UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL FACULDADE DE MEDICINA VETERINÁRIA E ZOOTECNIA PROGRAMA DE POS-GRADUAÇÃO EM CIÊNCIA ANIMAL CURSO DE MESTRADO

REVESTIMENTO A BASE DE ALBUMINA SOBRE AS CARACTERÍSTICAS MICROBIOLÓGICAS E DE QUALIDADE DE OVOS BRANCOS DE POEDEIRAS COMERCIAIS

AMANDA ALICE LAPA SANTOS

AMANDA ALICE LAPA SANTOS

REVESTIMENTO A BASE DE ALBUMINA SOBRE AS CARACTERÍSTICAS MICROBIOLÓGICAS E DE QUALIDADE DE OVOS BRANCOS DE POEDEIRAS COMERCIAIS

Orientadora: Karina Márcia Ribeiro de Souza Nascimento Coorientadora: Cássia Rejane Brito Leal Coorientador: Charles Kiefer

Dissertação apresentada ao Programa de Pós-Graduação em Ciência Animal da Universidade Federal de Mato Grosso do Sul, como requisito à obtenção do título de Mestra em Ciência Animal.

Área de concentração: Produção Animal.

Dedico esse trabalho aos meus primos Fabiana de Oliveira Lapa, João Vitor Lapa Rodrigues e ao meu irmão Ítalo Augusto Santos (*in memorian*), com muito amor, carinho e saudades.

"Por vezes sentimos que aquilo que fazemos não é senão uma gota de água no mar. Mas o mar seria menor se lhe faltasse uma gota".

(Madre Teresa de Calcuta)

AGRADECIMENTOS

Primeiramente a Deus pelo dom da vida, por ser essencial e permitir que tudo isso acontecesse, por ter me dado saúde e força para superar todas as dificuldades que surgiram ao longo de minha vida e conseguir realizar um dos meus maiores sonhos. E por sempre iluminar meu caminho e abençoar minha família.

À pessoa mais importante da minha vida, minha mãe Mara Cristina Lapa por ser a minha maior impulsionadora de vida, responsável por tudo que sou e sei até aqui, plantou em mim princípios eternos, me ensinou a amar, cuidar e respeitar os animais. Por chorar, sorrir, viver e realizar junto comigo esse sonho. Nenhuma palavra nesse mundo conseguiria expressar com exatidão todo meu amor e admiração por você, muito obrigada por extremamente tudo que fez e faz, você é o exemplo que vou seguir pelo resto de minha vida. Sem seu amor, apoio, conselhos, nada disso seria possível. Te amo para sempre. E ao meu pai Valmir de Oliveira Santos por todo apoio ao longo desses anos, e por sempre sonhar comigo. Agradeço todo apoio e amor, te amo.

A todos os meus familiares que me incentivaram no decorrer desta etapa.

Aos meus amigos que sempre estiveram ao meu lado ao longo desses anos me apoiando, aconselhando e incentivando.

À minha orientadora Professora Dra. Karina Márcia Ribeiro de Souza Nascimento por me acolher quando eu mais precisei, pela paciência, pelos ensinamentos, pela confiança em mim e por dedicar seu tempo me orientando sempre com palavras sábias durante toda etapa do meu projeto e na escrita da minha dissertação. Minha eterna gratidão.

Aos meus coorientadores Cássia Leal e Charles Kiefer por toda contribuição, paciência e todos os ensinamentos.

À toda equipe do Laboratório Experimental em Ciência Aviária e do Laboratório de Bacteriologia da Faculdade de Medicina Veterinária e Zootecnia da UFMS, por todos os ensinamentos, auxílios, amizade e paciência.

Aos membros da banca examinadora, agradeço muito por aceitarem o convite, pela dedicação de tempo para leitura e por toda contribuição para a melhoria deste trabalho, obrigada por estarem presente nesse momento de extrema importância na minha vida.

E a todos que direta ou indiretamente fizeram parte da minha formação o meu muito obrigado.

1 RESUMO

2

3 4

5

6 7

8

9

10

11 12

13

14 15

16

17

18

19

20

21

22

23 24

A qualidade dos ovos é definida como o conjunto de características externas e internas que influenciam na aceitação do produto no mercado, está diretamente ligada às características da poedeira, como linhagem, idade, condição nutricional e sanitária, dentre outros fatores. A perda de qualidade é inevitável e contínua, e pode ser acelerada por diversos fatores ambientais. Desse modo, o estudo foi realizado com o objetivo de avaliar revestimentos a base de albumina e albumina + glicerol na casca de ovos brancos, com ou sem exposição de luz ultravioleta (UV) e armazenados em diferentes períodos em temperatura ambiente (25°C). Foram realizadas análises microbiológicas para identificação de *Salmonella* e verificação de unidades formadoras de colônias de E,coli e determinação do pH do albúmen dos ovos. As amostras não apresentaram crescimento bacteriano de Salmonella sp. Por outro lado, em relação à averiguação de E. coli observou-se que ovos com revestimento de albumina + glicerol, sem revestimento + E. coli pulverizada, com revestimento de albumina + E. coli pulverizada e albumina + glicerol + E. coli pulverizada demostraram crescimento bacteriano em 0, 15, 30 e 30 dias de armazenamento, respectivamente. Entretanto, não foi verificada formação de colônias de E. coli em ovos sem ou com revestimento, contaminados e submetidos à luz ultravioleta. Constatou-se que os pH's de ovos revestidos com solução de albumina + glicerol e solução de albumina + glicerol + UV foram menores aos 7, 14, 21, 28 e 35 dias, possivelmente em função da associação do tratamento dos ovos com UV e proteção dos revestimentos estudados. Conclui-se que as soluções de albumina e albumina + glicerol promovem proteção dos ovos contra contaminação por E. coli por 30 dias de armazenamento. Os revestimentos de albumina + glicerol e albumina + glicerol + UV retardam o aumento do pH do albúmen e, consequentemente, a perda de qualidade dos ovos de consumo por 30 dias de armazenamento.

Palavras-chave: armazenamento, luz ultravioleta, plastificante, tempo de prateleira.

25 ABSTRACT

26

27

28

29

30

31 32

33

34

35 36

37

38

39

40

41

42

43 44

45

46

Egg quality is defined as the set of external and internal characteristics that influence the accessibility of the product on the market, it is directly linked to the characteristics of the layer, such as lineage, age, nutritional and health condition, among other factors. Quality loss is slow and continuous, and can be accelerated by several environmental factors. Therefore, the study was carried out with the objective of evaluating coatings based on albumin and albumin + glycerol on the shell of white eggs, with or without exposure to ultraviolet light (UV) and stored for different periods at room temperature (25°C). Microbiological analyzes were carried out to identify Salmonella and select E.coli colony-forming units and determine the pH of the egg album. The samples did not show bacterial growth of Salmonella sp. On the other hand, in relation to the investigation of E. coli, it was observed that eggs with albumin + glycerol coating, without coating + sprayed E. coli, with albumin coating + sprayed E. coli and albumin + glycerol + sprayed E. coli demonstrated bacterial growth at 0, 15, 30 and 30 days of storage, respectively. However, no formation of E. coli colonies was observed in uncoated or uncoated eggs, contaminated and subjected to ultraviolet light. It was found that the pH's of eggs coated with albumin + glycerol solution and albumin + glycerol + UV solution were lower at 7, 14, 21, 28 and 35 days, possibly due to the association of egg treatment with UV and protection of trained coatings. It is concluded that albumin and albumin + glycerol solutions promote protection of eggs against contamination by E. coli for 30 days of storage. The albumin + glycerol and albumin + glycerol + UV coatings delay the increase in albumin pH and, consequently, the loss of quality of eggs for consumption for 30 days of storage.

Keywords: plasticizer, shelf time, storage, UV light.

47	SUMÁRIO
• •	00111111

48	1 INTRODUÇÃO	9
49	1.3 Qualidade do ovo durante o armazenamento	11
50	1.4 Saúde Única	12
51	1.5 Salmonella	13
52	1.5.1 Ocorrência	14
53	1.5.2 Prevenção e controle	15
54	1.6 Escherichia coli (E. coli)	15
55	1.7 Revestimentos comestíveis	16
56	1.7.1 Revestimento a base de proteínas	17
57	1.7.2 Plastificantes	17
58	2 REFERÊNCIAS	19
59	3 ARTIGO CIENTÍFICO	25
60	3.1 Revestimento a base de albumina sobre características microbiológica	s e pH de
61	albúmen de ovos brancos de poedeiras comerciais	25
62	3.1.1 Resumo	26
63	3.1.2 Abstract	26
64	3.1.2 Introdução	27
65	3.1.3 Material e Métodos	28
66	3.1.4 Resultados	32
67	3.1.5 Discussão	34
68	3.1.6 Conclusão	37
69	4 CONSIDERAÇÕES FINAIS	40
70	•	

1 INTRODUÇÃO

O ovo é uma importante fonte nutricional para a população, é visto como o alimento mais completo pois é uma das principais fontes de proteína de origem animal, contém aminoácidos essenciais e além disso, são fonte de vitaminas e gorduras (Rêgo et al., 2012 e Donadelli et al., 2019).

A produção de ovos no Brasil obteve um crescimento relevante, onde foram produzidas 54,973 bilhões de unidades, sendo que 99,54% da produção é destinada para atender o mercado interno 2021, resultando no consumo per capita de 257 unidades por habitante (ABPA,2022). O ovo é um alimento muito presente na alimentação das pessoas, por isso é necessário um segurança alimentar para de impedir surtos de infecção alimentar, principalmente por *Salmonella* spp. (SHINOHARA et al., 2008).

Por ser uma ótima fonte de nutrientes, o ovo está altamente vulnerável a ação dos microrganismos e dessa forma, tem-se a necessidade de assegurar a qualidade dos ovos que são adquiridos pelo consumidor (Barbosa, 2013). A contaminação dos ovos é um dos principais fatores de qualidade que deve ser fiscalizado, com o objetivo de garantir segurança ao consumidor (Andrade et al., 2004). Além disso, diversos elementos influenciam na qualidade dos ovos no comércio, destacam-se a temperatura, umidade do ambiente (Souza e Souza, 1995) e período de armazenamento. Tal fator tem ação direta sobre as características externas e internas dos ovos (Baptista, 2002). Pois, a temperatura de armazenamento altera a qualidade dos ovos, para se obter um aproveitamento maior do valor nutricional dos ovos, é recomendado que os ovos sejam conservados de maneira correta durante todo período de armazenamento e comercialização. No entanto, a legislação brasileira não obriga a refrigeração de ovos (Lana et al., 2017). Estudos demonstram que ovos armazenados por mais tempo e em temperatura ambiente sofrem alterações na sua qualidade (Arruda et al., 2019).

Para minimizar perdas na qualidade dos ovos, pode-se utilizar, no processamento industrial, revestimentos comestíveis que além de agregar valor ao prolongar a vida de prateleira, possibilita também a melhora dos atributos sensoriais. Um revestimento comestível adequado precisa atender as necessidades específicas dos alimentos. A eficiência da barreira pode variar pela composição do revestimento, das propriedades da superfície do revestimento, do produto que o receberá o filme, pela técnica de execução utilizada e as circunstâncias de armazenamento (Maia et al., 2000).

Os revestimentos comestíveis são aplicados na forma líquida por imersão na superfície

do alimento que, após secagem, torna-se uma cobertura (Choudhary et al., 2021). Os revestimentos comestíveis possuem baixo custo de produção e são biodegradáveis com isso, podem ser consumidos junto com o alimento, contribuindo para a redução do impacto ambiental (Shit e Shah, 2014; Alvarez-Pérez et al., 2015; Silva, 2020), considerados possíveis substitutos para os plásticos convencionais (Fu et al., 2022).

Diversos polímeros naturais de origem animal ou vegetal, como polissacarídeos, lipídeos e proteínas, sozinhos ou combinados, são utilizados na formação dos revestimentos comestíveis (Assis e Britto, 2014; Alvarez-Pérez et al., 2015; Silva, 2020). Os revestimentos mais utilizados e vistos em ovos são: quitosana (Caner e Cansiz, 2008), proteína de soja (Cho et al., 2002) e proteína do soro de leite (Caner, 2005). Considerando as características ideais para revestimento comestível, tem-se a albumina que pode ser obtida pela utilização do albúmen de ovos de descarte na indústria. Os ovos trincados sujos, ovos com manchas de sangue, ovos com sujidades na casca (fezes, sangue, fungos, etc.) devem ser imediatamente descartados ou, quando não for possível o descarte imediato, devem ser quebrados em recipiente, devidamente identificado, de forma a garantir o destino apropriado desses, sendo vedada a sua utilização para a alimentação humana e diretamente na alimentação animal. (MAPA, 2022)

Além disso, os plastificantes são substâncias solicitadas na formação dos revestimentos, principalmente para os que tem como base principal proteínas e polissacarídeos e o glicerol é o plastificante mais utilizado (Otoni et al., 2017). A função dos plastificantes é aumentar a mobilidade e reduzir a viscosidade, a densidade e a dureza do polímero, desse modo, ampliando a flexibilidade, extensibilidade e resistência mecânica dos revestimentos (Vieira et al., 2011; Cazón et al., 2017). Uma sugestão para realização de processos de desinfecção de alimentos e superfícies é a utilização da luz ultravioleta (UV). O intervalo utilizado para inativar bactérias e vírus é o Ultravioleta-C (UV-C), nomeado de faixa germicida. Esse raio passa através das paredes celulares de bactérias, sendo absorvido pelo DNA, RNA e proteínas resultando na eliminação da bactéria (Couto et al., 2021).

Diante disso, o estudo foi realizado com o objetivo de avaliar revestimentos comestíveis na manutenção da qualidade microbiológica, a capacidade de proteção contra contaminantes (bactérias) e o efeito de redução da contaminação por exposição à radiação não ionizante (luz ultravioleta).

1.1 Qualidade do ovo durante o armazenamento

Durante o armazenamento, o ovo sofre inúmeras modificações físico químicas do seu conteúdo interno que podem resultar em alterações do sabor e palatabilidade. A perda de qualidade é contínua e é algo que não dá para evitar, podendo ser agravada por diferentes causas, como contaminação microbiológica, alta umidade e temperatura durante a conservação (Barbosa et al., 2008).

Entre as características mais importantes para o monitoramento da mudança na qualidade dos ovos durante o armazenamento é a perda de peso do ovo (Caner e Yuceer, 2015). A redução de peso durante o armazenamento ocorre para monitorar as mudanças na qualidade da casca dos ovos frescos, a diminuição acontece devido à transferência de umidade do albúmen para o ambiente externo por meio da casca (Scott e Silversides, 2001). A perda de água no ovo depende da temperatura, fluxo de ar e umidade relativa durante o armazenamento. Quanto mais longo o período de armazenamento, mais críticos esses fatores se tornam, especialmente sob temperatura ambiente (25°C) (Feddern et al., 2017).

A gravidade específica é utilizada para indicar a qualidade da casca em relação aos demais componentes e também pode ser modificada durante o armazenamento e está relacionada com a espessura de casca. A gravidade específica é uma das técnicas mais utilizadas para determinar a qualidade da casca do ovo, por ser rápida, prática e de baixo custo (Haminton, 1982). Após a postura ocorre uma perda de água no ovo, provocando aumento progressivo da câmara de ar e diminuição da gravidade específica do ovo (Santos, 2008). Quanto mais tempo de prateleira o ovo tiver, maior será a câmara de ar, devido à perda de vapor de água. Desse modo, ovos com pior qualidade de casca apresentam maior câmara de ar devido a maior perda de vapor de água (Oliveira e Oliveira, 2014).

O pH do albúmen e da gema sofrem modificações em decorrência das mudanças bioquímicas na gema e à transferência de água do albúmen. O pH é mais adequado para a verificação da qualidade de ovos frescos do que a altura do albúmen ou UH, por ter menor influência da idade e linhagem da poedeira. Durante a estocagem dos ovos, o pH do albúmen aumenta, e esse aumento depende da temperatura que os ovos se encontram e ocorre através da perda de dióxido de carbono através dos poros da casca. Essa perda é a principal causa da deteriorização do albúmen (Fiúza et al., 2006). O pH do albúmen de um ovo fresco pode variar de 7,6 até 8,5 podendo alcançar até 9,7 durante o período de estocagem (Silversides e Scott 2001; Oliveira e Oliveira, 2013).

A gema também pode sofrer modificações no período de estocagem, a água liberada durante a reação de hidrólise dos aminoácidos do albúmen é transferida para a gema, aumentando o peso e tornando-a descentralizada e menos densa (Ordónez, 2005; Oliveira e Oliveira, 2013). Nos ovos frescos o albúmen deve ser translúcido consistente, centralizada no albúmen e bem fixada pelas chalazas. Nos ovos mais velhos são achatadas e flácidas, podendo apresentar manchas escuras. Além disso, a membrana vitelina, que circunda a gema, rompe-se com facilidade, deixando escorrer o conteúdo, o que prejudica a sua utilização (Solomon, 1997).

Já a cor da gema é influenciada pela dieta fornecida para a ave, principalmente pelo conteúdo de carotenóides (luteína, zeaxantina, β-criptoxantina e outros). Podendo sofrer degradação pelo processo oxidativo, mudando a pigmentação durante o armazenamento (Caner, 2005).

1.2 Saúde Única

A correlação entre meio ambiente, seres humanos e animais tem extrema importância e relevância atualmente. Desta forma, torna-se indispensável a utilização de uma abordagem coordenativa e versátil, como a One Health – Saúde Única.

Essa iniciativa é definida como um esforço colaborativo de múltiplas disciplinas exercidas localmente, nacionalmente e globalmente, com o intuito de atingir uma otimização conjugada da saúde humana, animal e do meio ambiente, por meio de políticas, pesquisas, educação e pela prática. Uma de suas abordagens inclui medidas para preservar a efetividade dos antimicrobianos existentes, buscando eliminar o uso inapropriado destes e limitando a disseminação de doenças infecciosas. (Osburn et al., 2009; McEwen e Collignon, 2018; Collignon e McEwen, 2019 e Kim e Cha, 2021.)

A Organização das Nações Unidas para Alimentação e Agricultura promove a abordagem de Saúde Única em trabalhos com o tema de segurança alimentar, agricultura sustentável, resistência antimicrobiana, nutrição animal, saúde animal e vegetal, pesca e meios de subsistência. Atestar uma abordagem sobre Saúde Única é de suma importância para prevenir, encontrar e controlar doenças que se difundem entre animais e humanos, combater a resistência de microrganismos, garantir a segurança alimentar e prevenir ameaças à saúde humana e animal relacionadas ao meio ambiente (FAO, 2021).

A ligação do animal com o homem acontece desde os primeiros tempos, com o desenvolvimento social e cultural, essa convivência se intensificou. A humanização dos animais

vem se tornando comum, isso acontece em consequência do aumento relevante da população de pets (Faraco, 2008).

A relação entre homem e animal trouxe benefícios, como a utilização de animais e seus subprodutos na alimentação humana. Entretanto, existem ainda situações problemas sobre essa relação, por exemplo da transmissão de enfermidades infectocontagiosas de produtos de origem animal (POA) (Gabriel, 2021). Nesta perspetiva, evidencia as doenças transmitidas por alimentos (DTAs), proveniente do consumo de proteínas bovinas, suínas, de aves e seus derivados quando contaminados por bactérias, parasitas, vírus e fungos (Rossi, et al., 2014).

A maior importância da *Salmonella* na saúde única consiste no potencial risco em causar infecções alimentares em humanos pela ingestão de alimentos contaminados, a maioria dos casos de salmonelose humana decorre do consumo de alimentos contaminados, a ocorrência e quantidade de *Salmonella* presente nos ovos e na carne de frango ao abate variam de acordo com as condições de manejo na criação e com os cuidados higiênicos nas operações de abate e manipulação das carcaças (Carvalho e Cortez, 2005).

Dessa forma, a Saúde Única tem papel fundamental, pois atua no controle e prevenção de zoonoses, doenças transmitidas do animal ao ser humano, analisando e estabelecendo medidas importantes a saúde pública, fazendo com que alimentos cheguem em boas condições aos seus consumidores (Miranda, 2018).

1.3 Salmonella

A *Salmonella* spp. é uma bactéria entérica responsável por graves intoxicações alimentares, sendo um dos principais agentes envolvidos em surtos registrados em vários países (Tessari et al., 2003; Maijala, et al., 2005). A salmonelose é uma das principais zoonoses para a saúde pública em todo o mundo exteriorizando-se pelas suas características de endemicidade, alta morbidade e, sobretudo, pela dificuldade da adoção de medida no seu controle (Guerin, Volt e Viltsland, 2005). Esse microrganismo é visto como um dos maiores patógenos de origem alimentar, com eminentes riscos à saúde humana (Ehuwa et al., 2021), relatos apontam que a *Salmonella* é um dos principais patógenos responsáveis pelas DTAs (Melo et al., 2018), podendo ocorrer por meio de alimentos de origem animal contaminados por microrganismos desde a sua origem. Essa bactéria infecta uma granja através de aves contaminadas ou por meio de equipamentos, roupas, veículos, água, alimentos, além do próprio homem. A severidade da doença depende de fatores ambientais, grau de exposição e também da presença de infecções

concomitantes (Ferrari et al., 2013; Caetano e Pagano, 2019).

O indicativo de surto pode ser caracterizado pela presença de aves com sonolência, anorexia severa e aumento do consumo de água, diarreia aquosa profusa e tendência das aves em amontoarem-se junto à fonte de calor, a cegueira e conjuntivite são achados clínicos importantes. As aves se infectam via oral, contudo existem dúvidas se o alimento atua realmente no mecanismo de infecção. A ração e sua matéria prima, principalmente as de origem animal como farinha de carne, de sangue, apresentam quase sempre, altas taxas de contaminação por *Salmonella* spp. (Back, 2010).

1.3.1 Ocorrência

De acordo com dados do Ministério da Saúde, entre 2012 e 2021 aconteceram mais de seis mil surtos de DTAs no Brasil. Desses casos, a Salmonelose correspondeu a 11,2% sendo a terceira maior causa de doenças transmitidas por alimentos no Brasil durante esse período. Os surtos causados por *Salmonella* spp. resultam em diversas perdas econômicas, e no caso dos produtos avícolas ocorre descarte de ovos e carne contaminados (Finger et al., 2019; Hessel et al., 2019).

O Brasil foi o sexto maior produtor de ovos no mundo em 2020 (Anualpec, 2021) e as exportações brasileiras de ovos (produtos in natura e processados) no ano de 2023 foi de 25,4 mil toneladas embarcadas, superando 168,1% no mesmo período no ano anterior bilhões de dúzias, apresentando um aumento de 3,0% em relação ao ano anterior (ABPA, 2023). Considerando esses dados, percebe-se o aumento de consumo de ovos nos últimos anos, corroborando com a necessidade de maior controle na produção de ovos nas granjas.

A *Salmonella* spp. foi o terceiro microrganismo mais envolvido nas Doenças de Transmissão Hídrica e Alimentar (DTHA) no Brasil no período entre 2012 e 2021. Os ovos e os produtos à base de ovos contaminados estavam entre as sete principais fontes de contaminação para os consumidores (Brasil, 2022).

Conforme a legislação brasileira e normativas internacionais um alimento deve ter ausência de *Salmonella* spp. para ser considerado seguro para ser consumido (União Europeia, 2003; Brasil, 2019). Desta forma, além das questões de saúde única, os aspectos econômicos também devem ser observados quando se trata da prevenção e controle da salmonelose.

1.3.2 Prevenção e controle

Na granja ocorrem muitas medidas de prevenção e controle, como a biosseguridade, descontaminação química de rotina de equipamentos agrícolas, higienização dos galpões e destino adequado das camas dos animais, essas medidas são tomadas por serem usadas para limitar a contaminação de ovos por *Salmonella* spp. (Efsa, 2014 e De Cort et al., 2017).

A vacinação em combinação com essas maneiras de controle nas granjas é uma estratégia relevante para reduzir a presença de *Salmonella* spp. em aves, em última análise, mitigando o risco de doenças humanas de origem alimentar (Mcwhorter e Chousalkar, 2018; Jia et al., 2020). Os antibióticos são amplamente utilizados para o manter o controle de doenças bacterianas. Todavia, existe uma preocupação de que o uso indiscriminado de antibióticos leve ao desenvolvimento de resistência aos antimicrobianos tratadas (Kulshreshtha et al., 2014; Ricke, 2017 e Li et al., 2020).

Dessa forma, a biosseguridade e a manutenção de Boas Práticas Agrícolas, os cuidados com o bem-estar dos animais ajudam a manter a qualidade dos ovos, visto que as aves ficam expostas ao estresse, devido a superlotação das gaiolas e contaminação ambiental. E com a biosseguridade facilitará o melhor funcionamento do sistema imunológico e a manutenção da saúde das poedeiras (Ricke, 2017).

1.4 Escherichia coli (E. coli)

A *E. coli* faz parte do grupo das principais bactérias pertencentes ao grupo dos coliformes totais, sendo bacilos Gram negativos, não esporulados e que pertencem a família Enterobacteriacea, além de não fermentarem a lactose e produzirem gás quando incubados (37°C por 24-48 horas). Essa bactéria indica se ocorreu contaminação fecal na água, pois, é um microrganismo presente na microbiota intestinal dos animais (Muller, 2014). A *E. coli* tem sido amplamente estudada, devido aos diferentes mecanismos de virulência da bactéria, e por estar relacionada com diversas doenças no homem e nos animais (Nakazato et al., 2009).

A relação entre água contaminada e falta de saneamento básico gera uma mortalidade anual de 1,6 milhões de pessoas no mundo. Nem sempre a ausência da potabilidade da água é nítida à visão ou olfato, tornando necessária uma análise laboratorial para identificá-la. O controle microbiológico da água, devido a facilidade de ser veículo de transmissão de microrganismos, se torna necessário para analisar coliformes totais e termotolerantes, protozoários, vírus e fungos causadores de diversas doenças ao homem. Esses microrganismos

são responsáveis pelo acontecimento de doenças de veiculação hídrica como: diarreias, disenterias, hepatites, cólera, entre outras doenças graves (Yamaguchi, 2013).

Além disso, pode ocorrer contaminação fecal da casca do ovo, existe também a possibilidade de transmissão ovariana de galinhas infectadas para a progênie. A *E. coli* pode ser introduzida na granja através da ração oferecida às aves quando as matérias-primas utilizadas para o preparo estão contaminadas. *E. coli* patogênicas podem ser introduzidas em lotes de aves comerciais através da água, pois, frequentemente, as amostras de água das granjas apresentam alta contagem de coliformes fecais, dos quais 95% é representado por *E. coli* (Ferreira et al., 2009).

1.5 Revestimentos comestíveis

São caracterizados por uma fina camada revestindo um alimento que é comumente aplicado por imersão ao produto em uma solução gerada por carboidratos, proteínas, lipídios ou misturas (Falguera et al., 2011). Esse método normalmente é empregado para conservação de frutas e hortaliças processadas ou não. Esse revestimento associado a refrigeração tem como objetivo uma atuação funcional, contribuindo para a preservação da textura, valor nutricional, reduzindo as trocas gasosas superficiais e a perda ou ganho excessivo de água. (Park, 2005 e Turhan, 2010). A aplicação é feita diretamente na superfície das frutas, sendo membranas finas e impercetíveis a olho nu (FDA, 2013), preenchendo de forma parcial os estômatos e lenticelas, e minimizando a transferência de umidade e as trocas gasosas (Assis et al., 2009).

Além de serem biodegradáveis também auxiliam na redução da taxa respiratória e da produção de etileno, encarregado pelo amadurecimento, na limitação da perda ou do ganho excessivo de água e na preservação da textura e do valor nutricional do produto. Também são importantes pelo fato de poderem ser produzidos a partir de polímeros naturais (Trigo et al., 2012).

Para a formulação dos revestimentos comestíveis, os compostos mais utilizados são as proteínas (gelatina, caseína, ovoalbumina, glúten de trigo, zeína e proteínas miofibrilares), os polissacarídeos (amido e seus derivados, pectina, celulose e seus derivados, alginato e carragena, quitosana), os lipídeos (monoglicerídeos acetilados, ácido esteárico, ceras e ésteres de ácido graxo) ou a mistura destes compostos, que possibilitam o uso de características distintas e funcionais de cada uma dessas classes (Luvielmo e Lamas, 2012).

Geralmente, são usados plastificantes na composição destes revestimentos, que

1 melhoram as propriedades físicas ou mecânicas, como a flexibilidade, a força e a resistência do

revestimento. Os plastificantes mais usados são o glicerol e o sorbitol (Villa Diego et al., 2005

3 e Junior et al., 2010).

1.5.1 Revestimento a base de proteínas

As proteínas são muito utilizadas como matéria-prima de revestimentos comestíveis. As estruturas das proteínas são de fácil modificação para alcançar as propriedades desejáveis do revestimento (Han, 2014). As proteínas apresentam ótimas propriedades de barreiras a oxigênio, lipídios e dióxido de carbono são boas formadoras de filme (Lacroix, 2014).

Filmes que são formados à base de proteínas geralmente são frágeis e de baixa aderência, nesses casos, é indicado o uso de plastificantes para auxiliar na adesão ao alimento (Assis e Britto, 2014). Plastificantes são elementos não-voláteis que, ao serem inseridas a determinada substância altera suas propriedades mecânicas e propriedades físicas (Alleoni, 2005).

Na preparação de revestimentos comestíveis o plastificante é frequentemente adicionado para induzir a flexibilidade do revestimento (Wan et al., 2005). Os plastificantes que são comumente utilizados nas formulações devido suas propriedades de reduzir a fragilidade dos filmes são glicerol, sorbitol e polietilenoglico. A técnica mais eficiente é a imersão, apesar de o pincel e spray também serem utilizados em alguns casos, a imersão garante que toda a superfície do alimento entre em contato com a solução filmogênica (Andrade et al., 2012).

1.5.2 Plastificantes

Plastificantes como glicerol são capazes de garantir boa qualidade no plástico biodegradável a ser produzido, é uma molécula pequena, de baixa volatilidade e de natureza química similar a do polímero usado na preparação do filme, quando são adicionados à solução filmogênica altera a organização molecular da rede amilácea ampliando o volume livre na molécula. Essa ação do plastificante causa mudanças no plástico biodegradável como a ampliação da flexibilidade, extensibilidade e distensibilidade seguido por uma atenuação na resistência mecânica, temperatura de transição vítrea, barreira a gases e vapor de água, isso ocorre devido à higroscopicidade do plastificante e sua ação na quebra da rede amilácea ampliando assim as interações amido-plastificante que reduz a densidade das interações em

consequência a coesão da molécula além do aumento do volume livre (Grossman, 2007).

As propriedades protetoras desses filmes podem ser reforçadas mediante a incorporação de aditivos que agem liberando compostos que aumentam a vida-de-prateleira dos produtos tais como agentes antimicrobianos, bactericidas, fungicidas, antioxidantes ou o uso de enzimas. Cabe salientar que, como o consumidor tem aumentado a demanda por alimentos seguros e estão, especialmente, preocupados com os efeitos colaterais de vários aditivos artificiais, é de grande importância o estudo de novos aditivos naturais e não tóxicos no intuito de substituir os aditivos artificiais na manutenção da qualidade dos alimentos (Guilbert e Biquet, 1995).

Nesse contexto, com os resultados do presente estudo foi elaborado artigo científico intitulado "Revestimento a base de albumina sobre características microbiológicas e pH de albúmen de ovos brancos de poedeiras comerciais", redigido de acordo às normas da Revista Brasileira de Saúde e Produção Animal com adaptações às Normas de elaboração de Teses e Dissertações do Programa de Pós-Graduação em Ciência Animal da FAMEZ/UFMS.

1 2 REFERÊNCIAS

- 2 ALLEONI, A.C.C. e ANTUNES, A.J. Perfil de textura e umidade espremível de géis de clara
- 3 de ovos cobertos com concentrado protéico de soro de leite. Ciência e Tecnologia de Alimentos,
- 4 v.25, p.153-157. 2005.
- 5 ALVAREZ-PÉREZ, O. B. et al. Pectin candelilla wax: an alternative mixture for edible films.
- 6 Journal of Microbiology, Biotechnology and Food Sciences, v. 5, n. 2, p. 167-171, 2015.
- 7 http://dx.doi.org/10.15414/jmbfs.2015.5.2.167-171.
- 8 ANDRADE, R. et al. Atomizing spray systems for application of edible coating.
- 9 Comprehensive Reviews in Food Science and Food Safety, v.11, n.3, p.323-337, 2012.
- 10 ANDRADE, M. A. et al. (2004). Avaliação da qualidade bacteriológica de ovos de galinha
- comercializados em Goiânia, Goiás, Brasil. Ciência Animal Brasileira, 5(4), 221-228.
- ANUALPEC. (2021). Anuário da Pecuária Brasileira (20th ed., Vol. 1). Instituto FNP.
- 13 ARRUDA, M.D. et al. Avaliação de qualidade de ovos armazenados em diferentes
- temperaturas. Revista Craibeiras de Agroecologia, [S.l.], v. 4, n. 1, p. 76-81. 2019.
- ASSIS, O.B.G. et al. Ouso de biopolímeros como revestimentos comestíveisprotetores para
- 16 conservação de frutas in natura eminimamente processadas. Boletim de Pesquisa e
- 17 Desenvolvimento. São Carlos, Embrapa Instrumentação Agropecuária, 23 p. 2009.
- 18 ASSIS, O. B. G. e BRITTO, D. Revisão: coberturas comestíveis protetoras em frutas:
- 19 fundamentos e aplicações. Brazilian Journal of Food Technology, Campinas, v.17, n.2, p. 87-
- 20 97, 2014.
- 21 BACK, A. Manual de doenças de aves. 2.ed. Cascavel-PR: Editora Integração, 2010. 311p.
- 22 BACK, A. e ISHIZUKA, M. M. Principais doenças de notificação obrigatória da Organização
- 23 Mundial de Saúde Animal. São Paulo: Fundação Cargill, 2010. 239p.
- 24 BAPTISTA, R. F., Avaliação da qualidade interna de ovos de codorna (cortunix cortunix
- 25 japônica) em função da variação da temperatura de armazenamento. NiteróiRJ, 2002.
- 26 BARBOSA, N. A. et al. Qualidade de ovos comerciais provenientes de poedeiras comerciais
- 27 armazenados sob diferentes tempos e condições de ambientes. ARS Veterinaria, Jaboticabal,
- 28 v.24, n.2, p.127-133, 2008.
- 29 BARBOSA, T. C. G. Parâmetros de qualidade interna e externa de ovos de codorna. 2013. 25
- 30 f. TCC (Trabalho de conclusão de curso) Universidade Federal de Goiás, Jataí, GO. 2013.
- 31 BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regulamento de Inspeção
- 32 Industrial e Sanitária de Produtos de Origem Animal. Decreto nº 30.691, de 29 de março de
- 33 1952, e alterações. Diário Oficial da União Brasília, 2002.
- 34 BRASIL (2019). Ministério da Saúde. Agência Nacional de Vigilância Sanitária ANVISA.
- 35 Instrução Normativa nº 60, de 23 de dezembro de 2019. Estabelece as listas de padrões
- 36 microbiológicos para alimentos prontos para oferta ao consumidor.

- 1 BRASIL (2022). Ministério da Saúde. Secretaria de Vigilância em Saúde. Surtos de Doenças
- 2 de Transmissão Hídrica e Alimentar no Brasil Informe 2022.
- 3 https://www.gov.br/saude/ptbr/assuntos/saude-de-a-a-z/d/doencas-de-transmissao-hidrica-e-
- 4 alimentar-dtha/arquivos/doencasde-transmissao-hidrica-e-alimentar-dtha/apresentacao-surtos-
- 5 dtha-2022.pdf/view
- 6 CAETANO, F. e PAGANO, M. Prevalência de infecções causadas por Salmonella sp. no Brasil
- 7 no período de 2013 a 2017. J. Infect. Control., v. 8 (2):56-62, abr.-jun. 2019 [ISSN 2316-5324].
- 8 CANER, C. Whey protein isolate coating and concentration effects on egg shelf life. Journal of
- 9 the Science of Food and Agriculture, Oxford, v.85, n.13, p.2143-2148, 2005.
- 10 CANER, C. e CANSIZ, Ö. Chitosan coating minimises eggshell breakage and improves egg
- quality. Journal of the Science of Food and Agriculture, London, v. 88, n. 1, p. 56-61, 2008.
- 12 CANER, C. e YUCEER, M. Efficacy of various protein-based coating on enhancing the shelf
- life of fresh eggs during storage. Poultry Science, Champaign, v.94, n.7, p.1665- 1677, 2015.
- 14 CARVALHO, A. C. F. B. e CORTEZ, A. L. L. Salmonella spp. em carcaças, carne
- mecanicamente separada, linguiças e cortes comerciais de frango. Ciência Rural, Santa Maria,
- 16 RS, v.35, n.6, p. 1465-1468, 2005.
- 17 CAZÓN, P. et al. Polysaccharide-based films and coatings for food packaging: A review. Food
- Hydrocolloids, v. 68, p. 136-148, 2017. http://dx.doi.org/10.1016/j.foodhyd.2016.09.009.
- 19 CHO, J. M. et al. Effects of soy protein isolate coating on egg breakage and quality of eggs
- during storage. Food Science and Biotechnology, Seul, v. 11, n. 4, p. 392-396, 2002.
- 21 CHOUDHARY, U. et al. Utilization of Agro-Industrial Wastes as Edible Coating and Films for
- Food Packaging Materials. In: Food Processing New Insight. IntechOpen. 2021. 18 pp.
- 23 http://dx.doi.org/10.5772/intechopen.99786.
- 24 CHOUSALKAR K.; GAST R. MARTELLI F. e PANDE V. (2018). Review of egg-related
- 25 salmonellosis and reduction strategies in United States, Australia, United Kingdom and New
- 26 Zealand. Critical Reviews in Microbiology, 44(3), 290–303.
- 27 https://doi.org/10.1080/1040841x.2017.1368998.
- 28 COLLIGNON, P. J., e MCEWEN, S. A. (2019). One health—its importance in helping to better
- 29 control antimicrobial resistance. Tropical Medicine and Infectious Disease, 4(1), 22.
- 30 https://doi.org/10.3390/tropicalmed4010022.
- 31 COUTO, J. F., et al. Desinfecção à base de radiação ultravioleta-c: um estudo bibliométrico no
- 32 contexto internacional. (2021) Research, Society and Development, 10(1), e46910111785-
- 33 e46910111785.
- 34 DE CORT, W.; DUCATELLE, R. e VAN I. F. (2017). Preharvest measures to improve the
- safety of eggs. In S. C. Rick e K. K. Gast (Eds.), Producing
- 36 DONADELLI, R. A., JONES, C. K., e BEVER, R. S. (2019). The amino acid composition and
- 37 protein quality of various egg, poultry meal by-products, and vegetable proteins used in the

- 1 production of dog and cat diets. Poultry Science, 98(3), 1371–1378.
- 2 https://doi.org/10.3382/ps/pey462.
- 3 ECONOMOU, V., e GOUSIA, P. (2015). Agriculture and food animals as a source of
- 4 antimicrobial-resistant bacteria. Infection and Drug Resistance, 8, 49.
- 5 https://doi.org/10.2147/IDR.S55778.
- 6 EFSA European Food Safety Authority. The European Union summary report on trends and
- 7 sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA Journal, v. 13,
- 8 n. 1, 162 p., 2015. Han, J. H. 2014. Edible films and coatings: a review. Innovations in food
- 9 packaging. 2 Texas: Ed. Elsevier. 231-255.
- 10 EHUWA O.; JAISWAL AK e JAISWAL S. (2021). Salmonella, Segurança Alimentar e
- 11 Práticas de Manipulação de Alimentos. Alimentos, vol. 10, pág. 907.
- doi.org/10.3390/foods10050907.
- 13 FALGUERA, V., et al. Edible films and coatings: Structures, active functions and trends in
- their use. (2011). Trends in Food Science e Technology, 22, 292–303.
- 15 FARACO, C. B. Interação humano animal. Ciência Veterinária nos Trópicos. Recife- PE,
- 16 v.11, p. 31-35, abr. 2008.
- 17 FAO. (2016). Food and Drug Organization of The United Nations. Antimicrobial Resistance
- 18 In Animal Production. p. 28.
- 19 FOOD AND DRUG ADMINISTRATION FAD. Generally recognized as safe (GRAS). Silver
- 20 Spring.
- 21 FEDDERN, V et al. Egg quality assessment at different storage conditions, seasons and laying
- hen strains. Ciência e Agrotecnologia, Lavras, v.41, n.3, p.322-333, 2017.
- FERRARI, C. K. B. et al. Avaliação microbiológica em alimentos de cantinas escolares na
- região do médio Araguaia (MT/GO). Revista Baiana de Saúde Pública, v. 37, n. 1, p.45-56,
- 25 2013.
- FERREIRA A. J. P. et al. Colibacilose. In: REVOLLEDO, L.; FERREIRA A. J. P. (Ed.).
- 27 Patologia aviária. Barueri: Manole, 2009. cap. 7, p. 67-74.
- 28 FINGER, J. A. F. F., Baroni, W. S. G. V, Maffei, D. F., Bastos, D. H. M., e Pinto, U. M. (2019).
- Overview of foodborne disease outbreaks in Brazil from 2000 to 2018. Foods, 8(10), 434.
- 30 https://doi.org/10.3390/foods8100434.
- 31 FIUZA, M.A.et al. Efeitos das condições ambientais no período entre a postura e o
- 32 armazenamento de ovos de matrizes pesadas sobre o rendimento de incubação. Arq. Bras
- FU, Z. et al. Structural, Thermal, Mechanical, and Physicochemical Properties of Corn Starch
- and Tremella fuciformis Polysaccharide Based Composite Films. Starch Stärke, v. 74,
- 35 2100255, 2022. https://doi.org/10.1002/star.202100255

- 1 GABRIEL, I. S. A indispensabilidade do médico veterinário como agente de saúde única na
- 2 inspeção de carnes no brasil. Paripiranga, 2021. 67 f. Monografia (Bacharelado em Medicina
- 3 Veterinária) Centro Universitário AGES.
- 4 GROSSMAN, M. V. E.; MALI, S.; SHIMAZU, A. A. Efeitos plastificante e antiplastificante
- 5 do glicerol e do sorbitol em filmes biodegradáveis de amido de mandioca. Semina: Ciências
- 6 Agrárias, Londrina, PR, v.28, n. 1, p. 79-88, 2007.
- 7 GUERIN PJ, VOLD LAA, VILTSLAND P. Communicable disease control in a migrant
- 8 seasonal workers population: a case sudy in Norway. Eurosurveillance 2005, 10(1-3):48-50.
- 9 GUILBERT, S.; BIQUET, B. Películas y envolturas comestibles. In: BUREAU, G.; MULTON,
- J. L. Embalaje de los alimentos de gran consumo. Zaragoza: Editora Acríbia S.A. cap.22, p.
- 11 331-371, 1995.
- 12 HAMINTON, R.G.M. Methods and factors that affect the measurement of egg shell quality.
- 13 Poultry Science. v.61, n.10, p.2022-2039, 1982.
- 14 HAN, J. H. (2014). Edible Films and Coatings: A Review. Innovations in Food Packaging.
- 15 Academic Press. https://doi.org/10.1016/B978-0-12-394601-0.00009-6
- 16 HESSEL, C. T., ELIAS, S. O., PESSOA, J. P., ZANIN, L. M., Stedefeldt, E., e Tondo, E. C.
- 17 (2019). Food safety behavior and handling practices during purchase, preparation, storage and
- 18 consumption of chicken meat and eggs. Food Research International, 125, 108631.
- 19 https://doi.org/10.1016/j.foodres.2019.108631.
- 20 JIA, S., MCWHORTER, A. R., ANDREWS, D. M., UNDERWOOD, G. J., E
- 21 CHOUSALKAR, K. K. (2020). Challenges in vaccinating layer hens against Salmonella
- 22 typhimurium. Vaccines, 8(4), 1–12. https://doi.org/10.3390/vaccines8040696.
- JUNIOR, E.B.; MONARIM, M.M.S.; CAMARGO, M.; MAHL, C.E.A.; SIMÕES, M.R.;
- 24 SILVA, C.F. 2010. Efeito de diferentes biopolímeros no revestimento de mamão
- 25 (CaricapapayaL) minimamente processado. Revista Varia Scientia Agrárias, 1(1):131-142.
- 26 KIM, D.-W., e CHA, C.-J. (2021). Antibiotic resistome from the One-Health perspective:
- 27 understanding and controlling antimicrobial resistance transmission. Experimental e Molecular
- 28 Medicine, 53(3), 301–309. https://doi.org/10.1038/s12276-021-00569-z.
- 29 KULSHRESHTHA G., RATHGEBER B., STRATTON G., THOMAS N., EVANS F.,
- 30 CRITCHLEY A., HAFTING J., e PRITHIVIRAJ B. (2014). Feed supplementation with red
- 31 seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality,
- 32 and gut microbiota of layer hens. Poultry Science, 93(12), 2991–3001.
- 33 https://doi.org/10.3389/fmicb.2017.00567.
- LACROIX, M.; VU, K. D.; Edible coatings and films materials:proteins. In: Han J (ed)
- Innovations in food packaging, 2nd edn. Elsevier, Amsterdam, 2014. pp 277–304.
- 36 LAMAS, V. S.; LUVIELMO, de M. M. Revestimentos comestíveis em frutas. Estudos
- Tecnológicos em Engenharia, v 8, n.1.p. 8-15, 2012.

- 1 LANA, S. R. V. et al. Qualidade de ovos de poedeiras comerciais armazenados em diferentes
- 2 temperaturas e períodos de estocagem. Revista Brasileira de Saúde e Produção Animal, [S.l.],
- 3 v. 18, n. 1, p. 140-151, 2017.
- 4 LIY., YANG X., ZHANG H., JIA H., LIU X., YU B., ZENG Y., ZHANG Y., PEI X., e YANG,
- 5 D. (2020b). Prevalence and antimicrobial susceptibility of Salmonella in the commercial eggs
- 6 in China. International Journal of Food Microbiology, 325, 108623.
- 7 https://doi.org/10.1016/j.ijfoodmicro.2020.108623.
- 8 MAIA, L. H; PORTE, A; SOUZA, V. F. Filmes comestíveis aspectos gerais propriedades de
- 9 barreira a umidade e oxigênio. Boletim do centro de Pesquisa de Processamento de Alimentos,
- 10 v.18.n.1, p.105-128, 2000.
- 11 MAIJALA R, RANTA J, SEUNA E. The efficiency of the Finnish Salmonella Control
- 12 Programme. Food Control 2005; 16(8):669-675.
- MCEWEN, S. A., e COLLIGNON, P. J. (2018). Antimicrobial resistance: a one health
- perspective. Microbiology Spectrum, 6(2), 2–6. https://doi.org/10.1093/trstmh/trx050.
- MCWHORTER, A. R., e CHOUSALKAR, K. K. (2018). A long-term efficacy trial of a live,
- attenuated Salmonella Typhimurium vaccine in layer hens. Frontiers in Microbiology, 9, 1380.
- 17 https://doi.org/10.3389/fmicb.2018.01380/full.
- MELO, E. S. de et al. Doenças transmitidas por alimentos e principais agentes bacterianos
- envolvidos em surtos no Brasil. PUBVET, v. 12, p. 131, 2018. DOI: 10.31533/12n10a191.1-9
- 20 MENDES, F. R. Qualidade física, química e microbiológica de ovos lavados armazenados sob
- duas temperatuas e experimentalmente contaminados com Pseudomonas aeruginosa. 2010.72f.
- 22 Dissertação (Mestrado em Ciência Animal) Escola de Veterinária, Universidade Federal de
- 23 Goiás, Goiânia.
- MULLER, L. R. PARUSSOLO, L. Qualidade microbiológica da água utilizada para consumo
- em escolas municipais de Mamborê, Paraná. SaBios-Revista de Saúde e Biologia, v. 9, n. 1, p.
- 26 95-99, jan./abr. 2014.
- 27 NASCIMENTO, V. P.; SALLE, C. T. P. O ovo. In: MACARI, M.; GONZALES, E. Manejo da
- incubação. 2. ed.. Campinas: Fundação APINCO de Ciência e Tecnologia Avícolas, p.34-50.
- 29 2003.
- NAKAZATO, G.; CAMPOS, T. A.; STEHLING, E. G.; BROCCHI M.; SILVEIRA, W. D.
- 31 Virulence factors of avian pathogenic Escherichia coli (APEC). Pesquisa Veterinária Brasileira,
- 32 Rio de Janeiro, v. 29, n. 7, p. 479-486, 2009
- OLIVEIRA, B. L.; OLIVEIRA, D. D. Qualidade e tecnologia de ovos. Lavras: UFLA, 2013.
- 34 223 p
- 35 OLIVEIRA, B. L. Ovo Qualidade e importante, 2014 [online] Disponível:http://
- 36 www.snagricultura.org.br/artigos/artitec-ovos.htm.

- 1 ORDÓNEZ, J. A. Tecnologia de alimentos de origem animal. Porto Alegre: Artmed, 2005. v.
- 2 2. 280 p.
- 3 ORNELLAS, L. H. Técnica dietética: seleção e preparo de alimentos. 7. ed. São Paulo: Editora
- 4 Metha, 2001. 330 p.
- 5 OSBURN, B., SCOTT, C., e GIBBS, P. (2009). One world—one medicine—one health:
- 6 emerging veterinary challenges and opportunities. Revue Scientifique et Technique, 28(2),
- 7 481–486. https://doi.org/10.20506/rst.28.2.1884.
- 8 OTONI, C. G. Recent advances on edible films based on fruits and vegetables a review.
- 9 Comprehensive Reviews in Food Science and Food Safety, Chicago, v. 16, p. 1151-1169, 2017.
- 10 PARK, H. J; Edible coatings for fruits. In: JONGEN, W.W.F. (Ed). Fruit and vegetable
- processing: improvive quality. Boca Raton:CRC. Press. 331-345, 2005.
- 12 RÊGO, I.O.P.; CANÇADO, S.V; FIGUEIREDO, T.C.; MENEZES, L.D.M.; OLIVEIRA,
- 13 D.D.; LIMA, A.L.; CALDEIRA, L.G.M.; ESSER, L.R. Influência do período de
- 14 armazenamento na qualidade do ovo integral pasteurizado refrigerado. Arquivo Brasileiro de
- 15 Medicina Veterinária e Zootecnia, v. 64, n.3, p.735-742. 2012. Disponível em:
- http://www.scielo.br/scielo.php?pid=S0102-09352012000300027&script=sci_arttext.
- 17 RICKE, S.C. 2017. Insights and challenges of Salmonella infection of laying hens. Current
- 18 Opinion in Food Science 2017, 18:43–49.
- 19 ROSE, S. P. Principles of Poultry Science. New York: CAB international, 1997. 135 p.
- 20 ROSSI, G.A.M.; HOPPE, E.G.L.; MARTINS. A.M.C.V.; PRATA, L.F. Zoonoses parasitárias
- veiculadas por alimentos de origem animal: revisão sobre a situação no Brasil. Arquivos do
- 22 Instituto Biológico, v. 81, n. 3, p. 290- 298, 2014.
- 23 RUSHTON, J. (2015). Anti-microbial use in animals: how to assess the trade-offs. Zoonoses
- 24 and Public Health, 62, 10–21. https://doi.org/10.1111/zph.12193.
- 25 SANTOS, M. S. V. et al. Efeito da temperatura e estocagem em ovos. Ciência e Tecnologia de
- 26 Alimentos, Campinas, v.29, n. 3, p.513-517, 2008.
- 27 SHINOHARA, N. K. S., BARROS, V. B. D., JIMENEZ, S. M. C., MACHADO, E. D. C. L.,
- DUTRA, R. A. F., & LIMA FILHO, J. L. D. (2008). Salmonella spp., importante agente
- 29 patogênico veiculado em alimentos. Ciência & saúde coletiva, 13, 1675-1683.
- 30 SHIT, S. C.; SHAH, P. M. Edible polymers: challenges and opportunities. Journal of Polymers,
- v. 14, p. 1-13, 2014. https://doi.org/10.1155/2014/427259.
- 32 SILVA, V. D. M. Desenvolvimento, caracterização e aplicação de filmes comestíveis
- produzidos com farinha de casca de banana madura e extrato das folhas de Eriobotrya japonica
- 34 Lindl. 2020. 208 f. Tese (Doutorado em Ciência de Alimentos) Faculdade de Farmácia,
- 35 Universidade Federal do Minas Gerais, Belo Horizonte, 2020.
- 36 SILVERSIDES, F. G.; SCOTT, T. A. Effect of storage and layer age on quality of eggs from
- two lines of hens. Poultry Science, Champaign, v.80, n.8, p.1240-1245, 2001.

- SOLOMON, S. E. Egg and eggshell quality. Iowa: Iowa States University Press, 1997. 149 p.
- 2 SOUZA, H. B. A. de, SOUZA, P. A. de. Efeito da temperatura de estocagem sobre a qualidade
- 3 interna de ovos de codorna armazenados durante 21 dias. Alim. Nutr., São Paulo, v.6, p.7-13,
- 4 1995.
- 5 TESSARI ENC, CARDOSO ALSP, CASTRO AGM. Prevalência de Salmonella enteritidis em
- 6 carcaças de frango industrialmente processadas. Higiene Alimentar 2003; 17(107):52-55.
- 7 TRIGO, J. M. et al. Efeito de revestimentos comestíveis na conservação de mamões
- 8 minimamente processados. Brasilian. Journal of Food Technology, v. 15, p. 125–133, 2012.
- 9 TURHAN, K.N. Is edible coating an alternative to Map for fresh and minimally processed
- 10 fruits.ACTA Horticulturae, v. 876, n.1.p.299-305, 2010.
- 11 União Europeia (2003). Regulamento (CE) Nº 2160/2003 do Parlamento Europeu e do
- 12 Conselho, de 17 de novembro de 2003, relativo ao controlo de salmonelas e outros agentes
- 13 zoonóticos específicos de origem alimentar. https://eur-lex.europa.eu/legal-
- content/PT/TXT/?uri=celex%3A32003R2160
- VIEIRA, M. G. A. et al. Natural-based plasticizers and biopolymer films: A review. European
- Polymer Journal, v. 47, p. 254–263, 2011. https://doi.org/10.1016/j.eurpolymj.2010.12.011.
- 17 VILLA-DIEGO, A. M. D.; SOARES, N. F. F.; ANDRADE, N. J.; PUSCHMANN, R.; MINIM,
- 18 V. P. R.; CRUZ, R. Filmes e revestimentos comestíveis na conservação de produtos
- 19 alimentícios. Revista Ceres, v. 52, n. 300, p. 221-244, 2005.
- 20 WAN, V. C. H.; Kim, M. S.; Lee, S. Y. Water vapor permeability and mechanical properties of
- soy protein isolate edible films composed of different plasticizer combinations. Journal of Food
- 22 Science, Chicago, v.70, p.387-391, 2005.
- 23 YAMAGUCHI, M. U.; CORTEZ, L. E. R.; OTTONI, L. C. C.; OYAMA, J. Qualidade
- 24 microbiológica da água para consumo humano em instituição de ensino de Maringá-PR.
- 25 Revista: O mundo da saúde, São Paulo, v. 37, n. 3, p. 312-320, 2013.
- 26 ZEDER, M. A. Core questions in domestication research. Proceedings of the National Academy
- of Sciences, v. 112, n. 11, p. 3191–3198, 2015.

29 3 ARTIGO CIENTÍFICO

- 3.1 Revestimento a base de albumina sobre características microbiológicas e pH de
- 31 albúmen de ovos brancos de poedeiras comerciais
- 32 Albumin-based coating on microbiological characteristics and pH of albumen from
- white eggs of commercial laying hens
- 34 Amanda Alice Lapa Santos¹

28

3.1.1 RESUMO

1

2 Os revestimentos são opções para aumentar e manter as propriedades dos produtos alimentícios, 3 protegendo-os assim de deteriorações. Desse modo, o estudo foi realizado com o objetivo de avaliar revestimentos a base de albumina e albumina + glicerol na casca de ovos brancos, com 4 5 ou sem exposição de luz ultravioleta (UV) e armazenados em diferentes períodos em 6 temperatura ambiente (25°C). Para isso, foram realizadas análises microbiológicas (pesquisa de 7 Salmonella e contagem UFC - E. coli) e determinação do pH do albúmen. Os revestimentos 8 utilizados foram a base de albumina com ou sem glicerol e exposição de UV. Em relação à 9 pesquisa para Salmonella, a avaliação do conteúdo interno de todos os ovos, não apresentou crescimento bacteriano. Observou-se que ovos com revestimento de albumina e glicerol, sem 10 11 revestimento + E. coli, com revestimento de albumina + glicerol + E. coli demostraram 12 crescimento bacteriano em 0, 15 e 30 dias de armazenamento, respectivamente. Os resultados demonstraram eficácia na proteção contra contaminação por microrganismos de ovos 13 revestidos com albumina + glicerol + UV. Constatou-se que os pH's de ovos revestidos de 14 15 albumina + glicerol e albumina + glicerol + UV foram menores aos 7, 14, 21, 28 e 35 dias, o que demonstra a eficácia desses revestimentos para manter as características de qualidade dos 16 ovos armazenados em temperatura ambiente. As soluções de albumina e albumina + glicerol 17 promove proteção dos ovos contra contaminação por E. coli por 30 dias de armazenamento. Os 18 revestimentos de albumina + glicerol + UV retardam o aumento do pH do albúmen. 19

Palavras-chave: avicultura, filmes comestíveis, glicerol, qualidade de ovos, tempo de prateleira

22 23

24

25

26

27

28

29 30

31

32

33

34

35

36

37 38

39

40

41

42

3.1.2 ABSTRACT

Coatings are options to increase and maintain the properties of food products, protecting them from deterioration. Therefore, the study was carried out with the objective of evaluating albumin and albumin + glycerol-based coatings on the shell of white eggs, with or without exposure to ultraviolet light (UV) and stored for different periods at room temperature (25°C). For this, microbiological analyzes were carried out (Salmonella and UFC research - E. coli count) and determination of the pH of the album. The coatings used were albumin-based with or without glycerol and UV exposure. Regarding Salmonella research, evaluation of the internal content of all eggs showed no bacterial growth. It was observed that eggs with albumin and glycerol coating, without coating + E. coli, and with albumin + glycerol + E. coli coating demonstrated bacterial growth in 0, 15 and 30 days of storage, respectively. The results obtained were effective in protecting against contamination by microorganisms of eggs coated with albumin + glycerol + UV. It was found that the pH's of eggs coated with albumin + glycerol and albumin + glycerol + UV were lower at 7, 14, 21, 28 and 35 days, which demonstrates the effectiveness of these coatings in maintaining the quality characteristics of eggs stored in ambient temperature. Albumin and albumin + glycerol solutions protect eggs against contamination by E. coli during 30 days of storage. Albumin + glycerol + UV retardant coatings increase the pH of the albumen.

Keywords: edible films, egg quality, glycerol, poultry farming, shelf time

43

3.1.2 Introdução

A qualidade do ovo de consumo é uma das principais características desejadas e valorizadas pelos consumidores e está relacionada com o peso e aparência da casca (sujeira, defeito, trincas e manchas de sangue), prazo de validade e características sensoriais, como por exemplo, a cor da gema e casca (Alleoni e Antunes, 2001). Diversos fatores podem afetar a qualidade dos ovos como idade e alimentação das poedeiras, além do tempo e condições de armazenamento (Oliveira e Oliveira, 2013).

A menor qualidade do ovo pode favorecer maior contaminação da casca e permitir a entrada de microrganismos para o conteúdo interno do ovo (Souza Soares e Siewerdt, 2005). Essa situação deve ser observada para certificar a segurança do alimento até o consumidor, visto que, existe preocupação devido a possibilidade de contaminação por *Salmonella* (Andrade, 2004) e *E. coli*. Uma possibilidade para impedir a entrada de microrganismos e ampliar o tempo de prateleira dos ovos é o tratamento da casca com revestimentos comestíveis que agem como regulador de trocas gasosas. As trocas gasosas são responsáveis pelas alterações no pH, proteína e nas propriedades nutricionais (Caner e Yüceer, 2015).

Os revestimentos comestíveis são uma suspensão de biopolímeros, chamada de solução filmogênica, que é aplicada na forma líquida por imersão na superfície do alimento que, após secagem, torna-se uma cobertura (Choudhary et al., 2021). Podem ser consumidos junto com o produto, pois têm baixo custo de produção e são biodegradáveis e contribuem para a redução do impacto ambiental (Shit e Shah, 2014; Alvarez-Pérez et al., 2015; Silva, 2020).

As matérias-primas usadas na formulação dos revestimentos devem ser abundantes, de baixo custo, biodegradáveis e renováveis (Cazón et al., 2017 e Fu et al., 2022). Vários polímeros naturais de origem animal ou vegetal, como polissacarídeos, lipídeos e proteínas sozinhos ou combinados, têm sido empregados na formação desses materiais (Assis e Britto, 2014; Alvarez-Pérez et al., 2015; Silva, 2020). Os filmes mais utilizados e vistos em ovos são a quitosana (Bhale et al., 2003; Caner e Cansiz, 2008), proteína de soja (Cho et al., 2002) e proteína do soro de leite (Caner, 2005), normalmente associados à elementos plastificantes.

Os plastificantes são substâncias solicitadas na formação dos revestimentos, principalmente para os que tem como base principal proteínas e polissacarídeos. Possuem a função de aumentar a mobilidade e reduzir a viscosidade, a densidade e a dureza do polímero, a fim de melhorar flexibilidade, extensibilidade e resistência mecânica dos revestimentos (Vieira et al., 2011e Cazón et al., 2017). O glicerol e sorbitol são as substâncias mais utilizadas

com essa finalidade (Otoni et al., 2017), pois favorecem a formação de proteção homogênea sem presença de fraturas ou rupturas após a secagem (Shimazu et al., 2007).

Outro aspecto que pode ser considerado é a correlação entre meio ambiente, seres humanos e animais que tem extrema importância e relevância atualmente. Dessa forma, tornase indispensável a abordagem relacionada à Saúde Única, definida como um esforço colaborativo de múltiplas disciplinas exercidas localmente, nacionalmente e globalmente, com o intuito de atingir uma otimização conjugada da saúde humana, animal e do meio ambiente, por meio de políticas, pesquisas, educação e pela prática.

Considerando-se a importância dos ovos na alimentação humana, a preocupação com a manutenção da qualidade durante o armazenamento e o fornecimento de um alimento seguro ao consumidor, o estudo foi realizado com o objetivo de avaliar revestimentos de ovos brancos de poedeiras comerciais submetidos a diferentes períodos de armazenamento e mantidos em temperatura ambiente.

3.1.3 Material e Métodos

3.1.3.1 Delineamento experimental das análises microbiológicas

O experimento foi realizado no Laboratório de Bacteriologia da Faculdade de Medicina Veterinária e Zootecnia – FAMEZ da Universidade Federal de Mato Grosso do Sul – UFMS, localizada no município de Campo Grande – MS. Foram utilizados 81 ovos brancos de galinhas poedeiras de 44 semanas de idade, distribuídos em delineamento experimental inteiramente casualizado. Os ovos foram distribuídos aleatoriamente em nove tratamentos, para avaliação do revestimento comestível na manutenção da qualidade microbiológica, a capacidade de proteção contra contaminantes (bactérias) e o efeito de redução da contaminação por exposição à radiação não ionizante (luz ultravioleta).

As análises foram realizadas em três períodos (0, 15 e 30 dias). Os tratamentos foram:

- Sem revestimento (Pesquisa de Salmonella);
- Sem revestimento + pulverização de *E. coli*;
- Sem revestimento + pulverização de *E. coli* + UV (ultravioleta);
- Revestimento de albumina (Pesquisa de *Salmonella*);
- Revestimento de albumina+ pulverização de *E. coli*;
- Revestimento de albumina+ pulverização de *E. coli* + UV;
- Revestimento de albumina + glicerol (Pesquisa de *Salmonella*);

- Revestimento de albumina + glicerol + pulverização de *E. coli*;
 - Revestimento de albumina + glicerol + pulverização de *E. coli* + UV.

3.1.3.2 Revestimentos comestíveis

Os ovos foram armazenados em embalagem de acrílico, previamente desinfectadas com álcool 70% e mantidos em temperatura ambiente (25°C). A albumina foi oriunda de ovos de descarte da indústria. A solução de albumina foi composta 100% de albúmen de ovos de descarte, para isso os ovos foram quebrados e o conteúdo do albúmen foi separado da gema em *becker* de vidro esterilizado e posteriormente ocorreu a imersão dos ovos nessa solução.

A solução de albumina + glicerol foi obtida a partir de 8 mL do albúmen de ovos de descarte, 16 mL de glicerol e 76 mL de água destilada estéril. Todas essas medidas foram feitas com auxílio de uma proveta de vidro esterilizada, e essa solução foi colocada em um becker de vidro esterilizado para a imersão dos ovos. Os ovos foram imersos e permaneceram nas soluções de albumina e albumina + glicerol por um minuto.

3.1.3.3 Amostra bacteriana e contaminação experimental dos ovos

Para pulverização dos ovos foi utilizada uma amostra padrão de *Escherichia coli* (ATCC 25922) mantida congelada na micoteca do Laboratório de Bacteriologia da FAMEZ/UFMS. A bactéria foi reativada em caldo infusão de cérebro e coração (BHI), incubada à 37°C por 24 horas, sendo posteriormente plaqueada em ágar *MacConkey*. A confirmação da pureza foi realizada por características morfotintoriais.

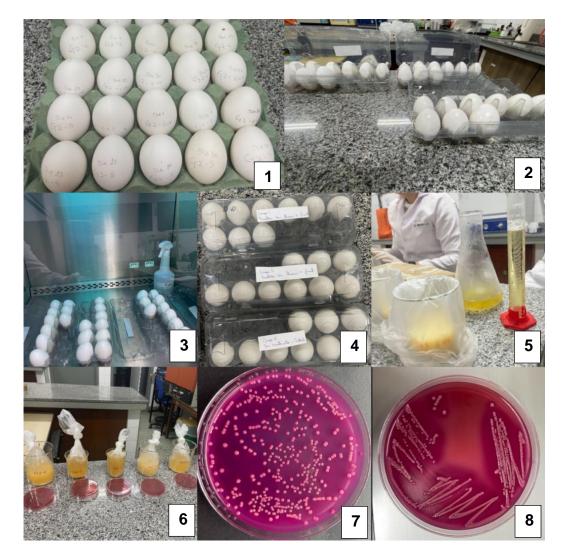
As colônias foram colhidas e suspensas em solução fisiológica, ajustando-se o inóculo para o valor de 0,5 na escala *MC Farland*, que corresponde a 1,5 x 10⁸ bactérias/mL. Em seguida a pulverização dos ovos foi realizada em capela de proteção biológica, com o inóculo, utilizando borrifador manual.

Os ovos dos tratamentos sem revestimento + pulverização de E. coli + UV (ultravioleta); revestimento de albumina+ pulverização de E. coli + UV e revestimento de albumina + glicerol + pulverização de E. coli + UV após receberem a pulverização das soluções de albumina ou albumina + glicerol, foram colocados em uma capela de fluxo laminar com exposição direta à luz ultravioleta por 15 minutos. A exposição foi iniciada com os grupos não pulverizados seguidos dos pulverizados com o inóculo bacteriano. Em seguida, todos os ovos foram armazenados em embalagem plástica e mantidos em temperatura ambiente (25°C).

3.1.3.4 Análises microbiológicas do conteúdo interno dos ovos

Nos dias 0, 15 e 30 os ovos foram quebrados e realizou-se um *pool* de 3 ovos de cada revestimento. O processamento dos ovos para análises microbiológicas foi realizado com técnica asséptica com objetivo de evitar contaminação por bactérias do ambiente. O manipulador usou luva estéril, realizando o procedimento em bancada previamente desinfetada e próximo à chama do bico de Bunsen. As cascas dos ovos foram previamente higienizadas com solução de álcool 70°. As análises microbiológicas foram realizadas em duplicata.

3.1.3.5 Pesquisa de Salmonella


Para avaliação da contaminação natural dos ovos, e presença de bactérias do gênero *Salmonella*, com diferentes revestimentos, foi realizado protocolo conforme descrito por Oliveira e Silva (2000), com modificações. Foram transferidos 25 mL do *pool* para um becker contendo 225 mL de água peptonada 1%. Esta suspensão foi incubada por até 20 horas em estufa à 37°C. Ao fim da incubação foi feita homogeneização e transferência de 1mL da suspensão para tubo contendo para caldo Rappaport Vassiliadis (10 mL). Os frascos foram incubados em estufa a 37°C por 24 horas. Ao final da incubação, com auxílio de alça calibrada de 1 μL, foi feito plaqueamento em ágar *Hektoen*, para contagem de unidades formadoras de colônias (UFC) de colônias com características de *Salmonella* spp.

3.1.3.6 Contagem de UFC para E. coli

Foi realizado o mesmo procedimento inicial descrito para pesquisa de *Salmonella*, no qual se fez a diluição do *pool* em água peptonada 1%. Após incubação por 24 horas, um inóculo de 1 μL foi usado para plaqueamento em superfície de ágar *Mac Conkey*. As placas foram incubadas à 37°C por 24 horas, para posterior realização de contagem de UFC, de colônias com características de *E. coli* (Figura 2).

3.1.3.7 Descrição dos resultados

Foi realizada a análise descritiva das variáveis.

2

3

4 5

6 7

8

9

Figura 2. Processo para as análises microbiológicas. 1. Ovos identificados e pesados; 2. Ovos revestidos e separados por seus determinados grupos; 3. Os grupos determinados passaram por exposição de 15 minutos na luz UV; 4. Ovos prontos para ir para armazenamento; 5. Para realizar a contagem UFC de Escherichia coli os ovos foram quebrados e o conteúdo interno foi recolhido em um becker estéril (pool 3 ovos) transferindo 25 mL do homogeneizado de gema e clara para recipiente contendo 225 mL de água peptonada 1% e incubava por até 20h em estufa 37°; 6. Usando alça calibrada (1 µL) o inóculo era colocado em superfície de Mac Conkey e levado para estufa por até 24h em estufa a 37°C; 7 e 8 Placa de Agar Mac Conkey com crescimento de colônias características da bactéria do gênero Escherichia coli.

10 11

12

13

14

15

16

3.1.3.7 Delineamento experimental da determinação do pH do albúmen

As avaliações foram realizadas no Laboratório Experimental em Ciência Aviária e Laboratório Qualicarnes da Faculdade de Medicina Veterinária e Zootecnia da Universidade Federal de Mato Grosso do Sul. Para determinação do pH do albúmen foram utilizados 540 ovos brancos de poedeiras comerciais com 63 semanas de idade e peso médio de 56,14±5,22g.

- 1 Os ovos foram distribuídos em delineamento inteiramente casualizado em esquema fatorial 6 x
- 2 6 (6 revestimentos x 6 dias de armazenamento: 0, 7, 14, 21, 28 e 35) com 5 repetições e 3 ovos
- 3 cada. Os revestimentos foram:
- Sem revestimento;
 - Sem revestimento + UV;
- Revestimento de albumina;
- Revestimento de albumina + UV;
- Revestimento de albumina + glicerol;
- Revestimento de albumina + glicerol + UV;

12

13

5

Em seguida, todos os ovos foram armazenados em embalagem plástica e mantidos em temperatura ambiente. A temperatura foi monitorada diariamente. As temperaturas máxima e mínima médias foram de 30 °C e 24 °C, respectivamente.

Aos 0, 7, 14, 21, 28 e 35 dias de armazenamento, os ovos foram quebrados.

Posteriormente, gema e albúmen foram separados. O albúmen foi recolhido em béquer e o pH

16 foi determinado com o auxílio de peagâmetro (HI 99163 pH/Temperature Meter).

Os dados foram submetidos à análise de variância e quando ocorreram diferenças significativas,

as médias foram comparadas pelo teste de Tukey a 5% de probabilidade.

19

20

21

22

23

3.1.4 Resultados

Em relação à pesquisa para *Salmonella*, obteve-se que a avaliação do conteúdo interno de todos os ovos, independentemente do revestimento, não apresentou crescimento bacteriano de *Salmonella sp.* em todos os períodos de armazenamento (Tabela 1).

2425

26

Tabela 1. Pesquisa de *Salmonella* spp. em ovos brancos submetidos a revestimentos a base de albumina e armazenados por 30 dias

Revestimento		Período	
Revestimento –	0	15	30
Sem	-	-	-
Albumina	-	-	-
Albumina + glicerol	-	-	-

2728

29

Observou-se que ovos com revestimento de solução de albumina e glicerol, sem revestimento que foram pulverizados com *E. coli*, com revestimento de solução de albumina +

1 glicerol e que foram pulverizadas com E. coli demostraram crescimento bacteriano nas

avaliações realizadas em 0, 15, 30 e 30 dias de armazenamento, respectivamente (Tabela 2).

Entretanto, não foi verificada formação de colônias de *E. coli* em ovos sem ou com revestimento, contaminados e submetidos à luz ultravioleta.

Os ovos sem revestimento e contaminados com *E. coli* foram positivos para formação de colônias aos 15 dias de armazenamento, e dessa forma, obteve-se resultado negativo para formação de colônias aos 30 dias.

Verificou-se que a solução de albumina e albumina + glicerol foram eficazes em proteger a contaminação do conteúdo interno do ovo por *E. coli* até 15 dias de armazenamento, uma vez que, para esses revestimentos, houve formação de colônias de *E. coli* somente aos 30 dias de armazenamento.

Tabela 2. Formação de colônia de *E. coli* em ovos submetidos a revestimentos a base de albumina e armazenados por 30 dias

Daviastimanta	Período (dias)			
Revestimento	0	15	30	
Sem	-	-	_	
Sem + E. coli pulverizada	-	+	-	
Sem + E. coli pulverizada + UV	-	-	-	
Albumina	-	-	-	
Albumina + E. coli pulverizada	-	-	+	
Albumina + E. coli pulverizada + UV	-	-	-	
Albumina + glicerol	+	-	-	
Albumina + glicerol + <i>E. coli</i> pulverizada	-	-	+	
Albumina + glicerol + <i>E. coli</i> pulverizada + UV	-	-	-	

Observou-se interação significativa entre revestimento da casca dos ovos e período de armazenamento para característica pH de albúmen (Tabela 3). Valores superiores (P<0,05) de pH de albúmen foram verificados a partir de 7 dias de armazenamento para ovos submetidos a todos os tipos de revestimento testados no presente estudo. Considerando os períodos de armazenamento, constatou-se que os pH's de ovos revestidos com solução de albumina + glicerol e solução de albumina + glicerol + UV foram menores (P<0,05) aos 7, 14, 21, 28 e 35 dias, o que demonstra a eficácia desses revestimentos para manter as características de qualidade dos ovos de casca branca armazenados em temperatura ambiente.

Tabela 3. Valores de pH de albúmen de ovos brancos de consumo submetidos a diferentes revestimentos

Revestimento	Período de armazenamento (dias)				Média		
	0	7	14	21	28	35	_
Sem	8,46 ^{Ab}	9,42 ^{Aa}	9,40 ^{Aa}	9,38 ^{Aa}	9,31 ^{Aa}	9,29 ^{Aa}	9,33
Sem + UV	$8,50^{Ab}$	9,41 ^{Aa}	$9,37^{Aa}$	9,36 ^{Aa}	9,33 ^{Aa}	$9,25^{Aa}$	9,31
Albumina	$8,56^{Ac}$	$9,34^{Aab}$	$9,41^{Aa}$	$9,34^{Aab}$	$9,22^{Aab}$	$9,15^{Ab}$	9,26
Albumina + UV	$8,56^{Ab}$	9,31 ^{Aa}	$9,32^{Aa}$	9,34 ^{Aa}	$9,25^{Aa}$	$9,18^{Aa}$	9,25
Albumina + glicerol	$8,36^{Ac}$	$8,73^{Bb}$	$9,02^{Ba}$	$8,97^{Ba}$	$9,03^{Ba}$	$8,99^{Ba}$	8,92
Albumina + glicerol +	$8,36^{Ac}$	$8,62^{Bb}$	$8,87^{Ca}$	$8,94^{Ba}$	8,95 ^{Ca}	$8,96^{\text{Ba}}$	8,85
UV							
Média	8,47	9,14	9,23	9,22	9,18	9,14	
CV (%)	1,63						

^{*}Médias seguidas de letras minúsculas distintas na linha, diferem entre si pelo teste de Tukey a 5% de probabilidade. Médias seguidas de letras maiúsculas distintas na coluna, diferem entre si pelo teste de Tukey a 5% de probabilidade.

3.1.5 Discussão

No presente estudo, a pesquisa de *Salmonella* avaliou o conteúdo interno dos ovos e verificou a presença ou ausência do microrganismo para monitorar a qualidade dos ovos, já que foram oriundos de indústria, uma vez que a *Salmonella* é um microrganismo de grande importância para a segurança alimentar. Para Shinohara et al. (2008) a maioria dos sorotipos da *Salmonella* é patogênica ao homem além disso, de acordo com Lopes et. al., (2007), os ovos consumidos crus podem estar envolvidos em surtos de toxinfecção humana por *Salmonella* spp.

A legislação estabelece que na investigação de surtos de DTAs deve considerar os dados clínicos e epidemiológicos, conforme diretrizes do Ministério da Saúde e determina que para realizar a análise de *Salmonella*, o resultado deve ser de ausente em 25 g do produto de origem animal (Brasil, 2016).

Segundo Flowers et al. (2001) o isolamento de *Salmonella* é concorrido com outras enterobactérias as quais crescem em meios de cultivo utilizados que favorecem a multiplicação de *Salmonella* e assim, não conseguem impedir completamente o crescimento de outras enterobactérias. Por essa razão, não foram utilizados, no presente estudo, os mesmos meios de cultivo na contagem de UFC de *E. coli* e na pesquisa de *Salmonella*, pois o ágar MacConkey é considerado o meio que oferece menores chances de isolar *Salmonella*.

Os ovos que foram revestidos com solução albumina e solução albumina + glicerol e foram expostos a radiação ultravioleta não apresentaram formação de colônias da bactéria *E. coli* até 30 dias de armazenamento. É possível que a ausência de *E. Coli* ocorreu em consequência dos

raios ultravioleta, que penetra na parede celular da bactéria, sendo absorvido pelo DNA, RNA
e proteínas resultando na eliminação da bactéria. Resultado semelhante foi verificado por Ueki
et al. (2006) que testaram a ação germicida da radiação ultravioleta diante de micobactérias e
obtiveram que todas as placas expostas diretamente à radiação ultravioleta por no mínimo cinco
minutos apresentaram inibição do crescimento das bactérias, esses resultados demostraram que
a exposição de UV foi eficiente na eliminação de micobactérias.

procedimentos de higienização.

Entretanto, Ueki et al., (2008) ressaltaram que a radiação ultravioleta não penetra em materiais, agindo apenas na superfície e que seu potencial é afetado pelo acúmulo de sujidades e pela distância do plano a ser desinfetado e Sangioni (2012) afirmou que a radiação ultravioleta é um método secundário, necessitando associar o emprego de boas práticas de biossegurança. Nesse sentido, o processo de esterilização por radiação ultravioleta perde a eficácia, durante o armazenamento dos ovos em locais com risco de contaminação (supermercados, feiras etc) ficando novamente vulnerável a ação dos microrganismos. No entanto, no presente estudo foi observada ausência de *E. coli* nos ovos revestidos com albumina + UV e albumina + glicerol + UV aos 30 dias, demonstrando a eficácia dos revestimentos na proteção dos ovos.

Os ovos que foram imersos em solução de albumina + glicerol e que não foram pulverizados com o inóculo de *E. coli* apresentaram crescimento das colônias da bactéria no dia 0 de avaliação. Essa ocorrência foi devida, provavelmente à contaminação cruzada, possivelmente durante o processo de armazenamento, uma vez que os ovos permaneceram no mesmo ambiente durante todos os períodos de avaliação, ou em função da contaminação de superfícies em que os ovos foram manuseados (mãos, salpicos de saliva e espirros) já que o local de manuseio e armazenamento era aberto e outras pessoas tiveram acesso. Segundo Guastalli et al. (2010), a penetração de microrganismos pelos poros da casca é a principal via de transmissão para o interior do ovo.

Resultados semelhantes foram descritos por Soares et al. (2012), que encontraram contaminação cruzada ao analisar a taxa de transferência do microrganismo *S. Enteritidis* de pele de frango contaminada para diferentes superfícies de cortes para tomates. Por esses resultados, verifica-se o risco de ocorrer contaminação cruzada durante o processamento e armazenamento ou em contaminações de superfícies e assim, é fundamental a aplicação de

Os pH's dos ovos revestidos com solução de albumina + glicerol e solução de albumina + glicerol + UV foram menores aos 7, 14, 21, 28 e 35 dias. Destaca-se que, no presente estudo,

propôs-se manter os ovos em temperatura ambiente (aproximadamente 25 °C). Entretanto, constatou-se temperatura máxima média acima de 25 °C no ambiente de armazenamento e, consequentemente maior desafio para manutenção da qualidade dos ovos. Dessa forma, esperava-se redução da qualidade dos ovos, porém foi observado, no presente estudo, que nos diferentes períodos de armazenamento os revestimentos de albumina + glicerol e albumina + glicerol + UV foram capazes de reduzir os efeitos, considerando que o pH do albúmen já estava alto no dia 0. o aumento do pH albúmen.

Segundo Pinto et al. (2021), a temperatura do ambiente de armazenamento afeta a qualidade do ovo e a legislação brasileira não determina a obrigatoriedade de refrigeração para estabelecimentos comerciais. Além disso, Keener et al. (2006) analisaram que quando os ovos são armazenados em temperatura ambiente elevada (acima de 25 °C) sofrem reações químicas que aceleram seu processo de deterioração, pois a alta temperatura ambiente acelera o funcionamento de enzimas que podem elevar o pH.

Pode-se dizer que os revestimentos de albumina + glicerol e albumina + glicerol + UV foram eficientes em não aumentar significativamente o pH de albúmen, em função de serem soluções predominantemente proteica. Em estudo realizado por Suput et al. (2015) observouse que a matéria-prima proteica para revestimentos possui boa capacidade na formação de filmes em ambientes de alta temperatura, apresenta eficiência na barreira contra trocas gasosas e vapores e promove redução da taxa de respiração, resultando em troca seletiva de gases como oxigênio, gás carbônico e perda de umidade e que suas propriedades mecânicas são significativamente melhoradas pela adição de um plastificante como por exemplo o glicerol. Resultados semelhantes foram encontrados por Santos et al. (2018) não verificaram diferença significativa para pH de albúmen de ovos de casca vermelha in natura ou revestidos com óleo vegetal ou plástico filme ou papel laminado, mantidos em temperatura ambiente (22 °C) ou temperatura de geladeira (6 °C) por 7 ou 14 dias. Em contrapartida, Xavier et al. (2008) que avaliando pH de ovos brancos tipo grande embalados em plástico filme ou não e mantidos em temperatura ambiente (18 °C) ou refrigerada (4 °C), constataram aumento de pH de albúmen em função do período de armazenamento, independentemente do uso de embalagem e temperatura de estocagem.

Segundo Silversides (2001), o pH do albúmen de ovos frescos varia entre 7,6 e 8,0, todavia, há perda, por evaporação, de dióxido de carbono (CO2) do conteúdo interno do ovo através dos poros da casca a qual é influenciada pela temperatura ambiente e intensificada com

- o aumento do período de armazenamento, ocorrendo alcalinização do meio e pH entre 8,9 e 9,4
- 2 após 14 dias.
- 3 Os resultados demonstraram que o revestimento de base proteica albumina associado ao
- 4 glicerol para melhorar a fixação e permanência da solução na casca dos ovos potencializou a
- 5 proteção contra as perdas naturais de CO₂ durante o período de armazenamento e
- 6 consequentemente a manutenção de valores iguais ou a 9,0 de pH em comparação ao pH de
- 7 albúmen de ovos sem revestimento.

9

- 3.1.6 Conclusão
- Pela presente pesquisa não há indícios dos ovos não revestidos e revestidos com solução
- de albumina e albumina + glicerol contaminados por *Salmonella*.
- As soluções de albumina e albumina + glicerol promovem proteção dos ovos contra
- contaminação por *E. coli* por 30 dias de armazenamento.
- 14 A luz ultravioleta proporciona proteção dos ovos contra Escherichia coli
- independentemente do tipo de revestimento.
- Os revestimentos de albumina + glicerol e albumina + glicerol + UV retardam o aumento
- do pH do albúmen e, consequentemente, a perda de qualidade dos ovos de consumo por 35 dias
- de armazenamento.

19

- 20 3.1.6 Referências bibliográficas
- 21 ALLEONI, A. C. C., ANTUNES, A. J. Unidade Haugh como medida da qualidade de ovos de
- 22 galinha armazenados sob refrigeração. Scientia Agrícola, Piracicaba, v. 58, n. 4, p. 681 685,
- 23 2001.
- 24 ALVAREZ-PÉREZ, O. B. et al. Pectin candelilla wax: an alternative mixture for edible films.
- Journal of Microbiology, Biotechnology and Food Sciences, v. 5, n. 2, p. 167-171, 2015.
- 26 http://dx.doi.org/10.15414/jmbfs.2015.5.2.167-171.
- 27 ANDRADE, M. A., CAFÉ, M. B., JAYME, V. S., ROCHA, P. T., LEANDRO, N. S. M.,
- STRINGHINI, J. H. Avaliação da qualidade bacteriológica de ovos de galinha comercializados
- em Goiânia. Goiás. Brasil. Ciência Animal Brasileira, Goiânia, v. 5, n. 4, p. 221-228, 2004.
- 30 ASSIS, O. B. G.; BRITTO, D. Revisão: coberturas comestíveis protetoras em frutas:
- 31 fundamentos e aplicações. Brazilian Journal of Food Technology, Campinas, v.17, n.2, p. 87-
- 32 97, 2014.
- 33 BHALE, S. et al. Chitosan coating improves shelf life of eggs. Journal of Food Science,
- 34 Chicago, v. 68, n. 7, p. 2378-2383, 2003.

- 1 BRASIL. Ministério da Saúde. Portaria DAS n.9, de 24 de fevereiro de 2016. Regulamento
- 2 técnico sobre padrões microbiológicos para alimentos. Diário Oficial da União, Brasília, 24 de
- 3 fevereiro de 2016
- 4 CANER, C. Whey protein isolate coating and concentration effects on egg shelf life. Journal of
- 5 the Science of Food and Agriculture, London, v. 85, n. 13, p. 2143-2148, 2005.
- 6 CANER, C.; CANSIZ, Ö. Chitosan coating minimises eggshell breakage and improves egg
- 7 quality. Journal of the Science of Food and Agriculture, London, v. 88, n. 1, p. 56-61, 2008.
- 8 CANER, C.; YUCEER, M. Efficacy of various protein-based coating on enhancing the shelf
- 9 life of fresh eggs during storage. Poultry Science, Champaign, v.94, n.7, p.1665-1677, 2015.
- 10 CAZÓN, P. et al. Polysaccharide-based films and coatings for food packaging: A review. Food
- Hydrocolloids, v. 68, p. 136-148, 2017. http://dx.doi.org/10.1016/j.foodhyd.2016.09.009.
- 12 CHO, J. M. et al. Effects of soy protein isolate coating on egg breakage and quality of eggs
- during storage. Food Science and Biotechnology, Seul, v. 11, n. 4, p. 392-396, 2002.
- 14 CHO, S. Y.; RHEE, C. Sorption characteristics of soy protein films and their relation to
- mechanical properties. Food Science and Technology, Campinas, v. 35, n. 2, p. 151-157, 2002.
- 16 CHOUDHARY, U. et al. Utilization of Agro-Industrial Wastes as Edible Coating and Films for
- 17 Food Packaging Materials. In: Food Processing New Insight. IntechOpen. 2021. 18 pp.
- 18 http://dx.doi.org/10.5772/intechopen.99786.
- 19 FLOWERS, R. S. et al. Salmonella. In: DOWNES, F. P; ITO, K. Compendium of methods for
- 20 the microbiological examination of foods. 4. ed. Washington, D.C: American Public Health
- 21 Association, 2001. cap. 37, p. 357-380.
- FU, Z. et al. Structural, Thermal, Mechanical, and Physicochemical Properties of Corn Starch
- 23 and Tremella fuciformis Polysaccharide Based Composite Films. Starch Stärke, v. 74,
- 24 2100255, 2022. https://doi.org/10.1002/star.202100255
- 25 GUASTALLI, E. A. L; GAMA, N. M. S. Q.; BUIM, M. R.; OLIVEIRA, R. A.; FERREIRA
- A.J. F.; LEITE, D. S. Índice de patogenicidade, produção de hemolisina e sorogrupo de
- 27 amostras de Escherichia coli isoladas de aves de postura comercial. Arquivos do Instituto
- 28 Biológico, São Paulo, v. 77, n. 1, p. 153-157, 2010.
- 29 KEENER, K.M.; LACROSSE, J.D.; BABSON, J.K. Chemical method for determination of
- carbon dioxide content in gg yolk and egg albumen. Poultry Science, v.80, p.983-987, 2006.
- LOPES, M.; GALHARDO, J. A.; OLIVEIRA, J. T.; TAMANINI, R.; SANCHES, S. F.;
- 32 MULLER, E. E..Pesquisa de Salmonella spp. e microrganismos indicadores em carcaças de
- 33 frango e água de tanques pré-resfriamento em abatedouros de aves. Ciências Agrárias,
- 34 Londrina, v. 28, n. 3, p. 465-476, jul.-set., 2007.
- OLIVEIRA, B. L.; OLIVEIRA, D. D. Qualidade e tecnologia de ovos. Lavras: UFLA, 2013.
- 36 223 p.
- 37 OTONI, C. G. Recent advances on edible films based on fruits and vegetables a review.
- Comprehensive Reviews in Food Science and Food Safety, Chicago, v. 16, p. 1151-1169, 2017.
- PINTO, V. M.; ROCHA, F. R. T.; COELHO, K. O.; LEITE, P. R. S. C.; SOUSA JÚNIOR, J.
- 40 C. Qualidade externa, interna e microbiológica de ovos submetidos a diferentes condições de
- 41 sanitização, temperatura e períodos de armazenamentos. Revista Ibero Americana de Ciências
- 42 Ambientais, v. 12, n. 2, p. 135-147, 2021.

- 1 SANGIONI, L. A.; PEREIRA, D. I. B.; VOGEL, F. S. F.; et al. Princípios de biossegurança
- 2 aplicados aos laboratórios de ensino universitário de microbiologia e parasitologia. Ciência
- 3 Rural, v. 43, n. 1, 2013.
- 4 SANTOS, H. J. K.; RODRIGUES, R. B.; UCZAY, M. Qualidade de ovos comerciais
- 5 submetidos a diferentes condições de armazenamento. Revista Brasileira de Higiene e Sanidade
- 6 Animal, v. 12, n. 2, p. 179-189, 2018.
- 7 SHINOHARA, N. K. S., BARROS, V. B., JIMENEZ, S. M. C., MACHADO, E. C. L.,
- 8 DUTRA, R. A. F., e LIMA FILHO, J. L. (2008). Salmonella spp., importante agente patogênico
- 9 veiculado em alimentos. Ciência e Saúde Coletiva, 13, 1675–1683.
- 10 SHIT, S. C.; SHAH, P. M. Edible polymers: challenges and opportunities. Journal of Polymers,
- v. 14, p. 1-13, 2014. https://doi.org/10.1155/2014/427259.
- 12 SILVA, V. D. M. Desenvolvimento, caracterização e aplicação de filmes comestíveis
- produzidos com farinha de casca de banana madura e extrato das folhas de Eriobotrya japonica
- 14 Lindl. 2020. 208 f. Tese (Doutorado em Ciência de Alimentos) Faculdade de Farmácia,
- 15 Universidade Federal do Minas Gerais, Belo Horizonte, 2020.
- 16 SILVERSIDES, F.G.; SCOTT, T.A. Effect of storage and layer age on quality of eggs from
- two lines of hens. Poult. Sci., v.80, p.1240-1245, 2001.
- SHIMAZU, A. A.; MALI, S.; GROSSMANN, M. V. E. Efeitos plastificante e antiplastificante
- do glicerol e do sorbitol em filmes biodegradáveis de amido de mandioca. Semina: Ciências
- 20 Agrárias, v. 28, n. 1, p. 79-88, 2007
- 21 SOARES VM, PEREIRA JG, VIANA C, IZIDORO TB, BERSOT LDS, PINTO JPDAN.
- 22 Transfer of Salmonella Enteritidis to four types of surfaces after cleaning procedures and
- crosscontamination to tomatoes. Food microbiology. 2012; 30:453–6.
- SOUZA-SOARES, L. A.; SIEWERDT, F. Aves e ovos. Pelotas: Editora da UFPEL, 2005. 138
- 25 p
- SUPUT, D.; et al. Edible films and coatings: Sources, properties and application. Food and
- 27 Feed Research, [S.l.], v. 42, n. 1, p. 11–22, jan. 2015. DOI: 10.5937/FFR1501011S. Disponível
- 28 em: https://doaj.org/article/d459df080dca4f9b95c15c348ec15482.
- UEKI, S. Y. M.; GEREMIAS, A. L.; MONIZ, L. L.; et al. Cabine de Segurança Biológica:
- efeito da luz ultravioleta nas micobactérias. Revista Instituto Adolfo Lutz, v. 65, n. 3, p. 222-
- 31 224, 2006.
- 32 UEKI, S. Y. M.; CHIMARA, E.; YAMAUCHI, J. U.; et al. Monitoramento em cabine de
- 33 segurança biológica: manipulação de cepas e descontaminação em um laboratório de
- micobactérias. Jornal Brasileiro de Patologia e Medicina Laboratorial, v. 44, n. 4, p. 263-269,
- 35 2008.
- VIEIRA, M. G. A. et al. Natural-based plasticizers and biopolymer films: A review. European
- 37 Polymer Journal, v. 47, p. 254–263, 2011. https://doi.org/10.1016/j.eurpolymj.2010.12.011.
- 38 XAVIER, I. M. C. et al. Qualidade de ovos de consumo submetidos a diferentes condições de
- 39 armazenamento. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 60, p. 953-959,
- 40 2008.

4 CONSIDERAÇÕES FINAIS

Os resultados obtidos no presente trabalho demonstraram aumentar a vida útil de prateleira dos ovos brancos de poedeiras comerciais, quando submetidos ao uso de revestimentos a base de albumina de ovos de descartes oriundos da indústria, gerando resultando importantes para a comunidade científica, pois os revestimentos promoveram a proteção dos ovos contra contaminação por microrganismos, retardando o aumento do pH do albúmen e consequentemente a perda de qualidade dos ovos de consumo por 30 dias de armazenamento. Trazendo a origem da albumina como benefício, ovos de descartes não geraria gastos significativos como nas outras matérias-primas, trazendo também utilidade para os ovos que até então seriam descartados e acarretando em um impacto tecnológico por ser uma opção para melhorar o tempo de validade dos ovos em prateleira.

Ainda são necessários estudos sobre o resvestimento a base de albumina, a associação com

Ainda são necessários estudos sobre o resvestimento a base de albumina, a associação com a luz ultravioleta e a interação bactéria com revestimento já que na literatura as informações ainda são muito escassas.