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Abstract

Deep learning architectures, such as ConvNets, represented an impressive

advance in the field of machine learning and are continually breaking records

in numerous areas of artificial inteligence, such as image recognition. Nev-

ertheless, the success of these architectures depends on a large amount of

labeled data. The annotation of training data is a costly process often per-

formed manually. In agricultural and urban forest problems, differences in

image acquisition conditions, such as the height of capture, different sensors,

soil conditions, crop stages, and lighting, often necessitate retraining models

as new acquisitions are made. In this context, domain adaptation presents

itself as a promising alternative to deal with this situation. Domain adap-

tation consists of adapting the knowledge learned from a source domain to

apply it in a target domain, different but related to the original. The aim of

this work is to use the domain adaptation approach to find solutions that ad-

dress problems requiring large amounts of annotated data. Our focus consist

of problems related to agriculture and urban forests, using recents architec-

tures used in the unsupervised domain adaptation, such as Generative Ad-

versarial Networks, Vision Transformers, and Diffusion Models. In this work,

we propose an approach to address the problem of detecting crop rows and

gaps using dilation to generate approximate segmentation maps from anno-

tated one-pixel-wide lines. This method speeds up the pixel labeling process

and reduces the line detection problem to semantic segmentation. We use

the transformer-based model DAFormer to evaluate the ability to transfer the

knowledge learned from source datasets to target datasets. Additionally, we

propose a method for segmenting trees that integrates domain adaptation with

image-to-image translation models and super-resolution networks to enhance

the quality of low-resolution aerial images. Our method also aims to address

the challenge of limited labeled data by employing data augmentation to gener-

ate additional high-resolution training samples from the existing labeled data,

thereby improving model performance and reducing the need for costly label-
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ing processes.
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Resumo

Arquiteturas de aprendizado profundo, como Redes Neurais Convolucionais,

representaram um enorme avanço na área de aprendizado de máquina e vèm

continuamente quebrando recordes em inúmeras áreas da inteligência artifi-

cial como o reconhecimento de imagens. Todavia, o sucesso dessas arquite-

turas é dependente de uma grande quantidade de dados rotulados. Essa an-

otação dos dados de treinamento consiste em um processo dispendioso e fre-

quentemente realizado de forma manual. Nos problemas relacionados à agri-

cultura e florestas urbanas, devido a diferenças nas condições de aquisição

das imagens, por fatores como altura de captura, diferentes sensores, condição

do solo, estágios da cultura e iluminação, é comum que os modelos precisem

ser novamente treinados a medida que são realizadas novas capturas. Nesse

contexto, a adaptação de domínio se apresenta como uma alternativa promis-

sora para lidar com esse problema. A adaptação de domínio consiste em adap-

tar o conhecimento aprendido em um domínio de origem para aplicá-lo a um

domínio destino diferente mas relacionado ao original. O objetivo desse tra-

balho é utilizar a abordagem de adaptação de domínio para encontrar soluções

que lidem com problemas que necessitam de grandes quantidades de dados

anotados. Nosso foco consiste em problemas relacionados à agricultura e

florestas urbanas, utilizando recentes arquiteturas usadas na adaptação de

domínio não supervisionada como as Redes Adversárias Generativas e Vision

Transformers e Diffusion Models. Neste trabalho, propomos uma abordagem

para resolver o problema de detecção de faixas de plantação e falhas em

lavouras, usando dilatação para gerar mapas de segmentação aproximados

a partir de linhas anotadas com um pixel de largura. Utilizamos DAFormer,

um modelo baseado em transformers, para avaliar a capacidade de transferir

o conhecimento aprendido em conjuntos de dados de origem para conjuntos

de dados de destino. Além disso, propomos um método para segmentação de

árvores que integra adaptação de domínio com modelos de tradução de im-

agem para imagem e redes de super-resolução para melhorar a qualidade de
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imagens aéreas de baixa resolução. Nosso método também visa enfrentar o

desafio da limitação de dados rotulados, empregando aumento de dados para

gerar amostras adicionais de treinamento em alta resolução a partir dos dados

rotulados existentes, melhorando assim o desempenho do modelo e reduzindo

a necessidade de processos custosos de rotulagem.
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CHAPTER

1
Introduction

1.1 Motivation

With the continuous increase in the global population, it is expected that

there will be a corresponding increase in food production, maintaining the

high quality of products while protecting natural ecosystems using sustain-

able agricultural procedures. In this context, it’s necessary to monitor, mea-

sure and analyze agricultural ecosystems, making use of new technologies.

Remote sensing can be used to monitor these areas, being carried out by

satellites, planes and, more recently, given the cost reduction, by unmanned

aerial vehicles (UAVs). With the use of remote sensing it’s possible to obtain

images of large geographic areas at low cost.

This large amount of images collected can be used to address a wide vari-

ety of challenges present in agriculture and urban forests. Computer vision

emerges as a great alternative for automating the analysis of these images. In

image analysis, the steps of attribute extraction and classification are usually

necessary. For attribute extraction, among the most commonly used algo-

rithms are Scale Invariant Feature Transform (SIFT) (Lowe, 2004), Gray Level

Co-occurrence Matrix (GLCM) (Soh and Tsatsoulis, 1999), Histogram of Ori-

ented Gradients (HOG) (Dalal and Triggs, 2005), and Local Binary Patterns

(LBP) (Ahonen et al., 2006), in addition to color statistics. Regarding clas-

sifiers, we can mention Support Vector Machine (SVM) (Cortes and Vapnik,

1995), Random Forests (Liaw and Wiener, 2002), and Artificial Neural Net-

works (ANNs) (Jain et al., 1996). However, in recent years, the use of deep

learning has been standing out and is widely used in the area.
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The use of deep learning architectures represented a revolution in the ma-

chine learning field, making impressive advances in the state-of-the-art across

a series of tasks and applications (LeCun et al., 2015). The ability to learn

in multiple layers using automatically extracted attributes has led this type

of learning to achieve breakthroughs in many areas of artificial intelligence.

These deep architectures are continually breaking records in areas such as

image and speech recognition, in addition to achieving great results in natural

language processing (LeCun et al., 2015).

However, despite the enormous success of these architectures, the per-

formance gains tend to occur when a large amount of labeled training data

is available, making these works dependent on the costly process of manu-

ally labeling the data (Ganin and Lempitsky, 2015; dos Santos Ferreira et al.,

2019). In addition to requiring a significant amount of annotated data to train

effectively, these architectures often struggle when trying to generalize their

learning to unseen datasets (Giuffrida et al., 2019). For problems without la-

beled data, in some cases, it is possible to obtain sufficiently large training

sets using, for example, synthetic data. Nonetheless, this training is ham-

pered due to the different distribution of this data in relation to the real data

(Ganin and Lempitsky, 2015).

In the agricultural area, several researchers have conducted studies and

achieved excellent results using deep learning architectures such as Convolu-

tional Neural Networks (CNNs or ConvNets). These works involve classification

and detection tasks such as weed identification, plant recognition, fruit count-

ing, and crop classification. A survey published in 2018 analyzed 40 papers

that used deep learning for a range of agriculture-related problems (Kamilaris

and Prenafeta-Boldú, 2018). Among all these articles, 37 were published af-

ter 2015, demonstrating the recent adoption of deep learning in agriculture.

This research found that the use of deep learning, in the vast majority of these

works, presented better performance when compared to traditional techniques

of classification and manual extraction of attributes.

Nevertheless, pre-trained models often require retraining on new datasets

originating from different experiments, even of the same species (Giuffrida

et al., 2019). Furthermore, the problem of manually labeling data is particu-

larly critical in the fields of agriculture and urban forests, as it often requires

specialists with limited availability (Kamilaris and Prenafeta-Boldú, 2018). Al-

though deep learning-based algorithms have shown promise in developing au-

tomated approaches, the extensive labeling efforts required to capture diverse

features across different regions can limit their effectiveness for large-scale

problems (Zheng et al., 2020).

Additionally, the lack of publicly available datasets has significantly hin-
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dered progress in this research area (Kapil et al., 2024). Despite the signifi-

cant advances achieved through the use of deep learning in agricultural and

urban forest problems, challenges persist in achieving the same high pre-

cision in practical applications as demonstrated in controlled experiments.

Consequently, bridging the gap between source and target domains through

knowledge transfer has become essential (Amirkolaee et al., 2024).

1.2 Objectives

Our proposal in this work is to seek solutions to overcome some of the ob-

stacles mentioned in the previous section. As an example of these challenges,

we can mention the need for large image datasets required for training, the

high cost of manually annotating images in these datasets, the scarcity of

specialists available for manual annotation, the difficulty in generalizing cer-

tain aspects of learning, the differences in data distribution among different

image datasets focused on the same problem, and finally, the lack of exten-

sive image datasets in the field of agriculture and urban forests (Kamilaris and

Prenafeta-Boldú, 2018).

In the absence of labeled data for a given task, domain adaptation is pre-

sented as an interesting option. Domain adaptation can be defined as a tech-

nique in which the objective is to adapt the knowledge learned in a source

domain to apply it to a different but related target domain (Tuia et al., 2016).

It has become an important area of study to reduce the cost of data annota-

tion, appealing due to its capability to learn mappings between domains where

the target domain data is either completely unlabeled (unsupervised domain

adaptation) or has limited labeled samples (semi-supervised domain adapta-

tion) (Ganin and Lempitsky, 2015).

Satellite remote sensing has been crucial for monitoring urban forest re-

sources for many years. Nevertheless, the distribution and varied surfaces

of urban forests often make it challenging to accurately identify and detect

individual trees due to the limited resolution of satellite imagery (Velasquez-

Camacho et al., 2023; Lv et al., 2023)). In recent years, high-resolution aerial

RGB imagery, that is easy to use and available at low cost, has become widely

accessible. Unlike satellite images, UAV-acquired imagery typically includes

only three RGB channels, which, while providing limited spectral information,

enables clear visualization and extraction of structural characteristics such as

shape, size, and texture of ground objects (Ferreira et al., 2020).

In the agricultural sector, most images used in supervised learning meth-

ods are obtained through remote sensing. However, due to potential variations

in image acquisition conditions, such as illumination, soil conditions, or phe-
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nological stages of vegetation, it is common for models to require retraining

using samples collected during each image acquisition. In this context, man-

ual labeling may not keep pace with frequent image acquisitions or may not

be feasible due to economic constraints (Tuia et al., 2016).

Domain adaptation solutions emerge as a promising alternative to address

these challenges in agriculture. In this work, we propose an approach to use

unsupervised domain adaptation for detecting sugarcane crop rows and gaps.

Our approach involves generating approximate segmentation maps from an-

notated one-pixel-wide lines using dilation. This method speeds up the pixel

labeling process and reduces the line detection problem to semantic segmen-

tation.

We considered the transformer-based method, SegFormer, and compared

it with CNN segmentation models, PSPNet and DeepLabV3+, using datasets

consisting of aerial images from four distinct sugarcane farms. To assess the

transferability of learned knowledge across datasets, we employed a recent

and advanced unsupervised domain adaptation model, DAFormer.

We also propose a novel method for segmenting trees that integrates do-

main adaptation with image-to-image translation models and super-resolution

networks to enhance the quality of low-resolution aerial images. Our method

tackles the challenge of limited labeled data by employing data augmentation,

using image-to-image translation and super-resolution networks, to generate

additional training samples from the existing labeled data, thus improving

model performance and reducing the need for costly labeling processes.

This approach not only addresses the difficulties associated with segment-

ing trees in aerial images of varying resolutions and capture heights but also

leverages advanced methods such as Real-ESRGAN, Latent Diffusion, and

Stable Diffusion. Moreover, the proposed method is adaptable and can be

extended to similar detection problems with minimal adjustments.

1.3 Contributions

Overall, the main contributions of our approach to address the challenge of

detecting sugarcane crop rows and gaps are: (1) utilizing dilation to generate

approximate segmentation maps and reducing crop rows detection to seman-

tic segmentation, (2) evaluating the transformer-based SegFormer alongside

CNN segmentation models for crop rows and gaps detection, and (3) assessing

the performance of the state-of-the-art UDA model, DAFormer, in generalizing

segmentation knowledge across four distinct sugarcane farms using a generic

procedure which could be easily adapted to similar problems in agriculture.

Our primary contributions to the tree detection problem in aerial images
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are as follows: (1) employing domain adaptation techniques to address the

challenges of segmenting trees in aerial images of different resolutions and

captured at different heights; and (2) utilizing data augmentation methods to

overcome the scarcity of labeled data in this domain, using image-to-image

translation models and the recent super-resolution networks Real-ESRGAN,

Latent Diffusion, and Stable Diffusion.

1.4 Organization

This work is organized as follows. Section 2 provides a introduction to

the topic of unsupervised domain adaptation and describes the techniques

currently employed in this approach. Section 3 introduces the problem of

sugarcane crop rows and gaps detection, detailing the methodology used for

conducting experiments and presenting the results and their discussion. Sec-

tion 4 addresses the tree detection problem, outlining the methodology used

and discussing the results obtained from the experiments. Section 5 con-

cludes the work and outlines future research directions.
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CHAPTER

2
Unsupervised Domain Adaptation

Deep learning architectures, when trained on large-scale datasets, can

learn representations that are generally useful across various visual tasks.

However, due to a phenomenon known as dataset bias or domain shift (Gret-

ton. et al., 2009), models trained with these representations often do not

generalize well to new datasets and tasks. Domain adaptation methods aim to

mitigate the impacts caused by domain shift.

There are several approaches to addressing problems using unsupervised

domain adaptation. Generating synthetic data is an interesting alternative for

cases where image datasets are not large enough to achieve satisfactory accu-

racy. However, without domain adaptation, there can be a significant disparity

in the distribution of real and synthetic data for the same class, impairing per-

formance on real data tests (Ganin and Lempitsky, 2015). Additionally, real

image datasets often exhibit substantial differences in data distribution due

to various factors in image capture (Giuffrida et al., 2019). Domain adapta-

tion can integrate these diverse image datasets, increasing robustness and

generalization across different but similar domains.

New techniques are continually being researched to address these chal-

lenges. In the following sections, we will discuss recent algorithms used in

unsupervised domain adaptation.
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Figure 2.1: Proposed architecture for unsupervised domain adaptation by backprop-
agation (Ganin and Lempitsky, 2015).

2.1 Unsupervised Domain Adaptation by Backpropa-

gation

Unlike most of the work on domain adaptation published up to that time,

this algorithm focuses on combining domain adaptation with deep feature

learning in a single training process (Ganin and Lempitsky, 2015). The ob-

jective is to incorporate domain adaptation into the learning process so that

the final classification is based on attributes that are both discriminative for

the problem and invariant to domain changes. This ensures that the resulting

neural network can be applied to the target domain without being adversely

affected by differences between the two domains.

Let a model use input samples x ∈ X, in a given space X, and labels y in

a given space Y , where Y is a finite set (Y = 1,2, ...,L). Let there be two distri-

butions S(x,y) and T (x,y) in X
⊗

Y , referred to as the source distribution and

the target distribution (or the source domain and the target domain). The goal

of the algorithm is to predict the labels y for the target distribution, given the

input x from both distributions.

During training, it is possible to access the training samples x1,x2, ...,xN

from the source and target domains, distributed according to the marginal

distributions S(x) and T (x). For the source domain examples, defined as (di =

0), the corresponding labels Yi ∈ Y are known during training. For the target

domain examples, defined as (di = 1), the labels are not known during training

and must be predicted by the algorithm by aligning the feature distributions

of the source and target domains.

The proposed architecture is illustrated in Figure 2.1. It includes a feature

extractor, shown in green, and a classifier, shown in blue, which together form
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a standard deep learning architecture, such as convolutional neural networks.

The loss Ly is calculated only for samples from the source domain for which

the labels are known. Unsupervised domain adaptation is achieved by adding

a domain classifier, shown in red, which tries to distinguish whether a sample

comes from the source or target domain, resulting in the loss Ld. The gradient

reversal layer inverts the gradient coming from the domain classifier during

backpropagation. This process encourages the model to learn features that

are invariant to the domain shift, which helps in achieving good performance

on the target domain even though the target domain labels are not used during

training.

2.2 Generative Adversarial Networks (GANs)

Although they were not originally designed with domain adaptation in mind,

generative adversarial networks (GANs) have become the foundation for some

of the most successful architectures in unsupervised domain adaptation in

recent years. A generative adversarial network consists of a generative model

and a discriminative model. The objective of the generative model is to syn-

thesize images that resemble real images, while the discriminative model aims

to distinguish real images from the synthesized ones. Both the generative and

discriminative models are typically defined as multilayer perceptrons (Good-

fellow et al., 2014).

The generative model can be thought of as analogous to a team of coun-

terfeiters trying to produce fake currency and use it without being discovered,

while the discriminative model is analogous to the police trying to detect the

counterfeit currency. The competition between these two entities drives both

to evolve their methods until the fakes are indistinguishable from the gen-

uine ones. The way these networks measure and minimize the discrepancy

between the distribution of real and synthesized data is very similar to how

the model used by Ganin and Lempitsky (2015) measures and minimizes the

discrepancy between data distributions to perform domain adaptation.

Let x be a genuine image obtained from a distribution pX and z a random

vector in Rd. Let G and D be the generative and discriminative models, respec-

tively. The generative model uses z as input and outputs an image, G(z). Let pZ

be the distribution of G(z). The discriminative model estimates the probability

that an input image belongs to pX . In the ideal scenario, D(y) = 1 if y is drawn

from pX (i.e., y∼ pX ) and D(y) = 0 if if y is drawn from pZ (i.e., y∼ pZ).

The structure of the generative adversarial network corresponds to a Min-

imax game for two players, represented by the generative and discriminative
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models, which can be trained together through equation 2.1:

min
G

max
D

V (G,D) = Ex∼pX [logD(x)]+Ez∼pZ [log(1−D(G(z)))] (2.1)

In practice, the equation 2.1 is solved by alternating the following two gra-

dient update steps described in 2.2:

θ
t+1
d = θ

t
d−λ

t
∇θdV (Dt ,Gt)

θ
t+1
g = θ

t
g +λ

t
∇θgV (Dt+1,Gt)

(2.2)

where θd and θg are the parameters of D and G, λ is the learning rate, and

t is the iteration number (Tzeng and Tuzel, 2016). Using this strategy, the

parameters of the discriminative model are updated with gradient descent. In

the subsequent step, using the updated parameters of the discriminator, the

parameters of the generative model are updated with gradient reversal descent

to decrease the discriminator’s accuracy.

2.2.1 Coupled Generative Adversarial Networks (CoGAN)

Figure 2.2: Coupled Generative Adversarial Networks (CoGAN) architecture Tzeng
and Tuzel (2016).

CoGAN consists of a pair of generative adversarial networks, one for each

image domain, with the restriction that they share the weights of some layers

(Tzeng and Tuzel, 2016). The CoGAN architecture is inspired by the idea that

deep convolutional neural networks learn a hierarchical representation of fea-

tures. By enforcing sharing on the layers that decode high-level semantics, the

two generative adversarial networks are compelled to decode these semantics

in the same manner. Layers that decode low-level information map the shared

representation to the images in individual domains to mislead the respective

discriminative models.

Figure 2.2 shows the architecture of a CoGAN. It consists of a pair of gener-

ative adversarial networks: GAN1 and GAN2. Each GAN has a generative model

for synthesizing realistic images in a domain and a discriminative model for
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classifying whether an image is real or synthesized. The weights of the first

layers (responsible for decoding high-level semantics) of the generative models,

g1 and g2, are shared. The weights of the last layers (responsible for encoding

high-level semantics) of the discriminative models, f1 and f2, are also shared.

This weight-sharing constraint allows CoGAN to learn a joint distribution of

images without the need for correspondence supervision. A trained CoGAN

can be used to synthesize pairs of images that share the same high-level ab-

straction but have different low-level characteristics.

2.2.2 Adversarial Discriminative Domain Adaptation (ADDA)

Figure 2.3: Overview of the approach used in Adversarial Discriminative Domain
Adaptation (ADDA). Dashed lines indicate layers with fixed parameters (Tzeng et al.,
2017).

Domain adaptation methods using adversarial loss have led to approaches

that aim to minimize the domain shift distance using an adversarial objective

with respect to the domain discriminator. One such approach is the Adver-

sarial Discriminative Domain Adaptation (ADDA) method (Tzeng et al., 2017).

An overview of this method can be seen in Figure 2.3.

Initially, a convolutional neural network is trained using labeled images

from the source domain. Then, adversarial adaptation is performed by learn-

ing the parameters of a convolutional network for the target domain. This step

is carried out in such a way that a discriminator, which sees images from both

domains encoded by their respective networks, is unable to accurately predict

the correct domain of these images. During testing, the images from the tar-

get domain are mapped to a vector of attributes resulting from their training

network. This attribute vector is then used as input to the classifier trained

on the source domain.

2.3 Image to Image Translation

Image-to-image translation is a domain within computer vision that focuses

on learning the mapping between an input image and a corresponding output
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image using a training set of aligned image pairs. In paired training data,

the dataset comprises examples {xi,yi}N
i=1, where each input image xi has a

corresponding output image yi, establishing a clear relationship between the

pairs, as illustrated in Figure 2.4.

Figure 2.4: Examples of image pairs used in image-to-image translation, as shown
by Isola et al. (2017).

In contrast, unpaired training involves two separate sets: a source set

{xi}N
i=1, where x ∈ X, and a target set {y j}M

j=1, where y ∈ Y , without any ex-

plicit information linking a specific source image xi to a specific target image

y j (Zhu et al., 2017). It is important to note that the target set Y in the context

of image-to-image translation is distinct from the labels Y used in supervised

learning tasks.

This problem can be broadly characterized as converting an image from

one representation of a given scene, A, to another representation, B. Examples

include transforming a grayscale image to a color image, converting an image

to semantic labels, or generating a photograph from an edge-map.

Acquiring paired training data for these tasks can be challenging and costly.

For instance, there are only a few datasets available for tasks like semantic

segmentation, and they are relatively small. To address this issue, various

methods have been developed to perform both unpaired and paired image-to-

image translation.

2.3.1 CycleGAN (Impaired)

Adversarial training theoretically enables learning mappings G and F that

generate outputs with distributions matching those of the target domains.

However, given sufficient network capacity, a model might map the same set

of input images to any random permutation of images in the target domain.

Consequently, the learned mappings might produce an output distribution

that aligns with the target distribution, but adversarial losses alone do not
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ensure that a specific input xi will correspond to a particular output yi.

To further constrain the space of possible mapping functions, Zhu et al.

(2017) proposed that learned mappings should be cycle-consistent. This means

that if, for instance, a sentence is translated from English to French and then

back to English, it should return to the original sentence. Similarly, for each

image x in domain X, the translation cycle should ideally return x to its original

form, i.e., x→ G(x)→ F(G(x)) ≈ x. This concept, known as cycle consistency,

sets the foundation for the CycleGAN method Zhu et al. (2017).

The goal of the method is to learn mapping functions between two domains,

X and Y , using training samples {xi}N
i=1 where (x ∈ X) and {y j}M

j=1 where (y ∈ Y ).

The data distributions are denoted as x ∼ pdata(x) and y ∼ pdata(y). Mathemat-

ically, if we have a translator G : X → Y and another translator F : Y → X, then

G and F should act as inverses of each other, with both mappings being bijec-

tions.

CycleGAN enforces this structural assumption by simultaneously training

both mappings, G and F, and incorporating a cycle consistency loss. This loss

function encourages the conditions F(G(x)) ≈ x and G(F(y)) ≈ y, ensuring that

the mappings are consistent with the original images. The cycle consistency

loss is formalized in Equation 2.3:

Lcyc(G,F) = Ex∼pdata(x) [‖F(G(x))− x‖1]

+Ey∼pdata(y) [‖G(F(y))− y‖1]
(2.3)

where E denotes the expectation operator and and ‖1 represents the L1 norm,

which measures the absolute differences between the generated and original

images.

In addition, CycleGAN employs two adversarial discriminators, DX and DY .

The discriminator DX is tasked with differentiating between real images x and

translated images F(y), while DY distinguishes between real images y and gen-

erated images G(x). The full objective contains two key components: adversar-

ial losses (Equation 2.1), which align the distribution of generated images with

the data distribution of the target domain, and cycle consistency losses, which

ensure that the mappings G and F do not contradict each other, as illustrated

in Equation 2.4:

L(G,F,DX ,DY ) = LGAN(G,DY ,X ,Y )+LGAN(F,DX ,Y,X)

+λLcyc(G,F)
(2.4)

where λ is a hyperparameter that balances the relative importance of the cycle

consistency loss Lcyc with the adversarial losses LGAN.

The model can be conceptualized as training two autoencoders (Kingma
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and Welling, 2013): one autoencoder F ◦G : X → X and another G ◦F : Y → Y .

These autoencoders, however, have distinctive structures; they map an image

to itself through an intermediate representation, which involves translating

the image to another domain. This setup can be regarded as a specific in-

stance of adversarial autoencoders (Makhzani et al., 2015), which use an ad-

versarial loss to train the bottleneck layer of an autoencoder to approximate

an arbitrary target distribution. In our case, the target distribution for the

X → X autoencoder is the distribution of domain Y .

2.3.2 Pix2pix (Paired)

Although unpaired methods like CycleGAN often succeed in translation

tasks involving color and texture changes, Figure 2.5 shows some typical

failure cases. Moreover, while the network may produce visually appealing

results that preserve local content in natural scenes, it is not specifically de-

signed for end tasks and may not always preserve semantic information. This

lack of semantic preservation can be problematic if the translation is used as

a preliminary step in a segmentation task (Hoffman et al., 2018).

Figure 2.5: Typical failure cases of CycleGAN. According to Zhu et al. (2017), Cy-
cleGAN fails, for example, in this horse → zebra pair because the model has not
encountered images of horseback riding during training.

On the other hand, in paired image-to-image translation, each input im-

age has a corresponding target image in the dataset. This clear correspon-

dence enables the model to learn a direct mapping from the input to the target

domain, often resulting in more accurate and higher-quality transformations

(Isola et al., 2017). Since the model is explicitly trained on exact data transfor-

mations and does not need to infer correspondences between domains, paired

image-to-image translation can yield more consistent and reliable outputs.

This is particularly beneficial for tasks requiring precise mapping, such

as segmenting aerial images. However, if a naive approach is taken, such

14



as training a CNN to minimize the Euclidean distance between predicted and

ground truth pixels, it often results in blurry outputs. This blurring occurs

because minimizing Euclidean distance averages all possible outputs, leading

to a lack of sharpness.

Generative Adversarial Networks (GANs) address this issue by learning a

loss function that classifies whether the output image is real or fake, while

concurrently training a generative model to minimize this adversarial loss.

Blurry images will not be tolerated as they look obviously fake. GANs address

this issue by learning a loss function that adapts to the data, making them

applicable to a wide range of tasks that traditionally require different loss

functions.

Figure 2.6: Different losses induce different quality of results in pix2pix. Each
column shows results after being trained under a different loss by Isola et al. (2017).

Building on this concept, Isola et al. (2017) introduced pix2pix, which uti-

lizes a conditional GAN loss for image translation between paired images x and

y, as described in Equation 2.5:

LcGAN(G,D) = Ex,y[logD(x,y)]+Ex,z[log(1−D(x,G(x,z)))] (2.5)

where the generator G aims to minimize the loss, while the adversarial dis-

criminator D seeks to maximize it, with z representing the noise vector.

However, Instead of combining the conditional GAN loss with a traditional

loss such as L2 distance, pix2pix uses L1 distance. This choice is made because

L1 distance tends to produce less blurring compared to L2 distance. The L1 loss

is defined in Equation 2.6:

LL1(G) = Ex,y,z [‖y−G(x,z)‖1] (2.6)

The final pix2pix objective is outlined in Equation 2.7:

L(G,D) = LcGAN(G,D)+λLL1(G) (2.7)

where λ is a hyperparameter that controls the relative importance of the L1

loss compared to the adversarial loss. Figure 2.6 demonstrates the results
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obtained by training with these different types of losses.

2.4 Vision Transformers (ViTs)

Transformers were proposed by Vaswani et al. (2017) for machine transla-

tion and have demonstrated remarkable performance in language tasks such

as text classification, machine translation, and question answering. These im-

pressive results with transformer models in the natural language processing

(NLP) domain have attracted the attention of the vision community, leading to

efforts to adapt these models for vision and multi-modal learning tasks.

Transformer architectures are based on a self-attention mechanism that

learns the relationships between elements of a sequence. The model was first

developed for language translation tasks, where an input sequence of words in

one language is required to be converted into an output sequence in another

language (Khan et al., 2021). The most commonly used approach with trans-

formers in NLP tasks involves pre-training on a large text corpus followed by

fine-tuning on a smaller, task-specific dataset.

Subsequently, Dosovitskiy et al. (2020) proposed the Vision Transformer

(ViT) for image classification. Vision Transformer was the first work to demon-

strate how transformers can replace standard convolutions in deep neural

networks for large-scale image datasets. Following the original transformer

design in NLP (Vaswani et al., 2017), they applied transformers to a sequence

of images flattened into vectors.

The model was pre-trained on a large proprietary JFT-300M dataset (Sun

et al., 2017), which contains 300 million images, and then fine-tuned for

downstream recognition tasks on other datasets, such as ImageNet (Deng

et al., 2009). This pre-training was necessary because, unlike convolutional

or recurrent architectures, transformers assume minimal prior knowledge of

the problem structure. Consequently, they typically need to be pre-trained on

large-scale (unlabeled) datasets before being fine-tuned on the target task with

a smaller labeled dataset (Khan et al., 2021).

With Vision Transformer, Dosovitskiy et al. (2020) achieved excellent re-

sults in image recognition benchmarks compared to state-of-the-art ConvNets,

demonstrating that transformers can be competitive with convolutional neural

networks on large-scale image datasets. Since then, ViTs have gained signif-

icant attention from researchers, and several recent approaches have been

proposed based on ViTs, including SegFormer, a semantic segmentation ar-

chitecture that we used and evaluated in this research.
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2.4.1 SegFormer

Figure 2.7: Simplified overview of the SegFormer framework, based on the illus-
tration in the original article (Xie et al., 2021). The framework consists of two main
modules: a hierarchical transformer encoder for feature extraction and a lightweight
MLP decoder for predicting the semantic segmentation mask.

SegFormer is a semantic segmentation framework that unifies transform-

ers with lightweight multilayer perceptron (MLP) decoders (Xie et al., 2021).

Semantic segmentation can be viewed as an extension of image classification,

as it produces predictions at the pixel level rather than the image level. For

this reason, many semantic segmentation frameworks are variants of popu-

lar architectures for image classification on ImageNet and use CNNs as their

backbone.

Despite its good performance, Vision Transformer (ViT) has two significant

limitations: it outputs single-scale low-resolution features and incurs a very

high computational cost when processing large images. To address these lim-

itations, Wang et al. (2021a) proposed the Pyramid Vision Transformer (PVT),

demonstrating the potential of a pure transformer backbone compared to CNN

counterparts in dense prediction tasks.

SegFormer employs a Mix Transformer (MiT) as its backbone. The archi-

tecture consists of two main modules: a hierarchical transformer encoder

that outputs multiscale features without needing positional encoding, and a

lightweight MLP decoder that predicts the final mask by aggregating informa-

tion from different layers. This combination of local and global attention yields

powerful representations (Xie et al., 2021). Given an image of size H×W × 3,

unlike ViT, which uses patches of size 16×16, SegFormer splits the image into

patches of size 4× 4 because fine-grained patches favor semantic segmenta-

tion.

These patches are input to the hierarchical transformer encoder, producing

multi-level features at resolutions of 1
4 ,

1
8 ,

1
16 ,

1
32 of the original image. These

features are then fed into the MLP decoder to predict the segmentation mask

at a resolution of H
4 ×

W
4 ×Ncls, where Ncls represents the number of categories,
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as illustrated in Figure 2.7.

The Mix Transformers (MiT) models used as encoders in SegFormer range

from MiT-B0 to MiT-B5. They differ primarily in the number of transformer

blocks and embedding dimensions. MiT-B0 is the smallest and most efficient

model, while MiT-B5 is the largest, providing the best performance with more

transformer blocks and higher dimensions, though it requires increased com-

putational resources. While SegFormer-B0, which uses MiT-B0, is a compact

and efficient model showing competitive performance, SegFormer-B5, which

uses MiT-B5, is the largest model and has achieved state-of-the-art results on

tested datasets, demonstrating the potential of the Mix Transformer encoder.

2.4.2 DAFormer

Acquiring pixel annotations of real-world images for semantic segmentation

is a costly process; for instance, it can take up to 3.3 hours to annotate a single

image from the Cityscapes dataset (Cordts et al., 2016) under adverse weather

conditions. Taking advantage of recent advances promoted by transformers

in computer vision to generalize knowledge, DAFormer (Hoyer et al., 2021) is

an unsupervised domain adaptation architecture based on SegFormer. It was

developed with the aim of adapting more accessible synthetic data, such as

from the Grand Theft Auto (GTA) dataset (Richter et al., 2016), to real images

without requiring annotations.

In unsupervised domain adaptation, a neural network is trained using only

source domain images x ∈ X, where X represents the input space, and labels

y in a space Y , with Y being a finite set (Y = 1,2, . . . ,L), under a distribution

S(x,y) defined over X
⊗

Y . The goal is to achieve good performance on target

images x ∈ X from a distribution T (x,y), even though the target labels y ∈ Y are

not available. However, training the neural network with a categorical cross-

entropy (CE) loss on the source domain usually results in low accuracy on the

target images due to the lack of network generalization (Hoyer et al., 2021).

To address the low performance associated with naive training, most un-

supervised domain adaptation (UDA) methods employ strategies based on ad-

versarial training or self-training approaches. Adversarial training methods

aim to align the distributions of the source and target domains, whereas self-

training networks use pseudo-labels for the target domain. DAFormer employs

a self-training approach, considering it to be more stable and currently more

effective than adversarial training.

To transfer knowledge from the source to the target domain, self-training

approaches utilize student and teacher models, where the teacher network

generates pseudo-labels for the target domain data. Additionally, a confidence

estimate is produced for the pseudo-labels based on the ratio of pixels exceed-
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ing a threshold of the maximum softmax probability. These pseudo-labels,

along with their quality estimates, are then used to further train the student

network on the target domain.

Figure 2.8: Simplified overview of the DAFormer network with rare class sampling
(RCS), based on the illustration in the original article (Hoyer et al., 2021). Rare Class
Sampling uses images with rare classes from the source domain more often in order
to learn them better and earlier.

The DAFormer network consists of a transformer encoder and a multi-

level context-aware feature fusion decoder. The DAFormer architecture follows

the design of Mix Transformers proposed in SegFormer, dividing the image

into patches of size 4× 4. The transformer encoder is designed to produce

multi-level feature maps Fi ∈ R
H

2i+1×
W

2i+1×Ci, where H and W are, respectively,

the height and width of the images and C represents the number of classes.

The architecture incorporates three key strategies to mitigate overfitting to

the source domain: Rare Class Sampling (RCS), Feature Distance (FD), and

learning rate warmup.

RCS targets uncommon classes in the training process to balance class

distribution and enhance model performance on marginalized categories. Fea-

ture Distance (FD) measures the similarity between features extracted from

the target domain and pre-trained ImageNet features to ensure effective do-

main alignment. Learning rate warmup gradually increases the learning rate

at the beginning of training to stabilize convergence and improve model ro-

bustness. A simplified overview of the DAFormer architecture is shown in

Figure 2.8.

2.5 Super-Resolution Models

2.5.1 Generative Adversarial Networks for Image Super-Resolution

Single image super-resolution (SR or SISR) is a fundamental low-level vi-

sion problem focused on reconstructing a high-resolution (HR) image from its
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low-resolution (LR) counterpart. SR has received significant attention from

the computer vision research community and has a wide range of applications

(Wang et al., 2018). Typically, the objective of supervised SR algorithms is to

minimize the mean squared error (MSE) between the recovered HR image and

the ground truth.

Figure 2.9: Comparison of SRGAN (Ledig et al., 2017) with bicubic interpolation,
deep residual network (He et al., 2016) optimized for MSE, and the original HR image.

However, MSE’s capacity to capture perceptually relevant differences, such

as fine texture details, is quite limited because it is defined based on pixel-wise

image differences (Ledig et al., 2017). Pixel-wise loss functions like MSE strug-

gle to account for the uncertainty involved in recovering lost high-frequency

details, such as texture. Minimizing MSE often leads to pixel-wise averages

of plausible solutions, which tend to be overly smooth and thus exhibit poor

perceptual quality.

Ledig et al. (2017) proposed the Super-Resolution Generative Adversarial

Network (SRGAN), which employs a deep residual network (ResNet) (He et al.,

2016) with skip connections and diverge from MSE as the sole optimization

target. A super-resolution image generated using this method can be seen in

Figure 2.9.

Unlike previous methods, SRGAN introduces a novel perceptual loss that

leverages high-level feature maps from the VGG network (Simonyan and Zis-

serman, 2014), combined with a discriminator that encourages the generated

images to be perceptually indistinguishable from high-resolution (HR) refer-

ence images.

At the core of the very deep generator network G, Ledig et al. (2017) em-

ployed two convolutional layers with 3× 3 kernels and 64 feature maps, fol-

lowed by batch normalization (BN) layers and Parametric ReLU (PReLU) as

the activation function. To distinguish real high-resolution (HR) images from
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generated super-resolution (SR) samples, the discriminator network consists

of eight convolutional layers. These layers use 3× 3 filter kernels, increas-

ing from 64 to 512 kernels in powers of 2, similar to the architecture of the

VGG network. The discriminator utilizes Leaky ReLU and avoids max-pooling

throughout the network.

2.5.1.1 Real-ESRGAN

To further improve the recovered image quality, Wang et al. (2018) pro-

posed the Enhanced Super-Resolution Generative Adversarial Network (ESR-

GAN). This model introduces two key modifications to the generator structure:

removing all Batch Normalization (BN) layers and replacing the original ba-

sic block with the Residual-in-Residual Dense Block (RRDB). The RRDB in-

tegrates multi-level residual networks with dense connections. The removal

of BN layers has been shown to improve performance and reduce computa-

tional complexity, as BN layers can introduce unpleasant artifacts and limit

generalization when there is a significant discrepancy between the statistics

of training and testing datasets.

Figure 2.10: Overview of the pure synthetic data generation adopted in Real-
ESRGAN. It utilizes a second-order degradation process to model more practical
degradations. The sinc filter is also used to synthesize common ringing and over-
shoot artifacts.

Building upon ESRGAN, Wang et al. (2021b) introduced Real-ESRGAN,

an extension designed for practical restoration applications and trained with

purely synthetic data. Classical degradation model which includes blurring,

downsampling, noise addition, and JPEG compression, is widely adopted in

explicit modeling methods. Specifically, the ground-truth image y is first con-

volved with a blur kernel k. Next, a downsampling operation with a scale factor

r is applied. The resulting low-resolution image x is obtained by adding noise

n. Finally, JPEG compression is applied, as it is commonly used in real-world
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images (Wang et al., 2021b). This process is described in Equation 2.8:

x = D(y) = [(y~ k)+↓r +n]JPEG (2.8)

where D denotes the degradation process.

However, this straightforward combination of multiple degradations can-

not address more complex real-world scenarios, particularly those involving

unknown noises and intricate artifacts. Real-world complex degradations of-

ten arise from convoluted combinations of various processes, such as camera

imaging systems, image editing, and Internet transmission. Real-ESRGAN ex-

tends ESRGAN by restoring general real-world low-resolution images through

synthesizing training pairs with a more practical degradation process.

Specifically, a high-order degradation modeling process is introduced to

more accurately simulate complex real-world degradations. This approach

utilizes an n-order model, involving n repeated degradation processes, where

each process employs the classical degradation model as illustrated in Figure

2.10. Additionally, a UNet discriminator (Ronneberger et al., 2015), enhanced

with spectral normalization to boost its capability and stabilize training dy-

namics, is introduced to improve upon the VGG-style discriminator used in

ESRGAN.

2.5.2 Diffusion Models

Deep generative models have shown remarkable capability in producing

high-quality samples across various domains. In the realm of image genera-

tion, generative adversarial networks (GANs) can exhibit higher sample qual-

ity. However, GANs necessitate careful selection of optimization techniques

and architectural choices to stabilize training. Additionally, they often strug-

gle to capture the full data distribution (Song et al., 2020).

In 2015, Sohl-Dickstein et al. (2015) introduced the concept of Diffusion

Models (DMs) in their paper "Deep Unsupervised Learning using Nonequilib-

rium Thermodynamics." The core idea, derived from non-equilibrium statis-

tical physics, involves systematically and gradually destroying the structure

within a data distribution through an iterative forward diffusion process. A

reverse diffusion process is then learned to restore the structure in the data,

resulting in a highly flexible and tractable generative model.

The method employs a Markov chain to gradually transform one distribu-

tion into another, a concept borrowed from non-equilibrium statistical physics.

This transformation is achieved through a generative Markov chain that con-

verts a simple known distribution (e.g., a Gaussian) into a target data distribu-

tion via a diffusion process. The probabilistic model is explicitly defined as the
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endpoint of the Markov chain. Since each step in the diffusion process has

an analytically evaluable probability, the entire chain can also be evaluated

analytically.

Figure 2.11: Illustration of the diffusion process, showing how data is destroyed by
adding noise and the subsequent reverse denoising process.

The method aims to define a forward (or inference) diffusion process which

converts any complex data distribution into a simple, tractable distribution,

and then learns a finite-time reversal of this diffusion process which defines

the generative model distribution. Let q
(

x(0)
)

be the data distribution. The

forward trajectory, starting at the data distribution and performing T steps of

diffusion, is defined in Equation 2.9:

q
(

x(0···T )
)
= q

(
x(0)

) T

∏
t=1

q
(

x(t) | x(t−1)
)

(2.9)

where q
(

x(t) | x(t−1)
)

corresponds to either Gaussian diffusion into a Gaussian

distribution with identity covariance, or binomial diffusion into an indepen-

dent binomial distribution.

The generative distribution will be trained to describe the same trajectory,

but in reverse, as shown in Equation 2.10:

p
(

x(0···T )
)
= p

(
x(T )

) T

∏
t=1

p
(

x(t−1) | x(t)
)

(2.10)

where p
(

x(0)
)

represents the probability that the generative model assigns to

the data. The graphical illustration of this process can be seen in Figure 2.11.

Although Diffusion models were initially considered straightforward to de-

fine and train, it was not until 2020 that Ho et al. (2020) demonstrated their

capability to generate high-quality samples, sometimes surpassing the per-

formance of other generative models. They introduced Denoising Diffusion

Probabilistic Models (DDPMs), which are constructed from a hierarchy of de-

noising autoencoders (Kingma and Welling, 2013).
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2.5.2.1 Latent and Stable Diffusion

Although DDPMs achieve high-quality image generation without adversar-

ial training, they are computationally demanding. This is due to the require-

ment for repeated function evaluations and gradient computations in the high-

dimensional space of RGB images. Specifically, the generative process, which

approximates the reverse of the forward diffusion process, may involve thou-

sands of steps. Iterating through all these steps to produce a single sample is

significantly slower compared to GANs, which require only one pass through

a network (Song et al., 2020).

For example, generating 50,000 images of size 32× 32 from a DDPM takes

approximately 20 hours, whereas the same task with a GAN requires less

than a minute on an Nvidia 2080 Ti GPU. This disparity has two main con-

sequences for the research community and users: Firstly, training a DDPM

demands substantial computational resources, available only to a small frac-

tion of researchers, and contributes significantly to the carbon footprint (Rom-

bach et al., 2022). Secondly, evaluating a pre-trained model is also time and

memory intensive, as the model architecture must sequentially process a large

number of steps.

To increase the accessibility of this powerful model class while reducing

its significant resource consumption, Rombach et al. (2022) introduced La-

tent Diffusion Models (LDMs). They achieved this by separating training into

two distinct phases: first, they trained an autoencoder to provide a lower-

dimensional, yet perceptually equivalent, representational space. Next, they

trained the diffusion models in this learned latent space, which reduces com-

putational load and enhances performance, making it feasible to handle high-

resolution images or complex data.

This reduced complexity also allows for efficient image generation from the

latent space with a single network pass. A notable advantage of this approach

is that the universal autoencoding stage needs to be trained only once, mak-

ing it reusable for multiple diffusion model trainings or for exploring entirely

different tasks. This enables efficient exploration of a wide range of diffusion

models for various image-to-image and text-to-image applications.

The neural backbone of the model is realized as a time-conditional UNet

(Ronneberger et al., 2015). Similar to other types of generative models, diffu-

sion models are in principle capable of modeling conditional distributions of

the form p(z | y). This can be implemented with a conditional denoising autoen-

coder εθ(zt , t,y), with zt denoting the latent representation of the data at step

t, which paves the way to controlling the synthesis process through inputs

y, such as text, semantic maps, or other image-to-image translation tasks.

LDMs can be efficiently trained for super-resolution by directly conditioning
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low-resolution images, where the low-resolution image y is concatenated with

the inputs to the UNet.

By augmenting their underlying UNet backbone with a cross-attention mech-

anism (Vaswani et al., 2017), which is effective for learning attention-based

models of various input modalities, diffusion models (DMs) can be transformed

into more flexible conditional image generators. This mechanism is used to

preprocess y from various modalities, such as language prompts.

Figure 2.12: Simplified view of Stable Diffusion: the Diffusion Model is trained in
the learned latent space, which is smaller but equivalent to the RGB space. This
approach reduces computational load and improves performance. A text prompt can
be conditioned to the Latent Diffusion Model through a cross-attention mechanism,
resulting in a flexible image generator.

With financial support from Stability AI and assistance from LAION, the

Latent Diffusion authors were able to train a Latent Diffusion Model on 512×
512 images from a subset of the LAION-5B dataset (Schuhmann et al., 2022)

and developed Stable Diffusion, a latent text-to-image diffusion model. This

model features a 60M UNet and a 123M text encoder. A simplified view of this

model can be seen in Figure 2.12.
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CHAPTER

3
Domain Adaptation using

Transformers for Sugarcane Rows and
Gaps Detection

3.1 Introduction

Crop rows detection is a problem that consists of identifying the plantation

lines in a given image captured by unmanned aerial vehicles (UAVs) or au-

tonomous terrain vehicles. This procedure is important for crop planning, pro-

duction estimation, plant counting, harvesting and early correction of planting

failures (Soares et al., 2018; Osco et al., 2021). In addition, our approach also

detects the gaps present in these rows. These gaps, which can appear during

planting and harvesting operations, can reduce the productivity of planting

and the profitability of the cultivated area (Rocha et al., 2022).

The Hough transform method (Hough, 1962) is the most commonly used

strategy for identifying crop rows (Jiang et al., 2015; Bah et al., 2019; Chen

et al., 2021). Recently, other approaches combine the Hough transform with

other methods, such as superpixel and CNN (Bah et al., 2019). Although

most of these methods do not rely on labeled data, they generally fail to detect

curves commonly present in rows of crop images captured by UAVs, thus

lacking sufficient accuracy (García-Santillán et al., 2017; Soares et al., 2018;

Chen et al., 2021). Curve detection also remains challenging for other recent

methods (García-Santillán et al., 2017; Rocha et al., 2022).

The approach we present here reduces sugarcane row and gap detection
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Figure 3.1: Example of challenging images for the methods used for crop rows and
gaps detection, most using Hough transform based approaches. In (a) and (b) we have
curves in the plantations rows, in (c) non-parallel lines and in (d) shadows and large
gaps.

to a common semantic segmentation problem to enable the use of state-of-

the-art methods capable of addressing challenges such as curves, shadows,

and non-parallel lines, as illustrated in Figure 3.1. Bah et al. (2019) employed

a similar approach in their work, using segmentation for crop row detection.

They developed CRowNet, a modified CNN combined with Hough transform.

Due to the time-consuming nature of manually annotating images required

for a supervised CNN, they simplified the annotation process, proceeding in a

semi-supervised manner.

Compared to (Bah et al., 2019), our experiments have two main differences:

(1) we adapted our ground truth using dilation to enable the use of state-of-

the-art semantic segmentation architectures for general purposes, without re-

lying on Hough transform to capture specific features of line detection, and (2)

to address the expensive annotation process and common lack of annotated

data, we evaluated Vision Transformer (Dosovitskiy et al., 2020) and applied

unsupervised domain adaptation to generalize our models to similar but dif-

ferent domains without labeled data.

3.2 Methodology

3.2.1 Method

Our proposed method combines a strategy of reducing labeling efforts based

on dilations with the application of transformers (Vaswani et al., 2017; Doso-

vitskiy et al., 2020) and unsupervised domain adaptation for crop row and gap

detection. Dilation, a fundamental morphological operation, involves adding

pixels at object boundaries. This operation gradually expands the boundaries

of foreground pixels, increasing their area size (Chudasama et al., 2015). In

our approach, dilation was used to generate approximate segmentation maps
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from manually labeled one-pixel-wide lines by specialists. The process used

to generate segmentation maps is illustrated in Figure 3.2.

Figure 3.2: Semi-automatic process of generating segmentation maps using dilation
in one-pixel-wide annotations manually labeled by specialists.

The use of these segmentation maps enabled the detection of crop rows and

gaps using standard semantic segmentation networks, without relying on the

Hough transform. However, while fully supervised architectures have achieved

significant success in semantic segmentation, they necessitate a large number

of fully annotated images for the training set, a process that is time-consuming

and costly (Vezhnevets et al., 2011; Huang et al., 2018). To mitigate this draw-

back, we evaluated three different approaches in our experiments: supervised

semantic segmentation, source model only, and unsupervised domain adap-

tation.

In supervised semantic segmentation, source images and labels are used to

train the model, which is evaluated using source images from a different sub-

set, the test set, which contains images not used in training. In source model

only (Src-Only) (Liang et al., 2020), the same supervised model is evaluated

using images from different but related target domains. While this strategy

has the advantage of not relying on annotated images for the target dataset, a

decrease in model performance is expected due to domain shift. For both eval-

uations, we used the recent transformer-based model, SegFormer (Xie et al.,

2021), and compared its results with robust ConvNet models.

Unlike source model only, in unsupervised domain adaptation, target im-

ages without annotations are used jointly with source images and their an-

notations in the training step to generalize model learning to target images,

reducing source overfitting. In our experiments, we utilized DAFormer (Hoyer
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Figure 3.3: In Supervised Semantic Segmentation, source images and labels are
used to train the model which is evaluated using source images from test set. In
Source Model Only, the same supervised model is evaluated using images from dif-
ferent but related target domain. In Unsupervised Domain Adaptation, target images
without annotations are also used in the training step.

et al., 2021), an unsupervised domain adaptation architecture based on Seg-

Former. The pipeline of our experiments can be seen in Figure 3.3.

3.2.2 Dataset

The images were acquired on four different sugarcane farms with the same

camera using an UAV. The orthoimages were generated using Agisoft Metashape

software, which is based on structure-from-motion (SfM) and MultiView Stereo
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(MVS) computer vision techniques. A ground sample distance (GSD) of 5 cen-

timeters was considered, which enabled the identification of the sugarcane

plantation rows and gaps greater than 50 centimeters.

Farm Train Validation Test Total

Farm 1 (F1) 973 162 486 1621

Farm 2 (F2) 1250 208 626 2084

Farm 3 (F3) 592 99 296 987

Farm 4 (F4) 674 112 338 1124

Table 3.1: Total of images of train (60%), validation (20%) and test (30%) sets
for each farm.

Figure 3.4: From top to bottom, in the first row, images from Farm 1 (F1), in the
second row, images from Farm 2 (F2), in the third row, images from Farm 3 (F3), and
in the last row images from Farm 4 (F4).

The images of each dataset were divided into training, validation, and test

sets, with the number of images for each set detailed in Table 3.1. In general,

all images used in the experiment had many pixels annotated as rows. How-

ever, most images had few or no pixels annotated as gaps. In Table 3.2, we

show the number of images, for each farm, containing at least 10, 100, 1000

and 2000 pixels annotated as rows and gaps. We considered the pixels of the
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original annotations, without using dilation. These data helped us to discuss

the results of this research.

+10 +100 +1000 +2000

Rows

Farm 1 (F1) 1621 (1.00) 1620 (0.99) 1558 (0.96) 1533 (0.95)

Farm 2 (F2) 2084 (1.00) 2073 (0.99) 1998 (0.96) 1941 (0.93)

Farm 3 (F3) 987 (1.00) 986 (0.99) 956 (0.97) 931 (0.94)

Farm 4 (F4) 1124 (1.00) 1124 (1.00) 1112 (0.99) 1074 (0.96)

Gaps

Farm 1 (F1) 1436 (0.89) 1088 (0.67) 171 (0.11) 40 (0.02)

Farm 2 (F2) 1421 (0.68) 891 (0.43) 223 (0.11) 76 (0.04)

Farm 3 (F3) 950 (0.96) 799 (0.81) 269 (0.27) 48 (0.05)

Farm 4 (F4) 1124 (1.00) 1122 (1.00) 874 (0.78) 362 (0.32)

Table 3.2: For each farm, the number of images containing at least 10, 100, 1000
and 2000 pixels annotated as rows and gaps. In parentheses, the proportion in rela-
tion to all images in the training, validation and test sets.

3.2.1.1 Pixel Labeling (Dilation)

Each RGB image from our four datasets was manually annotated by spe-

cialists using two additional grayscale images with the same dimensions, con-

taining one-pixel-wide lines to indicate the presence of rows or gaps. An exam-

ple can be seen in the first row of Figure 3.5. To generate segmentation maps

similar to those used in datasets such as Cityscapes and GTA, we applied

multidimensional binary dilation to the annotated images.

Our approximated ground truth is a segmentation map containing specific

RGB values and a color palette to represent background, rows, and gap anno-

tations. In the second row of Figure 3.5, examples of ground truth using 3, 5,

and 8 iterations of dilation are shown. In this work, we used 5 iterations as

the default, as it provides a close approximation to the width of the crop rows

for most images in the datasets. Henceforth, we will simply refer to this as

dilation 5. However, it should be noted that this value can vary significantly

within the same dataset if the images are captured at different flight heights.
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Figure 3.5: From left to right, in the first row, the original image and one-pixel-wide
line annotations of rows and gaps. In the second row, the ground truth generated
from the three above images using 3, 5 and 8 iterations of dilation. In the third row,
the transparent ground truths merged into original image for better visualization.

3.2.3 Evaluation Metrics

To assess and compare the networks evaluated in the experiments, we uti-

lized metrics commonly applied in the literature: precision, recall, F1-score,

and intersection over union (IoU) at the pixel level. Precision indicates how

many pixels predicted for a given class actually belong to that class. Recall

indicates the ability of the predictions to recover correct information, i.e., how

many pixels belonging to a specific class were correctly identified. F1-score

represents the balance between precision and recall, serving as a harmonic

average of these two metrics.

These four metrics can be calculated using the following equations:

Precision =
T P

T P+FP
(3.1)

Recall =
T P

T P+FN
(3.2)
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F1 = 2 · Precision ·Recall
Precision+Recall

(3.3)

IoU =
P∩GT
P∪GT

(3.4)

where TP corresponds to true positives, FP corresponds to false positives,

FN corresponds to false negatives, P corresponds to prediction, and GT cor-

responds to Ground Truth. We evaluated all assessments using F1-score,

since F1 is a robust metric that calculates the trade-off between recall and

precision, and used IoU as an additional metric in our supervised semantic

segmentation results.

3.2.4 Experimental Setup

We ran our experiments on a Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz,

with 32 GB of RAM and GPU Nvidia GeForce GTX TITAN X with 12 GB GDDR5

memory and 3072 CUDA Cores. We performed the tests using four different

datasets, Farm 1 (F1), Farm 2 (F2), Farm 3 (F3), and Farm 4 (F4).

For our supervised semantic segmentation tests, we used the available ar-

chitectures in the MMSegmentation (Contributors, 2020), which that can be

accessed at https://github.com/open-mmlab/mmsegmentation. We used

the following supported methods: PSPNet, DeepLabV3+ and SegFormer.

To carry out our training using these methods we used the base config

files available through MMSegmentation. For PSPNet, we used the Cityscapes

config for backbone ResNet-50, crop size 512×1024 and learning rate schedule

40,000. For the DeepLabV3+ method, we utilized the Cityscapes config with

ResNet-101 as the backbone, the same crop size of 512×1024, and a learning

rate schedule of 40,000. Lastly, for SegFormer, we used the Cityscapes config

with MiT-B5 as the backbone, a crop size of 1024× 1024, and a learning rate

schedule of 160,000.

We selected these base config files from the available options in MMSeg-
mentation after evaluating the trade-off between mIoU performance and time /

memory efficiency during training on the Cityscapes dataset, prioritizing mIoU

performance. However, we adjusted the image scale to 512×512, the number of

classes in the decode/auxiliary head to 3, and the crop size to 256×256 to suit

our dataset, as base config files with a crop size of 256×256 were not available

for these models in MMSegmentation.

For all architectures, we initialized the network weights using the models
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Table 3.3: Hyperparameter values used in training for each network.

Parameter PSPNet DeepLabV3+ SegFormer DAFormer

backbone ResNet-50 ResNet-101 MiT-B5 MiT-B5

optimizer SGD SGD AdamW AdamW

learning_rate 0.01 0.01 6e-05 6e-05

momentum 0.9 0.9 - -

betas - - (0.9, 0.999) (0.9, 0.999)

weight_decay 0.0005 0.0005 0.01 0.01

lr_config poly poly poly poly

power 0.9 0.9 1.0 1.0

min_lr 0.0001 0.0001 0.0 0.0

img_scale (512, 512) (512, 512) (512, 512) (512, 512)

crop_size (256, 256) (256, 256) (256, 256) (256, 256)

samples_per_gpu 8 8 8 4

workers_per_gpu 8 8 8 4

max_iters 16000 16000 16000 32000

pretrained on the Cityscapes dataset available in MMSegmentation for each

config. We conducted our training using 16,000 iterations and a batch size of

8 source images. Apart from these adjustments, we retained all other hyper-

parameters such as optimizers and initial learning rate at their default values

as specified in the base config files. For each dataset, we trained all three

networks using the labeled ground truths generated with dilation 5 and 8,

resulting in a total of 4×3×2 different models for evaluation.

In our unsupervised domain adaptation experiments, we used the DAFormer

code available at https://github.com/lhoyer/DAFormer. We used the con-

fig file available here as the base config for our training. Additionally, we ini-

tialized the MiT-B5 weights using a pre-trained file provided by the authors,

found here. We performed our training using 32,000 iterations, using a batch

of 4 images for source and 4 images for target. We doubled the number of

iterations, compared to the supervised tests, as we needed to divide the batch

size of the source images by 2, to share it with the target images due to GPU

memory constraints.
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Similar to the training of the semantic segmentation models, with the ex-

ception of these modifications, we kept all other hyperparameters with the

default values defined in the base config files. We trained all the combinations

of different source and targets farms using only dilation 5, enabling and dis-

abling RCS, for a total of 4×3×2 different models. More detailed information

about the hyperparameters can be found in Table 3.3.

3.3 Supervised Semantic Segmentation

F1 → F1 F2 → F2 F3 → F3 F4 → F4

PSPNet (ResNet-50)

Background 93.82 (88.37) 93.93 (88.56) 93.21 (87.28) 94.15 (88.95)

Rows 84.48 (73.14) 85.80 (75.13) 81.90 (69.35) 81.10 (62.21)

Gaps 52.35 (35.45) 54.19 (37.17) 65.75 (48.97) 75.98 (61.26)

Average 76.89 (65.65) 77.97 (66.95) 80.28 (68.53) 83.75 (72.81)

DeepLabV3+ (ResNet-101)

Background 92.91 (86.76) 93.64 (88.05) 91.26 (83.93) 93.96 (88.60)

Rows 80.67 (67.60) 84.53 (73.20) 75.15 (60.20) 80.28 (67.05)

Gaps 44.08 (28.27) 49.66 (33.03) 55.70 (38.60) 76.06 (61.37)

Average 72.55 (60.88) 75.94 (64.76) 74.04 (60.91) 83.43 (72.34)

SegFormer (MiT-B5)

Background 93.96 (88.60) 93.88 (88.47) 93.54 (87.86) 94.17 (88.98)

Rows 84.82 (73.64) 85.38 (74.49) 82.57 (70.32) 81.03 (68.11)

Gaps 50.82 (34.06) 52.79 (35.86) 68.27 (51.82) 76.58 (62.05)

Average 76.53 (65.43) 77.35 (66.27) 81.46 (70.00) 83.93 (73.05)

Table 3.4: F1-score and IoU, in parentheses, of supervised training for each dataset.
The models were evaluated using ground truth generated with dilation 5. In bold, the
best average result for each dataset.

In our first experiment, we trained semantic segmentation architectures

using segmentation maps obtained using dilation 5 and compared the perfor-

mance of ConvNets with the recent transformer-based model, SegFormer. All

models were trained with labeled data and evaluated using images from the

same dataset, FS → FS, with 1 ≤ S ≤ 4. In Table 3.4, we show the F1-score, at
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Figure 3.6: From left to right, the original image, supervised predictions made by
PSPNet, DeepLabV3+ and Segformer, and the ground truth. It’s possible to notice
that the networks achieved impressive results even when dealing with challenging
conditions such as curves, shadows and non-parallel lines.

the pixel level, for the three architectures. Generally, PSPNet and SegFormer

showed very close results, with DeepLabV3+ performing slightly lower despite

using ResNet-101 as the backbone compared to ResNet-50 used by PSPNet.

However, all architectures achieved an average F1-score above 70 for all tested

farms. It is also noteworthy that there is a direct correspondence between the

F1-score and IoU values.

Analyzing the results of supervised segmentation by categories, the gaps

class exhibited poorer performance compared to the other classes. This phe-

nomenon can be attributed to the fact that pixels belonging to the gaps class

share identical visual characteristics, such as color and texture, with most

pixels in the background class. Therefore, feature learning for gaps pixels
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must be performed using spatial context information. Nevertheless, due to

the imbalance in pixel distribution across classes in the images, the network

tends to exhibit a bias towards the background class, which contains signif-

icantly more pixels than the gaps class. Consequently, we achieved better

gap detection results on farms that had more images with a higher number of

pixels annotated as gaps, as evidenced in Table 3.2, where farm F4 achieved

the best results. We analyzed this problem more effectively when performing

domain adaptation.

In addition to the quantitative results shown in the table, we also analyzed

the visual qualitative results of the segmentation. We selected images contain-

ing several challenges typical in current approaches to this problem, such as

curves, complex variations in line directions, shadows, and poor-quality im-

ages, to assess the robustness of our segmentation. As depicted in Figure 3.6,

all networks, particularly PSPNet, successfully detected rows and most gaps,

with predictions very similar to the approximated ground truths used in the

training.

3.3.1 Dilation Impact

Since we calculated recall and precision at the pixel-level rather than the

line-level, as in most similar works, the number of dilation iterations chosen

can impact the F1-score obtained. To analyze this impact, we also evaluated

the same datasets using segmentation maps generated using dilation 8, and

the results can be seen in Table 3.5.

Using dilation 8, the average F1-score and IoU showed a significant in-

crease in almost all evaluations conducted. This improvement was particularly

notable for gaps, as the larger dilation helped mitigate the class imbalance be-

tween the background and gaps. However, it cannot be assumed that further

increasing dilation indefinitely will consistently yield better results. The rec-

ommended approach is to set the dilation close to the actual width of the rows

and gaps for optimal performance.

We would also like to point out that we can skeletonize the inferred images

obtained in Figure 3.6 to represent rows and gaps as one-pixel-wide lines,

similar to the original labels. Skeletonization is a process which represents a

pattern by a collection of thin (or nearly thin) arcs and curves and was used

similarly by Bah et al. (2019). With these skeletons, we could apply metrics

defined in (Mnih and Hinton, 2012; Wei et al., 2021), using a buffer of ρ pixels,

to calculate the F1-score at the line level and potentially achieve higher values

than those obtained at the pixel level. As we dealt with multiples scenarios in

this research, we decided not to pursue this approach to avoid increasing the

complexity of the study.
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F1 → F1 F2 → F2 F3 → F3 F4 → F4

PSPNet (ResNet-50)

Background 91.84 (84.91) 91.43 (84.22) 91.44 (84.23) 91.80 (84.84)

Rows 89.24 (80.56) 89.53 (81.04) 87.22 (77.33) 84.65 (73.38)

Gaps 60.85 (43.73) 62.14 (45.07) 71.78 (55.98) 81.16 (68.29)

Average 80.64 (69.74) 81.03 (70.11) 83.48 (72.52) 85.87 (75.50)

DeepLabV3+ (ResNet-101)

Background 91.64 (84.58) 90.80 (83.15) 90.08 (81.96) 91.39 (84.14)

Rows 89.14 (80.41) 88.60 (79.54) 85.91 (75.30) 84.15 (72.64)

Gaps 59.45 (42.30) 57.70 (40.54) 66.14 (49.41) 80.66 (67.59)

Average 80.08 (69.10) 79.03 (67.74) 80.71 (68.89) 85.40 (74.79)

SegFormer (MiT-B5)

Background 91.83 (84.90) 91.35 (84.08) 91.37 (84.11) 91.65 (84.58)

Rows 89.23 (80.55) 89.42 (80.87) 87.19 (77.29) 84.59 (73.30)

Gaps 60.51 (43.38) 61.18 (44.07) 73.00 (57.48) 80.89 (67.91)

Average 80.52 (69.61) 80.65 (69.67) 83.85 (72.96) 85.71 (75.26)

Table 3.5: F1-score and IoU, in parentheses, of supervised training for each dataset.
The models were evaluated using ground truth generated with dilation 8. In bold, the
best average result for each dataset.

3.3.2 Source Model Only (Src-Only) Performance (without UDA)

Despite the robust performance achieved by fully supervised segmentation,

it still relies on annotated data, posing a significant obstacle to the practical

application of these techniques in real-world agricultural challenges. Manual

image annotation for this specific problem is highly time-consuming, as it re-

quires not only the ability to draw continuous lines per crop row or gap but

also to repeat this process for each image (Bah et al., 2019). In an optimistic

scenario, knowledge learned from specific farms with labeled data could be

generalized to other farms, overcoming real-world complexities such as geo-

graphic domain shifts and data noise (Beery et al., 2022).

In our source model only (Src-Only) experiments, we evaluated the ability

of our supervised models, trained using data only from source farm FS, to seg-

ment images of other target farms FT (FS→FT ). The results can be seen at Table

3.6. We can see in the results that although PSPNet achieved very similar re-
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Figure 3.7: Src-only visual results using the same images analysed in Figure 3.6.
In these inferences, each target image was evaluated using models trained only with
images from another source farm, with each column corresponding to one of the
source farms FS, with 1≤ S ≤ 4 and S 6= T . On the left, the results achieved by PSPNet
and by SegFormer on the right

sults to SegFormer when evaluating images from farms of same domain used

in training (FS→ FS), when evaluating images from different domains (FS→ FT )

SegFormer presents a noticeable advantage over the ConvNet models.

The robustness of SegFormer to common corruptions and perturbations

was reported by Xie et al. (2021) in their original work and represents an im-

portant resource for dealing with domain shift. The transformer-based model

performs even better when considering the results of class gaps. Our work also

corroborates the results achieved by SegFormer when evaluating Src-Only in

Cityscapes dataset by Hoyer et al. (2021).

In Figure 3.7, we can observe the visual results of the same images pre-

viously shown, inferred with PSPNet and SegFormer using src-only training.

While both architectures fail to recognize rows and gaps in some images, Seg-
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F2→F1 F3→F1 F4→F1 F1→F2 F3→F2 F4→F2 F1→F3 F2→F3 F4→F3 F1→F4 F2→F4 F3→F4

PSPNet (ResNet-50)

Background 92.4 88.1 87.6 88.1 83.0 82.6 85.2 85.4 89.4 91.6 87.8 87.6

Rows 80.3 62.0 54.6 58.9 13.4 8.9 41.8 45.2 69.8 72.2 44.3 58.5

Gaps 35.9 17.2 23.3 20.9 6.6 7.5 1.1 6.8 36.7 28.7 32.9 75.9

Average 69.5 55.8 55.2 56.0 34.3 33.0 42.7 45.8 65.3 64.2 55.0 60.0

DeepLabV3+ (ResNet-101)

Background 92.1 86.9 87.4 87.8 83.9 82.7 84.3 86.3 89.7 90.3 89.0 88.7

Rows 79.2 51.8 51.7 57.1 24.2 5.2 30.5 49.1 68.1 66.8 55.7 60.1

Gaps 31.7 17.2 23.4 15.9 5.2 5.0 1.4 4.8 37.9 22.1 37.1 37.5

Average 67.7 52.0 54.1 53.6 37.8 31.0 38.7 46.7 65.2 59.7 60.6 62.1

SegFormer (MiT-B5)

Background 92.5 90.3 90.5 88.7 86.0 84.1 87.5 88.2 90.5 92.3 87.8 90.0

Rows 80.8 70.8 72.1 62.7 41.7 41.0 58.1 66.6 74.5 73.0 44.1 67.7

Gaps 36.5 21.0 30.4 25.1 17.2 19.8 7.4 23.1 44.0 40.5 31.0 52.4

Average 70.0 60.7 64.4 58.8 48.3 48.3 51.0 59.3 69.7 68.6 54.3 70.1

Table 3.6: F1-score of the src-only evaluation for each pair of datasets FS→ FT . The
models were evaluated using ground truth generated with dilation 5. In bold, the best
average result for each pair of datasets.

Former shows a significant improvement in recognition compared to PSPNet,

with 6 out of 15 images exhibiting better performance.

While improving results in the source domain caused the ConvNet models

to specialize in specific source information, thereby decreasing their perfor-

mance on different but related domains, SegFormer improved its performance

in the source domain with less impact on the results of target domains. This

enhancement in knowledge generalization underscores transformer-based mod-

els as a highly promising choice for future research, not only in agriculture but

also in computer vision.

3.3.3 Generalization by Epochs in Supervised Learning

In our source model only experiments in Section 3.3.2, it was observed that

although the ConvNet models achieved similar performance when segmenting

images from the same domain, SegFormer achieved noticeably better perfor-
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mance when segmenting images from a similar but different domain. To better

analyze this behavior, we conducted experiments comparing the performance

of PSPNet and SegFormer in the same and different domains, trained over

different epochs.

Figure 3.8: F1-score comparison of PSPNet and SegFormer models trained for dif-
ferent numbers of epochs evaluated on the target farm F1.

In Figures 3.8, 3.9, 3.10, and 3.11, we present the results of our evalua-

tion for each target farm, considering the average F1-score across all classes.

It is noticeable that, in general, both PSPNet and SegFormer show a signif-

icant performance improvement with an increased number of epochs when

segmenting images from the same domain. All farms achieved their best su-

pervised segmentation performance with 16k epochs, as indicated by the large

blue and red lines in the graphs. However, the scenario differs when perform-

ing segmentation on images from different farms.

In this scenario, both networks generally exhibited performance degrada-

tion when trained with more epochs. The red dashed lines, representing PSP-

Net, show a recurring significant drop in performance between epochs 8k and

16k, as seen in F3→ F1(3.8), F3→ F2(3.9), F1→ F3(3.10), and F1→ F4(3.11).

It is also noticeable, from analyzing the blue dashed lines, that SegFormer

achieved better results when classifying different domains because it can bet-

ter control specialization after 2k epochs.
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Figure 3.9: F1-score comparison of PSPNet and SegFormer models trained for dif-
ferent numbers of epochs evaluated on the target farm F2.

Figure 3.10: F1-score comparison of PSPNet and SegFormer models trained for dif-
ferent numbers of epochs evaluated on the target farm F3.
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Figure 3.11: F1-score comparison of PSPNet and SegFormer models trained for dif-
ferent numbers of epochs evaluated on the target farm F4.

As we can see in this experiment, even though several approaches have

been developed to mitigate overfitting, we still have to consider a trade-off be-

tween specialization and generalization when deciding the number of epochs

to train a network. However, since our general focus is to achieve the best

possible results on known data, this will inevitably lead to an increase in spe-

cialization at the expense of generalization. Despite the fact that SegFormer

presents better robustness to this specialization, these experiments demon-

strate the importance of unsupervised domain adaptation to improve general-

ization.

3.4 Unsupervised Domain Adaptation

3.4.1 DAFormer

Although SegFormer outperformed CNN architectures in the src-only eval-

uation, we expect to achieve better results by using UDA approaches in con-

junction with SegFormer compared to the naive training used in src-only. For

the unsupervised domain adaptation experiments, we tested the same pairs of

datasets (FS → FT ) using the SegFormer-based UDA architecture, DAFormer,

and analyzed the impact of rare class sampling (RCS) on model performance.

The results of these experiments are shown in Table 3.7.

In general, there was a significant increase in the F1-score for rows and

gaps when comparing with the naive training used in src-only. DAFormer
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F2→F1 F3→F1 F4→F1 F1→F2 F3→F2 F4→F2 F1→F3 F2→F3 F4→F3 F1→F4 F2→F4 F3→F4

DAFormer (SegFormer MiT-B5)

Background 91.1 86.2 85.3 89.8 87.3 81.2 87.7 89.9 90.5 91.4 92.0 90.0

Rows 79.5 71.5 72.1 76.2 74.7 67.5 71.0 75.8 75.8 68.9 74.0 72.6

Gaps 46.0 28.1 25.6 29.6 20.8 13.2 12.6 47.5 45.2 43.2 62.6 66.4

Average 72.2 61.9 61.3 65.2 60.9 54.0 57.1 71.1 70.5 67.9 76.2 76.3

DAFormer (SegFormer MiT-B5) w/o RCS

Background 92.0 89.6 89.1 89.4 89.8 85.0 81.9 86.7 89.4 90.9 86.1 90.7

Rows 80.7 75.0 75.7 78.0 76.2 70.8 65.0 69.9 75.2 66.7 59.1 71.9

Gaps 45.1 32.6 32.3 27.5 30.5 15.1 7.7 9.4 41.8 31.8 27.0 63.9

Average 72.6 65.7 65.7 65.0 65.5 57.0 51.5 55.3 68.8 63.1 57.4 75.5

SegFormer (MiT-B5)

Background 92.5 90.3 90.5 88.7 86.0 84.1 87.5 88.2 90.5 92.3 87.8 90.0

Rows 80.8 70.8 72.1 62.7 41.7 41.0 58.1 66.6 74.5 73.0 44.1 67.7

Gaps 36.5 21.0 30.4 25.1 17.2 19.8 7.4 23.1 44.0 40.5 31.0 52.4

Average 70.0 60.7 64.4 58.8 48.3 48.3 51.0 59.3 69.7 68.6 54.3 70.1

Table 3.7: F1-score of UDA evaluation for each pair of datasets FS→ FT , compared
to src-only evaluation of SegFormer. The models were evaluated using ground truth
generated with dilation 5. In bold, the best average result for each pair of datasets.

without RCS performed better when adapting knowledge to target farms F1
and F2, while the original DAFormer performed better for target farms F3 and

F4. In Figure 3.12, the benefits of using unsupervised domain adaptation

compared to the source only model are visible. With the exception of one

image, all other images showed rows and gaps detected by DAFormer.

In Table 3.8, we present the evolution of the average F1-score using differ-

ent methods, compared to the oracle (Yang et al., 2021), which represents the

fully supervised model PSPNet trained on the target domain (FT → FT ). There

are two particular cases to analyze in this data.

When the source and target domains are very similar, the results achieved

without UDA are already very close to the oracle, as seen in F2 → F1. In this

case, although the UDA improvements were minor, the relative performance

with respect to the oracle exceeded 94%. In the second case, where the source

and target domains are less related, such as F1 → F3, the original DAFormer

achieved a lower F1-score initially. However, it increased the average F1-score
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Figure 3.12: The results after applying UDA to the same images analyzed in Figure
3.6, on the right, and compared to src-only results obtained by SegFormer, on the
left. Each column corresponds to the model trained using only labeled images from
one of the source farms FS, with 1≤ S≤ 4 and S 6= T .

by 33% compared to PSPNet Src-Only and by 12% compared to SegFormer

Src-Only.

However, in addition to considering the similarity between the domains, the

complexity of each dataset when performing UDA should also be taken into

account. While a model trained with more data, whether in quantity or quality,

can generalize better to smaller datasets, it is more challenging to adapt a

simpler dataset to more complex ones. This could explain, for example, the

variation in the F1-score between F1→ F2 and F2→ F1.

3.4.2 Rare Class Sampling (RCS)

Rare class sampling is a key strategy employed in DAFormer aimed at im-

proving the accuracy of the least represented classes in the dataset. In our
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PSPNet SegFormer DAFormer DAFormer Oracle

Src-Only Src-Only UDA w/o RCS (PSPNet)

F2 → F1 69.5 (90.4%) 70.0 (91.4%) 72.2 (94.0%) 72.6 (94.5%) 76.8

F3 → F1 55.8 (72.6%) 60.7 (79.0%) 61.9 (80.5%) 65.7 (85.5%) 76.8

F4 → F1 55.2 (71.8%) 64.4 (83.8%) 61.3 (79.8%) 65.7 (85.5%) 76.8

F1 → F2 56.0 (71.8%) 58.8 (75.4%) 65.2 (83.6%) 65.0 (83.4%) 77.9

F3 → F2 34.3 (44.3%) 48.3 (62.0%) 60.9 (78.1%) 65.5 (84.0%) 77.9

F4 → F2 33.0 (41.0%) 48.3 (62.0%) 54.0 (69.3%) 57.0 (73.1%) 77.9

F1 → F3 42.7 (53.2%) 51.0 (63.5%) 57.1 (71.1%) 51.5 (64.2%) 80.2

F2 → F3 45.8 (57.1%) 59.3 (73.9%) 71.1 (88.6%) 55.3 (68.9%) 80.2

F4 → F3 65.3 (81.4%) 69.7 (86.9%) 70.5 (87.9%) 68.8 (85.7%) 80.2

F1 → F4 64.2 (76.7%) 68.6 (81.9%) 67.9 (81.1%) 63.1 (75.3%) 83.7

F2 → F4 55.0 (65.7%) 54.3 (64.8%) 76.2 (91.0%) 57.4 (68.5%) 83.7

F3 → F4 60.0 (71.6%) 70.1 (83.7%) 76.3 (91.1%) 75.5 (90.2%) 83.7

Table 3.8: F1-score average comparison of src-only and UDA methods to or-
acle (fully supervised PSPNet). In parentheses, the relative performance of
each method with reference to oracle. In bold, the best results for each pair of
datasets FS→ FT .

experiments, DAFormer without RCS exhibited better performance on targets

F1 and F2, when trained using images from F3 and F4, datasets with a higher

prevalence of annotated gaps, as indicated in Table 3.2. Conversely, there

was significant improvement when employing DAFormer with RCS to adapt

F2→ F4, underscoring the importance of RCS when the source dataset has

significantly fewer representations of a class (in this case, gaps) compared to

the target dataset.

In Figure 3.13, we can see that when using DAFormer with RCS, the model

is able to increase gaps detection. However, this behavior can also lead to

false positives, classifying background pixels as gaps, thereby decreasing the

F1-score. In addition, as mentioned in the DAFormer paper, it is possible to

adjust the RCS temperature T for optimal results, although this step adds an

additional layer of complexity to the experiments.

An issue encountered in our experiments with DAFormer was that both

DAFormer models trained using source images and labels from farm F4 ex-

hibited some corruption at the bottom of predictions for the target farms, as
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Figure 3.13: Visual results applying UDA to the same images analyzed in Figure
3.6. Each column corresponds to the model trained using only labeled images from
one of the source farms FS, with 1≤ S≤ 4 and S 6= T . On the left, all target images were
classified using the DAFormer model trained using RCS. On the right, the results
achieved when using models trained without RCS.

depicted in Figure 3.13. In the third and sixth columns from left to right,

unexpected distortions are evident at the bottom of the images. These distor-

tions likely impacted the results obtained in the F4→ FT experiments, where

1≤ T ≤ 3.

Finally, Figure 3.14 illustrates the main findings and contributions of these

experiments. It shows the visual performance evolution of the techniques used

to classify images from target farms F2, F3, and F4, training our models using

only labeled images from the source farm F1, and comparing them with the or-

acle and ground truth. Subsequent Figures 3.15, 3.16, and 3.17 demonstrate

the visual performance evolution when training using images from source

farms F2, F3, and F4, respectively.
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Figure 3.14: From left to right, visual performance evolution of the methods used
to classify images from target farms F2, F3 and F4 training our models using only
labeled images from source farm F1, and comparing with oracle and ground truth.
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Figure 3.15: From left to right, visual performance evolution of the methods used
to classify images from target farms F1, F3 and F4 training our models using only
labeled images from source farm F2, and comparing with oracle and ground truth.
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Figure 3.16: From left to right, visual performance evolution of the methods used
to classify images from target farms F1, F2 and F4 training our models using only
labeled images from source farm F3, and comparing with oracle and ground truth.
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Figure 3.17: From left to right, visual performance evolution of the methods used
to classify images from target farms F1, F2 and F3 training our models using only
labeled images from source farm F4, and comparing with oracle and ground truth.
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3.5 Domain Generalization

Despite having images from different farms, in our previous experiments

we trained the models using only images from the same farm at a time. One

alternative approach to try to increase performance is to focus on domain

generalization. In this case, we grouped images from different farms, expecting

that this could benefit the generalization of the network’s learning. To achieve

this, we excluded each farm, one at a time, and performed the training using

only images from the other three farms for each experiment.

In Table 3.9, we present the results. In general, our results using the im-

ages from grouped farms were significantly superior or, at worst, similar to

those obtained when each farm was trained individually. Based on these ex-

periments, we can conclude that, although we cannot provide strong proof

that domain generalization helps the network uncover hidden properties that

it could not find when trained using only individual farms, the results achieved

using domain generalization are at least as good as those achieved when train-

ing with images from more similar farms, i.e., F1↔ F2 and F3↔ F4.

F2→F1 F234→F1 F1→F2 F134→F2 F4→F3 F124→F3 F3→F4 F3→F124

DAFormer (SegFormer MiT-B5)

Background 91.1 92.6 89.8 89.6 90.5 89.6 90.0 91.5

Rows 79.5 81.3 76.2 76.4 75.8 74.4 72.6 73.2

Gaps 46.0 48.1 29.6 28.7 45.2 45.9 66.4 66.2

Average 72.2 74.0 65.2 64.9 70.5 70.0 76.3 77.0

SegFormer (MiT-B5)

Background 92.5 92.9 88.7 88.3 90.5 89.3 90.0 92.4

Rows 80.8 81.8 62.7 60.4 74.5 67.6 67.7 72.9

Gaps 36.5 42.0 25.1 22.3 44.0 36.7 52.4 59.1

Average 70.0 72.3 58.8 57.0 69.7 64.5 70.1 74.8

Table 3.9: F1-score of UDA evaluation with Domain Generalization, compared to
src-only evaluation of SegFormer, using Domain Generalization in both experiments.
The models were evaluated using ground truth generated with dilation 5. In bold, the
best average result for each target farm.

Therefore, even if no hidden properties were found, using images from all

available farms makes the training process more practical and did not demon-

strate side effects. When training using images only from a specific domain,

we would need to test different models to determine which one presents the
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best performance due to the similarity between the domains. However, when

using domain generalization, these brute-force evaluations are not required.

3.6 Conclusion

In this section, we presented an approach to detect sugarcane rows and

gaps, reducing the problem to a segmentation task. Our method overcomes

common challenges found in traditional techniques, generally based on the

Hough Transform, which rely on line detection. The approach has demon-

strated its robustness in handling challenges like curve detection and non-

parallel lines. Furthermore, the proposed dilation method for generating semi-

supervised segmentation maps helps mitigate the costly manual annotation

process.

We also employed the SegFormer-based DAFormer model, an unsupervised

domain adaptation network, to enhance the performance of row and gap de-

tection across various farms different from those where the training data was

collected. Additionally, we compared the ability of ConvNets and transformer-

based methods to generalize knowledge to unseen data without domain adap-

tation. Our experiments highlighted the superior robustness of the SegFormer

network to overfitting during training across several epochs, a feature that

contributed to DAFormer’s improved domain adaptation.

Lastly, the theoretical findings of this research can be applied to real-world

scenarios in diverse ways. For example, they can be integrated with geolo-

cated imagery to provide detailed information on the occurrence, length, and

exact coordinates of gaps in sugarcane plantations. Mapping pixels classified

as gaps to geographic coordinates can significantly accelerate the process of

addressing these gaps, helping farmers reduce crop losses and, consequently,

increase both productivity and revenue.
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CHAPTER

4
Domain Adaptation using GANs and
Diffusion Models for Tree Detection in

Aerial Images

4.1 Introduction

Urban forests are increasingly recognized for their significant benefits to

human well-being. They contribute to energy savings, reduce stormwater

runoff and improve water quality (Velasquez-Camacho et al., 2023; Ventura

et al., 2024). Additionally, these forests provide essential ecosystem services

that combat climate change, such as carbon sequestration, oxygen genera-

tion, water cycling, soil conservation, and mitigation of the urban heat island

effect. Automated tree mapping is essential for effective management of both

native and invasive vegetation (Lv et al., 2023; Beloiu et al., 2023).

In this context, techniques such as semantic segmentation, which offer

pixel-based classification, are increasingly employed across a range of ap-

plications. Recent advancements in tree detection, classification, and seg-

mentation predominantly utilize deep learning networks, such as ConvNets

(Ferreira et al., 2020; Iqbal et al., 2021; Jintasuttisak et al., 2022), applied to

aerial RGB and multispectral imagery (Beloiu et al., 2023; Velasquez-Camacho

et al., 2023; Ventura et al., 2024). More recently, transformers have also been

utilized for tree counting in aerial images (Chen and Shang, 2022).

Accurately detecting individual tree from remote sensing data presents a

significant challenge for traditional deep learning-based methods due to the
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variability encountered in cross-regional scenarios (Wang et al., 2022; Kapil

et al., 2024; Zheng et al., 2020). This variability can arise from various fac-

tors, including deformations or shifts caused by biased sampling in the spatial

domain, changes in acquisition conditions (such as variations in illumination

or acquisition angle), or seasonal changes (Tuia et al., 2021).

Despite substantial advancements with deep neural networks, their per-

formance improvement largely depends on the availability of extensive labeled

training data, which involves costly and labor-intensive data curation (dos

Santos Ferreira et al., 2019; Amirkolaee et al., 2024). The challenge is further

compounded when a deep neural network must handle multiple distinct do-

mains. For instance, in tree detecting, each domain might include different

scenes (e.g., urban, countryside, farmland), imagery types (e.g., aerial or satel-

lite), and varying levels of tree density, shadows, or overlap among individual

trees.

To overcome these challenges, recent works have focused on applying un-

supervised domain adaptation in satellite and aerial images. Zheng et al.

(2020) proposed a domain-adaptive method to detect and count cross-regional

oil palm trees using an adversarial learning-based multi-level attention mech-

anism. Wang et al. (2022) also employed an adversarial domain-adaptive

model with a transferable attention mechanism for tree crown detection using

high-resolution remote sensing images. More recently, AdaTreeFormer was

introduced by Amirkolaee et al. (2024), demonstrating the ongoing trend of

combining adversarial learning with attention mechanisms to perform domain

adaptation for tree detection in high resolution images.

In this work, we propose a novel approach that differs from these previous

studies. While we also utilize attention mechanisms for tree segmentation,

instead of employing adversarial learning on high-resolution images, we per-

form domain adaptation with image-to-image translation models and super-

resolution networks to enhance the quality of low-resolution aerial images.

Our method also addresses the challenge of limited labeled data by pro-

viding novel data augmentation techniques to generate additional training

samples from the existing labeled data. This approach not only improves the

model’s performance in generalizing learning for images captured at different

heights but also reduces the need for expensive labeling processes.

4.2 Methodology

4.2.1 Dataset

The images used in the experiments are separated into the datasets P20
and P50 based on the ground sample distance (GSD) utilized in the capture of
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Figure 4.1: At the top are sample images from dataset P20 with their respective pixel
annotations. At the bottom are sample images from dataset P50 with their respective
pixel annotations.

the images. The P20 dataset consists of 363 images sized 256×256 pixels with a

20-centimeter GSD, i.e., each pixel corresponds to approximately 20 cm in the

real world. The P50 dataset consists of 224 images sized 256× 256 pixels with

a 50-centimeter GSD. Thus, the resolution of the images in the P20 dataset is

2.5 times greater than that of the images in the P50 dataset.

The images consist of aerial views of urban environments and have been

manually annotated by specialists as either background or tree classes. Sam-

ple images from both datasets, along with their respective annotations, can be

seen in Figure 4.1, and the distribution of images in these datasets is shown

in Table 4.1.
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Dataset GSD Train Validation Test Total

P20 20cm 218 36 109 363

P50 50cm 134 23 67 224

Table 4.1: Total of images of train (60%), validation (10%) and test (30%) sets
for datasets P20 and P50 and their respective GSD.

4.2.2 Method

Figure 4.2: The images of the P50 dataset are resized to 640× 640 using Lanczos
resampling. For each resized image, we generated 9 patches of size 256× 256 and
translated them using pix2pix-trained models.

The difference in ground sample distance between our datasets affects the

area in pixels used to represent different elements of the image, such as trees

and roads, as seen in Figure 4.1. While the size of these elements tends to

be similar within the same dataset, it consistently differs between datasets,

posing an obstacle to teaching-student techniques such as those used in

DAFormer. The strategy we propose to address this problem is to make the

size of elements in both datasets similar, i.e., adjust the GSD of the P50 dataset

to match the value used in the P20 dataset using upsampling techniques.

We developed two different methods to implement this strategy. In our

first method, we upsample the P50 dataset, which has a 2.5× difference in

centimeters per pixel compared to the P20 dataset, by resizing the images from

256×256 to 640×640 using the default ImageMagick filter, Lanczos resampling

(Duchon, 1979; Still, 2006), to make the size of objects similar to those in the

P20 dataset. After this step, we generated 9 patches of size 256×256.

This process also augments the data in the P50 dataset by a factor of 9,

increasing it from 224 images to 1,206 images. However, this procedure signifi-

cantly decreases the resolution of these images, which could hamper the per-

formance of network training and increase the data shift compared to the other
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Figure 4.3: The images of P50 dataset are resized from 256× 256 to 640× 640 using
Lanczos resampling method. After this step, we augmented the data, generating 9
patches of size 256×256.

dataset. To overcome this drawback, we trained pix2pix models to perform

image-to-image translation and address the loss of resolution. The pipeline of

this method can be seen in Figure 4.2. A more detailed visualization of the

process for generating patches is illustrated in Figure 4.3.

In our second approach, we used recent super-resolution GANs and Dif-

fusion models to upsample the images directly without loss of quality. The

pipeline for this method is illustrated in Figure 4.4. The advantage of this

approach is that we can leverage publicly available models trained on millions

of images, unlike the pix2pix model, which needed to be trained from scratch

with image pairs generated from our training sets. However, these models do

not achieve direct image-to-image translation between the two domains; they

primarily enhance resolution to compensate for quality loss during upsam-
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Figure 4.4: The images of the P50 dataset are resized to 640× 640 using Real-
ESRGAN, Latent and Stable Diffusion. For each resized image, we augmented the
data, generating 9 patches of size 256×256.

pling.

Additionally, it is important to highlight that both approaches used here

produce nine times more data from the original images, with these new images

having a 2.5 times superior ground sample distance. Since we also updated

all annotations for the new GSD automatically, this process helps address the

cost of pixel-annotated data and mitigates the drawbacks of low-resolution

aerial images. It produces significantly more high-quality annotated data,

which is required to train deep learning models efficiently, in a fully automatic

way. In the following sections, we provide more details about the methods

used.

4.2.2.1 pix2pix

Dataset Generation Method GSD Train Validation Test Total

P50-20p
pix2pix trained
with P20 pairs

20cm 1206 207 603 2016

P50-50p
pix2pix trained
with P50 pairs

20cm 1206 207 603 2016

Table 4.2: Total of images of train (60%), validation (10%) and test (30%) sets
for the datasets generated using pix2pix translation. Image pairs used in the
training of P50-20p can be seen in Figure 4.5, and those used in the training
of P50-50p can be seen in Figure 4.6.

Pix2pix is an image-to-image translation GAN and has shown promising

results in datasets with a paired image relationship between the source and

target domains, such as the Facade and Cityscapes datasets (Tyleček and

Šára, 2013; Cordts et al., 2016). The image-to-image translation used here
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could alleviate distortions in the generated images that might otherwise de-

crease the segmentation performance in subsequent steps. However, since we

lack a direct relationship between the images of the two datasets, P20 and P50,

to perform a true paired translation, we proposed two approximate mapping

approaches.

Figure 4.5: Pix2pix training pairs with images of the P20 dataset at resolutions of
32×32, 64×64, 96×96, 128×128, and 192×192.

Figure 4.6: Pix2pix training pairs with images of the P50 dataset at resolutions of
16×16, 32×32, 64×64, 96×96, and 128×128.

To perform the mapping required for paired image-to-image translation

used in pix2pix, we reduced the resolution of the images in datasets P20 and

P50. For dataset P20, we used resolutions of 32× 32, 64× 64, 96× 96, 128× 128,

and 192× 192. For dataset P50, we used resolutions of 16× 16, 32× 32, 64× 64,
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96×96, and 128×128. After resizing to these smaller resolutions, we upscaled

the images back to 256× 256 without any preprocessing steps and generated

the paired images illustrated in Figures 4.5 and 4.6. We trained two different

pix2pix models using these pairs.

Figure 4.7: Sample images generated from datasets P20 and P50 using pix2pix (P50−
20p and P50−50p), Real-ESRGAN (P20G and P50G), Latent Diffusion (P20D and P50D),
and Stable Diffusion (P20S and P50S).

We used the images obtained after applying the Lanczos method to the P50
dataset as input for the pix2pix models, generating two new datasets: P50−20p

and P50− 50p. The distribution of images in these datasets is described in

Table 4.2. Sample images from these datasets are shown in Figure 4.7.

4.2.2.2 Real-ESRGAN, Latent and Stable Diffusion

We used the Real-ESRGAN and Diffusion public models, without any fine-

tuning, to generate our 640×640 images from dataset P50. Using the resulting

62



Figure 4.8: The images of P50 dataset are upscaled from 256×256 to 640×640 using
Real-ESRGAN. After this step, we generated 9 patches of size 256× 256. The visual
quality is significantly better compared to the resized images shown in Figure 4.3.

super-resolution images, we generated 9 patches of size 256×256, as described

in Figure 4.8. For dataset P20, we upscaled the original images to 640× 640
using the models and then resized them back to the original size of 256× 256
to maintain similarity with the images generated by the previous pipeline. The

distribution of images in each generated dataset can be seen in Table 4.3,

where the suffix G represents Real-ESRGAN, the suffix D represents Latent

Diffusion, and the suffix S represents Stable Diffusion.

Using Stable Diffusion, we have the option to provide a prompt that guides

the image generation. While this could be an advantage over Latent Diffu-

sion, for this work, this feature poses a challenge in choosing a prompt that

optimizes our segmentation results. Since evaluating the best prompt for the

segmentation task is somewhat beyond the scope of this work, we only con-
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Dataset Generation Method GSD Train Validation Test Total

P20G Real-ESRGAN 20cm 218 36 109 363

P50G Real-ESRGAN 20cm 1206 207 603 2016

P20D Latent Diffusion 20cm 218 36 109 363

P50D Latent Diffusion 20cm 1206 207 603 2016

P20S Stable Diffusion 20cm 218 36 109 363

P50S Stable Diffusion 20cm 1206 207 603 2016

Table 4.3: Total of images of train (60%), validation (10%) and test (30%) sets
for each super-resolution dataset.

sidered a few prompts and selected them based on the best qualitative visual

results.

In Figure 4.9, we can observe visual results based on these simple prompts.

It is noticeable that when specifying that the images are aerial images, the

network generates textures specific to elements such as trees or roofs. We

selected this prompt for generating our images, despite the fact that these

generated textures may not necessarily improve performance in the segmen-

tation experiments.

4.2.3 Evaluation Metrics

To assess and compare the networks evaluated in the experiments, we used

the metric commonly applied in the literature: intersection over union (IoU) at

the pixel level, described in Equation 4.1.

IoU =
P∩GT
P∪GT

(4.1)

where P corresponds to model prediction and GT corresponds to Ground

Truth.

In all experimental results presented here, the notation PS → PT indicates

that the model was trained on images from dataset PS and evaluated on test

images from dataset PT . Thus, S = T signifies supervised segmentation, where

both training and test images come from the same dataset, while S 6= T denotes

a scenario where the model is trained on one dataset and evaluated on a

different dataset.
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Figure 4.9: Images upscaled with specific prompts using Stable Diffusion. When we
specify that the images are aerial images, the network generates textures specific to
elements such as trees or roofs.
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4.2.4 Experimental Setup

We ran our experiments with SegFormer, pix2pix, and Real-ESRGAN us-

ing the free version of Google Colab with a T4 GPU. For experiments with

DAFormer, Latent Diffusion, and Stable Diffusion, we utilized an Intel(R) Core

(TM) i7-5820K CPU @ 3.30GHz with 32 GB of RAM, and an Nvidia GeForce

GTX TITAN X GPU with 12 GB GDDR5 memory and 3072 CUDA Cores.

In our supervised segmentation tests with SegFormer, we utilized the avail-

able architectures in MMSegmentation, accessible at https://github.com/open-

mmlab/mmsegmentation. For training, we used the base configuration files

provided by MMSegmentation, specifically using the Cityscapes configuration

with the MIT-B5 backbone, a crop size of 1024× 1024, and a learning rate

schedule set at 160000. Additionally, we adjusted the image scale to 256×256,

modified the number of classes in the decode/auxiliary head to 2, and resized

the crop size to 128×128 to better suit our dataset.

In our experiments with DAFormer, we employed the configuration de-

scribed in Section 3.2.4, with adjustments made to the image scale set to

256×256 and the crop size to 128×128 to adapt to our dataset.

For pix2pix training, we utilized the original code provided by the authors,

accessible at github.com/junyanz/pytorch-CycleGAN-and-pix2pix. Each model

was trained for 200 epochs with decay initiated after 100 epochs. No addi-

tional training or fine-tuning was conducted for Real-ESRGAN. Inference was

performed using the default configurations provided in the script available

from the authors’ repository at github.com/xinntao/Real-ESRGAN.git.

For Latent and Stable Diffusion, we utilized the implementation provided by

the authors in python library format, accessible at github.com/CompVis/latent-

diffusion and github.com/CompVis/stable-diffusion. The images resulting

from inference by the GANs and Diffusion models were used to train the Seg-

Former model.

Unlike Real-ESRGAN, the outscale parameter of the pre-trained Diffusion

models could not be adjusted to a value smaller than 4. Due to our machine’s

12GB memory limitation, we were unable to resize images from 256× 256 to

1024× 1024 directly. Therefore, we divided our original images into 4 patches

of 128× 128, upscaled them using the Diffusion models, and then used the 4

upscaled patches to reconstruct the image with size 1024×1024. We acknowl-

edge that this step could have impacted our results and consider this aspect

a limitation of the Diffusion pre-trained models.
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4.3 Supervised Semantic Segmentation

4.3.1 Baseline

We evaluated the performance of supervised segmentation using SegFormer

on two original datasets, P20 and P50, without upsampling the original images.

The results are presented on the left side of Table 4.4. While both datasets

achieved considerable performance in terms of IoU metric, dataset P20 exhib-

ited a higher IoU than dataset P50. This outcome was anticipated, given that

dataset P20 comprises higher-resolution images and a larger training set.

P20 → P20 P50 → P50 P50 → P20 P20 → P50

SegFormer (MiT-B5)

Background 94.87 95.56 91.05 94.22

Trees 77.44 70.18 57.43 63.27

Average 86.15 82.87 74.25 78.75

Table 4.4: IoU of supervised training using the original datasets. On the right side,
the source model results are shown. In bold, the best result for the Trees class.

We also evaluated the models on a different dataset than those used for

training (i.e., source model only). The results are presented on the right side

of Table 4.4. When segmenting target images with models trained on images

from a different domain, a noticeable decrease in IoU is observed due to data

shift. This performance drop is particularly pronounced when using the model

trained on dataset P50 to segment images from dataset P20, where the IoU

decreases from 77.44 to 57.43 for the Trees class, approximately a 25.8%

drop.

In Figure 4.10 we can see the visual predictions using the SegFormer model

trained with images from datasets P20 and P50. The models performed well

even when segmenting images from a different domain. However, the P50
model failed to detect some large trees and occasionally misidentified grass as

trees in the P20 images. The P20 model failed to detect smaller trees in the P50
images, but the reduced size of the trees generated a smaller impact on the

average IoU.

Although we can consider the performance of the source model only reason-

able in these experiments, given the similarity of the images in both datasets,

the next sections analyze techniques aimed at improving these results, as well

as enhancing the performance of supervised segmentation.
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Figure 4.10: Predictions using the SegFormer model trained with images from
datasets P20 and P50. The models performed well even when segmenting images from
a different domain.
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4.4 Unsupervised Domain Adaptation

4.4.1 DAFormer

To analyze the performance of Unsupervised Domain Adaptation, we used

the SegFormer-based model DAFormer with the original images from datasets

P20 and P50. The results can be seen in Table 4.5.

P20 → P50 P50 → P20

DAFormer (SegFormer MiT-B5)

Background 94.07 88.39

Trees 63.27 43.93

Average 78.67 66.16

SegFormer (MiT-B5)

Background 94.22 91.05

Trees 63.27 57.43

Average 78.75 74.25

Table 4.5: IoU of the DAFormer evaluation compared to the SegFormer src-only. In
bold, the best result for the Trees class.

When using dataset P20 as the source, our results were very similar to the

src-only approach, using SegFormer without applying UDA. However, when

using dataset P50 as the source, our results were significantly inferior to the

performance of the source model only. A possible explanation for this dis-

crepancy is that the trees in the source dataset P50 consistently appear at a

much smaller size compared to those in the target dataset P20. This consistent

difference may have influenced the DAFormer’s self-training, which employs

a student and teacher models approach, to not recognize larger-sized trees in

the target dataset as trees.

4.4.2 Paired Image-to-Image Translation

4.4.2.1 pix2pix

We trained two pix2pix models using the pairs described in Section 4.2.2.

These models were used to generate two new datasets, P50−20p and P50−50p,

which consist of translated images from dataset P50 after applying the upsam-

pling process. The results of the SegFormer supervised segmentation trained

69



with these models can be seen in Table 4.6. In both cases, we observe an

improvement in IoU compared to supervised segmentation using the original

images.

P50-20p→P50-20p P50-50p→P50-50p P50→P50

SegFormer (MiT-B5)

Background 96.05 95.99 95.56

Trees 73.25 72.77 70.18

Average 84.65 84.37 82.87

Table 4.6: IoU of supervised training with images generated by the pix2pix models.
compared to the original datasets. In bold, the best result for the Trees class.

However, it is important to highlight that we are not evaluating the trans-

lated images from dataset P50 directly but rather the corresponding augmented

data generated through the upsampling process; thus, this improvement could

also be attributed to the data augmentation process.

Nevertheless, it is an interesting finding that, in these experiments, we

were able to enhance our segmentation results using the same network, Seg-

Former, without the need for more labeled images for training. Instead, we

achieved this increase by generating more images at the same size but with

lower resolution and then improving the quality using paired image-to-image

translation, showing the potential of our data augmentation method.

P20→P50-20p P20→P50-50p P20→P50 P50-20p→P20 P50-50p→P20 P50→P20

SegFormer (MiT-B5)

Background 94.65 94.48 94.22 93.07 92.94 91.05

Trees 67.20 66.29 63.27 68.05 67.43 57.43

Average 80.92 80.38 78.75 80.56 80.19 74.25

Table 4.7: IoU of the src-only evaluation with images generated by the pix2pix models
compared to the original datasets. In bold, the best results for the Trees class.

We also evaluated these models as source model only on the test images

from dataset P20 and evaluated the model trained with images from dataset

P20 on the images generated by pix2pix. The results can be seen at Table 4.7.

In all tests, we achieved significant improvements compared to the results on

the original images of dataset P50 without using image-to-image translation.

The best model trained with pix2pix images improved the IoU for the Trees
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class from 57.43 to 68.05, reducing the gap with the supervised results of

P20→ P20, 77.43, by approximately 60%.

Figure 4.11: Predictions using the SegFormer model trained with images from
datasets P50− 20p and P50− 50p in P20 images. In the bottom left corner of the first
and last images, we can see the improvement of the pix2pix models in detecting larger
trees.

4.4.3 Super-Resolution Models

We used the super-resolution models to generate high-resolution images

from the datasets P20 and P50, as described in Section 4.2.2. We evaluated

the SegFormer model trained on these images and compared its performance

to training using the original images. The results for each network evaluated

are detailed in the following sections.

4.4.3.1 Real-ESRGAN

Although the images generated by Real-ESRGAN exhibit superior visual

quality compared to those generated by pix2pix models, as depicted in Figure
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4.7, the results of our experiments were slightly inferior to those achieved by

SegFormer trained with images translated by pix2pix models, as shown in

Table 4.8. This difference can be attributed to the fact that while we trained

the pix2pix models using images from our specific datasets, Real-ESRGAN

uses a super-resolution model trained on general images.

P20G → P50G P20 → P50 P50G → P20G P50 → P20

SegFormer (MiT-B5)

Background 94.86 94.22 92.45 91.05

Trees 66.57 63.27 63.92 57.43

Average 80.71 78.75 78.19 74.25

Table 4.8: IoU of the src-only evaluation with images upscaled using Real-ESRGAN,
compared to the original datasets. In bold, the best results for the Trees class.

This lack of training could have led the network to distort the semantic in-

formation of some pixels, resulting in a decrease in the segmentation results.

However, it is worth highlighting that omitting the training step sped up our

pipeline. Moreover, while semantic distortion of pixels can significantly im-

pact segmentation tasks, in other tasks such as object detection, this effect is

generally negligible.

4.4.3.2 Latent and Stable Diffusion

P20D→P50D P20S→P50S P20→P50 P50D→P20D P50S→P20S P50→P20

SegFormer (MiT-B5)

Background 94.42 94.63 94.22 92.59 91.63 91.05

Trees 65.58 65.59 63.27 65.36 62.73 57.43

Average 80.00 80.11 78.75 78.97 77.18 74.25

Table 4.9: IoU of the src-only evaluation with images upscaled using Latent and
Stable Diffusion, compared to the original datasets. In bold, the best results for the
Trees class.

With our Diffusion models, we obtained results similar to Real-ESRGAN,

as shown in Table 4.9. We also experimented a combination of models trained

using Latent and Stable Diffusion. One interesting finding was that our best

results were achieved using a model trained with images from dataset P50D to
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Figure 4.12: Latent diffusion produces better segmentation results than ESRGAN,
despite the GAN model generating images with better visual quality. Ironically, Stable
Diffusion suffers from instability in the fourth image, a behavior that may have been
influenced by prompt usage.

segment the test images from dataset P20S, achieving an IoU of 67.79 for the

Trees class, superior to our results shown in the Table.

However, it’s difficult to establish a specific reason for this behavior, mainly

due to the fact that the resulting images from Stable Diffusion are strongly

influenced by the prompt used. Nevertheless, this aspect may highlight the

possibilities that can be explored with the use of Stable Diffusion in similar

tasks. In Figure 4.12, we can observe a visual comparison of the segmentation

results of datasets generated by the super-resolution methods.

4.5 Low Resolution Images

Despite a 2.5-fold resolution difference between our original datasets P20
and P50, the visual quality in both cases was good, and the slight disparity in

resolution between the datasets allowed us to achieve satisfactory results with
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Figure 4.13: Sample images generated from low resolution dataset P20lr using
pix2pix, Real-ESRGAN, and Latent Diffusion

the source model only approach, even without applying image translation or

using super-resolution networks. One scenario not addressed in our exper-

iments with these datasets is using our trained models with images of lower

quality than those used in training.

We decided to simulate this scenario to evaluate the performance of the

techniques presented here in enhancing the quality of low-resolution images.

To simulate it, we resized the original 256× 256 images from the P20 dataset

to 32×32, decreasing their resolution by 8 times. This represents a difference

significantly greater than the 2.5 times difference in our datasets.

Through this process, we created the dataset P20lr (P20 low resolution)

and used it to test our GANs and Diffusion methods, creating new datasets

with translated images. We generated the dataset P20lp after applying pix2pix

translation, the dataset P20lG after increasing the resolution using Real-ESRGAN,
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and the dataset P20lD after enhancing the resolution with Latent Diffusion.

Examples of images from these datasets can be seen in Figure 4.13.

P20 → P20lr P20 → P20lp P20 → P20lG P20 → P20lD P20 → P20

SegFormer (MiT-B5)

Background 89.72 92.43 90.22 90.41 94.87

Trees 50.99 67.80 61.71 61.60 77.44

Average 70.36 80.11 75.97 76.00 86.15

Table 4.10: IoU of the src-only evaluation using the model trained with images
from datasets P20 against low resolution and upscaled images using pix2pix, Real-
ESRGAN, Latent Diffusion, and Stable Diffusion. In bold, the best result for the Trees
class.

In Table 4.10, we present the IoU results of segmentation using our model

trained with images from dataset P20. There is a noticeable decrease in per-

formance when our model trained with original P20 images segments low-

resolution images from database P20lr. However, when segmenting target im-

ages translated by the pix2pix model, this same model achieved significantly

better results compared to those obtained using super-resolution models, de-

spite the visually superior quality of images generated by Latent Diffusion,

particularly evident in the depiction of roofs as shown in Figure 4.13.

This evaluation corroborates the idea that, for the approach used in this

work, preserving the semantic information of original pixels is more crucial

for segmentation results than achieving high visual quality in the generated

images. However, it is important to acknowledge the capability of super-

resolution models to generate coherent images from low-resolution inputs us-

ing a publicly available checkpoint without fine-tuning and the training pro-

cess required by pix2pix models. The visual predictions, compared to the

ground truth, can be seen in Figure 4.14.

4.6 Conclusion

In this chapter, we introduced an approach to enhance the resolution of

aerial images to improve tree detection performance by utilizing image-to-

image translation and super-resolution methods. Our method introduced a

novel data augmentation technique, employing upsampling to generate high-

quality annotated samples with varying ground sample distances (GSD). This

approach also addresses the costly and labor-intensive process of manually

labeling data.
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Figure 4.14: Predictions using the SegFormer model, trained with original images
from dataset P20, in the low resolution images and their respective upscaled images
using pix2pix, Real-ESRGAN, and Latent Diffusion.

Our data augmentation pipeline, which combines upsampling with trans-

lation and super-resolution steps, can be applied with different scaling factors

to create new labeled images across a range of GSDs. This process enables

the network to adapt to different image capture heights, thereby increasing

the robustness of the supervised model when applied to new domains. Our

evaluation revealed that lightweight models, such as pix2pix, can compete ef-

fectively with more recent and complex networks in translating images when

trained appropriately.

In addition, we also conducted experiments reducing the resolution of our

original dataset images, which were generally of high quality, by a factor of

eight and evaluated the model’s performance on both the original and en-

hanced images. The results demonstrated that our upsampling pipeline using

pix2pix improved IoU tree detection performance by more than 50% when

compared to the low-resolution images, validating the effectiveness of our up-
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sampling strategy. The methods for enhancing resolution presented in this

work can be applied in scenarios where remote sensing images lack the nec-

essary quality for achieving high accuracy in computer vision tasks, such as

detection, classification, and segmentation.
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CHAPTER

5
Conclusion

5.1 Summary

In this work, we explored the use of domain adaptation to address chal-

lenges in agriculture and urban forests that require extensive annotated data.

In this context, we investigated two problems: detecting sugarcane rows and

gaps and segmenting trees in aerial images.

We proposed an approach to detect crop rows and gaps using semantic

segmentation networks with semi-automatically generated ground truth. In

our experiments, the transformer-based model, SegFormer, achieved perfor-

mance equivalent to convolutional networks for detecting crop rows and gaps,

but with better generalization to unseen data. The UDA model, DAFormer,

performed better compared to SegFormer trained on source data only, prov-

ing to be an alternative in the absence of manually labeled data, a common

scenario in agriculture.

Furthermore, Vision Transformers are proving to be a very promising method

for computer vision. As a recent technique, it is expected that in the com-

ing years, other semantic segmentation and unsupervised domain adaptation

architectures will benefit from its robustness against source overfitting com-

pared to convolutional networks, as analyzed in our discussion on generaliza-

tion by epochs.

We also proposed a method that combines domain adaptation with image-

to-image translation models and super-resolution networks for tree detec-

tion. Our approach evaluates recent super-resolution networks to enhance

the quality of low-resolution aerial images. Additionally, our experiments us-
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ing simulated low-resolution images demonstrated that the pix2pix model can

significantly compete with these more powerful models when properly trained.

The data augmentation pipeline presented in this work offers an effective

method for generating new annotated data for datasets with limited annota-

tions. By adjusting the upsampling factor, we can simulate different ground

sample distances, thereby creating images that mimic those captured at vary-

ing heights in aerial image datasets.

Finally, the findings presented here on unsupervised domain adaptation

can be applied to similar agricultural and urban forest challenges in com-

puter vision, such as weed detection or tree classification from UAV-captured

images. These advancements can facilitate controlled experiments and ad-

dress real-world issues more effectively.

5.2 Future Work

While we have made significant advancements in this research, there re-

mains considerable potential for further exploration. Although our datasets

addressed different factors that contribute to data shift, such as geographic

location and capture height, several important variables have not been fully

explored. Future studies could investigate the effects of illumination, acquisi-

tion angle, different sensors, and the phenological stages of vegetation, which

were not covered in this research.

Testing our pipelines under these additional conditions could further vali-

date the robustness of our methods and identify areas for improvement, which

would help in developing a more resilient domain adaptation framework capa-

ble of handling greater data variability in real-world scenarios. Additionally,

the methods we proposed could be integrated into existing remote sensing

software as plugins or standalone applications. Such tools would assist spe-

cialists, reducing manual labor and improving the accuracy of their analyses.

Lastly, there are several promising areas for further exploration that were

not fully addressed in this work. These include: (1) skeletonizing segmented

images to represent rows and gaps as one-pixel-wide lines, (2) combining

domain generalization with recently adopted masking techniques to capture

shared domain characteristics, and (3) examining the influence of different

prompts on the performance of the Stable Diffusion model. These extensions

could provide valuable contributions to the field and broaden the applicability

of our methods.

80



Bibliography

Ahonen, T., Hadid, A., e Pietikainen, M. (2006). Face description with local bi-

nary patterns: Application to face recognition. IEEE transactions on pattern
analysis and machine intelligence, 28(12):2037–2041. Citado na página 1.

Amirkolaee, H. A., Shi, M., He, L., e Mulligan, M. (2024). Adatreeformer:

Few shot domain adaptation for tree counting from a single high-resolution

image. arXiv preprint arXiv:2402.02956. Citado nas páginas 3 e 56.

Bah, M. D., Hafiane, A., e Canals, R. (2019). Crownet: Deep network for

crop row detection in uav images. IEEE Access, 8:5189–5200. Citado nas

páginas 27, 28, 38, e 39.

Beery, S., Wu, G., Edwards, T., Pavetic, F., Majewski, B., Mukherjee, S., Chan,

S., Morgan, J., Rathod, V., e Huang, J. (2022). The auto arborist dataset: A

large-scale benchmark for multiview urban forest monitoring under domain

shift. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, páginas 21294–21307. Citado na página 39.

Beloiu, M., Heinzmann, L., Rehush, N., Gessler, A., e Griess, V. C. (2023). In-

dividual tree-crown detection and species identification in heterogeneous

forests using aerial rgb imagery and deep learning. Remote Sensing,

15(5):1463. Citado na página 55.

Chen, G. e Shang, Y. (2022). Transformer for tree counting in aerial images.

Remote Sensing, 14(3):476. Citado na página 55.

Chen, P., Ma, X., Wang, F., e Li, J. (2021). A new method for crop row detec-

tion using unmanned aerial vehicle images. Remote Sensing, 13(17):3526.

Citado na página 27.

Chudasama, D., Patel, T., Joshi, S., e Prajapati, G. I. (2015). Image segmen-

tation using morphological operations. International Journal of Computer
Applications, 117(18). Citado na página 28.

81



Contributors, M. (2020). Openmmlab semantic segmentation toolbox and

benchmark. Citado na página 34.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,

Franke, U., Roth, S., e Schiele, B. (2016). The cityscapes dataset for se-

mantic urban scene understanding. In Proceedings of the IEEE conference
on computer vision and pattern recognition, páginas 3213–3223. Citado nas

páginas 18 e 60.

Cortes, C. e Vapnik, V. (1995). Support-vector networks. Machine learning,

20(3):273–297. Citado na página 1.

Dalal, N. e Triggs, B. (2005). Histograms of oriented gradients for human de-

tection. In IEEE computer society conference on computer vision and pattern
recognition (CVPR’05), volume 1, páginas 886–893. Citado na página 1.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., e Fei-Fei, L. (2009). Ima-

genet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, páginas 248–255. Ieee. Citado

na página 16.

dos Santos Ferreira, A., Freitas, D. M., da Silva, G. G., Pistori, H., e Fol-

hes, M. T. (2019). Unsupervised deep learning and semi-automatic data

labeling in weed discrimination. Computers and Electronics in Agriculture,

165:104963. Citado nas páginas 2 e 56.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-

terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020).

An image is worth 16x16 words: Transformers for image recognition at scale.

arXiv preprint arXiv:2010.11929. Citado nas páginas 16 e 28.

Duchon, C. E. (1979). Lanczos filtering in one and two dimensions. Jour-
nal of Applied Meteorology and Climatology, 18(8):1016–1022. Citado na

página 58.

Ferreira, M. P., de Almeida, D. R. A., de Almeida Papa, D., Minervino, J.

B. S., Veras, H. F. P., Formighieri, A., Santos, C. A. N., Ferreira, M. A. D.,

Figueiredo, E. O., e Ferreira, E. J. L. (2020). Individual tree detection and

species classification of amazonian palms using uav images and deep learn-

ing. Forest Ecology and Management, 475:118397. Citado nas páginas 3

e 55.

Ganin, Y. e Lempitsky, V. (2015). Unsupervised domain adaptation by back-

propagation. In International conference on machine learning, páginas 1180–

1189. PMLR. Citado nas páginas 2, 3, 7, 8, e 9.

82



García-Santillán, I. D., Montalvo, M., Guerrero, J. M., e Pajares, G. (2017).

Automatic detection of curved and straight crop rows from images in maize

fields. Biosystems Engineering, 156:61–79. Citado na página 27.

Giuffrida, M. V., Dobrescu, A., Doerner, P., e Tsaftaris, S. A. (2019). Leaf

counting without annotations using adversarial unsupervised domain adap-

tation. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), páginas 2590–2599. IEEE. Citado nas páginas

2 e 7.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., e Bengio, Y. (2014). Generative adversarial nets. In 2014 Advances
in neural information processing systems, páginas 2672–2680. Citado na

página 9.

Gretton., A., Smola., A. J., Huang, J., Schmittfull, M., Borgwardt., K. M.,

e Scholkopf, B. (2009). Covariate shift and local learning by distribution
matching, páginas 131–160. MIT Press. Citado na página 7.

He, K., Zhang, X., Ren, S., e Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, páginas 770–778. Citado na página 20.

Ho, J., Jain, A., e Abbeel, P. (2020). Denoising diffusion probabilistic models.

Advances in neural information processing systems, 33:6840–6851. Citado

na página 23.

Hoffman, J., Tzeng, E., Park, T., Zhu, J. Y., Isola, P., Saenko, K., e Darrell, B.

(2018). Cycada: Cycle-consistent adversarial domain adaptation. In 2018
International conference on machine learning, páginas 1989–1998. Citado

na página 14.

Hough, P. V. (1962). Method and means for recognizing complex patterns. US
patent, 3(6). Citado na página 27.

Hoyer, L., Dai, D., e Van Gool, L. (2021). Daformer: Improving network archi-

tectures and training strategies for domain-adaptive semantic segmentation.

arXiv preprint arXiv:2111.14887. Citado nas páginas 18, 19, 29, e 40.

Huang, Z., Wang, X., Wang, J., Liu, W., e Wang, J. (2018). Weakly-supervised

semantic segmentation network with deep seeded region growing. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,

páginas 7014–7023. Citado na página 29.

83



Iqbal, M. S., Ali, H., Tran, S. N., e Iqbal, T. (2021). Coconut trees detection and

segmentation in aerial imagery using mask region-based convolution neural

network. IET Computer Vision, 15(6):428–439. Citado na página 55.

Isola, P., Zhu, J.-Y., Zhou, T., e Efros, A. A. (2017). Image-to-image translation

with conditional adversarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, páginas 1125–1134. Citado nas

páginas 12, 14, e 15.

Jain, A. K., Mao, J., e Mohiuddin, K. M. (1996). Artificial neural networks: A

tutorial. Computer, 29(3):31–44. Citado na página 1.

Jiang, G., Wang, Z., e Liu, H. (2015). Automatic detection of crop rows based

on multi-rois. Expert systems with applications, 42(5):2429–2441. Citado

na página 27.

Jintasuttisak, T., Edirisinghe, E., e Elbattay, A. (2022). Deep neural network

based date palm tree detection in drone imagery. Computers and Electronics
in Agriculture, 192:106560. Citado na página 55.

Kamilaris, A. e Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture:

A survey. Computers and electronics in agriculture, 147:70–90. Citado nas

páginas 2 e 3.

Kapil, R., Marvasti-Zadeh, S. M., Erbilgin, N., e Ray, N. (2024). Shadowsense:

Unsupervised domain adaptation and feature fusion for shadow-agnostic

tree crown detection from rgb-thermal drone imagery. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, páginas

8266–8276. Citado nas páginas 3 e 56.

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., e Shah, M. (2021).

Transformers in vision: A survey. ACM Computing Surveys (CSUR). Citado

na página 16.

Kingma, D. P. e Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114. Citado nas páginas 13 e 23.

LeCun, Y., Bengio, Y., e Hinton, G. (2015). Deep learning. nature,

521(7553):436. Citado na página 2.

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A.,

Aitken, A., Tejani, A., Totz, J., Wang, Z., et al. (2017). Photo-realistic sin-

gle image super-resolution using a generative adversarial network. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,

páginas 4681–4690. Citado na página 20.

84



Liang, J., Hu, D., e Feng, J. (2020). Do we really need to access the source

data? source hypothesis transfer for unsupervised domain adaptation. In

International Conference on Machine Learning, páginas 6028–6039. PMLR.

Citado na página 29.

Liaw, A. e Wiener, M. (2002). Classification and regression by randomforest.

R news, 2(3):18–22. Citado na página 1.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.

International journal of computer vision, 60(2):91–110. Citado na página 1.

Lv, L., Li, X., Mao, F., Zhou, L., Xuan, J., Zhao, Y., Yu, J., Song, M., Huang, L.,

e Du, H. (2023). A deep learning network for individual tree segmentation

in uav images with a coupled cspnet and attention mechanism. Remote
Sensing, 15(18):4420. Citado nas páginas 3 e 55.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., e Frey, B. (2015). Adver-

sarial autoencoders. arXiv preprint arXiv:1511.05644. Citado na página 14.

Mnih, V. e Hinton, G. E. (2012). Learning to label aerial images from noisy

data. In Proceedings of the 29th International conference on machine learning
(ICML-12), páginas 567–574. Citado na página 38.

Osco, L. P., de Arruda, M. d. S., Gonçalves, D. N., Dias, A., Batistoti, J.,

de Souza, M., Gomes, F. D. G., Ramos, A. P. M., de Castro Jorge, L. A.,

Liesenberg, V., et al. (2021). A cnn approach to simultaneously count plants

and detect plantation-rows from uav imagery. ISPRS Journal of Photogram-
metry and Remote Sensing, 174:1–17. Citado na página 27.

Richter, S. R., Vineet, V., Roth, S., e Koltun, V. (2016). Playing for data:

Ground truth from computer games. In European conference on computer
vision, páginas 102–118. Springer. Citado na página 18.

Rocha, B. M., da Fonseca, A. U., Pedrini, H., e Soares, F. (2022). Automatic

detection and evaluation of sugarcane planting rows in aerial images. Infor-
mation Processing in Agriculture. Citado na página 27.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., e Ommer, B. (2022). High-

resolution image synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, páginas

10684–10695. Citado na página 24.

Ronneberger, O., Fischer, P., e Brox, T. (2015). U-net: Convolutional net-

works for biomedical image segmentation. In Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th international conference,

85



Munich, Germany, October 5-9, 2015, proceedings, part III 18, páginas 234–

241. Springer. Citado nas páginas 22 e 24.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti,

M., Coombes, T., Katta, A., Mullis, C., Wortsman, M., et al. (2022). Laion-

5b: An open large-scale dataset for training next generation image-text mod-

els. Advances in Neural Information Processing Systems, 35:25278–25294.

Citado na página 25.

Simonyan, K. e Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556. Citado na

página 20.

Soares, G. A., Abdala, D. D., e Escarpinati, M. C. (2018). Plantation rows

identification by means of image tiling and hough transform. In VISIGRAPP
(4: VISAPP), páginas 453–459. Citado na página 27.

Soh, L. K. e Tsatsoulis, C. (1999). Texture analysis of sar sea ice imagery

using gray level co-occurrence matrices. IEEE Transactions on geoscience
and remote sensing, 37(2):780–795. Citado na página 1.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., e Ganguli, S. (2015).

Deep unsupervised learning using nonequilibrium thermodynamics. In

International conference on machine learning, páginas 2256–2265. PMLR.

Citado na página 22.

Song, J., Meng, C., e Ermon, S. (2020). Denoising diffusion implicit models.

arXiv preprint arXiv:2010.02502. Citado nas páginas 22 e 24.

Still, M. (2006). The definitive guide to ImageMagick. Apress. Citado na

página 58.

Sun, C., Shrivastava, A., Singh, S., e Gupta, A. (2017). Revisiting unreason-

able effectiveness of data in deep learning era. In Proceedings of the IEEE
international conference on computer vision, páginas 843–852. Citado na

página 16.

Tuia, D., Persello, C., e Bruzzone, L. (2016). Domain adaptation for the clas-

sification of remote sensing data: An overview of recent advances. IEEE
geoscience and remote sensing magazine, 4(2):41–57. Citado nas páginas 3

e 4.

Tuia, D., Persello, C., e Bruzzone, L. (2021). Recent advances in domain

adaptation for the classification of remote sensing data. arXiv preprint
arXiv:2104.07778. Citado na página 56.

86
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