 1), in line with the ideas of using

each BGP collector as a vantage point and B to constrain where chosen routes

are received. After we infer communities from each vantage point, we take the

union across vantage points from all collectors as the database of inferred location

communities (Line 24 in Algorithm 1). Although we show that few vantage points

are sufficient to infer most communities (§4.3), some communities are only visible

from specific vantage points, so taking the union across collectors and vantage points

maximizes coverage.

4.1.3 Implementation

Our implementation consists of over 2,100 lines of Python, with extensive use of the

Pandas library for data processing. We use Snakemake [71] to automate our database

construction. Our system can be configured to automatically process multiple RIBs

from different BGP collectors, generate various intermediate files that are reused in

subsequent steps, and distribute the processing into multiple servers to speed up the

computation. Our code, the database of inferred communities, and our manually

built ground-truth dataset are available online [53].

4.2 Datasets

We use BGP feeds from RouteViews [68], RIPE RIS [81] and Isolario [42].3 Unless

specified otherwise, we use the first available route table dump (RIB) from each

BGP route collector on December 2017, 2018, 2019, and 2020. We use BGP RIBs

to process stable routes, but MRT BGP updates could also be used, which would

possibly increase the number of observed communities. Table 4.2 shows a sum-

mary for the route table dumps from December 2017 and 2020. We use CAIDA’s

3We do not use PCH feeds [45] as they do not include BGP communities.
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Table 4.2: Summary of RIB dumps of December 2017 and 2020 for RouteViews,
RIPE RIS and Isolario.

Project Collectors VPs
Total ASes
(thousands)

Prefixes
(millions)

Communities
(thousands)

Routes
(millions)

Year 2017 2020 2017 2020 2017 2020 2017 2020 2017 2020 2017 2020
RV 17 20 192 232 61 72 0.86 1.07 44 64 96 184
RIPE 20 20 330 510 61 72 0.80 1.03 46 71 115 311
Isolario 4 5 83 145 60 72 0.79 1.12 34 67 66 209
Total (unique) 41 45 529 738 61 73 0.90 1.22 56 79 277 704

AS-to-Org database for identifying sibling ASes [9].4 When processing routes, we

remove repeated occurrences of an ASN in the AS path as our goal is to look at

the sequence of ASes traversed by the route regardless of AS path prepending. We

also discard all routes containing AS-sets, as they usually result from aggregation

of routes traversing different ASes.

Table 4.3 shows a summary of our manually-built ground-truth dataset of BGP

community semantics for ASes that have public information available. We obtain

ground-truth information from IRR databases and documentation from network

websites, and manually classify each community on June 2021. The ground-truth

dataset contains a large number of communities because some ASes specify certain

types of communities using ranges, and we consider all possible values defined in the

range (although our evaluation indicates actual utilization is sparse). For example,

GTT (AS3257) defines a rule saying that communities in the 3257:30000–3257:39999

interval identify private interconnections [92]. In this case, we consider all 10,000

communities in the interval as location communities in our ground-truth database.

We break informational communities into those that identify a geographical lo-

cation, a device or link on a router, or a peering relationship; and we also identify

action communities. We also show the number of communities from the ASes in our

database in CAIDA’s geographic location BGP communities database from April

2019 [7]. Our ground truth dataset includes 1.7 times more geolocation communi-

ties than CAIDA’s database for the ASes in our dataset (not including autogenerated

4We built and evaluated an alternate sibling database by grouping ASes whose abuse contact
e-mail have the same domain. We omit these results as they are quantitatively similar to those
obtained with CAIDA’s AS-to-Org database.
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Table 4.3: Number of communities for ASes in our ground-truth dataset by type
and geolocation communities in CAIDA’s database [7].

Community Type CAIDA
Network (AS) Geo Dev/link Relation Action [7]

Tier 1 [101]aa
aa

Verizon (701) 0 0 0 11 0
NTT (2914) 93 0 2 44 39
GTT (3257) 10,000* 11,000* 1,783* 13,023* 68

Deutsche Telekom (3320) 24 0 3 0 17
Level 3 (3356) 178 0 2 5 82

PCCW Global (3491) 44 0 0 21 24
Lumen (3549) 239 239 239 87 28
Orange (5511) 46 0 0 55 11

Zayo (6461) 804* 0 6 152 0
Telecom Italia (6762) 51 0 1 133 42

Tier 2 [102]

Cogent (174) 4 0 0 47 31
TDC (3292) 0 0 3 119 12

Easynet (4589) 800* 0 0 3 103
British Telecom (5400) 0 0 0 40 0

Comcast (7922) 0 0 0 7 0
Total

12,283 11,239 2,039 13,747 457
* Ranges covering automatically-generated community values, e.g., from geographical coordinates.

communities), but 13% of the geolocation communities in CAIDA’s database are not

in our ground-truth dataset.

Manual analysis indicates that these differences are due to new geolocation com-

munities being created since CAIDA’s database was built, and a few changes to

previously-assigned ones.

4.3 Evaluation

In this section we evaluate our algorithm. We report precision and recall, and show

how they can be prioritized by tuning the configuration of our algorithm (§4.3.1). We

discuss community visibility in BGP dumps and how additional vantage points could

improve recall (§4.3.2). We quantify the impact of each parameter on our algorithm’s

accuracy and show that inferences are not sensitive to parameter values (§4.3.3).
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We compare our database of location communities with CAIDA’s manually-built

dataset and show we achieve competitive precision and significantly higher recall

(§4.3.4). Finally, we present a characterization of the adoption and stability of

location communities (§4.3.5).

4.3.1 Inference Accuracy

We quantify inference accuracy with precision and different views of recall [44].

Precision is the ratio between the number of correctly inferred location communities

(true positives) and the number of inferred communities (positives). As our ground-

truth database contains many communities that are not yet used (i.e., communities

described as ranges on the providers’ websites but not yet allocated), it would be

unreasonable to use them to compute the recall. Furthermore, many communities

that are defined in the ground-truth dataset never show up in BGP dumps, possibly

because they are not in use or because vantage points lack visibility. We compute

recall considering only the communities that appear in the BGP dumps. More

precisely, we define recall as the ratio between true positives and the number of

location communities in our ground-truth database that also appear in the BGP

table dumps. We also report the inferable recall, defined as the ratio between true

positives and the number of communities that our algorithm considers for inference,

i.e., communities that appear on routes from at least Korigins origin ASes.

Table 4.4 shows the overall accuracy of our inferences for its default configura-

tion, with Korigins = 2, Kprev = 0.2, and Kfilter = 1 on December 2020. We evaluate

the impact of each parameter and discuss the default choices in Section 4.3.3. Ta-

ble 4.4 also reports the total number of inferred communities across ASes in our

ground-truth dataset, the number of correctly inferred location communities, and

the number of inferred location communities that are undocumented in the ground

truth. Communities may be undocumented in the ground-truth because they are

meant for private use of the owning AS, or may be incorrectly tagged on routes.

Because we cannot know whether the inferences for undocumented communities are
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correct or incorrect, we ignore them when computing precision and recall.

Our results show that inference precision is high. We find that 34.3% of location

communities in the ground-truth that are not auto-generated never appear in the

BGP dumps, which makes inference impossible. However, we do find reasonably

high recall for observed communities. Results for configurations prioritizing high

precision (Korigins = 6, Kprev = 0.5, and Kfilter = 1) and high recall (Korigins = 2,

Kprev = 0.1, and Kfilter = 2) indicate that our algorithm can be configured to trade

off precision against recall depending on the operator’s, researcher’s, or application’s

needs.

Table 4.4: Precision, recall, inferable recall (inf. recall), F1-score, and the number
of inferred, correctly inferred, and inferred but undocumented (undoc.) location
communities on December 2020. We show results for our algorithm’s default con-
figuration as well as configurations that prioritize high precision and high recall.

Inf. Inferred Communities
Configuration Precision Recall Recall F1 Score Total Correct Undoc.
Prioritize precision 0.93 0.72 0.89 0.81 946 878 513
Default configuration 0.91 0.80 0.87 0.85 1081 983 598
Prioritize recall 0.87 0.81 0.89 0.84 1150 995 634

Table 4.5 shows the breakdown of the number of communities per category. The

seen columns show the number of communities in the BGP dump and in our ground-

truth dataset, and the inferred columns show the number of communities we infer as

location communities. Despite an imbalanced dataset and the high number of false

positives for action communities, our algorithm would still yield a positive predictive

value [98] of 79% even if location and action communities were balanced.5 We can

increase the precision for action communities by tuning the algorithm’s parameters

(e.g., prioritize precision).

4.3.2 Community Visibility and Recall

Figure 4.3 shows the cumulative distribution of the number of inferred location

communities (left y-axis) and the number of inferred communities (right y-axis)

5This ignores relationship communities, which we expect to be few and not balanced, as an AS
generally defines one community for each type of relationship (provider, peer, or customer).
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Table 4.5: Number of communities from ASes in our ground-truth dataset seen
in BGP and inferred (inf) as location communities by our algorithm. We split
communities by type, as given in the ground truth (location, relationship, and
action), and also show results for undocumented communities that do not show up
in the ground truth.

Community Category
Location Relationship Action Undocumented

Configuration seen inf seen inf seen inf seen inf

Prioritize precision 987 878 14 13 181 55 675 513
Default configuration 1123 983 15 13 235 85 911 598
Prioritize recall 1123 995 15 15 235 140 911 634
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Figure 4.3: Number of inferred communities and recall as a function of the number
of collectors.

across collectors (x-axis). We rank collectors on the x-axis by picking the collector

that supports the most inferences, and then iteratively selecting collectors by the

number of new community inferences they support. Note that we can infer a large

number of communities in one collector, but those communities might have already

been inferred in a previous collector. That explains why we see some shorter bars

on the left of higher ones. For example, we inferred 17 communities from routes

exported by vantage points connected to the collector at rank 31, and 13 of those

communities were new, while we inferred 4,525 communities from routes exported

by vantage points connected to the collector at rank 35, and only 10 communities

were new.

The number of inferred communities varies significantly across collectors, which
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can be explained by the different number of vantage points. We observe correlation

(Pearson correlation coefficient of 0.7) between the number of vantage points of a

collector and the number of inferred communities (not shown).

We also find that there is significant overlap among communities inferred from

different collectors. This explains why the fraction of inferred communities spikes

to 61% with a single collector, and then grows slowly. However, even though the

growth is slow as a function of the number of collectors, the tail of the distribution

is long, indicating that some communities can only be inferred by specific vantage

points.

These results indicate that additional collectors and vantage points would allow

inferences to achieve higher coverage and recall, but that the existing set of collectors

is sufficient to enter the region where additional collectors will provide diminishing

returns on community visibility.

4.3.3 Algorithm Parametrization

In this section we quantify the impact of configuration parameters in our algorithm.

Our results show that our algorithm is not sensitive to parametrization and that

most parameter values yield accurate predictions.

Number of origins.

Figure 4.4 quantifies the impact of Korigins on precision and recall. We observe that

precision increases slightly with Korigins as we require routes from more diverse ori-

gins. One factor contributing to improving precision is that larger Korigins makes

the algorithm less susceptible to incorrect inferences when origins tag all their an-

nouncements with another ASes’s traffic engineering communities. However, we

observe that recall decreases as Korigins increases. This happens because the number

of routes in R(V,A, T,B) traversed by Korigins distinct origins decreases, and thus

the number of routes useful for inferring communities also decreases. The limited
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Figure 4.4: Precision and recall as a
function of Korigins. High precision for
Korigins = 1 indicates that origins rarely
tag all their announcements with traffic
engineering communities of other ASes.
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Figure 4.5: Precision and recall as
a function of Kprev. Location com-
munities appear on most routes in
R(V,A, T,B), so increasing Kprev up to
0.9 has small impact on precision and
recall.

improvement in precision implies that origins rarely tag all their announcements

with traffic engineering communities of other ASes. We argue that any choice of

Korigins is reasonable as it trades off precision and recall. Values of Korigins larger

than one have the advantage of avoiding incorrect inferences in situations where an

AS tags all its routes with traffic engineering communities. We choose Korigins = 2

as the default value in our algorithm as an intermediate value that prevents a single

origin causing incorrect inferences without significantly degrading recall.

Figure 4.4 also shows the recall of inferable communities, i.e., communities from

ASes in AS path segments shared by at leastKorigins origins. This is relevant because

we cannot make inferences for communities that do not appear in paths from enough

different origins. We find that recall for inferable communities increases withKorigins,

indicating that our algorithm performs better on communities that appear on paths

shared by many origins, which may be a result of a lack of path diversity from these

origins towards the target AS T , funneling traffic through fewer locations.
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Community prevalence.

Figure 4.5 shows the impact of Kprev, the fraction of routes in R(V,A, T, B) that a

community needs to appear in to be inferred as a location community. Similar to

Figure 4.4, we find that precision and recall are high and do not vary significantly

as a function of Kprev. This happens because (i) location communities have high

prevalence, so increasingKprev has small impact on the number of true positives, and

(ii) other communities have low prevalence and get promptly filtered as we increase

Kprev from zero. We set Kprev = 0.2 as the default value in our inferences, i.e., we

require that a community appears in at least 20% of the route announcements in

R(V,A, T,B) tuple to infer it as a location community.

Filtering inferences.

We filter the inference of an AS T ’s community from our database of location com-

munities if it appears on paths that do not traverse T or any of T ’s siblings and the

appearances cannot be blamed on Kfilter or fewer ASes.

Figure 4.6a shows the distribution of the number of ASes in minimum hitting sets

for inferred communities. We observe that the majority of hitting sets (85%) have

only one AS, which implies that a single AS can be blamed for occurrences of those

communities on paths that do not traverse the community’s AS (or any sibling). A

possible explanation for this finding is that these single ASes may be undocumented

siblings of the community’s AS or may incorrectly tag routes with the community.

Figure 4.6b shows the impact of Kfilter on precision and recall. We plot the x axis for

decreasing values of Kfilter as the filter becomes more restrictive (i.e., we infer fewer

location communities) as Kfilter decreases. The results show that values of Kfilter

below 3 have a slight impact on precision, without impacting recall. This indicates

that the proposed filter accurately identifies and prunes incorrect inferences. We set

the default value of Kfilter = 1 in our algorithm.

We also quantify how often ASes use communities from one of their siblings. We
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Figure 4.6: Most inferred location communities appear on routes traversing the
community’s controlling AS or one of the controller AS’s siblings (not shown).
For 85% of the inferred location communities that appear on routes that do not
traverse the controlling AS or one of its siblings, we find that a single AS can be
blamed for tagging the community (Figure 4.6a, x = 1). Filtering inferences when a
community appears on a diverse set of routes that do not traverse the controlling AS
or one of its siblings improves the precision of our inferences without significantly
reducing recall (Figure 4.6b).

say an AS A uses a community from its sibling AS T when a community owned by

T appears on a route that traverses A and does not traverse T . We find 95 ASes

using communities defined by their siblings in BGP dumps (across all ASes and all

communities regardless of semantics), and our algorithm infers location communities

for 44 of these ASes. This indicates that siblings do share BGP communities, and

accounting for this sharing is useful when filtering location communities.

Number of constraining ASes

Figure 4.7 shows the impact of the number of constraining ASes after T in the AS

path when making inferences, i.e., the size of B in ⟨V,A, T,B⟩ tuples. As discussed

in Section 4.1.1, more constraining ASes limit the set of locations where chosen

routes arrive at the target AS T , leading to higher precision. However, AS paths

in the Internet are usually short [16], and there are fewer long AS paths to support

inferences with long sequences of constraining ASes, which ultimately limits recall.

Although we consider all sequences with at least one constraining AS, our algorithm

facom-ufms



Location Communities 48

1 2 3
Number of Constraining ASes

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

/R
ec

al
l

Precision
Recall

Figure 4.7: Impact of the number of constraining ASes, i.e., |B|, on recall and
precision. More constraining ASes limit where chosen paths are received by a
target AS T , improving precision, but fewer AS paths are long enough to support
many constraining ASes, reducing recall.

can be configured to require more constraining ASes, which will lead to higher

precision at the cost of recall.

4.3.4 Comparison with CAIDA’s Database

We now turn to properties of our inference algorithm and compare the constructed

database with CAIDA’s public database. Table 4.6 shows statistics for geolocation

communities in both databases (first rows) and for location communities in our

database (last row). We compute recall of geolocation communities considering

only the subset of geolocation communities in the ground-truth database. We do

not compute precision and the number of geolocation community for our inference

algorithm as it does not differentiate between geolocation and location communities.

We find that CAIDA’s database has high precision, but not 100%. Investigation

of incorrect inferences indicate they are concentrated on Tier-2 ASes and explained

by out-of-date information, e.g., resulting from the reassignment of community val-

ues. Also, CAIDA’s community database has limited recall, which is somewhat

expected for a manually-built database. Our inference algorithm achieves signifi-

cantly higher recall than CAIDA’s database even for geolocation communities.
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Table 4.6: Comparison between CAIDA’s manually-constructed database and our
automatic inferences.

Community Communities
Type Database Recall Precision Total Correct

Geolocation CAIDA 0.21 0.86 303 261
Inferences 0.77 — — —

Location Inferences 0.80 0.91 1081 983

The last row shows results for all location communities inferred by our algorithm.

We find that recall increases slightly compared to when we consider only geolocation

communities. We also find that the precision is competitive with that of manually-

constructed but not up-to-date databases.

4.3.5 Adoption and Stability of Location Communities

Figure 4.8 shows the number of distinct BGP communities observed in the BGP

route dumps, the number of communities inferred as location communities, the

number of ASes covered in the BGP route dumps, and the number of ASes control-

ling the observed communities. We find that BGP communities are becoming more

popular, with a 51% increase in the number of distinct communities observed in the

wild between 2017 and 2020 (50% increase for location communities). Not only are

there more communities, but they also belong to a larger number of ASes.

Figure 4.9 evaluates how stable are location community inferences over time.

Figure 4.9(a) shows the total number of communities inferred each day over the

course of the first week of December 2020. We report the number of new communities

never seen before (green line), the number of inferences on each day (orange line),

and the cumulative number of communities inferred (blue line). We find that the

set of inferred communities does not change significantly over the course of one

week. Figure 4.9(b) is similar, but shows communities inferred on the first day of

each month in 2020. We find that there is some stability, but distinct communities

keep accumulating over time. This result can be explained by changes in topology

accompanied by the creation of new location communities, e.g., when networks
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Figure 4.8: BGP community use in the Internet, quantified as the number of
distinct BGP communities observed, number of inferred location communities, and
the number of ASes controlling BGP communities.

establish PoPs in new locations, or routing dynamics, e.g., new peering relationships

may lead to route changes that allow the inference of new location communities.

The change over time motivates an automated algorithm like the one we propose

for keeping the community database up-to-date. The drop in the number of inferred

communities around June 2020 can be mostly attributed to the disappearance of

AS286’s communities from BGP dumps; likely a result of AS286’s acquisition by

GTT (AS3257) in December 2019.
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Figure 4.9: Stability of location community inferences over time. Our results show
that location communities are stable over short timescales, but that new location
communities appear over time. This motivates an automated inference algorithm
to keep community databases up-to-date.
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4.4 Summary

In recent years, the use of BGP communities has increased significantly. As rout-

ing policies have become more complex and performance requirements have become

more stringent on the Internet, network operators have to deploy ever more elabo-

rate traffic engineering solutions. Traffic engineering solutions can use information

and action BGP communities to achieve operational goals, and our results indeed

indicate an uptick in the adoption of BGP communities. Unfortunately, there is no

standard for specifying semantics nor a centralized repository that catalogs BGP

communities, which complicates their use by network operators and researchers.

Our work is the first we are aware of to use routing announcements publicly avail-

able from BGP collectors to infer the semantics of BGP communities. Our algorithm

automatically infers location communities and achieves high precision (93%) and re-

call (81%) for communities from a set of Tier-1 and Tier-2 ASes. Compared with

the manually built database from CAIDA [7], our inference algorithm generates a

database with similar precision and much higher recall.

We identified 19.67% of the communities in 2020 as location communities. We

make our database with 15,505 inferred location communities as well as our code

publicly available [53].
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Chapter 5

Action Communities

“One does not discover new lands without consenting to lose sight of the

shore for a very long time.”

– The Counterfeiters, André Gide

This chapter outlines the expected propagation patterns of action communities

on the Internet, establishing a baseline understanding of how these communities

should ideally propagate through the network. Then, we discuss the complexities

and challenges of identifying action communities within an announcement that may

contain hundreds of communities. We also examine common uses of action commu-

nities and instances in which their propagation deviates from the expected patterns.

Our research unexpectedly found evidence of ASes that consistently “squat”

the information communities of other ASes. This suggests potential undisclosed

agreements or relationships between these ASes. We evaluated the performance of

our algorithm and the effectiveness of our heuristics using a manually built ground-

truth dataset from ASes that make public the semantics of their communities.
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Better route for F
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E D
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Better route for E

Prefix: PA
AS-path: A
Com: C:NAE

Prefix: PA
AS-path: B A
Com: C:NAE

Prefix: PA
AS-path: C B A
Com: 

Prefix: PA
AS-path: D B A
Com: C:NAE

Prefix: PA
AS-path: E D B A
Com: C:NAE

Prefix: PA
AS-path: B A
Com: C:NAE

Figure 5.1: Example illustrating how an action community is more likely to appear
in routes that do not include its controlling AS. The community C:NAE instructs
AS C not to advertise routes to AS E. We can observe the community C:NAE on
routes without AS C exported by ASes D, E, and F.

5.1 BGP Community Propagation

Given BGP community semantics, information communities should be tagged only

on routes traversing their controlling ASes, as the controlling AS is the one that tags

routes with the relevant information [89]. For example, an information community

X:Y specifying that AS X received a route from a customer and a community X:Z

specifying that AS X received a route in Europe can only be meaningfully added to

a route by AS X.

On the other hand, action communities are less likely to be tagged on routes after

traversing their controlling ASes due to multiple factors we discuss next. Figure 5.1

illustrates each factor; it shows propagation of a prefix P originated by AS A with

action community C:NAE, which asks the controlling AS C to not advertise the route

to AS E. Such a community could be used, for example, to steer traffic from AS E

through AS D for load balancing or performance reasons.

1. An action community X:Y is added to a route by other ASes to request that

AS X takes action Y. A route tagged with X:Y may be received by other ASes

and exported to BGP collectors without traversing AS X. In Figure 5.1, AS A
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AS-path: B A
Com: C:P2
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AS-path: A
Com: C:P2
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AS-path: C C C B A
Com: C:P2 C B A

DE
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Prefix: PA
AS-path: B A
Com: C:P2

Prefix: PA
AS-path: D B A
Com: C:P2, B:P2

Prefix: PA
AS-path: C C C B A
Com: C:P2

Figure 5.2: Example illustrating scenarios where action communities may appear
in routes traversing their controlling ASes. AS C does not remove its action com-
munities from routes after taking the requested action, and AS D adds an action
community for AS B in routes that have already traversed AS B.

added the action community to its announcement. The route propagates, car-

rying the community, and is exported to a collector by AS D without traversing

the controlling AS C.

2. Many action communities make routes less preferable by making them longer

(prepending), reducing their preference (set LocalPref), or directly restricting

propagation (no-advertise). As a result, routes with action communities that

traverse the controlling AS are less likely to propagate compared to routes that

avoid the target AS. In Figure 5.1, AS E does not receive a route from AS C,

leading AS E to choose the route received from AS D, which does not traverse

AS C.

3. An action community has no use for ASes other than the controlling AS after the

requested action has been taken, so ASes often remove their action communities

from routes before propagating them [59, 93]. In Figure 5.1, AS C removes the

community from the route it announced to AS F, which chooses a route through

AS C that does not carry the action community.
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5.2 Challenges

Although we expect action communities not to be tagged on routes traversing their

controlling ASes, this is not always true. Several factors may lead to action commu-

nities being tagged on routes traversing their controlling ASes, making their iden-

tification challenging. Figure 5.2 illustrates some scenarios on routes for a prefix P

announced by AS A.

1. The controlling AS may take action on an action community and not untag it

from the route due to unintended BGP configuration or by design (when the

operator willfully propagates action communities). In Figure 5.2, AS C does not

untag action communities from routes after taking the requested action. AS B

tags community C:P2 asking AS C to prepend itself twice to the AS-path, and

the community is observed with the controlling AS C on the route exported by

AS F to the collector. If these ASes propagate their action and information

communities equally, then our inference algorithm may be penalized in accuracy

and recall.

2. The issue above is aggravated when the controlling AS does not act upon receiving

an action community because of router misconfiguration or depending on the

relationship with the neighboring AS from where it received the route, e.g., an

AS’s routers may ignore action communities received from providers. In this case,

the action community remains tagged on the route but does not reduce the route’s

preference; as route propagation is unconstrained, the route propagates broadly

and causes the action community to be widely observed on routes traversing its

controlling AS.

3. An AS may uselessly tag a route with an action community after the route has

traversed the controlling AS, which has no impact on the route itself but may

happen depending on how the router is configured. In Figure 5.2, AS D adds

community B:P2 uselessly asking AS B, which is already in the path and will not

receive the community, to prepend AS B twice to the AS-path. The community
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B:P2 is observed with the controlling AS B on the route exported by AS E to the

collector.

4. An operator may define non-standard BGP communities, where the first 2 bytes

are set to a value different than the controlling AS’s number. For example,

AS9002 (RETN) uses community X:65533 as an action community that asks

“prepend AS9002 three times when exporting the route to AS X.” In this case,

our algorithm would correctly infer the action communities but associate them

with incorrect controlling ASes.

5.3 Identification of BGP Action Communities

In this section, we describe practical uses of BGP communities that violate the three

factors described in Section 5.1 and complicate the inference of action communities

(§5.3.1). We then describe how we identify communities that rarely appear with their

controlling ASes as action communities (§5.3.2) and how we use them to uncover

other action communities that do not necessarily satisfy our premise of appearing

in route announcements without their controlling ASes (§5.3.3).

5.3.1 Identifying BGP Community Squatting

We observe that ASes may use BGP information communities defined by or belong-

ing to other ASes. As an AS X is not supposed to tag routes with AS Y’s information

communities, we refer to this type of use as squatting. A common case is ASes using

communities defined by one of their siblings, i.e., another ASN under the control

of the same organization [12, 29]. This behavior seems particularly common after

network mergers and could result from the homogenization of routing policies de-

fined using BGP communities across the merged ASes. For example, we observe

routes traversing AS3549 (Global Crossing, acquired by Level3/Lumen [69]) tagged

with several communities from AS3356 (Level3/Lumen); routes traversing AS286

(KPN, acquired by GTT [6]) tagged with communities from AS3257 (GTT); routes
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traversing AS5607 (British Sky Broadcasting, BSB) tagged with communities from

AS4589 (Easynet, owned by BSB between 2006–2010 [103]).

As a result, a BGP AS-path traversing a set of ASes S may include communities

belonging to other squatted ASes. This leads to information communities appearing

in routes that do not traverse the controlling AS, which violates our intuition that

only action communities will appear in routes without their controlling AS.

Inference Algorithm.

We propose an algorithm to infer ASes that squat another AS’s communities. Our

goal is to identify an AS X that systematically tags routes with BGP information

communities whose first 16-bits is another AS Y. The challenge lies in differentiating

between (i) an AS X squatting AS Y’s information communities from (ii) an AS X

simply using AS Y’s action communities. We address this challenge by assuming

that action communities are used selectively for specific, generally short-term, traffic

engineering policies. In contrast, information communities are consistently applied

after being defined, as routes are automatically tagged when an announcement tra-

verses a router. Thus, we identify an AS X that consistently appears with AS Y’s

communities as a potential squatter.

We identify squatting AS-pairs using the routes from each RIPE RIS and Route-

Views collector separately and then aggregate the inferences. Alternate approaches

may be possible given different inference mechanisms; our approach strikes a com-

promise between obtaining enough routes for inferences, combining routes from all

ASes peering with each collector, while trying to capture route properties specific

to the view of the Internet’s topology captured by that collector [72,74].

For instance, one collector might be unable to identify that AS X squats the

communities of another AS Y because an intermediate AS Z strips the squatted

communities tagged by AS X. Another collector may observe routes with AS X’s

squatted communities if its routes do not traverse AS Z.
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Our algorithm uses only publicly available information from RouteViews and

RIPE RIS collectors. Consider the following notation:

• C(y) is the set of routes tagged with at least one community from AS Y;

• R(x) is the set of routes that traverse AS X; and

• R(¬y) is the set of routes that do not traverse AS Y.

We check if an AS X is related to another AS Y by computing the following three

metrics for each pair of ASes:

Coverage. Among the routes that do not traverse AS Y but are tagged with a com-

munity from AS Y, we compute the fraction that traverse AS X. More precisely,

we define coverage C(x, y) = |R(x)∩R(¬y)∩ C(y)| ÷ |R(¬y)∩ C(y)|. Coverage

is high when AS X appears in most of the routes tagged with AS Y communities

even though they do not traverse AS Y. This implies that AS X “explains” most

of the unexpected observations of AS Y’s communities and could be squatting.

Coverage is low when there are many routes unexpectedly tagged with AS Y’s

communities that cannot be attributed to AS X. Figure 5.3 illustrates the idea

behind the coverage parameter. In the example, a subset of announcements

shows that ASes 29140, 286, and 3356 appear with the community 3257:8794,

which belongs to AS3257. At this stage of the algorithm, the three ASes in

the yellow boxes are candidates for potential squatters of the communities from

AS3257.

29140 286 3356 209 721 27064 6665 3257:8794

29140 286 3356 3910 721 3257:8794

29140 286 3356 749 3257:8794

29140 286 3356 4517 721 3257:8794

Figure 5.3: Subset of route announcements showing ASes coverage relative to the
communities belonging to AS3257. All ASes in the yellow boxes are candidates for
potential squatters.
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Local Prevalence. Among the routes that traverse AS X but do not traverse AS Y,

we compute the fraction tagged with a community from AS Y. More precisely,

we define local prevalence Plocal(x, y) = |R(x)∩R(¬y)∩C(y)| ÷ |R(x)∩R(¬y)|.

Local prevalence is high when most routes traversing AS X are tagged with a

community from AS Y even when the routes do not traverse AS Y. This implies

AS X may be squatting and using AS Y’s communities as its own information

communities. Prevalence is low when many routes traversing AS X do not have

a community from AS Y, which indicates AS X is not systematically squatting

AS Y’s communities: AS X may be simply using AS Y action communities

or another AS on some routes traversing AS X is tagging them with AS Y’s

communities. Figure 5.4 presents a complementary subset of announcements to

those in Figure 5.3. This subset shows that, based on local prevalence, AS3356

does not meet the squatting criteria: some announcements contain the AS3257

community without the AS3356 in the AS path. This indicates that AS3356 is

not squatting AS3257’s communities. At this stage of the algorithm, only ASes

29140 and 286 remain as potential squatters.

29140 286 1299 4809 3257:8794

29140 286 1299 209551 3257:8794

29140 286 9002 5391 3257:8794

29140 286 47787 203020 3257:8794

Figure 5.4: Subset of announcements showing the local prevalence of ASes in rela-
tion to the community of AS3257. In this case, AS3356 is no longer a candidate in
relation to Figure 5.3, leaving only ASes 29140 and 286 as candidates for potential
squatters.

Global Prevalence. Among the routes that traverse AS X, we compute the fraction

that do not traverse AS Y but are tagged with a community from AS Y. More

precisely, we define global prevalence Pglobal(x, y) = |R(x) ∩ R(¬y) ∩ C(y)| ÷

|R(x)| ≤ Plocal(x, y). Global prevalence is low when the supporting evidence

that an AS is squatting is small compared to the number of routes observed
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through that AS. For example, AS X may appear on many routes through AS Y,

which may not remove action communities from routes it propagates to AS X.

Alternatively, AS Xmay be close to a BGP collector and appear on most collected

routes, which may contain AS Y’s action communities tagged by other ASes.

Figure 5.5 illustrates the final stage of the inference algorithm. Using global

prevalence, the algorithm excludes ASes primarily associated with exporting

announcements to collectors, as they do not actually squat the communities of

a given AS. Through the filtering steps shown in Figures 5.3 and 5.4, ASes 3356

and 29140 were removed by the local and global prevalence filters, respectively,

leaving only AS286. Consequently, the inference results indicate that AS286

squats the communities of AS3257. In this specific example, AS286 (KPN) and

AS3257 (GTT) are sibling ASes, as KPN was recently acquired by GTT [6].

29140 286 3356 196925 3257:8794

29140 174 174 61231 207645 174:21101

29140 2914 1299 200845 2914:420

29140 8641 198610 8641:5100

174:22012

2914:2202 2914:3200

8641:6003

Figure 5.5: This subset of announcements illustrates the application of global preva-
lence, with hatched markings indicating ASes removed during the inference process.
AS29140 appears in numerous announcements with various communities, which
leads to its exclusion based on the global prevalence parameter. The algorithm’s
final inference identifies only AS286 as a potential squatter of the AS3257 commu-
nityies.

To infer if an AS Y is squatted by other ASes, we check if another AS X has

coverage C(x, y) > 0.9, local prevalence Plocal(x, y) > 0.7, and global prevalence

Pglobal(x, y) > 0.3 (§5.5.1). To avoid inferences with weak support and possibly

caused by noise in the BGP dumps, we also require that AS X appears squatting

at least two communities from AS Y and that these communities are observed in

at least six routes each. We justify these choices in Section 5.5.1. If multiple ASes

are identified as possibly squatting AS Y’s communities, we select the one with the

largest coverage, largest local prevalence, largest global prevalence, or appearing
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furthest away from the route collector, in order. The high required coverage of 0.9

allows for at most one squatting relationship with a target AS Y from each BGP

collector, but multiple squatting relationships with the same AS Y can be identified

across multiple collectors.

When handling squatting relationships, we consider that the inferred relation-

ships are bidirectional and transitive, such that if ASes A and B squat communities

from AS C, we consider that ASes A, B, and C are part of one squatting relationship.

Special Cases

Manual inspection of the identified squatting AS-pairs indicates that some pairs are

likely caused by typing errors. For example, we observed a community 15985:9999 on

paths traversing AS15895, which leads to inferring AS15985 as squatting AS15895.

We ignore a squatting relationship between two ASes when their ASNs have five

digits and the ASNs have an edit distance of 1. We consider edit operations of

substituting one digit for another or reordering two consecutive digits. We ignore

all communities involved in these squatting relationships when inferring action com-

munities to avoid errors. We consider only five-digit communities because typos

are more likely to occur in longer character sequences [86] and are more challenging

for an operator to detect visually. This choice is conservative, as typos in shorter

communities may decrease the precision of our algorithm. However, this length is

not a fundamental limitation of the approach and can be adjusted if necessary.

We also found some squatting AS-pairs likely caused by an integer overflow when

32-bit ASNs are used with classic 32-bit communities that store ASNs in just 16

bits. For example, we identified many communities from AS303 on routes traversing

AS327983, where 303 = 0xffff & 327983. We ignore all squatting relationships

where the squatter ASN’s last 16 bits are identical to the squatted ASN, and ignore

all such communities when inferring action communities.

We also ignore all squatting AS-pairs involving an IXP ASN, as identified in
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CAIDA’s AS-relationship database [8]. Many IXPs define action communities to

control announcement propagation through route servers (e.g., [1]), but IXP route

servers do not add their ASN to propagated routes, which may lead to some ASes

being identified as squatting the IXP’s communities.

5.3.2 Inferring BGP Action Communities

Our inference algorithm centers around checking how often a community is tagged on

a route that does not traverse the controlling AS or any of its squatters, from now on

collectively referred to as controlling ASes. Earlier in this chapter, we discussed the

main difficulties in identifying action communities, enforcing a requirement that a

community never appears with its controlling ASes is too restrictive. We design and

evaluate different approaches to account for lack of visibility and noise in observed

community usage. Algorithm 2 presents pseudocode covering all approaches.

Handling squatting ASes. We use the sets of squatting ASes identified in §5.3.1

to avoid inferring communities squatted upon as action communities. We compute

the squatters for the same collectors used to infer action communities resulting in

different AS relations. These relations will be used during the inference of the action

communities. Before we execute our algorithm, we rewrite ASNs with squatting

relationships when they appear in a route’s AS-path or communities. In particular,

we rewrite each ASNs with the smallest ASN among its set of squatting ASes (Line

2). This ensures that if a route traverses a squatting AS X and is tagged with

a community from a squatted AS Y, then both ASNs will be rewritten with the

smallest ASN in their set of squatting ASes. This effectively prevents identifying

squatted communities as action communities.

Filtering Low-Visibility Communities We do not make inferences for com-

munities that have limited visibility in public BGP dumps. We require that a

community c is observed by at least two collector peers, and that each collector peer

observes the community in at least four routes (counted in N c
vps, Line 7, and verified
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in Ccandidates, Line 24). These thresholds are chosen empirically (§5.5.1); however, we

show that inferences are not sensitive to their values as long as they are large enough

to remove the long tail of rarely-seen communities from the inference process. This

filter removed 11,836 communities from our inferences, representing less than 11%

of the communities on BGP dumps. Our algorithm would be able to classify these

communities if their use and visibility became more widespread.

Inferring Action Communities Our algorithm operates on each community

independently (Line 5). For each community, our inference relies on computing the

fraction of routes tagged with a community from AS Y that do not traverse AS Y.

This is done by counting the number of routes with each community c (Line 6)

and the number of these routes that do not traverse any of c’s controlling ASes

(Lines 8–10). Using these variables,

we infer as action communities those that are mostly absent from routes travers-

ing their controlling ASes (Cabsent, Line 25). This approach allows some occurrences

of the controlling ASes and accommodates errors and unexpected cases, like when an

action community is not acted upon, e.g., because it was not set by a customer of the

controlling ASes, and remains tagged on the route after traversing the controlling

AS.

Handling prepend communities Action communities that ask an AS Y to

prepend itself to the AS-path will appear on routes traversing AS Y (prepended

multiple times) if AS Y does not remove action communities from announcements.

To allow the detection of prepend communities in these scenarios, we count the

number of times a community appears on routes with AS-paths that have the com-

munity’s controlling ASes prepended (Lines 13 and 26). This approach has the

negative side-effect of possibly inferring some information communities that often

appear on routes prepended with the respective controlling ASes as action commu-

nities.

facom-ufms



Action Communities 64

Handling action communities added after the controlling AS An action

community has no use after the controlling AS has taken the requested action.

However, an AS may (uselessly) tag a route with an action community after it has

traversed the controlling AS, which has no impact on the route itself but may oc-

cur depending on when the tagging is performed. These behaviors directly impact

our inferences, as they make action communities more likely to appear on routes

traversing controlling ASes and, thus, harder to differentiate from information com-

munities. To filter this case, we use only uphill AS-paths, i.e., AS-paths composed

entirely of customer-to-provider relationships starting from the origin AS (Cbefore,

Lines 16–21 and 27). Our intuition is that customers often use action communities

to control how providers handle their announcements; thus, a community c tagged

on an uphill AS-path traversing c’s controlling ASes is less likely to have been tagged

after the controlling AS and more likely to be an information community.

Handling ASes that do not remove action communities from route an-

nouncements An action community has no use after the controlling AS has taken

the requested action. However, the controlling AS is not required to untag the action

community from the route. To sidestep the uncertainty added by ASes that do not

remove action communities, we apply a relaxation filter allowing the community to

appear with its controlling AS in a small fraction F of the announcements in each

selected vantage point (Lines 25–27).

5.3.3 Uncovering Missing Action Communities

Our inference algorithm requires a minimum number of announcements carrying a

community to classify it as an action community with high confidence. However,

route collectors do not provide complete coverage of the Internet routes, and some

ASes filter all communities before forwarding route announcements, impacting the

communities’ visibility and our algorithm’s recall. To circumvent this limitation, we
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Algorithm 2: Inference of Action Communities
1: Input: R← set of all routes, each with AS-path P and set of communities C.
2: Requirement: AS-paths and communities rewritten with each ASN mapped to the lowest ASN in its set

of squatting ASes, if any.

3: for each route with rewritten AS-path P and set of communities C in R do
4: Cglobal ← Cglobal ∪ C {Track all communities visible in BGP dumps.}
5: for each community c in C do
6: Nc

routes ← Nc
routes + 1 {Count routes tagged with community c.}

7: Nc
vps[P0]← Nc

vps[P0] + 1 {Count routes exported by BGP collector peer P0 tagged with community c.}

8: if c’s controlling ASes /∈ P then
9: Nc

absent ← Nc
absent + 1 {Count routes tagged with community c that do not traverse c’s controlling ASes.}

10: else if P is uphill then
11: Nc

info → Nc
info + 1 {Count routes tagged with community c that traverse c’s controlling ASes on uphill path.}

12: end if
13: if any of c’s controlling ASes is prepended in P then
14: Nc

prepended ← Nc
prepended + 1 {Count routes tagged with community c with its controlling ASes prepended.}

15: end if
16: if P is uphill then
17: Nc

uphill ← Nc
uphill + 1 {Count uphill routes tagged with community c.}

18: if c’s controlling ASes not in the customer cone of ASes in P then
19: Nc

before ← Nc
before + 1 {Count uphill routes terminating before c’s controlling ASes.}

20: end if
21: end if
22: end for
23: end for

24: Ccandidates ← {c | c ∈ Cglobal ∧ |Nc
vps| ≥ 3 ∧min(values(Nc

vps)) ≥ 4}
25: Cabsent ← {c | c ∈ Ccandidates ∧ (Nc

absent/N
c
routes) ≥ 1− F}

26: Cprepend ← {c | c ∈ Ccandidates ∧ (Nc
absent +Nc

prepend)/N
c
routes ≥ 1− F}

27: Cbefore ← {c | c ∈ Ccandidates ∧ (Nc
before/N

c
uphill) ≥ 1− F}

28: Cprefix tree ← PrefixTree(Cabsent, Ccandidates) {All communities that match the prefix-tree leaves tagged as action.}

29: Output: Caction communities ← Cprepend ∪ Cprefix tree

use the communities we infer with high confidence in Algorithm 2 to build a prefix

tree from the decimal digits of the community labels and classify other communities

with low visibility or that fall under the special cases we list in Section 5.3.2.

The rationale behind using a prefix tree is that a natural way for an AS to

define its communities is by numbering communities of the same type sequentially

and leaving some space between types to accommodate future expansions of the

existing types. By following this pattern, communities of the same type share a

common prefix, whose length can vary depending on the number of communities of

the same type defined sequentially and the space between the types. We observe

that most ASes on the Internet follow this pattern. Some use large blocks of fixed

size for each type, while others use smaller blocks of variable sizes. Figure 5.6 shows

a prefix tree for the communities documented by AS3257. A leaf, annotated with

facom-ufms



Action Communities 66

A for action and I for information, indicates the type of communities that share

the prefix starting at the root up to the leaf. For example, labels 3257:02XXX and

3257:1XXXX represent action communities, while 3257:08XXX and 3257:3XXXX

represent information communities.

Specifically, we build a prefix tree for each AS that Algorithm 2 infers at least

one action community. We treat the label of a community as a string with five digits

(i.e., the maximum number of decimal digits a 16-bit label can represent), filling in

the string with zeros on the left when the label has fewer than five digits. Then, we

divide the communities into sets containing communities with the longest common

prefixes. We build one branch of the prefix tree for each set using only the digits

in the longest common prefix of the communities in the set. As Algorithm 2 infers

only action communities, all the leaves of the prefix trees are labeled with A. We

apply the AS’s prefix tree to all its communities that appear in R, i.e., the set of all

routes from the BGP collectors we process, and classify the communities that share

a prefix with a leaf as action communities.

We validated this idea using the communities of 15 ASes in our ground-truth

dataset that have at least 20 communities. Specifically, we conducted experiments

by building a prefix tree with a random subset of communities from an AS’s ground

truth and testing with the remaining communities from the same AS. We varied the

subset sizes from 20% to 90% of the total communities and ran 100 experiments for

each subset size. We measured the average precision and recall, with the average

precision exceeding 99.5% for all subset sizes and the average recall ranging from

90.9% to 96.82%. These results indicate that the prefix trees effectively capture the

structure of the community definitions of the selected ASes.

5.3.4 Implementation

Our implementation consists of over 2,354 lines of Python, with use of the Net-

workX library for graph processing, regex for AS path evaluation, and pickle for

serialization. We use Snakemake [71] to automate our database construction.
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3257:

0

51 31 2 4 5 6 7 8 9

AA A A A AI I I I0

0

0
I

Figure 5.6: A prefix tree for the documented BGP communities from AS 3257.
The branch 05000 is unusually long because it contains only one community, with
no other communities sharing the 05* prefix.

Our system can be configured to automatically process multiple RIBs from differ-

ent BGP collectors, generate various intermediate files that are reused in subsequent

steps, and distribute the processing into multiple servers to speed up the compu-

tation. Our code, the database of inferred communities, and our manually built

ground-truth dataset are available online [52].

5.4 Datasets

We evaluate our algorithms using the first BGP routing table (RIB) dumps of

Dec. 1st, 2023, from all 55 BGP route collectors operated by RIPE RIS [81] and

RouteViews [68]. We use bgpscanner [49] to process the RIB dumps and remove

routes with AS-level loops (0.005% of routes) or AS-sets [61] (0.03%). For each

route, we extract the prefix, the AS path, and the possibly-empty set of attached

BGP communities.

We use CAIDA’s AS-relationship database [37,64] from Dec. 1st, 2023, to identify

the uphill, peak, and downhill regions of the AS-path. We ignore 0.27% of routes

that violate valley-free routing and attempt to infer relationships for AS-pairs in a

route missing from CAIDA’s database. If the existing relationships are compatible

with valley-free routing and at most one relationship is missing at the peak, we
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infer missing relationships as customer-to-provider in the uphill region, provider-to-

customer in the downhill region, and peer-to-peer if there is a missing relationship

at the peak.1 We perform this inference of missing relationships for each route

separately; inferences from one path do not carry over to other routes.

We parse public information from Internet Routing Registry (IRR), NL NOG [73],

and OneStep [91] databases to extract ground-truth information to classify BGP

communities according to their semantics. We use this ground truth dataset to

evaluate the precision and recall of our inference algorithm. Our database includes

information about the type of AS (i.e., Tier-1, Tier-2, and others) of each commu-

nity to evaluate how the performance metrics vary as a function of where the AS

is on the Internet hierarchy. It contains 16,421 action communities from 74 ASes:

14322, 532, and 1567 from Tier-1, Tier-2, and other ASes, respectively. Although

our ground-truth dataset contains a little over 1% of 6,158 ASes appearing on BGP

communities in public BGP dumps, the ASes we consider are large and make more

significant use of BGP communities than the average AS on the Internet. Overall,

the ASes in our ground-truth dataset account for 16.8% of visible BGP communities

in Dec. 2023. Also, our ground-truth dataset covers a variety of action communities,

including selective advertisements, blackholing, prepending, and changing the Lo-

calPref; with several ASes defining action communities that apply to specific peers

or geographical locations.

To build the ground-truth dataset of ASes that squat the communities of other

ASes, we also use public information about organizations, their ASNs, and their

prefixes from the IRR databases. We use these databases to map ASNs to their

controlling organizations and determine if two ASes are related by manually look-

ing for similarities in organization names, geographical addresses, descriptions, and

domain names for peering, operations, and abuse e-mail addresses [2,3,89]. To add

relationships to the ground-truth dataset, we initially generated a set with the rela-

1This approach is equivalent to reapplying steps 5 and 11 of the original algorithm [64], but
visiting ASes in the route from the peak toward the origin and from the peak toward the collector
instead of following the transit and node degree gradients.
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tionships that our algorithm for identifying squatting inferred with very restrictive

parameters—i.e., coverage = 0.9, local prevalence = 0.9, and global prevalence =

0.9—and manually classified the inferred relationships. We then gradually reduced

coverage and local and global prevalence from 0.9 to 0.1 to increase the number of

classified relationships until we could not validate the new ones.

We classified 59 relationships as confirmed and 23 as unconfirmed. To confirm a

relationship, we used the similarities described previously. We consider a relation-

ship unconfirmed if we find the documentation about the two ASes and it does not

have any similar information that leads us to believe they are related. Note that

this approach is conservative, as the ASes may be related even though the docu-

mentation does not reflect their relationship either by lacking the information or by

being outdated.

5.5 Evaluation

This section describes how we configure the parameters of our inference algorithms,

evaluates the precision and accuracy of our inferences, and compares them with

related prior work. We show that our algorithms are not strongly dependent on

specific parameter configurations, i.e., a broad range of configurations yields positive

results. We make our datasets and evaluation code public to ease the replication of

our results and independent executions of the inference algorithms [52].

5.5.1 Setting Parameters

Configuration of the Squatting Inference Algorithm

As described in Section 5.3.1, our algorithm for identifying squatters relies on three

parameters: coverage, local prevalence, and global prevalence. These parameters

are fractions in the interval [0, 1] computed over sets of routes. To determine

the best parameters and investigate if they generalize to other datasets, we use

route announcements from December 2022 to explore different combinations of the
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Figure 5.7: Each of the graphs (a)-(c) shows the behavior of one of the parameters of
our algorithm when we keep the other two at their default (best) values. Increasing
threshold values improves precision at the cost of recall, as expected, and the default
values represent the inflection points of the F1-score curves. Graph (d) shows the
impact of the minimum number of routes communities must appear to determine
a squatting relationship.

parameters. Specifically, we vary coverage, local prevalence, and global prevalence

in the interval [0.1, 1] in steps of 0.1, resulting in 1000 (i.e., 103) combinations. We

validate the inferred squatting relationships computing the precision and recall for

each parameter combination using the ground-truth dataset described in Section 5.4.

The combination of coverage = 0.9, local prevalence = 0.7, and global prevalence

= 0.3 yields the highest F1 score, so we choose it as the default configuration2.

2We evaluated the Phi coefficient (also known as the Matthews Correlation Coefficient,
MCC) [18, 66], and found that it is strictly higher than the F1-score, quantitatively similar to
recall, and has no inflection point to aid in choosing default values for each parameter (not shown).
While the Phi coefficient considers imbalance between classes, it is less suitable for our evaluation
because the number of true negatives—AS pairs that have no squatting relationship—is exceed-

facom-ufms



Action Communities 71

The best configuration achieves a lower bound on precision of 0.71 and a recall of

0.65. We note that 0.71 is a lower bound on precision because some of the inferred

squatting relationships may be missing from our ground truth dataset (i.e., we have

not manually checked a pair of ASes); we take a conservative approach and report

these inferences as incorrect, but some could be correct.

Figure 5.7 shows the precision, recall, and F1 score when we vary one parameter

and keep the other two parameters fixed at their default (best) values. As expected,

increasing threshold values improves precision at the cost of recall, and the selected

values represent inflection points of the F1 score. We also observe that every pa-

rameter impacts the inferred relationships. Our algorithm infers no squatters when

coverage = 1; thus, both precision and recall are zero.

Our algorithm inferred 54 pairs of squatting relationships, with 7 ASes appearing

in multiple pairs, which we join for a final count of 48 (transitive) relationships. Of

these relationships, the validated inferences include 26 sibling ASes, 2 neighboring

ASes, 19 missing from our ground truth, and 7 unconfirmed.

We believe our automated inference of ASes squatting BGP communities might

have applications for other studies relying on BGP communities (e.g., validation of

AS-relationship inference [37, 50, 64] and route change tracking [21, 36]). It might

also benefit other efforts that seek to identify relationships between ASes. For

example, the intersection of our community-based inference of squatters and our

ground truth dataset contains five sibling relationships not identified by Chen et

al.’s recent technique [12]. Finally, it is unclear why apparently unrelated ASes

squat another’s communities in some cases. We note that this practice, even if

well-intended, may confuse troubleshooting efforts and policy filters not only for the

ASes involved but also their neighbors [93].
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Figure 5.8: Inference performance as a function of the noise filter threshold F .
Higher F values allow a BGP community to appear on more routes with its con-
trolling AS and still be inferred as an action community.

Configuration of the Action Communities Inference Algorithm

We evaluate precision and recall for different community filtering thresholds (F in

Algorithm 2). Figure 5.8a shows precision as we vary the filtering threshold on the x-

axis, while Figure 5.8b shows the recall for the same configurations. We compare the

more conservative Cbefore vs. the more inclusive Cprepend. As expected, considering

only uphill paths leads to higher precision overall, as we avoid the case of ASes

that uselessly tag their provider p’s action communities on an AS-path that has

already traversed p; the drawback is lower recall as less information is available for

inferences. The figures also show the results when using Cprepend
⋃
Cprefix tree; overall,

we find that the prefix tree nearly doubles the recall, at the cost of some loss of

precision.

Figure 5.8 also shows that setting F to zero is too conservative. With this con-

figuration, our algorithm infers few information communities as action communities,

achieving very low recall. Very low thresholds perform best, as they allow for some

noise (i.e., action communities appearing with their ASes) and significantly improve

recall without sacrificing precision. After this initial filtering (increasing F from zero

ingly large [13, 14]. Our use of the F1-score focuses on the worse-performing minority class (the
positive inferences) and is thus a more relevant, conservative result.
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Figure 5.9: Impact of varying the minimum number of Vantage Points (VPs) ob-
serving a community in Algorithm 2 (N c

vps). We analyze the precision and recall
from 2018 to 2023, showing stable performance for all datasets.

to, e.g., 0.01), the performance of our algorithm is stable across all threshold values.

Considering this finding, in the rest of this chapter we set F = 0.01.

We also require a minimum visibility of a BGP community at vantage points

(VPs) to make inferences. If we increase the number of VPs where a community

must be observed, the precision increases but recall decreases as we make fewer

inferences. Figure 5.9 shows the precision and recall achievable when we compare

the inference of action communities using the first RIB of December from 2018 to

2023, varying the number of vantage points (VPs). We note that the algorithm’s

performance as a function of configuration parameters is consistent, meaning that

the algorithm’s configuration does not need to be reevaluated often. Considering

the inflection points in the graphs, we choose 3 VPs as the minimum for action

community inference as a good trade-off between precision and recall. Different

applications can increase the number of VPs if they benefit from higher precision,

or decrease to favor recall.

Finally, a VP observing very few routes with a community could lead to incorrect

inferences. Therefore, we also evaluate how many routes with a particular commu-

nity a VP must have before we consider that (VP, community) in our inference.
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Figure 5.10: Performance as a function of the minimum number of required routes
per (VP, community) pair before making inferences. Results are stable across the
evaluation period. We conservatively chose a minimum of 4 routes per VP.

Figure 5.10 shows the impact of the minimum number of routes required when we

fix F = 0.01 and the minimum number of VPs at 3, for every month of December

between 2018 and 2023. Again, we observe that performance is stable throughout

the period. We also find that the minimum number of required routes has limited

impact, but that setting it too low may hurt precision. We take a conservative ap-

proach and set the minimum number of routes to 4 in the rest of the chapter, which

the graphs indicate should work in general.

Building the Prefix-Tree

Section 5.3.3 proposed using a prefix tree for classifying communities. We evaluate

how practical this approach is by evaluating how many communities are needed to

build a prefix tree that achieves high precision and recall.

Figure 5.11a shows the distributions of precision and recall for 8 ASes with

at least 20 communities in our ground-truth. We built prefix trees using action

communities inferred with Cabsent, which avoids the loss of accuracy incurred by

Cprepend. Each point in the distribution represents the average of 100 executions

with random subsets of the communities in Cabsent. The different lines vary the

fraction of inferred communities used to build the tree. We report precision and

recall obtained when classifying the communities in our ground-truth dataset using
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Figure 5.11: Cumulative distributions of precision and recall for inferences made
by the prefix trees built from a random subset of inferred action communities.
Different lines vary the fraction of inferences used as input to build the prefix tree
and show that the prefix tree does not require many inferences to achieve high
precision and recall.

the prefix tree.

We can see that prefix trees for most ASes achieve very high precision even

when we build trees with as few as 10% of an AS’s inferred action communities.

Consequently, we need to infer only a small number of action communities for the

prefix tree to be effective. Figure 5.11b shows that the recall is also high, increasing

from an average of 0.66 when using 10% of the inferred communities to 0.95 when

using 90%. For three of the 8 ASes, the recall is smaller than 0.4 for samples with

10% of the inferred communities, but it increases significantly for samples with 30%

or more.

5.5.2 Inference Accuracy

Table 5.1 shows the number of communities, the precision, and recall for every Tier-1

and Tier-2 AS in our ground-truth dataset. The unknown columns (Unk) show the

number of inferred action communities that are not in our ground-truth dataset. We

color values larger than 0.8 green and values between 0.5 and 0.8 orange. We show

three configurations of our algorithm: the baseline inferences (Cabsent), the inferences

considering prepended paths (Cprepend), and the inferences considering prepended
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Table 5.1: Evaluation for ASes Tier-1 and Tier-2 on the BGP dumps from De-
cember 2023. The table shows the number of inferred communities (Num), pre-
cision (Prec), recall (Rec), and the number of inferred communities not in our
ground-truth dataset (Unk) for three configurations of our algorithm. The last
three columns (GT ∩ BGP) classify all communities appearing in the BGP dumps
using our ground-truth dataset. The line Total at the bottom shows weighted
averages of precision and recall.

Inf. without Prep Inf. with Prep Inf. Prep with Three
Cabsent Cprepend Cprepend ∪ Ctree GT ∩ BGP

ASN Num Prec Rec Unk Num Prec Rec Unk Num Prec Rec Unk Act Info Unk
1299 131 0.98 0.43 36 131 0.98 0.43 36 340 0.84 1.0 80 218 98 138
174 75 1.0 0.97 47 75 1.0 0.97 47 82 1.0 1.0 47 29 4 118
1764 2 0 0 2 13 1.0 0.18 6 13 1.0 0.18 6 38 38 16
2914 61 1.0 0.93 22 61 1.0 0.93 22 67 0.95 1.0 23 42 81 30
3257 36 0.88 0.38 19 36 0.88 0.38 19 61 0.87 0.85 23 39 844 26
3292 14 1.0 0.53 5 18 1.0 0.76 5 21 1.0 0.88 6 17 10 40
3356 27 0.75 0.6 23 37 0.5 0.6 31 239 0.38 0.6 231 5 144 331
33891 4 1.0 0.02 3 5 1.0 0.03 3 5 1.0 0.03 3 63 24 236
3491 62 0.94 0.25 12 69 0.95 0.28 13 252 0.94 0.99 50 16 139 60
3549 34 1.0 0.57 22 34 1.0 0.57 22 49 1.0 0.86 31 21 22 109
4589 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0
5400 2 0 0 0 2 0 0 0 2 0 0 0 1 0 68
5511 18 0.86 0.35 4 18 0.86 0.35 4 39 0.94 0.88 7 35 51 253
6461 43 1.0 0.64 4 43 1.0 0.64 4 63 0.95 0.92 4 61 289 54
6663 2 1.0 1.0 1 6 1.0 1.0 5 6 1.0 1.0 5 1 0 23
6762 65 1.0 0.13 54 69 0.93 0.16 54 196 0.68 1.0 70 86 46 79
701 19 1.0 1.0 12 19 1.0 1.0 12 20 1.0 1.0 13 7 0 16
7922 5 1.0 0.83 0 5 1.0 0.83 0 5 1.0 0.83 0 6 0 35

Total 600 0.97 0.37 266 641 0.96 0.40 283 1460 0.87 0.86 599 862 1794 1632

paths and the prefix tree (Cprepend ∪ Ctree). As expected, relaxing the algorithm

improves recall at the cost of precision. However, considering the small reduction in

precision and large improvements in recall, we recommend the use of the inferences

considering the prepended paths and the prefix tree. Applications where precision

is paramount, however, can still opt for the more conservative configuration for the

highest precision.

The last column (GT ∩ BGP) classifies the communities observed in the BGP

dumps into action communities, information communities, or unknown depending

on their type in our ground-truth dataset. This column shows that our algorithm

achieves high precision and recall for the majority of ASes whose communities have
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Figure 5.12: Results of our algorithms over six years (2018-2023): (a) the number
of distinct communities found each year and (b) the precision and recall achieved.
The data is based on the first BGP RIB collected in December from all RIPE and
RouteViews collectors.

a significant presence in the BGP dumps. Our algorithm makes few inferences for

ASes 4589 and 5400, which make limited use of BGP communities.

We carried out a longitudinal evaluation considering the first RIB of the month

of December between 2018 and 2023. Figure 5.12 shows the results. On average, the

precision is 92.5% (standard deviation of 3.62%) and the recall is 86.5% (standard

deviation of 1.76%). Table 5.3 shows the type of correctly-inferred action communi-

ties across each year and demonstrates balanced semantic coverage across all action

community classes. We classified the semantics of all but 1,617 action communities

in our ground-truth dataset into the four classes in Table 5.3. For these communi-

ties we have no information to classify them, e.g., 51 communities from AS5511 are

labeled simply “tune” in the whois documentation. Although we consider these

action communities and correctly infer them as such, we do not include them in the

table.

5.5.3 Clustering vs. Prefix Tree

Krenc et al. recently presented a mechanism for classifying BGP communities as

action versus information [60]. They classify as action communities any community
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Table 5.2: Comparison of cluster and prefix tree inferences for May 2023 by ASN
that was not in the GT of the cluster inference algorithm. We compute the inference
of the first RIB from all available collectors for the same interval used in [60]
(who used all RIBs and updates). To be able to fully compare the communities
captured across all collectors, we relaxed our algorithm to restrict to just one
announcement per VP, while maintaining all other algorithm parameters. This
way, both algorithms have the same visibility of all RIB communities. We cannot
compute the Phi coefficient [18,66] when there are no inferences (positives) or when
an AS has no documented information communities (true negatives).

Prefix Tree
GT vs BGP

7 days (1st RIB)
Cluster

GT vs BGP
7 days (all)

ASN Infer Prec Rec F1 Sc. Phi Act Info Unk Infer Prec Rec F1 Sc. Phi Act Info Unk
701 16 1.0 0.71 0.83 — 7 0 17 24 1.0 1.0 1.0 — 9 0 43
703 3 1.0 1.0 1.0 — 2 0 1 3 1.0 1.0 1.0 — 2 0 1
1764 22 1.0 0.41 0.58 0.50 41 36 14 0 0 0 0 — 41 40 14
3257 50 0.88 0.79 0.83 0.83 38 860 25 30 0.6 0.23 0.33 0.36 39 911 26
3549 55 1.0 0.91 0.95 0.91 22 22 129 63 1.0 0.3 0.47 0.42 23 22 144
4589 0 0 0 0 — 4 4 0 8 0.5 1.0 0.67 — 4 4 0
5400 1 0 0 0 — 2 0 62 3 1.0 1.0 1.0 — 2 0 62
5511 38 0.94 0.86 0.9 0.84 35 51 32 39 1.0 0.72 0.84 0.78 36 52 32
6663 12 1.0 1.0 1.0 — 1 0 15 7 1.0 1.0 1.0 — 1 0 17
7922 3 1.0 0.43 0.6 — 7 0 39 34 1.0 1.0 1.0 — 7 0 39
33891 55 1.0 0.7 0.82 0.63 63 24 245 35 1.0 0.19 0.32 0.25 64 24 247
Total 255 0.96 0.68 0.80 0.78 222 997 579 246 0.89 0.35 0.50 0.51 228 1053 625

that often appears on AS-paths that do not traverse the controlling AS.3 The tech-

nique then clusters communities with integer values less than 140 apart and applies

a majority vote across all communities in a cluster to determine their type. It reclas-

sifies the communities in the minority group to match the type of the majority. The

chapter evaluates the mechanism using ground truth from the NLNog database [73]

and communities classified based on their descriptions using regular expressions.

We compared the inferences from our algorithm with the results available in their

paper for the period they considered (May 1–7, 2023). We consider their original

and our extended ground-truth datasets. On their ground-truth dataset, the prior

work achieves an F1 score of 0.95 for the action communities, while our technique

achieves 0.94. On our extended ground-truth dataset, the prior work achieves an F1

score of 0.92, while our technique also achieves 0.92.

However, there is a significant difference in performance when we consider only

3The specific threshold they use is 99.37% (a ratio of 160:1), which maximizes the F1 score for
their ground-truth.
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Table 5.3: Longitudinal Evaluation of Inferred Action Communities by Semantics.

2018 2019 2020 2021 2022 2023
Semantics |C| BGP Frac |C| BGP Frac |C| BGP Frac |C| BGP Frac |C| BGP Frac |C| BGP Frac

Local Preference 36 48 0.75 40 55 0.72 43 57 0.75 52 59 0.88 59 66 0.89 78 82 0.95
No Advertise/Export 145 165 0.88 168 169 0.99 179 183 0.98 187 226 0.83 221 222 0.99 207 234 0.88
Prepend (1x, 2x, 3x) 368 414 0.89 389 443 0.88 402 433 0.93 413 438 0.94 436 474 0.92 461 505 0.91

Blackhole 8 12 0.67 8 10 0.8 9 13 0.69 11 14 0.79 7 10 0.7 7 10 0.7

communities not in the original ground-truth dataset. Our algorithm achieves an F1

score of 0.8 vs. 0.5 for the previous technique, and Phi coefficient of 0.78 vs. 0.51.

Table 5.2 shows a detailed evaluation of the Tier-1 and Tier-2 ASes present in

our extended ground-truth but missing from the ground-truth dataset used by the

prior work. These differences may be explained by the more recent publication of

the communities of the ASes in the subset, which affects their visibility as fewer

networks use them.

Also, some of these ASes assign community numbers in ways that violate the

assumptions of the prior approach. The prior approach performs poorly for AS1764

(NextLayer) because AS1764 intermixes action and information communities when

assigning community numbers, violating the assumption that ASes allocate commu-

nities in contiguous blocks. Table 5.4 shows how AS1764 groups information and

action communities by neighbor, which leads to systematic errors when the majority

vote is applied to communities in each cluster.

This behavior is not exclusive to AS1764; e.g., AS3382 also groups communities

by neighbor. This practice reduces the recall of our prefix tree, but there is no

impact on precision as we do not overwrite inferences. AS3549 and AS33891 define

both action and information communities in intervals smaller than 140, leading to

low performance for the prior approach. Our approach performs better for these

ASes, as the prefix tree can dynamically adjust group sizes.

Finally, the prior approach’s worse performance for AS3257 (GTT) results from

it not handling ASes squatting GTT’s communities. We find that AS286 (previously

KPN, acquired by GTT) and AS29140 (HostServer, unclear relationship to GTT)
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Table 5.4: Example of AS1764’s and AS33823’s grouping of BGP communities by
neighbor

Community Meaning Category
1764:40020 Received via Cogent AS174 Information
1764:40021 Prepend (1x) to Cogent AS174 Action
1764:40022 Prepend (2x) to Cogent AS174 Action
1764:40023 Prepend (3x) to Cogent AS174 Action
33823:1000 Announce International (default) Information
33823:1001 Prepend (1x) Action
33823:1002 Prepend (2x) Action
33823:1003 Prepend (3x) Action

both squat GTT’s communities, leading the previous work to incorrectly infer some

of GTT’s information communities as action communities because they appear on

routes without AS3257 (but with AS286 or AS29140). The similar F1 scores for the

extended ground-truth dataset indicate that both techniques have similar overall

performance, but our technique is more resilient to ASes with unknown operational

practices or BGP community squatting.

5.6 Summary

In this chapter, we design and evaluate an algorithm for automatically identifying

BGP action communities that relies only on route announcements observed by BGP

route collectors. We also present an algorithm for uncovering ASes that consistently

use (i.e., squat) other ASes’ communities, revealing undocumented relationships

and shedding light on the complex interactions between networks on the Internet.

These relationships help, for instance, filter out information communities that would

otherwise be identified as action communities. Our evaluation results show that our

algorithm for identifying action communities achieves average precision and recall

of 92.5% and 86.5%, respectively, in a longitudinal study with BGP data from 2018

to 2023.
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Conclusion

This chapter summarizes our research on automatically inferring the semantics of

BGP communities. In Chapters 4 and 5, we introduced methods to identify location

and action communities. Location communities, a specific type of informational

community, help trace the path of routing announcements, while action communities

affect how these announcements are handled. Both types of data provide valuable

information for network operators and researchers aiming to better understand and

manage Internet traffic.

We explored the current state of the use of the BGP community, showing how

these communities significantly impact Internet operations. The results of this thesis

enable researchers and network operators to use our inferred datasets for multiple

purposes, such as identifying anomalies in traffic patterns, detecting failures at In-

ternet Exchange Points (IXPs), detecting traffic engineering from route announce-

ments, and improving the understanding of network dynamics.

Our research addresses the challenge of inferring the semantics of BGP commu-

nities, particularly for poorly documented communities. We proposed automated

classification techniques that work well in the wild for a subset of community types.
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Our algorithms performed well in identifying location communities, achieving a

precision of 93% and a recall of 81% for major Internet providers (Tier-1 and Tier-

2 ASes). Compared to CAIDA’s manually built database, our method provided

similar accuracy but identified a far greater number of communities.

Additionally, our work automatically infers action communities and identifies au-

tonomous systems involved in community squatting. Analyzing data from December

2018 to 2023, our algorithm for identifying action communities achieves an average

precision of 92.5% and an average recall of 86.5%, demonstrating the robustness of

our approach over multiple periods. Community squatting occurs when an AS uses

BGP communities originally defined by another AS. Our method effectively detects

this behavior, revealing hidden relationships between ASes. It can also improve

methods for detecting sibling relationships.

This thesis provides new insights into BGP communities, showing their potential

as a tool for optimizing network management. More research could unlock their full

potential, helping to create more comprehensive and reliable databases to document

metadata crucial to understanding and improving Internet routing.

6.1 Limitations and Future Work

The method presented in Chapter 4 focuses on inferring location communities. How-

ever, it requires routing announcements from Korigins distinct origin ASes to avoid

cases where an origin AS tags all its announcements with the same traffic engineer-

ing communities from AS T . If any AS in B applies the same community tag to

all routes, our algorithm may incorrectly classify traffic engineering communities as

location communities.

The algorithm may also falsely infer a location community when AS T tags all

routes received from a neighbor with a relationship community (e.g., peer, customer,

or provider). Although this case may decrease precision, it is not a significant

issue, as ASes typically define only a few relationship communities, as discussed
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in Section 4.3. Requiring the community to appear on routes from neighbors with

different relationships could mitigate this issue, although at the cost of reduced

recall. We plan to explore this trade-off in future work.

Our algorithm also faces challenges when intermediate ASes between the BGP

collector and the target AS T remove communities from BGP announcements [59].

However, the large number of collectors on the Internet provides sufficient visibility

from multiple vantage points, allowing us to achieve high recall even when some

ASes remove communities from the route announcements.

Chapter 5 details our work on inferring action communities and identifying ASes

involved in community squatting. Although our approach can detect a single AS

squatter per announcement, it is currently limited in identifying multiple squatters.

We believe that multiple squatters exist, but further refinement is needed to capture

more than one in the same announcement confidently.

Regarding action communities, we avoid using prepend communities to build

the prefix tree because it can sometimes incorrectly infer informational commu-

nities, affecting the accuracy of our results. Investigating how to better separate

informational communities from action communities will be a key area to improve

our method.

This thesis has contributes to understanding the semantics of BGP communities,

developing methods to classify both location and action communities, and revealing

hidden relationships such as AS squatting. However, several areas remain for further

exploration.

One of the primary challenges is accurately determining the geographic locations

associated with BGP communities, which is still an open question. Furthermore, not

all semantic meanings of action communities have been fully explored. While our

method to identify prepend communities yielded promising results, certain action

communities, such as no-advertise, blackhole, and selective advertise,

continue to pose semantic ambiguities.
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Future work should aim to resolve these ambiguities, clarify the meaning of action

communities, and establish a more accurate geographic mapping of BGP communi-

ties. These advances will be crucial for optimizing the use of BGP communities in

Internet routing.
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Appendix A

Ethical Concerns

To build our community database, we use publicly available datasets voluntarily

exported to BGP collectors by autonomous systems on the Internet. Our techniques

do not send active probes. We employ a non-invasive approach that does not disrupt

Internet announcements, and all processing is performed offline.

Location communities are informational communities that do not trigger any

action on peering or remote ASes. The known reported attacks using BGP com-

munities rely exclusively on action communities [5, 93]. Furthermore, our database

lists only the semantics of the communities and not the specific geographic locations

they represent, so an attacker would have to glean complementary information from

diverse data sources to plan a targeted attack.

We also infer action communities and AS squatters. Actions communities can be

used maliciously and cause damage to the Internet infrastructure [5, 93]. Since we

only identify action communities and not their complete semantics (e.g., no-export,

prepend), a malicious actor would have to acquire additional information to launch

an attack on a specific AS.

Our community and AS squatters databases will be valuable for network op-

erators and researchers to reason about traffic dynamics on the Internet, improve

98
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network performance, and check policy compliance. We believe that the positives of

our public databases far outweigh the possibility of misuse for malicious activities.
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Publications

We presented the results of Chapter 4 at ACM SIGMETRICS / IFIP PERFOR-

MANCE, the flagship conference of the ACM special interest group for the computer

systems performance evaluation community and of the IFIP working group WG7.3

on performance modeling and analysis. The results of Chapter 5 will be presented

at ACM SIGMETRICS 2025. Additionally, we contributed to publications in other

conferences and journals, such as IFIP Networking, IEEE Transactions on Network

and Service Management (TNSM), ACM CoNEXT, and ACM SIGCOMM. We pro-

duced the following manuscripts during the development of this thesis:
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