
 

 

 
Serviço Público Federal 
Ministério da Educação 

Fundação Universidade Federal de Mato Grosso do Sul 
Faculdade de Engenharias, Arquitetura e Urbanismo e Geografia - FAENG 

  

 

 

 

LUCAS PRADO OSCO 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AVANÇOS EM APRENDIZAGEM PROFUNDA APLICADA 

AO SENSORIAMENTO REMOTO 

 

 

 

 

 

 

 

 

 

 

 

 

 

Campo Grande, MS. 

2023



UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL 

 

FACULDADE DE ENGENHARIAS E ARQUITETURA E URBANISMO E GEOGRAFIA 

PROGRAMA DE PÓS-GRADUAÇÃO EM TECNOLOGIAS AMBIENTAIS 

 

 

 

 

LUCAS PRADO OSCO 

 

 

 

 

 

AVANÇOS EM APRENDIZAGEM PROFUNDA APLICADA 

AO SENSORIAMENTO REMOTO 
 

 
Tese submetida ao Programa de Pós-graduação em 

Tecnologias Ambientais da Universidade Federal do Mato 

Grosso do Sul como requisito parcial a obtenção do título de 

Doutor em Tecnologias Ambientais. Linha de Pesquisa: 

Diagnóstico e Avaliação de Impactos Ambientais 

 

Orientador: Prof. Dr. José Marcato Junior 

Coorientador: Prof. Dr. Wesley Nunes Gonçalves 

Coorientadora: Prof.ª Dr.ª Ana Paula Marques Ramos 

 

Aprovada em: 28 de Julho de 2023 

 

Banca Examinadora: 

 

Prof. Dr. José Marcato Junior 
Orientador PGTA- UFMS 

 

 

Prof. Dr. Paulo Tarso Sanches de Oliveira Prof. Dr. Fabio de Oliveira Roque 
Universidade Federal de Mato Grosso do Sul Universidade Federal de Mato Grosso do Sul 

  

Prof. Dr. Hemerson Pistori Prof. Dr. Keiller Nogueira 
Universidade Católica Don Bosco University of Stirling 

 

 

 

 

 

 
Campo Grande, MS. 

2023 



i 

 

AGRADECIMENTOS 

 

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento 

de Pessoal de Nível Superior - Brasil (Capes) - Código de Financiamento 001. Agradeço 

ao PGTA, Programa de Pós-Graduação em Tecnologias Ambientais (PPGTA), da 

Faculdade de Engenharias, Arquitetura e Urbanismo (FAENG) da Fundação 

Universidade Federal de Mato Grosso do Sul (UFMS). O presente trabalho foi realizado 

com apoio da Fundação Universidade Federal de Mato Grosso do Sul - UFMS/MEC - 

Brasil. 

 

  



ii 

 

SUMÁRIO 

 

RESUMO ...................................................................................................................... iii 

ABSTRACT .................................................................................................................. iv 

 

INTRODUÇÃO GERAL ............................................................................................. 1 

OBJETIVO GERAL .................................................................................................... 3 

 

PRIMEIRO CAPÍTULO: UMA REVISÃO SOBRE APRENDIZADO PROFUNDO 

NO SENSORIAMENTO REMOTO COM VANTS ..................................................... 4 

 

SEGUNDO CAPÍTULO: O POTENCIAL DO VISUAL CHATGPT PARA 

SENSORIAMENTO REMOTO................................................................................... 33 

 

TERCEIRO CAPÍTULO: O SEGMENT ANYTHING MODEL EM APLICAÇÕES 

DE SENSORIAMENTO REMOTO: DE ZERO PARA ONE-SHOT ......................... 55 

 

CONSIDERAÇÕES FINAIS ..................................................................................... 77 

 

REFERÊNCIAS BIBLIOGRÁFICAS ......................................................................... 79 

 

  



iii 

 

RESUMO GERAL 

 

OSCO, L. P. (2023). Avanços em Aprendizagem Profunda Aplicada ao Sensoriamento 

Remoto. Tese (Doutorado) - Programa de Pós-Graduação em Tecnologias Ambientais. 

Universidade Federal de Mato Grosso do Sul, Brasil. 

 

 

Esta tese consiste-se em uma análise das recentes inovações em técnicas de aprendizagem 

profunda (Deep Learning - DL), aplicadas em imagens de sensoriamento remoto, com 

foco nos avanços em Redes Neurais Profundas (Deep Neural Networks – DNN), Modelos 

de Linguagem Visual (Visual Language Models - VLM) e em segmentação zero-shot com 

o Segment Anything Model (SAM). A contribuição deste trabalho está em fornecer uma 

discussão do estado da arte dessas tecnologias no contexto da extração de informações 

em imagens de sensoriamento remoto. Baseando-se em revisões de literatura, análises e 

adaptações de modelos e experimentos com conjuntos de dados de sensoriamento remoto, 

a tese encontra-se organizada em forma de capítulos. O primeiro capítulo oferece uma 

revisão da literatura da aplicação de DNNs em imagens de alta resolução espacial, 

adquiridas por sensores embarcados em Veículos Aéreos Não-Tripulados (VANTs). 

Aqui, analisamos 232 artigos científicos e demonstramos que DL apresenta resultados 

promissores para uma série de aplicações no que se referem às tarefas de processamento 

de imagens aéreas. O segundo capítulo explora a aplicação do Visual ChatGPT, uma 

inovação em VLM, no contexto do sensoriamento remoto. Apesar de estar em fase inicial 

de desenvolvimento, o Visual ChatGPT, com as suas habilidades baseadas em entradas 

textuais para analisar imagens, poderá revolucionar o processamento digital de imagens 

de sensoriamento remoto, criando oportunidades e otimizando o processo de extração da 

informação. O terceiro e último capítulo examina o desempenho do SAM em segmentar 

imagens de sensoriamento remoto de múltiplas escalas, representativas de variados e 

desafiadores contextos geográficos. Apesar de suas limitações em imagens com resolução 

métrica, SAM demonstra desempenho satisfatório na segmentação quando equiparado a 

anotação manual humana em múltiplos casos. Em suma, esta tese compila o que há de 

mais recente no contexto de aplicação de modelos de DL em imagens de sensoriamento 

remoto de multiescala. Constata-se aqui, tanto os avanços quanto os desafios a serem 

superados neste campo, delineando caminhos para pesquisas futuras que visem avaliar 

imagens de sensoriamento remoto em aplicações diversas. 

 

Palavras-chave: processamento digital de imagem; modelos de linguagem visual; 

segmentação de imagem. 
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GENERAL ABSTRACT 

 

OSCO, L.P. (2023). Advances in Deep Learning Applied to Remote Sensing. Thesis 

(Doctorate) - Graduate Program in Environmental Technologies. Federal University of 

Mato Grosso do Sul, Brazil. 

 

 

This thesis consists of an analysis of recent innovations in deep learning (DL) techniques, 

applied to remote sensing images, with a focus on advancements in Deep Neural 

Networks (DNN), Visual Language Models (VLM), and zero-shot segmentation with the 

Segment Anything Model (SAM). The contribution of this work lies in providing a 

discussion of the state of the art of these technologies within the context of information 

extraction from remote sensing images. Drawing on literature reviews, model analyses 

and adaptations, and experiments with remote sensing datasets, the thesis is organized 

into chapters. The first chapter offers a literature review of the application of DNNs to 

high spatial resolution images, obtained by sensors onboard Unmanned Aerial Vehicles 

(UAVs). Here, we analyze 232 scientific articles and demonstrate that DL shows 

promising results for a range of applications concerning aerial image processing tasks. 

The second chapter explores the application of Visual ChatGPT, an innovation in VLM, 

within the remote sensing context. Despite being in the early stages of development, 

Visual ChatGPT, with its ability to analyze images based on textual inputs, could 

revolutionize the digital processing of remote sensing images, creating opportunities and 

optimizing the information extraction process. The third and final chapter examines the 

performance of SAM in segmenting remote sensing images across multiple scales, 

representative of varied and challenging geographical contexts. Despite its limitations in 

images with metric resolution, SAM demonstrates satisfactory performance in 

segmentation when compared to human manual annotation in multiple cases. In 

summary, this thesis compiles the latest in the context of applying DL models to 

multiscale remote sensing images. It establishes both the advancements and challenges to 

be overcome in this field, outlining paths for future research aimed at assessing remote 

sensing images in various applications. 

 

Keywords: digital image processing; visual language model; image segmentation. 
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INTRODUÇÃO GERAL 

 

As geotecnologias desempenham papel crucial na avaliação e diagnóstico 

de impactos ambientais, com o sensoriamento remoto sendo uma das ferramentas mais 

eficazes para monitorar e gerenciar o ambiente de forma rápida e sustentável (GÓMEZ 

et al., 2016; TONG et al., 2020). No entanto, com o crescimento exponencial dos dados 

de sensoriamento remoto, métodos convencionais de processamento e análise de imagens 

tornam-se inadequados ou até mesmo insuficientes (CHI et al., 2016) para atender à 

demanda de um mapeamento acurado, ágil e em larga escala geográfica. Portanto, a 

necessidade de técnicas mais sofisticadas para processamento digital de imagens tem se 

tornado cada vez mais evidente (SHAFIQUE et al., 2022), abrindo espaços para novas 

abordagens que atendam à essa necessidade. 

Neste contexto, a exploração da aprendizagem profunda (Deep Learning 

– DL) em imagens de sensoriamento remoto representa a abordagem contemporânea mais 

avançada para o estudo do meio ambiente geográfico em diversas aplicações (LI et al., 

2022; ALEISSAEE et al., 2023). De forma específica, DL, um subcampo da Inteligência 

Artificial (IA) que se concentra no desenvolvimento e na aplicação de redes neurais 

profundas, tem apresentado potencial para transformar o modo como lidamos com dados 

de sensoriamento remoto (YUAN et al., 2020; KOTARIDIS et al., 2021).  

Esta tese discute o estado da arte de aplicações com DL em imagens de 

sensoriamento remoto multiescala (aérea e orbital), adquiridas por múltiplas plataformas 

em aplicações emergentes. O primeiro capítulo apresenta uma revisão de literatura da 

aplicação de Redes Neurais Profundas (Deep Neural Networks - DNNs) no sensoriamento 

remoto, focando em imagens aéreas. A aplicação de DNNs no processamento de imagens 

aéreas tem o potencial para aumentar a eficiência e a precisão de dados de mapeamento, 
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permitindo uma avaliação mais segura dos impactos e do monitoramento de práticas 

humanas na superfície. 

O segundo capítulo investiga o potencial do Visual ChatGPT (WU et al., 

2023), um modelo avançado de Processamento de Linguagem Natural (Natural Language 

Process - NLP) que incorpora um módulo visual, em processar imagens de sensoriamento 

remoto, incorporando imagens de banco de dados públicos compostas por dados aéreos e 

orbitais. A aplicação desse modelo pode transformar a forma como processamos as 

imagens, representado uma abordagem acessível a diversos usuários da tecnologia. 

O terceiro e último capítulo analisa o desempenho do Segment Anything 

Model (SAM) (KIRILLOV et al., 2023), um modelo de DL baseado no conceito de zero-

shot, em segmentar imagens de sensoriamento remoto. Esse capítulo tem por objetivo 

explorar a potencialidade do SAM ao se adotar diferentes prompts de estímulos (pontos, 

polígonos e texto), além de proporcionar como contribuição original a implementação da 

aprendizagem por one-shot incorporada a entrada de textos (ZHANG et al., 2023). SAM 

representa uma abordagem inovadora para a segmentação de imagens, com potencial para 

reduzir o esforço humano na anotação e avançar a segmentação de instâncias. 

Esta tese é justificada pela emergente necessidade de se explorar técnicas 

de processamento de imagens mais sofisticadas e rápidas, que atendam em específico à 

área de sensoriamento remoto. Muito disto se deve ao avanço tecnológico nas plataformas 

de coleta de dados, o que impulsiona a obtenção de um grande volume de dados em 

múltiplas resoluções, sobretudo, espaciais e temporais. Em paralelo a este cenário, tem-

se a crescente disponibilidade e o avanço na aplicação de técnicas de processamento 

digital de imagens que, ao serem integradas ao sensoriamento remoto, podem representar 

um novo paradigma para a análise de feições na superfície. 
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OBJETIVO GERAL 

 

O objetivo geral da tese é discutir o estado da arte em métodos emergentes, 

baseados em DL, na área do sensoriamento remoto, com foco em aplicações envolvendo 

DNNs, modelos visuais de processamento de linguagem natural e segmentação por zero-

shot de imagens. 
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PRIMEIRO CAPÍTULO: UMA REVISÃO EM APRENDIZAGEM 

PROFUNDA NO SENSORIAMENTO REMOTO AÉREO 

 

Resumo: As Redes Neurais Profundas (Deep Neural Networks - DNNs) aprendem 

representações hierárquicas a partir dos dados, trazendo avanços significativos no 

processamento de imagens, análise de séries temporais, assim como na linguagem natural, 

áudio, vídeo e muitos outros. No campo do sensoriamento remoto, pesquisas e revisões 

da literatura envolvendo especificamente aplicações de DNNs têm sido realizadas para 

resumir a quantidade de informações produzidas. Recentemente, aplicações baseadas em 

Veículos Aéreos Não Tripulados (VANTs) têm se destacado em pesquisas de 

sensoriamento aéreo, pois permitem uma coleta de dados rápida, menos custosa e em alta 

resolução espacial. No entanto, uma revisão da literatura que combina os temas 

"aprendizagem profunda" (Deep Learning – DL) e "sensoriamento remoto com VANTs" 

ainda não foi realizada. A motivação para nosso trabalho foi apresentar uma revisão dos 

fundamentos do DL aplicado em imagens coletadas por sensores embarcados nessas 

aeronaves. Apresenta-se, especialmente, a descrição das técnicas de classificação e 

segmentação usadas em aplicações recentes com dados adquiridos por VANTs. Para isso, 

um total de 232 artigos publicados em bancos de dados de periódicos científicos foi 

examinado. Reunimos todo esse material e avaliamos suas características em relação, por 

exemplo, à aplicação, sensor e tipo de rede utilizada. Relacionamos como o DL apresenta 

resultados promissores e tem o potencial para tarefas de processamento associadas a 

dados de imagens aéreas coletadas por VANTs. Por fim, projetamos perspectivas futuras, 

comentando os caminhos proeminentes do DL a serem explorados no sensoriamento 

remoto aéreo. Nossa revisão consiste em uma abordagem simplista e objetiva para 

apresentar, comentar e resumir o estado da arte em aplicações de imagens de resolução 

espacial submétrica com DNNs em diversos subcampos do sensoriamento remoto, 

agrupando-os nos contextos ambiental, urbano e agrícola. 

 

Palavras-chave: redes neurais convolucionais, imagens de sensoriamento remoto, 

veículos aéreos não-tripulados 
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Abstract
Deep Neural Networks (DNNs) learn hierarchical representations from data, bringing significant advances in image
processing, and time-series analysis, as well as in natural language, audio, video, and many others. In the field of remote
sensing, research and literature reviews specifically involving DNN applications have been conducted to summarize the
amount of information produced. Recently, applications based on Unmanned Aerial Vehicles (UAVs) have stood out in aerial
sensing research, as they allow for fast, less costly data collection at high spatial resolution. However, a literature review that
combines the themes of "Deep Learning" (DL) and "remote sensing with UAVs" has not yet been conducted. The motivation
for our work was to present a review of the fundamentals of DL applied to images collected by sensors onboard these aircraft.
We especially present a description of the classification and segmentation techniques used in recent applications with data
acquired by UAVs. For this, a total of 232 articles published in international scientific journal databases were examined.
We gathered all this material and evaluated its characteristics in relation, for example, to the application, sensor, and type
of network used. We relate how DL presents promising results and has the potential for processing tasks associated with
aerial image data collected by UAVs. Finally, we project future perspectives, commenting on the prominent paths of DL
to be explored in aerial remote sensing. Our review consists of a simplistic and objective approach to present, comment
and summarize the state of the art in applications of sub-meter spatial resolution images with DNNs in various subfields of
remote sensing, grouping them in the environmental, urban, and agricultural contexts.

1 Introduction

For investigations using remote sensing image data, multiple
processing tasks depend on computer vision algorithms. In the
past decade, applications conducted with statistical and Ma-
chine Learning (ML) algorithms were mainly used in classifica-
tion/regression tasks. The increase of remote sensing systems
allowed a wide collection of data from any target on the Earth’s
surface. Aerial imaging has become a common approach to
acquiring data with the advent of Unnamed Aerial Vehicles
(UAV). These are also known as Remotely Piloted Aircrafts
(RPA), or, as a commonly adopted term, drones (multi-rotor,
fixed wings, hybrid, etc). These devices have grown in market
availability for their relatively low cost and high operational
capability to capture images quickly and in an easy manner. The
high-spatial-resolution of UAV-based imagery and its capacity
for multiple visits allowed the creation of large and detailed
amounts of datasets to be dealt with.

The surface mapping with UAV platforms presents some advan-
tages compared to orbital and other aerial sensing methods of
acquisition. Less atmospheric interference, the possibility to fly
within lower altitudes, and mainly, the low operational cost have
made this acquisition system popular in both commercial and
scientific explorations. However, the visual inspection of multi-
ple objects can still be a time-consuming, biased, and inaccurate

operation. Currently, the real challenge in remote sensing ap-
proaches is to obtain automatic, rapid, and accurate information
from this type of data. In recent years, the advent of Deep Learn-
ing (DL) techniques has offered robust and intelligent methods
to improve the mapping of the Earth’s surface.

DL is an Artificial Neural Network (ANN) method with multiple
hidden layers and deeper combinations, which is responsible for
optimizing and returning better learning patterns than a common
ANN. There is an impressive amount of revision material in the
scientific journals explaining DL-based techniques, its histori-
cal evolution, general usage, as well as detailing networks and
functions. Highly detailed publications, such as Lecun [113]
and Goodfellow [69] are both considered important material
in this area. As computer processing and labeled examples
(i.e. samples) became more available in recent years, the per-
formance of Deep Neural Networks (DNNs) increased in the
image-processing applications. DNN has been successfully
applied in data-driven methods. However, much needs to be
covered to truly understand its potential, as well as its limita-
tions. In this regard, several surveys on the application of DL
in remote sensing were developed in both general and specific
contexts to better explain its importance.

The context in which remote sensing literature surveys are pre-
sented is variated. Zhang et al. [203] organized a revision
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material which explains how DL methods were being applied, at
the time, to image classification tasks. Later, Cheng et al. [39]
investigated object detection in optical images, but focused more
on the traditional ANN and ML. A complete and systematic re-
view was presented by Ball et al. [12] in a survey describing DL
theories, tools, and its challenges in dealing with remote sensing
data. Cheng et al. [40] produced a revision on image classi-
fication with examples produced at their experiments. Also,
focusing on classification, Zhu et al. [215] summarized most of
the current information to understand the DL methods used for
this task. Additionally, a survey performed by Li et al. [114]
helped to understand some DL applications regarding the overall
performance of DNNs in publicly available datasets for image
classification task. Yao et al. [200] stated in their survey that
DL will become the dominant method of image classification in
remote sensing community.

Although DL does provide promising results, many observa-
tions and examinations are still required. Interestingly enough,
multiple remote sensing applications using hyperspectral im-
agery (HSI) data were in the process, which gained attention.
In Petersson et al. [152], probably one of the first surveys on
hyperspectral data was performed. In [172], is presented a mul-
tidisciplinary review about how DL models have been widely
used in the field of HSI dataset processing. These authors high-
lighted that, among the distinct areas of applications, remote
sensing approaches are one of the most emerging. Regarding
the use of DL models to process highly detailed remotely sensed
HSI data, Signoroni et al. [172] summarized usage into clas-
sification tasks, object detection, semantic segmentation, and
data enhancement, such as denoising, spatial super-resolution,
and fusion. Adão et al. [1] present a recent review on hyper-
spectral imaging acquired by UAV-based sensors for agriculture
and forestry applications, and show that there are manifold DL
approaches to deal with HSI dataset complexity.

A more recent survey is presented by Jia et al. [98] regarding DL
for hyperspectral image classification considering few labeled
samples. They commentate how there is a notable gap between
deep learning models and HSI datasets because DL models usu-
ally need sufficient labeled samples, but it is generally difficult
to acquire many samples in HSI dataset due to the difficulty
and time-consuming nature of manual labeling. However, the
issues of small-sample sets may be well defined by the fusion of
deep learning methods and related techniques, such as transfer
learning and a lightweight model. Deep learning is also a new
approach for the domain of infrared thermal imagery processing
to attend different domains, especially in satellite-provided data.
Some of these applications are the usage of convolutional layers
to detect potholes on roads with terrestrial imagery [5], detec-
tion of land surface temperatures from combined multispectral
and microwave observations from orbital platforms [193], or
determining sea surface temperature patterns to identify ocean
temperatures extremes [196] from orbital imagery.

Yet in the literature revision theme, a comparative review by
Audebert et al. [8] was conducted by examining various families
of networks’ architectures while providing a toolbox to perform
such methods to be publicly available. In this regard, another
paper written by Paoletti et al. [149] organized the source code
of DNNs to be easily reproduced. Similar to [40], Li et al. [115]
conducted a literature revision while presenting an experimental

analysis with DNNs’ methods. As of recently, literature revision
focused on more specific approaches within this theme. Some of
which included DL methods for enhancement of remote sensing
observations, as super-resolution, denoising, restoration, pan-
sharpening, and image fusion techniques, as demonstrated by
Tsagkatakis et al. [186] and Signoroni et al. [172]. Also, a
meta-analysis by Ma et al. [128] was performed concerning the
usage of DL algorithms in seven subfields of remote sensing:
image fusion and image registration, scene classification, ob-
ject detection, land use and land cover classification, semantic
segmentation, and object-based image analysis (OBIA).

Although, from these recent reviews, various remote sensing
applications using DL can be verified, it should be noted that
the authors did not focus on specific surveying in the context of
DL algorithms applied to UAV-image sets, which is something
that, at the time of writing, has gained the attention of remote
sensing investigations. We verified in the literature that, in
general, similar DL methods are used for imagery acquired
at different levels, resolutions and domains, such as the ones
from orbital, aerial, terrestrial and proximal sensing platforms.
However, as of recently, some of the proposed deep neural
networks are maintaining high resolution images into deeper
layers [101]. This type of deep networks may benefit from UAV-
based data, taking advantage of its resolutions. Indeed, there
are orbital images with high spatial resolutions, but these are
not as commonly available to the general public as UAV-based
images. Because of that, these kinds of architectures associated
with UAV-based data may be a surging trend in remote sensing
applications.

Another interesting take on DL-based methods was related to
image segmentation in a survey by Hossain et al. [83], which
its theme was expanded by Yuan et al. [202] and included state-
of-the-art algorithms. A summarized analysis by Zheng et al.
[213] focused on remote sensing images with object detection
approaches, indicating some of the challenges related to the
detection with few labeled samples, multi-scale issues, network
structure problems, and cross-domain detection difficulties. In
more of a “niche” type of research, environmental applications
and land surface change detection were investigated in literature
revision papers by Yuan et al. [201] and Khelifi et al. [106],
respectively.

The aforementioned studies were evaluated with a text process-
ing method that returned a word cloud in which the word size
denotes the frequency of the word within these papers (Fig. 1).
An interesting observation regarding this world-cloud is that the
term “UAV” is under or not represented at all. This revision
gap is a problem since UAV image data is daily produced in
large amounts, and no scientific investigation appears to offer
a comprehensive literature revision to assist new research on
this matter. In the UAV context, there are some revision pa-
pers published in important scientific journals from the remote
sensing community. As of recently, a revision-survey [23] fo-
cused on the implications of ML methods being applied to UAV
image processing, but no investigation was conducted on DL
algorithms for this particular issue. This is an important theme,
especially since UAV platforms are more easily available to
the public and DL-based methods are being tested to provide
accurate mapping in highly detailed imagery.

6



Figure 1: Word-cloud of different literature-revision papers related to
the “remote sensing” and “deep learning” themes.

As mentioned, UAVs offer flexibility in data collection, as
flights are programmed under users’ demand; they are low-cost
when compared to other platforms that offer similar spatial-
resolution images; produce high-level of detail in its data collec-
tion; presents dynamic data characteristics since it is possible to
embed RGB, multispectral, hyperspectral, thermal and, LiDAR
sensors on it; and are capable of gathering data from difficult to
access places. Aside from that, sensors embedded in UAVs are
known to generate data at different altitudes and point-of-views.
These characteristics, alongside others, are known to produce a
higher dynamic range of images than common sensing systems.
This ensures that the same object is viewed from different angles,
where not only their spatial and spectral information is affected,
as well as form, texture, pattern, geometry, illumination, etc.
This becomes a challenge for multidomain detection. As such,
studies indicate that DL is the most prominent solution for deal-
ing with these disadvantages. These studies, which most are
presented in this revision paper, were conducted within a series
of data criteria and evaluated DL architectures in classifying,
detecting, and segmenting various objects from UAV scenes.

To the best of our knowledge, there is a literature gap related to
review articles combining both “deep learning” and “UAV re-
mote sensing” thematics. This survey is important to summarize
the direction of DL applications in the remote sensing commu-
nity, particularly related to UAV-imagery. The purpose of this
study is to provide a brief review of DL methods and their ap-
plications to solve classification, object detection, and semantic
segmentation problems in the remote sensing field. Herein, we
discuss the fundamentals of DL architectures, including recent
proposals. There is no intention of summarizing existing litera-
ture, but to present an examination of DL models while offering
the necessary information to understand the state-of-the-art in
which it encounters. Our revision is conducted highlighting
traits about the UAV-based image data, their applications, sensor
types, and techniques used in recent approaches in the remote
sensing field. Additionally, we relate how DL models present
promising results and project future perspectives of prominent
paths to be explored. In short, this paper brings the following
contributions:

1. A presentation of fundamental ideas behind the DL
models, including classification, object detection, and
semantic segmentation approaches; as well as the ap-
plication of these concepts to attend UAV-image based
mapping tasks;

2. The examination of published material in scientific
sources regarding sensors types and applications, cate-
gorized in environmental, urban, and agricultural map-
ping contexts;

3. The organization of publicly available datasets from
previous researches, conducted with UAV-acquired
data, also labeled for both object detection and seg-
mentation tasks;

4. A description of the challenges and future perspectives
of DL-based methods to be applied with UAV-based
image data.

2 Deep Neural Networks Overview

DNNs are based on neural networks which are composed of
neurons (or units) with certain activations and parameters that
transform input data (e.g., UAV remote sensing image) to out-
puts (e.g., land use and land cover maps) while progressively
learning higher-level features [128, 167]. This progressive fea-
ture learning occurs, among others, on layers between the input
and the output, which are referred to as hidden layers [128].
DNNs are considered as a DL method in their most traditional
form (i.e. with 2 or more hidden layers). Their concept, based
on an Artificial Intelligence (AI) modeled after the biological
neurons’ connections, exists since the 1950s. But only later,
with advances in computer hardware and the availability of a
high number of labeled examples, its interest has resurged in
major scientific fields. In the remote sensing community, the
interest in DL algorithms has been gaining attention since mid
2010s decade, specifically because these algorithms achieved
significant success at digital image processing tasks [128, 105].

A DNN works similarly to an ANN, when as a supervised algo-
rithm, uses a given number of input features to be trained, and
that these feature observations are combined through multiple
operations, where a final layer is used to return the desired pre-
diction. Still, this explanation does not do much to highlight
the differences between traditional ANNs and DNNs. LeCun
et. al. [113], the paper amongst the most cited articles in DL
literature, defines DNN as follows: “Deep-learning methods are
representation-learning methods with multiple levels of repre-
sentation”. Representation-learning is a key concept in DL. It
allows the DL algorithm to be fed with raw data, usually unstruc-
tured data such as images, texts, and videos, to automatically
discover representations.

The most common DNNs (Fig. 2) are generally composed of
dense layers, wherein activation functions are implemented in.
Activation functions compute the weighted sum of input and
biases, which is used to decide if a neuron can be activated or not
[141]. These functions constitute decision functions that help in
learning intrinsic patterns [105]; i.e., they are one of the main
aspects of how each neuron learns from its interaction with the
other neurons. Known as a piecewise linear function type, ReLu
defines the 0 valor for all negative values of X. This function is,

7



at the time of writing, the most popular in current DNNs mod-
els. Regardless, another potential activation function recently
explored is Mish, a self regularized non-monotonic activation
function [105]. Aside from the activation function, another im-
portant information on how a DNN works is related to its layers,
such as dropout, batch-normalization, convolution, deconvolu-
tion, max-pooling, encode-decode, memory cells, and others.
This layer is regularly used to solve issues with covariance-shift
within feature-maps [105]. The organization in which the lay-
ers are composed, as well as its parameters, is one of the main
aspects of the architecture.

Multiple types of architectures were proposed in recent years to
improve and optimize DNNs by implementing different kinds
of layers, optimizers, loss functions, depth-level, etc. However,
it is known that one of the major reasons behind DNNs’ popu-
larity today is also related to the high amount of available data
to learn from it. A rule of thumb conceived among data scien-
tists indicates that at least 5,000 labeled examples per category
was recommended [69]. But, as of today, DNNs’ proposals
focused on improving these network’s capacities to predict fea-
tures with fewer examples than that. Some applications which
are specifically oriented may benefit from it, as it reduces the
amount of labor required at sample collection by human inspec-
tion. Even so, it should be noted that, although this pursuit is
being conducted, multiple takes are performed by the vision
computer communities and novel research includes methods for
data-augmentation, self-supervising, and unsupervised learning
strategies, as others. A detailed discussion of this manner is
presented in [105].

2.1 Convolutional and Recurrent Neural Networks

A DNN can be formed by different architectures, and the com-
plexity of the model is related to how each layer and additional
computational method is implemented. Different DL architec-
tures are proposed regularly, Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), and Deep Belief
Networks (DBN) [12], and, more recently yet, Generative Adver-
sarial Networks (GAN) [69]. However, the most common DNNs
in the supervised networks categories are usually classified as
CNNs (Fig. 3) and RNNs [105].

As a different kind of DL network structure, RNNs refer to
another supervised learning model. The main idea behind im-
plementing RNNs regards their capability of improving their
learning by repetitive observations of a given phenom or object,
often associated with a time-series collection. A type of RNN
being currently implemented in multiple tasks is the Long Short-
Term Memory (LSTM)[81]. In the remote sensing field, RNN
models have been applied to deal with time series tasks analysis,
aiming to produce, for example, land cover mapping [93, 84].
For a pixel-based time series analysis aiming to discriminate
classes of winter vegetation coverage using SAR Sentinel-1
[84], it was verified that RNN models outperformed classical
ML approaches. A recent approach [56] for accurate vegetation
mapping combined multiscale CNN to extract spatial features
from UAV-RGB imagery and then fed an attention-based RNN
to establish the sequential dependency between multitemporal
features. The aggregated spatial-temporal features are used to
predict the vegetable category. Such examples with remote sens-
ing data demonstrate the potential in which RNNs are being

used. Also, one prominent type of architecture is the CNN-
LSTM method (Fig. 4). This network uses convolutional layers
to extract important features from the given input image and
feed the LSTM. Although few studies implemented this type
of network, it should be noted that it serves specific purposes,
and its usage, for example, can be valued for multitemporal
applications.

As aforementioned, other types of neural networks, aside from
CNNs and RNNs, are currently being proposed to also deal with
an image type of data. GANs are amongst the most innovative
unsupervised DL models. GANs are composed of two networks:
generative and discriminative, that contest between themselves.
The generative network is responsible for extracting features
from a particular data distribution of interest, like images, while
the discriminative network distinguishes between real (reference
or ground truth data) and those data generated by the generative
part of GANs (fake data) [68, 128]. Recently approaches in
the image processing context like the classification of remote
sensing images [123] and image-to-image translation problems
solution [96] adopted GANs as DL model, obtaining successful
results.

In short, several DNNs are constantly developed, in both sci-
entific and/or image competition platforms, to surpass existing
methods. However, as each year passes, some of these neural
networks are often mentioned, remembered, or even improved
by novel approaches. A summary of well-known DL methods
built in recent years is presented in Fig. 5. A detailed take on
this, which we recommend to anyone interested, is found in
Khan et al. [105]. Alongside the creations and developments of
these and others, researchers observed that higher depth chan-
nel exploration, and, as of recently proposed, attention-based
feature extraction neural networks, are regarded as some of the
most prominent approaches for DL. Initially, most of the pro-
posed supervised DNNs, like CNN and RNN, or CNN-LSTM
models, were created to perform and deal with specific issues.
Often, these approaches can be grouped into classification tasks,
like scene-wise classification, object detection, semantic and
instance segmentation (pixel-wise), and regression tasks.

2.2 Classification and Regression Approaches

When considering remote sensing data processed with DL-based
algorithms, the following tasks can be highlighted: scene-wise
classification, semantic and instance segmentation, and object
detection. Scene-wise classification involves assigning a class
label to each image (or patch), while the object detection task
aims to draw bounding boxes around objects in an image (or
patch) and labeling each of them according to the class label.
Object detection can be considered a more challenging task
since it requires to locate the objects in the image and then per-
form their classification. Another manner to detect objects in an
image, instead of drawing bounding boxes, is to draw regions
or structures around the boundary of objects, i.e., distinguish
the class of the object at the pixel level. This task is known as
semantic segmentation. However, in semantic segmentation, it
is not possible to distinguish multiple objects of the same cate-
gory, as each pixel receives one class label [195]. To overcome
this drawback, a task that combines semantic segmentation and
object detection named instance segmentation was proposed to
detect multiple objects in pixel-level masks and labeling each
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Figure 2: A DNN architecture. This is a simple example of how a DNN may be built. Here the initial layer (Xinput) is composed of the collected
data samples. Later this data information can be extracted by hidden layers in a back-propagation manner, which is used by subsequent hidden

layers to learn these features’ characteristics. In the end, another layer is used with an activation function related to the given problem
(classification or regression, as an example), by returning a prediction outcome (Ylabel).

Figure 3: A CNN type of architecture with convolution and deconvolution layers. This example architecture is formed by convolutional layers,
where a dropout layer is added between each conv layer, and a max-pooling layer is adopted each time the convolution window-size is decreased.
By the end of it, a deconvolutional layer is used with the same size as the last convolutional, and then it uses information from the previous step

to reconstruct the image with its original size. The final layer is of a softmax, where it returns the models’ predictions.

mask with a class label [180, 36]. The instance segmentation,
however, consists of a method that, while classifying the image
with this pixel-wise approach, is able to individualize objects
[170].

To produce a deep regression approach, the model needs to be
adapted so that the last fully-connected layer of the architecture
is changed to deal with a regression problem instead of a com-
mon classification one. With this adaptation, continuous values
are estimated, differently from classification tasks. In compari-

son to classification, the regression task using DL is not often
used; however, recent publications have shown its potential in
remote sensing applications. One approach [111] performed a
comprehensive analysis of deep regression methods and pointed
out that well-known fine-tuned networks, like VGG-16 [192]
and ResNet-50 [75], can provide interesting results. These meth-
ods, however, are normally developed for specific applications,
which is a drawback for general-purpose solutions. Another
important point is that depending on the application, not always
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Figure 4: An example of a neural network based on the CNN-LSTM type of architecture. The input image is processed with convolutional
layers, and a max-pooling layer is used to introduce the information to the LSTM. Each memory cell is updated with weights from the previous

cell. After this process, one may use a flatten layer to transform the data in an arrangement to be read by a dense (fully-connected) layer,
returning a classification prediction, for instance.

deep regression succeeds. A strategy is to discretize the out-
put space and consider it as a classification solution. For UAV
remote sensing applications, the strategy of using well-known
networks is in general adopted. Not only VGG-16 and ResNet-
50, as investigated by [111], but also other networks including
AlexNet [108] and VGG-11 have been used. An important issue
that could be investigated in future research, depending on the
application, is the optimizer. Algorithms with adaptive learning
rates such as AdaGrad, RMSProp, AdaDelta (an extension of
AdaGrad), and Adam are among the commonly used.

2.2.1 Scene-Wise Classification, Object Detection, and
Segmentation

Scene-wise classification or scene recognition refers to methods
that associate a label/theme for one image (or patch) based on
numerous images, such as in agricultural scenes, beach scenes,
urban scenes, and others [219, 128]. Basic DNNs methods were
developed for this task, and they are among the most common
networks for traditional image recognition tasks. In remote sens-
ing applications, scene-wise classification is not usually applied.
Instead, most applications benefit more from object detection
and pixel-wise semantic segmentation approaches. For scene-
wise classification, the method needs only the annotation of the
class label of the image, while other tasks like object detection
method needs a drawn of a bounding box for all objects in an
image, which makes it more costly to build labeled datasets. For
instance or semantic segmentation, the specialist (i.e., the person
who performs the annotation or object labeling) needs to draw
a mask involving each pixel of the object, which needs more
attention and precision in the annotation task, reducing, even
more, the availability of datasets. Fig. 6 shows the examples
of both annotation approaches (object detection and instance
segmentation).

Object detection methods can be described into two mainstream
categories: one-stage detectors (or regression-based methods)
and two-stage detectors (or region proposal-based methods)
[212, 126, 195]. The usual two-stage object detection pipeline
is to generate region proposals (candidate rectangular bounding
boxes) on the feature map. It then classifies each one into an
object class label and refines the proposals with a bounding box
regression. A widely used strategy in the literature to generate
proposals was proposed with the Faster-RCNN algorithm with
the Region Proposal Network (RPN) [212]. Other state-of-the-
art representatives of such algorithms are Cascade-RCNN [32],
Trident-Net [185], Grid-RCNN [71], Dynamic-RCNN [52], De-
tectoRS [44]. As for one-stage detectors, they directly make a
classification and detect the location of objects without a region
proposal classification step. This reduced component achieves
a high detection speed for the models but tends to reduce the
accuracy of the results. These are known as region-free detec-
tors since they typically use cell grid strategies to divide the
image and predict the class label of each one. Besides that, some
detectors may serve for both one-stage and two-stage categories.

Object detection-based methods can be described in three com-
ponents: a) backbone, which is responsible to extract semantic
features from images; b) the neck, which is an intermediate com-
ponent between the backbone and the head components, used
to enrich the features obtained by the backbone, and; c) head
component, which performs the detection and classification of
the bounding boxes.

The backbone is a CNN that receives as input an image and
outputs a feature map that describes the image with semanti-
cally features. In the DL, the state-of-the-art is composed of
the following backbones: VGG [192], ResNet [160], ResNeXt
[161], HRNet [88], RegNet [157], Res2Net [158], and ResNesT
[159]. The neck component combines in several scales low-
resolution and semantically strong features, capable of detecting
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Figure 5: A DL time-series indicating some popular architectures implemented in image classification (yellowish color), object detection
(greenish color), and segmentation (bluish color). These networks often intertwine, and many adaptations have been proposed for them.

Although it may appear that most of the DL methods were developed during 2015-2017 annuals, it is important to note that, as some, novel deep
networks use most of the already developed methods as backbones, or accompanied from other types of architectures, mainly used as the feature

extraction part of a much more complex structure.

large objects, with high-resolution and semantically weak fea-
tures, capable of detecting small objects, which is done with the
lateral and top-down connections of the convolutional layers of
the Feature Pyramid Network (FPN) [60], and its variants like
PAFPN [146] and NAS-FPN [136]. Although FPN was origi-
nally designed to be a two-stage method, the methods’ purpose
was a manner to use the FPN on single-stage detectors by re-

moving RPN and adding a classification subnet and a bounding
box regression subnet. The head component is responsible for
the detection of the objects with the softmax classification layer,
which produces probabilities for all classes and a regression
layer to predict the relative offset of the bounding box positions
with the ground truth.
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Figure 6: Labeled examples. The first-row consists of a bounding-box type of object detection approach label-example to identify individual
tree-species in an urban environment. The second-row is a labeled-example of instance segmentation to detect rooftops in the same environment.

Despite the differences in object detectors (one or two-stage),
their universal problem consists of dealing with a large gap
between positive samples (foreground) and negative samples
(background) during training, i.e class imbalance problem that
can deteriorate the accuracy results [38]. In these detectors, the
candidate bounding boxes can be represented into two main
classes: positive samples, which are bounding boxes that match
with the ground-truth, according to a metric; and negative sam-
ples, which do not match with the ground-truth. In this sense, a
non-max suppression filter can be used to refine these dense can-
didates by removing overlaps to the most promising ones. The
Libra-RCNN [147], ATSS [7], Guided Anchoring [61], FSAF
[216], PAA [145], GFL [65], PISA [153] and VFNet [191] de-
tectors explore different sampling strategies and new loss metrics
to improve the quality of selected positive samples and reduce
the weight of the large negative samples.

Another theme explored in the DL literature is the strategy of
encoding the bounding boxes, which influences the accuracy
of the one-stage detectors as they do not use region proposal
networks [191]. In this report [191], the authors represent the
bounding boxes like a set of representatives or key-points and
find the farthest top, bottom, left, and right points. CenterNet
[51] detects the object center point instead of using bounding
boxes, while CornerNet [112] estimates the top-left corner and
the bottom-right corner of the objects. SABL [165] uses a chunk
based strategy to discretize horizontally and vertically the image
and estimate the offset of each side (bottom, up, left, and right).
The VFNet [191] method proposes a loss function and a star-

shaped bounding box (described by nine sampling points) to
improve the location of objects.

Regarding semantic segmentation and instance segmentation
approaches, they are generally defined as a pixel-level classifica-
tion problem [169]. The main difference between semantic and
instance is that the former one is capable to identify pixels be-
longing to one class but can not distinguish objects of the same
class in the image. However, instance segmentation approaches
can not distinguish overlapping of different objects, since they
are concerned with identifying objects separately. For example,
it may be problematic to identify in an aerial urban image the lo-
cation of the cars, trucks, motorcycle, and the asphalt pavement
which consists of the background or region in which the other
objects are located. To unify these two approaches, a method
was recently proposed in [148], named panoptic segmentation.
With panoptic segmentation, the pixels that are contained in
uncountable regions (e.g. background) receive a specific value
indicating it.

Considering the success of the RPN method for object detection,
some variants of Faster R-CNN were considered to instance seg-
mentation as Mask R-CNN [131], which in parallel to bounding
box regression branch add a new branch to predict the mask of
the objects (mask generation). The Cascade Mask R-CNN [31]
and HTC [89] extend Mask R-CNN to refine in a cascade man-
ner the object localization and mask estimation. The PointRend
[154] is a point-based method that reformulates the mask gener-
ation branch as a rendering problem to iteratively select points
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around the contour of the object. Regarding semantic segmen-
tation, methods like U-Net [163], SegNet [11], DeepLabV3+
[37], and Deep Dual-domain Convolutional Neural Network
(DDCN) [139] have also been regularly used and adapted for
recent remote sensing investigations [140]. Another important
remote sensing approach that is been currently investigated is
the segmentation of objects considering sparse annotations [91].
Still, as of today, the CGnet [35] and DLNet [47] are considered
the state-of-art methods for semantic segmentation.

3 Deep Learning in UAV Imagery

To identify works related to DL in UAV remote sensing appli-
cations, we performed a search in the Web of Science (WOS)
and Google Scholar databases. WOS is one of the most re-
spected scientific databases and hosts a high number of sci-
entific journals and publications. We conducted a search us-
ing the following string in the WOS: (“TS = ((deep learning
OR CNN OR convolutional neural network) AND (UAV OR
unmanned aerial vehicle OR drone OR RPAS) AND (remote
sensing OR photogrammetry)) AND LANGUAGE: (English)
AND Types of Document: (Article OR Book OR Book Chap-
ter OR Book Review OR Letter OR Proceedings Paper OR
Review); Indexes=SCI-EXPANDED, SSCI, A%HCI, CPCI-S,
CPCI-SSH, ESCI. Stipulated-time=every-years.”). We consid-
ered DL, but added CNN, as it is one of the main DL-based
architectures used in remote sensing applications [128]. As such,
published materials that use these terms in their titles, abstracts
or keywords were investigated and included. For such reasons,
we opted for this string to achieve a generalist investigation.

We filtered the results to consider only papers that implemented
approaches with UAV-based systems. A total of 190 papers were
found in the WOS database, where 136 were articles, 46 pro-
ceedings, and 10 reviews. An additional search was conducted
in the Google Scholar database to identify works not detected
in the WOS. We adopted the same combination of keywords in
this search. We performed a detailed evaluation of its results and
selected only those that, although from respected journals, were
not encountered in the WOS search. This resulted in a total of
34 articles, 16 proceedings, and 8 reviews. The entire dataset
was composed of 232 articles + proceedings and 18 reviews
from scientific journals indexed in those bases. These papers
were then organized and revised. Fig. 7 demonstrates the main
steps to map this research. The encountered publications were
registered only in the last five years (from 2016 to 2021), which
indicates how recent UAV-based approaches integrated with DL
methods are in the scientific journals.

The review articles gathered at those bases were separated and
mostly used in the cloud text analysis of Fig. 1, while the remain-
ing papers (articles and proceedings) were organized according
to their category. A total of 283.785 words were analyzed for
the word-cloud, as we removed words with less than 5% oc-
currences to cut lesser-used words unrelated to the theme, and
higher than 95% occurrences to remove plain and simple words
frequently used in the English language. The published articles
and proceedings were divided in terms of DL-based networks
(classification: scene-wise classification, segmentation, and ob-
ject detection and; regression), sensor types (RGB, multispectral,
hyperspectral, and LiDAR); and; applications (environmental,
urban, and agricultural context). We also provided, in a sub-

sequent section, datasets from previously conducted research
for further investigation by novel studies. These datasets were
organized and their characteristics were also summarized ac-
cordingly.

Most of our research was composed of publications from peer-
review publishers in the area of remote sensing journals (Fig. 8).
Even though the review articles encountered in the WoS and
Google Scholar databases do mention, to some extent, UAV-
based applications, none of them were dedicated to it. Towards
the end of our paper, we examined state-of-the-art approaches,
like real-time processing, data dimensionality reduction, do-
main adaptation, attention-based mechanisms, few-shot learning,
open-set, semi-supervised and unsupervised learning, and others.
This information provided an overview of the future opportu-
nities and perspectives on DL methods applied in UAV-based
images, where we discuss the implications and challenges of
novel approaches.

The 232 papers (articles + proceedings) were investigated
through a quantitative perspective, where we evaluated the num-
ber of occurrences per journal, the number of citations, year
of publication, and location of the conducted applications ac-
cording to country. We also prepared and organized a sampling
portion in relation to the corresponding categories, as previously
explained, identifying characteristics like architecture used, eval-
uation metric approach, task conducted, and type of sensor and
mapping context objectives. After evaluating it, we adopted a
qualitative approach by revising and presenting some of the ap-
plications conducted within the papers (UAV + DL) encountered
in the scientific databases, summarizing the most prominent ones.
This narrative over these applications was separated accordingly
to the respective categories related to the mapping context (envi-
ronmental, urban, and agricultural). Later on, when presenting
future perspectives and current trends in DL, we mentioned
some of these papers alongside other investigations proposed
at computer vision scientific journals that could be potentially
used for remote sensing and UAV-based applications.

3.1 Sensors and Applications Worldwide

In the UAV-based imagery context, several applications were
beneficiated from DL approaches. As these networks’ usabil-
ity is increasing throughout different remote sensing areas, re-
searchers are also experimenting with their capability in substi-
tuting laborious-human tasks, as well as improving traditional
measurements performed by shallow learning or conventional
statistical methods. As of recently, several articles and pro-
ceedings were published in renowned scientific journals. In
general terms, the articles collected at the scientific databases
demonstrated a pattern related to its architecture (CNN or RNN),
evaluation (classification or regression) approach (object detec-
tion, segmentation, or scene-wise classification), type of sensor
(RGB, multispectral, hyperspectral or LiDAR) and mapping
context (environmental, urban, or agricultural). These patterns
can be viewed on a diagram (Fig. 9). The following observations
can be extracted from this graphic:

1. The majority of networks in UAV-based applications
still rely mostly on CNNs;
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Figure 7: The schematic procedure adopted to organize the revised material according to their respective categories as proposed in this review.

Figure 8: The distribution of the evaluated scientific material according to data gathered at Web of Science (WOS) and Google Scholar
databases. The y-axis on the left represents the number (n) of published papers, illustrated by solid-colored boxes. The y-axis on the right

represents the number of citations that these publications, according to peer-review scientific journals, received since their publication, illustrated
by dashed-lines of the same color to its corresponding solid-colored box.
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2. Even though object detection is the highest type of ap-
proach, there has been a lot of segmentation approaches
in recent years;

3. Most of the used sensors are RGB, followed by multi-
spectral, hyperspectral, and LiDAR, and;

4. There is an interesting amount of papers published
within the environmental context, with forest-type re-
lated applications being the most common approach
in this category, while both urban and agricultural cat-
egories were almost evenly distributed among opted
approaches.

The majority of papers published on UAV-based applications
implemented a type of CNN (91.2%). Most of these articles used
established architectures (Fig. 5) and a small portion proposed
their models and compared them against the state-of-the-art
networks. In reality, this comparison appears to be a crucial
concern regarding recent publications, since it is necessary to
ascertain the performance of the proposed method in relation
to well-known DL-based models. Still, the popularity of CNNs
architecture in remote sensing images is not new, mainly because
of reasons already stated in the previous sections. Besides that,
even though presented in a small number of articles, RNNs
(8.8%), mostly composed of CNN-LSTM architectures, are an
emerging trend in this area and appear to be the focus of novel
proposals. As UAV systems are capable of operating mostly
according to the users’ own desires (i.e., can acquire images
from multiple dates in a more personalized manner), the same
object is viewed through a type of time-progression approach.
This is beneficial for many applications that include monitoring
of stationary objects, like rivers, vegetation, or terrain slopes,
for example.

Although classification (97.7%) tasks are the most common eval-
uation metrics implemented in these papers, regression (2.3%) is
an important estimate and may be useful in future applications.
The usage of regression metrics in remote sensing applications
is worth it simply because it enables the estimation of con-
tinuous data. Applications that could benefit from regression
analysis are present in environmental, urban, and agricultural
contexts, as in many others, and it is useful to return predictions
on measured variables. Classification, on the other hand, is more
of a common ground for remote sensing approaches and it is
implemented in every major task (object detection; pixel-wise
semantic segmentation and scene-wise classification).

The aforementioned DL-based architectures were majorly ap-
plied in object detection (53.9%) and image segmentation
(40.7%) problems, while (scene-wise) classification (5.4%) were
the least common. This preference for object detection may be
related to UAV-based data, specifically, since the high amount
of detail of an object provided by the spatial resolution of the
images is both an advantage and a challenge. It is an advantage
because it increases the number of objects to be detected on
the surface (thus, more labeled examples), and it is a challenge
because it difficulties both the recognition and segmentation of
these objects (higher detail implies more features to be extracted
and analyzed). Classification (scene-wise), on the other hand,
is not as common in remote sensing applications, and image
segmentation is often preferred in some applications since as-
signing a class to each pixel of the image has more benefits for
this type of analysis than rather only identifying a scene.

Following it, there is an interesting distribution pattern related
to the application context. The data indicated that most of
the applications were conducted in the environmental context
(46.6%). This context includes approaches that aim to, in a
sense, deal with detection and classification tasks on land use and
change, environmental hazards and disasters, erosion estimates,
wild-life detection, forest tree inventory, monitoring difficult to
access regions, as others. Urban and agricultural categories (both
27.2% and 26.4%, respectively) were associated with car and
traffic detection, buildings, street, and rooftop extraction, as well
as plant counting, plantation-row detection, weed infestation
identification, and others. Interestingly, all of the LiDAR data
applications were related to environmental mapping, while RGB
images were mostly used for urban, followed by the agricultural
context. Multispectral and hyperspectral data, however, were
less implemented in the urban context in comparison against the
other categories. As these categories benefit differently from DL-
based methods, a more detailed intake is needed to understand
its problems, challenges, and achievements. In the following
subsections, we explain these issues and advances while citing
some suitable examples from within our search database.

Lastly, another important observation to be made regarding
the categorization division used here is that there is a visible
dichotomy between the types of sensor used. Most of the pub-
lished papers in this area evaluating the performance of DL-
based networks with RGB sensors (52.4%). This was, respec-
tively, followed by multispectral (24.3%), hyperspectral (17.8%),
and LiDAR (5.5%). The preference for RGB sensors in UAV-
based systems may be associated with their low-cost and high
market availability. As such, published articles may reflect on
this, since it is a viable option for practical reasons when consid-
ering the replicability of the method. It should be noted that the
number of labeled examples in public databases are mostly RGB,
which helps improvements and investigation with this type of
data. Moreover, data obtained from multispectral, hyperspec-
tral, and LiDAR sensors are used in more specific applications,
which contributes to this division.

Most of the object detection applications went on RGB types of
data, while segmentation problems were dealt with both RGB,
multispectral, hyperspectral, and LiDAR data. A possible ex-
planation for this is that object detection often relies on the
spatial, texture, pattern, and shape characteristics of the object
in the image, as segmentation approaches are a diverse type of
applications, which benefit from the amount of spectral and ter-
rain information provided by these sensors. In object detection,
DL-based methods may have potentialized the usage of RGB
images, since simpler and traditional methods need additional
spectral information to perform it. Also, apart from the spectral
information, LiDAR, for example, offers important features of
the objects for the networks to learn and refine the edges around
them, specifically where their patterns are similar. Regardless,
many of these approaches are related to the available equipment
and nature of the application itself, so it is difficult to pinpoint a
specific reason.

3.2 Environmental Mapping

Environmental approaches with DNNs-based methods hold the
most diverse applications with remote sensing data, including
UAV-imagery. These applications adopt different sensors simply
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Figure 9: Diagram describing proceedings and articles according to the defined categories using WOS and Google Scholar datasets.

because of their divergent nature. To map natural habits and their
characteristics, studies often relied on methods and procedures
specifically related to its goals, and no “universal” approach
could be proposed nor discovered. However, although DL-based
methods have not reached this type of “universal” approach,
they are changing some skepticism by being successfully im-
plemented in the most unique scenarios. Although UAV-based
practices still offer some challenges to both classification and
regression tasks, DNNs methods are proving to be generally
capable of performing such tasks. Regardless, there is still much
to be explored.

Several environmental practices could potentially benefit from
deep networks like CNNs and RNNs. For example, monitoring
and counting wild-life [15, 85, 176], detecting and classifying
vegetation from grasslands and heavily-forested areas [82, 73],
recognizing fire and smoke signals [110, 205], analyzing land
use, land cover, and terrain changes, which are often imple-
mented into environmental planning and decision-making mod-
els [109, 206], predicting and measuring environmental hazards
[190, 25], among others. What follows is a brief description of
recent material published in the remote sensing scientific jour-
nals that aimed to solve some of these problems by integrating
data from UAV embedded sensors with DL-based methods.

One of the most common approaches related to environmen-
tal remote sensing applications regards land use, land cover,
and other types of terrain analysis. A recent study [66] applied
semantic segmentation networks to map land use over a min-
ing extraction area. Another one, [3], combined information
from a Digital Surface Model (DSM) with UAV-based RGB
images and applied a type of feature fusion as input for a CNN
model. To map coastal regions, an approach [26], with RGB

data registered at multiple scales, used a CNN in combination
with a graphical method named conditional random field (CRF).
Another research [150], with hyperspectral images in combina-
tion between 2D and 3D convolutional layers, was developed
to determine the discrepancy of land cover in the assigned land
category of cadastral map parcels.

With a semantic segmentation approach, road extraction by a
CNN was demonstrated in another investigation [116]. Another
study [64] investigated the performance of a FCN to monitor
household upgrading in unplanned settlements. Terrain analysis
is a diversified topic in any type of cartographic scale, but for
UAV-based images, in which most data acquisitions are com-
posed by a high-level of detail, DL-based methods are resulting
in important discoveries, demonstrating the feasibility of these
methods to perform this task. Still, although these studies are
proving this feasibility, especially in comparison with other
methods, novel research should focus on evaluating the per-
formance of deep networks regarding their domain adaptation,
as well as its generalization ability, like using data in different
spatial resolutions, multitemporal imagery, etc.

The detection, evaluation, and prediction of flooded areas rep-
resents another type of investigation with datasets provided by
UAV-embedded sensors. A study [62] demonstrated the impor-
tance of CNNs for the segmentation of flooded regions, where
the network was able to separate water from other targets like
buildings, vegetation, and roads. One potential application that
could be conducted with UAV-based data, but still needs to be
further explored, is mapping and predicting regions of possible
flooding with a multitemporal analysis, for example. This, as
well as many other possibilities related to flooding, water-bodies,
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and river courses [27], could be investigated with DL-based ap-
proaches.

For river analysis, an investigation [207] used a CNN archi-
tecture for image segmentation by fusing both the positional
and channel-wise attentive features to assist in river ice moni-
toring. Another study [97] compared LiDAR data with point
cloud generated by UAV mapping and demonstrated an inter-
esting approach to DL-based methods applications for point
cloud classification and a rapid Digital Elevation Model (DEM)
generation for flood risk mapping. One type of application with
CNN in UAV data involved measuring hailstones in open areas
[174]. For this approach, image segmentation was used in RGB
images and returned the maximum dimension and intermediate
dimension of the hailstones. Lastly, on this topic, a comparison
[92] with CNNs and GANs to segment both river and vegetation
areas demonstrated that a type of “fusion” between these net-
works using a global classifier had an advantage of increasing
the efficiency of the segmentation.

UAV-based forest mapping and monitoring is also an emerging
approach that has been gaining the attention of the scientific
community and, at some level, governmental bodies. Forest
areas often pose difficulties for precise monitoring and investiga-
tion, since they can be hard to access and may be dangerous to
some extent. In this aspect, images taken from UAV embedded
sensors can be used to identify single tree-species in forested en-
vironments and compose an inventory. From the papers gathered,
multiple types of sensors, RGB, both multi and hyperspectral,
and LiDAR, were used for this approach. An application inves-
tigated the performance of a 3D-CNN method to classify tree
species in a boreal forest, focusing on pine, spruce, and birch
trees, with a combination between RGB and hyperspectral data
[138].

Single-tree detection and species classification by CNNs were
also investigated in [57] in which three types of palm-trees in
the Amazon forest, considered important for its population and
native communities, were mapped with this type of approach.
Another example [90] includes the implementation of a Deep
Convolutional Generative Adversarial Network (DCGAN) to
discriminate between health diseased pinus-trees in a heavily-
dense forested park area. Another recent investigation [134]
proposed a novel DL method to identify single-tree species in
highly-dense areas with UAV- hyperspectral imagery. These and
other scientific studies demonstrate how well DL-based methods
can deal with such environments.

Although the majority of approaches encountered at the
databases of this category relate to tree-species mapping, UAV-
acquired data were used for other applications in these natural
environments. A recent study [208] proposed a method based on
semantic segmentation and scene-wise classification of plants
in UAV-based imagery. The method bases itself on a CNN that
classifies individual plants by increasing the image scale while
integrating features learned from small scales. This approach
is an important intake in multi-scale information fusion. Also
related to vegetation identification, multiple CNNs architectures
were investigated in [74] to detect between plants and non-type
of plants with UAV-based RGB images achieving interesting
performance.

Another application aside from vegetation mapping involves
wild-life identification. Animal monitoring in open spaces and
grasslands is also something that received attention as DL-based
object detection and semantic segmentation methods are provid-
ing interesting outcomes. A paper by [103] covers this topic and
discusses, with practical examples, how CNNs may be used in
conjunction with UAV-based images to recognize mammals in
the African Savannah. This study relates the challenges related
to this task and proposes a series of suggestions to overcome
them, focusing mostly on imbalances in the labeled dataset.
The identification of wild-life, also, was not only performed
in terrestrial environments, but also in marine spaces, where
a recent publication [70] implemented a CNN-based semantic
segmentation method to identify cetacean species, mainly blue,
humpback, and minke whales, in the ocean. These studies not
only demonstrate that such methods can be highly accurate at
different tasks but also imply the potential of DL approaches for
UAVs in the current literature.

3.3 Urban Mapping

For urban environments, many DL-based proposals with UAV
data have been presented in the literature in the last years. The
high-spatial-resolution easily provided by UAV embedded sen-
sors are one of the main reasons behind its usage in these ar-
eas. Object detection and instance segmentation methods in
those images are necessary to individualize, recognize, and map
highly-detailed targets. Thus, many applications rely on CNNs
and, in small cases, RNNs (CNN-LSTM) to deal with them.
Some of the most common examples encountered in this cate-
gory during our survey are the identification of pedestrians, car
and traffic monitoring, segmentation of individual tree-species
in urban forests, detection of cracks in concrete surfaces and
pavements, building extraction, etc. Most of these applications
were conducted with RGB type of sensors, and, in a few cases,
spectral ones.

The usage of RGB sensors is, as aforementioned, a preferred
option for small-budget experiments, but also is related to an-
other important preference of CNNs, and that is that features
like pixel-size, form, and texture of an object are essential to its
recognition. In this regard, novel experiments could compare
the performance of DL-based methods with RGB imagery with
other types of sensors. As low-budget systems are easy to imple-
ment in larger quantities, many urban monitoring activities could
benefit from such investigations. In urban areas, the importance
of UAV real-time monitoring is relevant, and that is one of the
current objectives when implementing such applications.

The most common practices on UAV-based imagery in urban
environments with DL-based methods involve the detection of
vehicles and traffic. Car identification is an important task to
help urban monitoring and may be useful for real-time analysis
of traffic flow in those areas. It is not an easy task, since vehicles
can be occluded by different objects like buildings and trees, for
example. A recent approach using RGB video footage obtained
with UAV, as presented in [204], used an object detection CNN
for this task. They also dealt with differences in traffic monitor-
ing to motorcycles, where a frame-by-frame analysis enabled
the neural network to determine if the object in the image was a
person (pedestrian) or a person riding a motorcycle since differ-
ences in its pattern and frame-movement indicated it. Regarding
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pedestrian traffic, an approach with thermal cameras presented
by [43] demonstrated that CNNs are appropriate to detect per-
sons with different camera rotations, angles, sizes, translation,
and scale, corroborating the robustness of its learning and gener-
alization capabilities.

Another important survey in those areas is the detection and
localization of single-tree species, as well as the segmentation of
their canopies. Identifying individual species of vegetation in ur-
ban locations is an important requisite for urban-environmental
planning since it assists in inventorying species and providing
information for decision-making models. A recent study [49] ap-
plied object detection methods to detect and locate tree-species
threatened by extinction. Following their intentions, a research
[183] evaluated semantic segmentation neural networks to map
endangered tree-species in urban environments. While one ap-
proach aimed to recognize the object to compose an inventory,
the other was able to identify it and return important metrics,
like its canopy-area for example. Indeed, some proposals that
were implemented in a forest type of study could also be adopted
in urban areas, and this leaves an open field for future research
that intends to evaluate DL-based models in this environment.
Urban areas pose different challenges for tree monitoring, so
these applications need to consider their characteristics.

DL-based methods have also been used to recognize and extract
infrastructure information. An interesting approach demon-
strated by [24], based on semantic segmentation methods,
was able to extract buildings in heavily urbanized areas, with
unique architectural styles and complex structures. Interestingly
enough, a combination of RGB with a DSM improved building
identification, indicating that the segmentation model was able
to incorporate appropriate information related to the objects’
height. This type of combinative approach, between spatial-
spectral data and height, may be useful in other identification
and recognition approaches. Also regarding infrastructure, an-
other possible application in urban areas is the identification and
location of utility poles [67]. This application, although being of
rather a specific example, is important to maintain and monitor
the conditions of poles regularly. These types of monitoring in
urban environments is something that benefits from DL-based
models approaches, as it tends to substitute multiple human in-
spection tasks. Another application involves detecting cracks in
concrete pavements and surfaces [20]. Because some regions of
civil structures are hard to gain access to UAV-based data with
object detection networks may be useful to this task, returning a
viable real-life application.

Another topic that is presenting important discoveries relates to
land cover pixel segmentation in urban areas, as demonstrated
by [18]. In this investigation, an unsupervised domain adapta-
tion method based on GANs was implemented, working with
different data from UAV-based systems, while being able to im-
prove image segmentation of buildings, low vegetation, trees,
cars, and impervious surfaces. As aforementioned, GANs or
DCGANs are quickly gaining the attention of computer vision
communities due to their wide area of applications and the way
they function by being trained to differentiate between real and
fake data [68]. Regardless, its usage in UAV-based imagery is
still underexplored, and future investigations regarding not only
land change and land cover but also other types of applications’
accuracies may be improved with them. Nonetheless, apart from

differences in angles, rotation, scales, and other UAV-based
imagery-related characteristics, diversity in urban scenarios is a
problem that should be considered by unsupervised approaches.
Therefore, in the current state, DL-based networks still may
rely on some supervised manner to guide image processing,
specifically regarding domain shift factors.

3.4 Agricultural Mapping

Precision agriculture applications have been greatly benefited
from the integration between UAV-based imagery and DL meth-
ods in recent scientific investigations. The majority of issues
related to these approaches involve object detection and feature
extraction for counting plants and detecting plantation lines,
recognizing plantation-gaps, segmentation of plant species and
invasive species such as weeds, phenology, and phenotype de-
tection, and many others. These applications offer numerous
possibilities for this type of mapping, especially since most of
these tasks are still conducted manually by human-vision inspec-
tion. As a result, they can help precision farming practices by
returning predictions with rapid, unbiased, and accurate results,
influencing decision-making for the management of agricultural
systems.

Regardless, although automatic methods do provide important
information in this context, they face difficult challenges. Some
of these include similarity between the desired plant and invasive
plants, hard-to-detect plants in high-density environments (i.e.
presenting small spacing between plants and lines), plantation-
lines that do not follow a straight-path, edge-segmentation in
mapping canopies with conflicts between shadow and illumina-
tion, and many others. Still, novel investigations aim to achieve
a more generative capability to these networks in dealing with
such problems. In this sense, approaches that implement meth-
ods in more than one condition or plantation are being the main
focus of recent publications. Thus, varied investigation scenarios
are currently being proposed, with different types of plantations,
sensors, flight-altitudes, angles, spatial and spectral divergences,
dates, phenological-stages, etc.

An interesting approach that has the potential to be expanded to
different orchards was used in [6]. There, a low-altitude flight
approach was adopted with side-view angles to map yield by
counting fruits with the CNN-based method. Counting fruits is
not something entirely new in DL-based approaches, some pa-
pers demonstrated the effectiveness of bounding-box and point-
feature methods to extract it [22, 182, 100] aside from several
differences in occlusion, lightning, fruit size, and image corrup-
tion.

Today’s deep networks demonstrate high potential in yield-
prediction, as some applications are adapted to CNN architec-
tures mainly because of its benefits in image processing. One of
which includes predicting pasture-forage with only RGB images
[33]. Another interesting example in crop-yield estimates is
presented by [137], where a CNN-LSTM was used to predict
yield with a spatial multitemporal approach. There the authors
implemented this structure since RNNs are more appropriate
to learn from temporal data, while a 3D-CNN was used to pro-
cess and classify the image. Although used less frequently than
CNNs in the literature, there is emerging attention to LSTM
architectures in precision agriculture approaches, which appear
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to be an appropriate intake for temporal monitoring of these
areas.

Nonetheless, one of the most used and beneficiated approaches
in precision agriculture with DL-based networks is counting
and detecting plants and plantation lines. Counting plants is
essential to produce estimates regarding production rates, as
well as, by geolocating it, determine if a problem occurred
during the seedling process by identifying plantation-gaps. In
this regard, plantation-lines identification with these gaps is
also a desired application. Both object detection and image
segmentation methods were implemented in the literature, but
most approaches using image semantic segmentation algorithms
rely on additional procedures, like using a blob detection method
[107], for example. These additional steps may not always be
desirable, and to prove the generality capability of one model,
multiple tests at different conditions should be performed.

For plantation-line detection, segmentations are currently being
implemented and often used to assist in more than one informa-
tion extraction. In [143] semantic segmentation methods were
applied in UAV-based multispectral data to extract canopy areas
and was able to demonstrate which spectral regions were more
appropriate to it. A recent application with UAV-based data
was also proposed in [144], where a CNN model is presented
to simultaneously count and detect plants and plantation-lines.
This model is based on a confidence map extraction and was
an upgraded version from previous research with citrus-tree
counting [142]. This CNN works by implementing some convo-
lutional layers, a Pyramid Pooling Module (PPM) [211], and a
Multi-Stage Module (MSM) with two information branches that,
concatenated at the end of the MSM processes, shares knowl-
edge learned from one to another. This method ensured that the
network learned to detect plants that are located at a plantation-
line, and understood that a plantation-line is formed by linear
conjunction of plants. This type of method has also been proved
successful in dealing with highly-dense plantations. Another
research [4] that aimed to count citrus-trees with a bounding-
box-based method also returned similar accuracies. However, it
was conducted in a sparse plantation, which did not impose the
same challenges faced at [142, 144]. Regardless, to deal with
highly dense scenes, feature extraction from confidence maps
appears to be an appropriate approach.

However, agricultural applications do not always involve plant
counting or plantation-line detection. Similar to wild-animal
identification as included in other published studies [103, 70],
there is also an interest in cattle detection, which is still an oner-
ous task for human-inspection. In UAV-based imagery, some
approaches included DL-based bounding-boxes methods [14],
which were also successfully implemented. DNNs used for
this task are still underexplored, but published investigations
[162] argue that one of the main reasons behind the necessity to
use DL methods is based on occurrences of changes in terrain
(throughout the seasons of the year) and the non-uniform distri-
bution of the animals throughout the area. On this matter, one
interesting approach should involve the usage of real-time object
detection on the flight. This is because it is difficult to track
animal movement, even in open areas such as pastures, when a
UAV system is acquiring data. Another agricultural application
example refers to the monitoring offshore aquaculture farms
using UAV-underwater color imagery and DL models to classify

them [16]. These examples reveal the widespread variety of
agriculture problems that can be attended with the integration of
DL models and UAV remote sensing data.

Lastly, a field yet to be also explored in the literature is the identi-
fication and recognition of pests and disease indicators in plants
using DL-based methods. Most recent approaches aimed to iden-
tify invasive species, commonly named “weeds”, in plantation-
fields. In a demonstration with unsupervised data labeling,
[45] evaluated the performance of a CNN-based method to pre-
dict weeds in the plantation lines of different crops. This pre-
processing step to automatically generate labeled data, which is
implemented outside the CNN model structure, is an interesting
approach. However, others prefer to include a “one-step” net-
work to deal with this situation, and different fronts are emerging
in the literature. Unsupervised domain adaptation, in which the
network extracts learning features from new unviewed data, is
one of the most current aimed models.

A recent publication [118] proposed it to recognize and count
in-field cotton-boll status identification. Regardless, with UAV-
based data examples, this is still an issue. As for disease detec-
tion, a study [104] investigated the use of image segmentation
for vine-crops with multispectral images, and was able to sep-
arate visible symptoms (RGB), infrared symptoms (i.e. when
considering only the infrared band) and in an intersection be-
tween visible and infrared spectral data. Another interesting
example regarding pests identification with UAV-based image
was demonstrated in [179] where superpixel image samples of
multiple pest species were considered, and activation filters used
to recognize undesirable visual patterns implemented alongside
different DL-based architectures.

4 Publicly Available UAV-Based Datasets

As mentioned, one of the most important characteristics of DL-
based methods is that they tend to increase their learning capabil-
ities as a number of labeled examples are used to train a network.
In most of the early approaches to remote sensing data, CNNs
were initialized with pre-trained weights from publicly available
image repositories over the internet. However, most of these
repositories are not from data acquired with remote sensing
platforms. Still, there are some known aerial repositories with
labeled examples, which were presented in recent years, such
as the DOTA [197], UAVDT [50], VisDrone [9], WHU-RS19
[171], RSSCN7 [220], RSC11 [209], Brazilian Coffee Scene
[151] datasets. These and others are gaining notoriety in UAV-
based applications and could be potentially used to pre-train or
benchmark DL methods. These datasets not only serve as an
additional option to start a network but also may help in novel
proposals to be compared against the evaluated methods.

Since there is a still scarce amount of labeled examples with
UAV-acquired data, specifically in multispectral and hyperspec-
tral data, we aimed to provide UAV-based datasets in both urban
and rural scenarios for future research to implement and com-
pare the performance of novel DL-based methods with them.
Table 1 summarizes some of the information related to these
datasets, as well as indicates recent publications in which previ-
ously conducted approaches were implemented, as well as the
results achieved on them. They are available on the following
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webpage, which is to be constantly updated with novel labeled
datasets from here on: Geomatics and Computer Vision/Datasets

5 Perspectives in Deep Learning with UAV Data

There is no denying that DL-based methods are a powerful and
important tool to deal with the numerous amounts of data daily
produced by remote sensing systems. What follows in this sec-
tion is a short commentary on the near perspectives of one of the
most emerging fields in the DL and remote sensing communities
that could be implemented with UAV-based imagery. These top-
ics, although individually presented here, have the potential to
be combined, as already performed in some studies, contributing
to the development of novel approaches.

In general, DL architectures require low resolution input images
(e.g., 512 × 512 pixels). High resolution images are generally
scaled to the size required for processing. However, UAVs
have the advantage of capturing images in higher resolution
than most other types of sensing platforms aside from proximal
sensing, and the direct application of traditional architectures
may not take advantage of this feature. As such, processing
images with DL while maintaining high resolution in deeper
layers is a challenge to be explored. In real-time applications,
such as autonomous navigation, this processing must be fast,
which opens up a range of research related to reducing the com-
plexity of architectures while preserving accuracy. Regarding
DL, recently, some CNN architectures that try to maintain high
resolution in deeper layers, such as HRNet, have been proposed
[101]. These novel architectures can really take advantage of
the high resolution from UAV images compared to commonly
available orbital data.

To summarize, the topics addressed in this section compose
some of the hot topics in the computer vision community, and
the combination of them with remote sensing data can contribute
to the development of novel approaches in the context of UAV
mapping. In this regard, it is important to emphasize that not
only these topics are currently being investigated by computer
vision research, but that they also are being fastly implemented
in multiple approaches aside from remote sensing. As other
domains are investigated, novel ways of improving and adapt-
ing these networks can be achieved. Future studies in remote
sensing communities, specifically on UAV-based systems, may
benefit from these improvements and incorporate them into their
applications.

5.1 Real-Time Processing

Most of the environmental, urban, and agricultural applications
presented in this study can benefit from real-time responses.
Although UAV and DL-based combinations speed up the pro-
cessing pipeline, these algorithms are highly computer-intensive.
Usually, they do require post-processing in data centers or dedi-
cated Graphics Processing Units (GPUs) machines. Although
DL is considered a fast method to extract information from data
after its training, it still bottlenecks real-time applications mainly
because of the number of layers intrinsic to the DL methods
architecture. Research groups, especially from the IoT indus-
try/academy, race to develop real-time DL methods because of it.
The approach usually goes in two directions: developing faster
algorithms and developing dedicated GPU processors.

DL models use 32-bit floating points to represent the weights
of the neural network. A simple strategy known as quantization
reduces the amount of memory required by DL models repre-
senting the weights, using 16, 8, or even 1 bit instead of 32-bits
floating points. A 32-bit full precision ResNet-18 [75] achieves
89.2% top-5 accuracy on the ImageNet dataset [94], while the
ResNet-18 [75] ported to XNOR-Net achieves 73.2% top-5 accu-
racy in the same dataset. The quantization goes beyond weights,
in all network components, while the literature reports activation
functions and gradient optimizations quantized methods. The
survey conducted in [72] gives an important overview of quan-
tization methods. Also, knowledge distillation [79] is another
example of a training model using a smaller network, where a
larger “teacher” network guides the learning process of a smaller
“student” network.

Another strategy to develop fast DL models is to design layers
with fewer parameters that are still capable of retaining predic-
tive performance. MobileNets [86] and its variants are a good
example of this idea. In specific tasks, such as object detection,
it is possible to develop architectural enhancements for this ap-
proach, such as the Context Enhanced Module (CEM) and the
Spatial Attention Module (SAM) [155]. When considering even
smaller computational power, it is possible to find DL running
on microcontroller units (MCU) where the memory and compu-
tational power are 3-4 orders of magnitude smaller than mobile
phones.

On hardware, the industry has already developed embedded AI
platforms that run DL algorithms. NVIDIA’s Jetson is amongst
the most popular choices and a survey [133] of studies using
the Jetson platform and its applications demonstrate it. Also, a
broader survey on this theme, that considers GPU, ASIC, FPGA,
and MCUs of AI platforms, can be read in [95]. Regardless,
research in the context of UAV remote sensing is quite limited,
and there is a gap that can be fulfilled by future works. Several
applications can be benefited by this technology, including, for
example, agricultural spraying UAV, which can recognize differ-
ent types of weeds in real-time, and simultaneously use the spray.
Other approaches may include real-time monitoring of trees in
both urban and forest environments, as well as the detection of
other types of objects that benefit from a rapid intake.

5.2 Dimensionality Reduction

Due to recent advances in capture devices, hyperspectral images
can be acquired even in UAVs. These images consist of tens to
hundreds of spectral bands that can assist in the classification
of objects in a given application. However, two main issues
arise from the high dimensionality: i) the bands can be highly
correlated, and ii) the excessive increase in the computational
cost of DL models. High-dimensionality could invoke a prob-
lem known as the Hughes phenomenon, which is also known
as the curse of dimensionality, i.e., when the accuracy of a clas-
sification is reduced due to the introduction of noise and other
implications encountered in hyperspectral or high-dimensional
data [77]. Regardless, hyperspectral data may pose an hindrance
for the DL-based approaches accuracies, thus being an impor-
tant issue to be considered in remote sensing practices. The
classic approach to address high dimensionality is by applying a
Principal Component Analysis (PCA) [120].
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Table 1: UAV-based datasets that are publically available from previous research.
Reference Task Target Sensor GSD(cm) Best Method Result
[49] Detection Trees RGB 0.82 RetinaNet AP = 92.64%
[183] Segmentation Trees RGB 0.82 FC-DenseNet F1 = 96.0%
[143] Segmentation Citrus Multispectral 12.59 DDCN F1 = 94.4%
[144] Detection Citrus RGB 2.28 [144] F1 = 96.5%
[144] Detection Corn RGB 1.55 [144] F1 = 87.6%
[142] Detection Citrus Multispectral 12.59 [142] F1 = 95.0%

Despite several proposals, PCA is generally not applied in con-
junction with DL, but as a pre-processing step. Although this
method may be one of the most known approaches to reduce
dimensionality when dealing with hyperspectral data, different
intakes were already presented in the literature. A novel DL
approach, implemented with UAV-based imagery, was demon-
strated by Miyoshi et al. [134]. There, the authors proposed a
one-step approach, conducted within the networks’ architecture,
to consider a combination of bands of a hyperspectral sensor that
were highly related to the labeled example provided in the input
layer at the initial stage of the network. Another investigation
[189] combines a band selection approach, spatial filtering, and
CNN to simultaneously extract the spectral and spatial features.
Still, the future perspective to solve this issue appears to be a
combination of spectral band selection and DL methods in an
end-to-end approach. Thus, both selection and DL methods
can exchange information and improve results. This can also
contribute to understanding how DL operates with these images,
which was slightly accomplished at Miyoshi et al. [134].

5.3 Domain Adaptation and Transfer Learning

The training steps of DL models are generally carried out on im-
ages captured in a specific geographical region, in a short-time
period, or on single capture equipment (also known as domains).
When the model is used in practice, it is common for spectral
shifts to occur between the training and test images due to differ-
ences in acquisition, geographic region, atmospheric conditions,
among others [187]. Domain adaptation is a technique for adapt-
ing models trained in a source domain to a different, but still
related, target domain. Therefore, domain adaptation is also
viewed as a particular form of transfer learning [187]. On the
other hand, transfer learning [217, 178] does include applica-
tions in which the characteristics of the domain’s target space
may differ from the source domain.

A promising research line for domain adaptation and transfer
learning is to consider GANs [68, 53]. For example, [19] pro-
posed the use of GANs to convert an image from the source
domain to the target domain, causing the source images to mimic
the characteristics of the images from the target domain. Recent
approaches seek to align the distribution of the source and target
domains, although they do not consider direct alignment at the
level of the problem classes. Approaches that are attentive to
class-level shifts may be more accurate, as the category-sensitive
domain adaptation proposed by [55]. Thus, these approaches
reduce the domain shift related to the quality and characteristics
of the training images and can be useful in practice for UAV
remote sensing.

5.4 Attention-Based Mechanisms

Attention mechanisms aim to highlight the most valuable fea-
tures or image regions based on assigning different weights for
them in a specific task. It is a topic that has been recently ap-
plied in remote sensing, providing significant improvements. As
pointed out by [198], high-resolution images in remote sens-
ing provide a large amount of information and exhibit minor
intra-class variation while it tends to increase. These variations
and a large amount of information make extraction of relevant
features more difficult, since traditional CNNs process all re-
gions with the same weight (relevance). Attention mechanisms,
such as the one proposed by [198], are useful tools to focus the
feature extraction in discriminative regions of the problem, be
it image segmentation [46, 175, 214], scene-wise classification
[218, 125], or object detection [121, 125], as others.

Besides, [175] argue that when remote sensing images are used,
they are generally divided into patches for training the CNNs.
Thus, objects can be divided into two or more sub-images, caus-
ing the discriminative and structural information to be lost. At-
tention mechanisms can be used to aggregate learning by focus-
ing on relevant regions that describe the objects of interest, as
presented in [175], through a global attention upsample module
that provides global context and combines low and high-level
information. Recent advances in computer vision were achieved
with attention mechanisms for classification (e.g., Vision Trans-
former [48] and Data-efficient Image Transformers [184]) and
in object detection (e.g., DETR [28]) that have not yet been fully
evaluated in remote sensing applications. Some directions also
point to the use of attention mechanisms directly in a sequence
of image patches [48, 184]. These new proposals can improve
the results already achieved in remote sensing data, just as they
have advanced the results on the traditional image datasets in
computer vision (e.g., ImageNet [94]).

5.5 Few-Shot Learning

Although recent materials demonstrated the feasibility of DL-
based methods for multiple tasks, they still are considered lim-
ited in terms of high generalization. This occurs when dealing
with the same objects in different geographical areas or when
new object classes are considered. Traditional solutions require
retraining the model with a robust labeled dataset for the new
area or object. Few-shot learning aims to cope with situations in
which few labeled datasets are available. A recent study [119],
in the context of scene classification, pointed out that few-shot
methods in remote sensing are based on transfer learning and
meta-learning. Meta-learning can be more flexible than transfer
learning, and when applied in the training set to extract meta-
knowledge, contributes significantly to few-shot learning in the
test set. An interesting strategy to cope with large intraclass
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variation and interclass similarity is the implementation of the
attention mechanism in the feature learning step, as previously
described. The datasets used in the [119] study were not UAV-
based; however, the strategy can be explored in UAV imagery.

In the context of UAV remote sensing, there are few studies on
few-shot learning. Recently, an investigation [102] aimed for
the detection of maize plants using the object detection method
CenterNet. The authors adopted a transfer learning strategy
using pre-trained models from other geographical areas and
dates. Fewer images (in total, 150 images), when compared to
the previous training (with 600 images), from the new area were
used for fine-tuning the model. Based on the literature survey,
there is a research-gap to be further explored in the context of
object detection using few-shot learning in UAV remote sensing.
The main idea behind this is to consider less labeled datasets
for training, which may help in some remote applications where
data availability is scarce or presents few occurrences.

5.6 Semi-Supervised Learning and Unsupervised Learning

With the increasing availability of remote sensing images, the
labeling task for supervised training of DL models is expensive
and time-consuming. Thus, the performance of DL models is
impacted due to the lack of large amount of labeled training
images. Efforts have been made to consider unlabeled images
in training through unsupervised (unlabeled images only) and
semi-supervised (labeled and unlabeled images) learning. In re-
mote sensing, most semi-supervised or unsupervised approaches
are based on transfer learning, which usually requires a super-
vised pre-trained model [127]. In this regard, a recent study [99]
proposed a promising approach for unlabeled remote sensing
images that define spatial augmentation criteria for relating close
sub-images. Regardless, this is still an underdeveloped prac-
tice with UAV-based data and should be investigated in novel
approaches.

Future perspectives point to the use of contrastive loss [10, 181,
80, 76] and clustering-based approaches [30, 29]. Recent publi-
cations have shown interesting results with the use of contrastive
loss that has not yet been fully evaluated in remote sensing.
For example, [76] proposed an approach based on contrastive
loss that surpassed the performance of its supervised pre-trained
counterpart. As for clustering-based methods, they often group
images with similar characteristics [30]. On this matter, a re-
search [30] presented an approach that groups the data while
reinforcing the consistency between the cluster assignments
produced for a pair of images (same images with two augmen-
tations). An efficient and effective way to use a large number
of unlabeled images can considerably improve the performance,
mainly related to the generalizability of the models.

5.7 Multitask Learning

Multitask learning aims to perform multiple tasks simultane-
ously. Several advantages are mentioned in [42], including fast
learning and the minimization of overfitting problems. Recently,
in the context of UAV remote sensing, there were some impor-
tant researches already developed. A study [194] proposed a
method to conduct three tasks (semantic segmentation, height es-
timation, and boundary detection), which also considered bound-
ary attention modules. Another research [144] simultaneously

detecting plants and plantation lines in UAV-based imagery. The
proposed network benefited from the contributions of consid-
ering both tasks in the same structure, since the plants must,
essentially belong to a plantation line. In short, improvements
occurred in the detection task when line detection was consid-
ered at the same time. This approach can be further explored in
several UAV-based remote sensing applications.

5.8 Open-Set

The main idea of an open-set is to deal with unknown or unseen
classes during the inference in the testing set [17]. As the au-
thors mention, recognition in real-world scenarios is “open-set”,
different from neural networks’ nature, which is in a “close-set”.
Consequently, the testing set is classified considering only the
classes used during the training. Therefore, unknown or unseen
classes are not rejected during the test. There are few studies
regarding open-set in the context of remote sensing. Regarding
semantic segmentation of aerial imagery, a study by [173] pre-
sented an approach considering the open-set context. There, an
adaptation of a close-set semantic segmentation method, adding
a probability threshold after the softmax, was conducted. Later,
a post-processing step based on morphological filters was ap-
plied to the pixels classified as unknown to verify if they are
inside pixels or from borders. Another interesting approach is to
combine open-set and domain adaptation methods, as proposed
by [2] in the remote sensing context.

5.9 Photogrammetric Processing

Although not as developed as other practices, DL-based meth-
ods can be adopted for processing and optimizing the UAV
photogrammetric processing task. This process aims to gener-
ate a dense point cloud and an orthomosaic, and it is based on
Structure-from-Motion (SfM) and Multi-View Stereo (MVS)
techniques. In SfM, the interior and exterior orientation param-
eters are estimated, and a sparse point cloud is generated. A
matching technique between the images is applied in SfM. A
recent survey on image matching [129] concluded that this the-
matic is still an open problem and pointed out the potential of
DL is this task. The authors mentioned that DL techniques are
mainly applied to feature detection and description, and further
investigations on feature matching can be explored. Finally, they
pointed out that a promising direction is the customization of
modern feature matching techniques to attend SfM.

Regarding DL for UAV image matching, there is a lack of work
indicating a potential for future exploration. In the UAV pho-
togrammetric process, DL also can be used in filtering the DSM,
which is essential to generate high-quality orthoimages. Pre-
vious work [63] showed the potential of using DL to filter the
DSM and generate the DTM. Further investigations are required
in this thematic, mainly considering UAV data. Besides, another
task that can be beneficiated by DL is the color balancing be-
tween images when generating orthomosaic from thousands of
images, corresponding to extensive areas.

6 Conclusions
DL is still considered up to the time of writing, a “black-box”
type of solution for most of the problems, although novel re-
search is advancing in minimizing this notion at considerable
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proportions. Regardless, in the remote sensing domain, it already
provided important discoveries on most of its implementations.
Our literature revision has focused on the application of these
methods in UAV-based image processing. In this sense, we
structured our study to offer more of a comprehensive approach
to the subject while presenting an overview of state-of-the-art
techniques and perspectives regarding its usage. As such, we
hope that this literature revision may serve as an inclusive survey
to summarize the UAV applications based on DNNs. Thus, in
the evaluated context, this review concludes that:

1. In the context of UAV remote sensing, most of the pub-
lished materials are based on object detection methods
and RGB sensors; however, some applications, as in
precision agriculture and forest-related, benefit from
multi/hyperspectral data;

2. There is a need for additional labeled public available
datasets obtained with UAVs to be used to train and
benchmark the networks. In this context, we con-
tributed by providing a repository with some of our
UAV datasets in both agricultural and environmental
applications;

3. Even though CNNs are the most adopted architecture,
other methods based on CNN-LSTMs and GANs are
gaining attention in UAV remote sensing and image
applications, and future UAV remote sensing works
may benefit from their inclusion;

4. DL, when assisted by GPU processing, can provide
fast inference solutions. However there is still a need
for further investigation regarding real-time processing
using embedded systems on UAVs, and, lastly;

5. Some promising thematics, such as open-set, attention-
based mechanisms, few shot and multitask learning can
be combined and provide novel approaches in the con-
text of UAV remote sensing; also, these thematics can
contribute significantly to the generalization capacity
of the DNNs.
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PCA Principal Component Analysis
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r Correlation Coefficient
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SEGUNDO CAPÍTULO: O POTENCIAL DO VISUAL CHATGPT 

PARA SENSORIAMENTO REMOTO 

 

Resumo: Avanços recentes no Processamento de Linguagem Natural (Natural Language 

Processing - NLP), particularmente em Modelos de Linguagem de Grande Escala (Large 

Language Models- LLMs), associados a técnicas de visão computacional baseadas em 

aprendizado profundo, mostraram um potencial substancial para automatizar uma 

variedade de tarefas. Estes são conhecidos como LLMs Visuais e um modelo notável é o 

Visual ChatGPT, que combina as capacidades de LLMs do ChatGPT com o cômputo 

visual para permitir uma análise de imagem eficaz. A habilidade desses modelos de 

processar imagens com base em entradas textuais pode revolucionar diversos campos, e 

embora a sua aplicação no domínio da detecção remota permaneça inexplorada, é 

importante reconhecer que implementações inovadoras são esperadas para ela. Assim, 

este é o primeiro artigo a examinar o potencial do Visual ChatGPT, um LLMs de ponta 

baseado na arquitetura GPT, para lidar com os aspectos do processamento de imagens 

relacionados ao domínio da detecção remota. Entre suas capacidades atuais, o Visual 

ChatGPT pode gerar descrições textuais de imagens, realizar detecção de bordas de 

Canny e de linhas retas, e conduzir segmentação de imagens. Estes oferecem insights 

valiosos sobre o conteúdo da imagem e facilitam a interpretação e extração de 

informações. Ao explorar a aplicabilidade dessas técnicas em conjuntos de dados de 

imagens de satélite publicamente disponíveis, demonstramos as limitações do modelo 

atual no trato com imagens de detecção remota, destacando seus desafios e perspectivas 

futuras. Embora ainda esteja em desenvolvimento inicial, acreditamos que a combinação 

de LLMs e modelos visuais possui um potencial significativo para transformar o 

processamento de imagens de detecção remota, criando oportunidades de aplicação 

acessíveis e práticas no campo. 
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Abstract
Recent advancements in Natural Language Processing (NLP), particularly in Large Language Models (LLMs), associated
with deep learning-based computer vision techniques, have shown substantial potential for automating a variety of tasks.
These are known as Visual LLMs and one notable model is Visual ChatGPT, which combines ChatGPT’s LLM capabilities
with visual computation to enable effective image analysis. These models’ abilities to process images based on textual inputs
can revolutionize diverse fields, and while their application in the remote sensing domain remains unexplored, it is important
to acknowledge that novel implementations are to be expected into it. Thus, this is the first paper to examine the potential of
Visual ChatGPT, a cutting-edge LLM founded on the GPT architecture, to tackle the aspects of image processing related to
the remote sensing domain. Among its current capabilities, Visual ChatGPT can generate textual descriptions of images,
perform canny edge and straight line detection, and conduct image segmentation. These offer valuable insights into image
content and facilitate the interpretation and extraction of information. By exploring the applicability of these techniques
within publicly available datasets of satellite images, we demonstrate the current model’s limitations in dealing with remote
sensing images, highlighting its challenges and future prospects. Although still in early development, we believe that the
combination of LLMs and visual models holds a significant potential to transform remote sensing image processing, creating
accessible and practical application opportunities in the field.

1 Introduction

Remote sensing image processing is a critical task for monitor-
ing and analyzing the Earth’s surface and environment. It is used
in a wide range of fields such as agriculture, forestry, geology,
water resources, and urban planning [38, 24]. However, analyz-
ing and interpreting large volumes of remote sensing data can
be time-consuming and labor-intensive, requiring specialized
knowledge and expertise [24]. In recent years, Large Language
Models (LLMs) emerged as powerful and innovative tools for
human assistance in various domains [7], holding the potential
to be implemented in the remote sensing area as well.

As Artificial Intelligence (AI) continues to evolve, novel models
demonstrate an unprecedented ability to understand and gener-
ate human-like text, as well as perform numerous tasks based
on human guidance [42]. Among the LLMs, a model named
ChatGPT stands out as a remarkable example, offering immense
promise for assisting humans in multiple activities. The Gen-
erative Pre-trained Transformer (GPT), a deep learning model
developed by OpenAI [23], has gained considerable attention as
a promising AI technique for natural language processing tasks.
This VLM not only consists in one of the most recent foundation
model in development, but as well one of the prominent in its
field since has gained notoriety by the public eye in recent times.

The GPT model has been trained on extensive text data and can
generate human-like responses to input prompts. This model is
particularly useful in tasks such as chatbots, text summarization,
and language translation [23, 19]. Recent research, however, has
explored the application of LLMs models in visual tasks such
as image generation, captioning, and analysis assistance [39].

These models, also known as Visual Language Models (VLMs),
can generate natural language descriptions of images and per-
form image processing tasks from text descriptions. One model
that is gaining attention is the Visual ChatGPT [35]. Visual
ChatGPT is an extension of ChatGPT that incorporates visual
information on its capabilities while also providing text-based
responses in a conversational style.

Although still in its early concepts, the fusion of LLMs and
visual models may revolutionize image processing and unlock
new practical applications in various fields [41]. In this context,
remote sensing is an area that could directly benefit from this
integration. Fine-tuned VLMs could potentially be used to
process and analyze satellite and aerial images to detect land
use changes, monitor natural disasters, and assess environmental
impacts, as well as assist in the classification and segmentation
of images for easier interpretation and decision-making.

In this paper, we discuss the significance, utility, and limitations
of the model Visual ChatGPT in assisting humans in remote
sensing image processing. This model has shown great potential
in various applications such as question-answering systems and
image generation and modification. Currently, Visual ChatGPT
can perform image processing tasks like edge detection, line
extraction, and image segmentation, which are interesting for
the remote sensing field. The model, however, is not fine-tuned
to deal with the remote sensing domain, thus making it still
an early adoption of the tool. Regardless, we investigate this,
as a basis for discussion of its potential, by comparing these
tools within publicly available datasets of remote sensing im-
agery, thus measuring its capabilities both quantitatively and
qualitatively.
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By enabling machines to understand and generate images, Vi-
sual ChatGPT paves the way for numerous applications in image
processing. Herein, we discussed how Visual ChatGPT can be
adapted to the remote-sensing domain, where it might revolution-
ize the way we process and analyze these images. We examined
state-of-the-art developments in the model, evaluated their capa-
bilities in the context of remote sensing imagery, and proposed
future research directions. Ultimately, this exploration seeks
to provide insights into the integration of VLMs into remote
sensing science and community.

2 Visual ChatGPT: A Revolution in Image
Analysis and its Potential in Remote Sensing

Visual ChatGPT is an advanced VLM that combines the capa-
bilities of text-based LLMs with visual understanding. This
revolutionary approach enables machines to analyze images and
generate relevant text or visual outputs, opening up new possibil-
ities for image analysis and processing. One of the key features
of Visual ChatGPT is its ability to incorporate state-of-the-art
algorithms and information into its current model, facilitating
continuous improvement and adaptation [35].

By fine-tuning the model with domain-specific datasets, Visual
ChatGPT can become increasingly proficient in specific tasks,
making it an invaluable tool for image analysis. With its ar-
chitecture built to process and analyze both textual and visual
information, it has the potential to revolutionize diverse fields.
Interaction with Visual ChatGPT involves a dynamic and itera-
tive process, where users can provide textual input, image data,
or both, and the model responds with relevant information or
actions. This flexibility allows for a wide range of tasks to be
performed, including generating images from the user input text,
providing photo descriptions, answering questions about images,
performing object and pose detection, as well as other various
image processing techniques, such as edge detection, straight
line detection, scene classification, and image segmentation,
which are interesting in the remote sensing context.

Image processing methods are essential for extracting valuable
information from remote sensing data. However, these tech-
niques often require additional computational knowledge and
can be challenging for non-specialists to implement. VLMs like
Visual ChatGPT offer the potential to bridge this knowledge gap
by providing an accessible interface for non-experts to analyze
image data.

Although still early in its conception, many techniques and meth-
ods can be integrated into VLMs, thus providing the means to
perform complex image processing [39, 41]. In remote sensing,
tasks such as edge and line detection, scene classification, and
image segmentation, which currently are some of the techniques
embedded into Visual ChatGPT’s model, can be used to perform
and enhance the analysis of aerial or satellite imagery and bring
important information to the end user.

Edge detection is an image processing technique that identifies
the boundaries between different regions or objects within an
image. In remote sensing, edge detection is vital for recogniz-
ing features on the Earth’s surface, such as roads, rivers, and
buildings, and others [1]. Visual ChatGPT, with its ability to
analyze images and generate relevant text or visual outputs, can

be adapted to assist non-experts in executing edge detection
tasks of different objects present in the image. By providing
textual input alongside image data, users can interact with the
model to identify boundaries and extract valuable information
about the scene being analyzed.

Straight line detection is another critical image processing tech-
nique in remote sensing, with applications in feature extraction.
It involves identifying linear targets in remote sensing images,
such as roads, rivers, and boundaries [14]. Visual ChatGPT can
be utilized to help non-experts perform line detection tasks by
processing image data and easily returning line pattern identi-
fication in the images. This capability enables users to extract
additional information about the underlying terrain or land use
and cover without requiring in-depth knowledge of these image-
processing techniques.

Scene classification and image segmentation are also essential
techniques in remote sensing for identifying different types of
land cover and separating them into distinct regions. These
techniques aid in monitoring land use changes, detecting defor-
estation, assessing urban growth, monitoring water reservoirs,
and estimating agriculture growth, among many others [13]. On
this, VLMs can be employed to facilitate scene classification
and image segmentation tasks for non-experts. In scene clas-
sification, Visual ChatGPT can be used to detect and describe
objects in the image. As for segmentation, with specifically fine-
tuned models, there is the potential for users to obtain results
by simply interacting with the model using textual input [18],
allowing them to analyze land changes and monitor impacts.

However, it is important to note that the current version of Visual
ChatGPT has not been yet specifically trained on remote sensing
imagery. Neither have any other VLMs precisely tuned for this
task since the technology is still in an early stage. Nonetheless,
the model’s architecture and capabilities offer a solid foundation
for fine-tuning and adapting it to this domain in future imple-
mentations.

By training Visual ChatGPT on remote sensing datasets, it is
possible that it can be tailored to recognize and analyze unique
features, patterns, and structures present in aerial or satellite
images. To fully realize its potential, thorough analysis and
evaluation of its usage, impact, practices, and errors in remote
sensing applications are necessary. This will not only assist
the development of improved VLMs but also pave the way for
more efficient, accurate, and comprehensive analyses of remote
sensing data performed by these tools.

3 Materials andMethods

In this section, we detail the materials and methods used to
evaluate the performance of Visual ChatGPT in remote sensing
image processing tasks. The evaluation process is divided into
several stages (Figure 1), focusing on different aspects of the
models’ current capabilities, mainly on image classification,
edge, and straight line detection, and image segmentation.

We initiated our evaluation of Visual ChatGPT by assessing its
performance in scene classification tasks. To this end, we used
a publicly available dataset containing Google Earth images
labeled by human specialists. We extracted a small portion of
this dataset, considering a subset of its classes for our tests.
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Scene Classification:
❑ Precision, Recall, F-Score & Accuracy.

Edge and Line Detection:
❑ TPR, FPR, AUC, Precision, Recall, F-Score & 

Accuracy.

Image Segmentation:
❑ Local SSMI, Global SSMI & UQI.

Set Environment
❑ generate OpenAI Key;
❑ organize image folders.

Define User Prompt:
❑ for Scene Classification;
❑ for Canny Edge Detection;
❑ for Straight Line Detection;
❑ for Segmentation on Image.

Image Selection:

❑ 26-32 images per scene class (LoveDA dataset);
❑ 49 images for edge, line and segmentation (AID dataset).

LoveDA (Wuhan University, Oct 2021): 

❑ 5,987 image chips (Google Earth), 7 landcover categories, 166768 
labels, 3 cities in China. Paper: Wang et al., 2021.

AID: Aerial Scene Classification (Xia et al., 2017):

❑ 10,000 aerial images within 30 categories (airport, bare land, baseball 
field, beach, bridge, ...) collected from Google Earth imagery. Paper: 
Xia et al. 2017.

Image Loading

Foundation Models for 
Visual ChatGPT

Prompt Manager

ChatGPT

Reasoning

Output

OpenAI API

Data Survey Scene Classification

Data Preparation

Edge Detection

Line Detection

Image Segmentation

Evaluation

Figure 1: Diagram of the evaluation process of Visual ChatGPT in remote sensing image processing tasks. The diagram follows an
up-down/left-to-right flow, indicating that the process begins with a data survey, preparation, and setting up of the environment for loading the

images into Visual ChatGPT. Next, different tasks are performed using the tools provided by Visual ChatGPT, and the results are stored for
analysis where different sets of metrics are applied to evaluate the performance of the model.

The model’s classification performance was compared to the
ground-truth labels provided in the dataset.

In the next stage, we qualitatively evaluated the edge and straight
line detection capabilities of Visual ChatGPT on remote sens-
ing imagery, from Google Earth, of another publicly available
dataset. The detected edges and lines were assessed to determine
the model’s effectiveness in identifying target features in the im-
ages. The model’s performance was compared with traditional
edge filters and manually labeled lines.

Lastly, we evaluated the image segmentation feature of Visual
ChatGPT using the images from the same previous dataset,
which was specifically designed for segmentation data training.
We then compared the resulting segmentations with their cor-
responding masks. The comparison was conducted using an
associative method in which the classes identified by the Visual
ChatGPT model were associated with the classes labeled in the
dataset.

3.1 Experiment Delineation

To implement Visual ChatGPT, we downloaded the code from
Microsoft Github [22], created a virtual environment, installed
the required dependencies, downloaded the pre-trained models,
and started a Flask server. Once the server was running, we
imported the required libraries on Python code and set the API
key for the OpenAI platform access. The “run_image” function
inside the original “visual_chatgpt.py” file was modified to han-
dle image resizing and captioning. Next, the Visual ChatGPT
model was loaded with the required sub-models.

It is important to point out that Visual ChatGPT provides a dif-
ferent set of tools, but not all of them are appropriate to deal with
tasks related to remote sensing images. In this sense, we used
only the following: “Get Photo Description”, “Answer Question
About The Image”, “Edge Detection On Image”, “Line Detec-
tion On Image” and “Segmentation On Image”. Our code then
loops through a folder containing the images and performs the
canny edge and straight line detection, as well as segmentation
on each image. It also obtains the default image description of
the original loaded image using the Visual ChatGPT model and
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then asks a classification question to determine the class of the
image. The results are then stored in a .csv file and used for
further evaluation.

Visual ChatGPT utilizes sub-models that are specifically de-
signed to cater to the different prompts and tools required. For
instance, the "Get Photo Description" and "Answer Question
About The Image" tools use models from the HuggingFace li-
brary [16] to generate natural language descriptions of an image
and answer questions based on the given image path and the
corresponding question. The "Edge Detection On Image" tool
uses the Canny Edge Detector [5] from the OpenCV library to
identify and detect the edges of an image when given its path.
Similarly, the "Line Detection On Image" tool uses the M-LSD
Detector for Straight Line model [10] to detect straight lines in
the image. Finally, the "Segmentation On Image" tool employs
the UniFormer Segmentation model [17] to segment different
classes on the given image.

To assess the effectiveness of the Visual Chat-GPT models in
handling remote sensing image data, we surveyed publicly avail-
able datasets related to this field. After consideration, we se-
lected two datasets that would allow us to investigate the model’s
capabilities for performing specific tasks. These datasets were
the "AID: Aerial Scene Classification" [36] and the "LoveDA:
A Remote Sensing Land-Cover Dataset for Domain Adaptive
Semantic Segmentation" [34]. Both datasets contain Google
Earth imagery captured at different times, with varying lighting
conditions and visualization scales. These datasets provide a
rich and diverse set of images that are well-suited for testing the
model’s performances.

In its current form, the computational cost of using Visual Chat-
GPT is slightly higher than traditional methods. This increased
cost primarily stems from the necessity of consuming tokens
within the OpenAI API. The tokens required to process each
input and produce the corresponding output can add up, par-
ticularly in large-scale image-processing tasks. As technology
and computational efficiency evolve, we anticipate a reduction
in these costs in the near future. However, at the moment, this
cost influenced the number of runs conducted throughout our
experiment, as we detail in the description of each dataset.

The AID dataset contains different scene classes with about 200
to 400 samples of 600x600 size for each class, with 10,000
images in total. However, due to the current cost associated
with using Visual ChatGPT, we randomly selected between 26
to 32 images of each class for evaluation. These images were
reviewed to ensure that a broad representation of possible inputs
were selected. The following classes were evaluated: “Air-
port”, “BareLand”, “BaseballField”, “Beach”, “Bridge”, “Cen-
ter”, “Church”, “Commercial”, “DenseResidential”, “Desert”,
“Farmland”, “Forest”, “Industrial”, “Meadow”, “MediumResi-
dential”, “Mountain”, “Park”. These were stored in a “classes”
variable within our code. We chose these 17 classes to ensure a
diverse representation of the scenes, since the remaining classes
provided similar context. This brought a total of 515 images
to be loaded and described (and, therefore, classified) by the
Visual ChatGPT model. These images were used for evaluating
the “Get Photo Description”, and “Answer Question About The
Image” tools.

The LoveDA dataset is composed of 5,987 image chips, being
segmented into 7 landcover categories (namely: "background",
"building", "road", "water", "barren", "forest" and "farmland),
totaling 166,768 labels across 3 cities. This dataset focuses on
multi-geographical environments, variating between “Urban”
and “Rural” characteristics, while providing challenges like
multi-scale objects presence; complex background samples, and
inconsistent class distributions. The dataset also provides the
segmentation masks used to train image models. Here we used
these masks as our “ground-truth” data and selected a small
portion of the dataset, consisting of 49 images (mixing both
“Urban” and “Rural” environments). These 49 image chips were
all used in the evaluation of the “Edge Detection On Image”,
“Line Detection On Image” and “Segmentation On Image” tools.
They represent the most complex and rich environments within
their respective geographical context, and were limited due to
the cost associated with the API’s usage.

As mentioned, for the latter, we utilized a purposive sampling
methodology to directly select remote sensing images represen-
tative of different land covers. Our objective was to maintain
a rich representation of diverse surface covers in our dataset.
As such, to ensure a comprehensive depiction of geographical
scenarios, we, in this case, directly hand-picked images that
provided views of both natural and man-made environments.
This approach is grounded in the intention to not just create a
representative dataset but to ensure that our dataset reflects the
complexities and variances that are inherently present in real-
world scenarios. In doing so, we believe that the chosen dataset
yielded more robust and generalized outcomes in subsequent
analyses and applications.

3.2 Protocol for Scene Classification Evaluation

We first investigated whether Visual ChatGPT can assist in clas-
sifying remote sensing scenes. To test this, we used the AID
dataset (Aerial Scene Classification) [36]. We evaluated the "Get
Photo Description" and “Answer Question About The Image”
functions of Visual ChatGPT by asking it to describe and classify
the selected images. For each image, we asked Visual ChatGPT
to choose, based on its image description, with which class it
would associate the image. We directly asked it to choose be-
tween each one of the 17 classes, instead of trying to guess them,
thus generating guided predictions. A file was created with the
stored results and compared the Visual ChatGPT classification
with the correct class from the dataset.

We used the confusion matrix to evaluate the performance of
Visual ChatGPT in classifying the scenes. The confusion matrix
is a commonly used tool in the evaluation of classification mod-
els. It provides a summary of the performance of a model by
showing the number of correct and incorrect predictions for each
class. We begin by loading the dataset into a data frame. The set
contains two columns, “Image” and “Answer to the Question”,
that correspond to the true and predicted labels for each data
point, respectively.

The classes were defined as a list of strings representing the
different categories in the dataset. The two mentioned columns
were then converted and used for generating the confusion
matrix. The matrix takes as input the true labels (y_true),
predicted labels (y_pred), and the list of class labels (classes).
Finally, a heatmap was created to represent it. The heatmap
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was customized by adding annotations to show the number of
predictions in each cell. We calculated the Precision, Recall,
F-Score and Accuracy metrics to assess the performance of
Visual ChatGPT in comparison to the correct class labeled from
the AID dataset. These metrics can be described as follows
[26]:

Precision: Precision measures the proportion of True Positive
(TP) instances among the instances that were predicted as posi-
tive. Higher precision means fewer False Positives (FP).

Precision =
TP

(TP + FP)
(1)

Recall: Recall measures the proportion of TP instances among
the actual positive instances, thus using False Negatives (FN)
into its equation. This metric works better when considering
binary tasks.

Recall =
T P

(T P + FN)
(2)

F-Score: F-Score is the harmonic mean of Precision and Recall.
It’s a balanced metric that considers both false positives and
false negatives, with a range from 0 (worst) to 1 (best).

F Score = 2 ∗
(Precision ∗ Recall)
(Precision + Recall)

(3)

Overall Accuracy: Accuracy is the proportion of correct predic-
tions (both TP and TN) among the total number of instances.
While it’s a commonly used metric, it is not suitable for imbal-
anced datasets.

Accuracy =
(T P + T N)

(T P + FP + T N + FN)
(4)

Taking into account the substantial number of classes in this
problem (n=17), we computed the baseline accuracy to provide
a context for evaluating the model’s overall performance. The
baseline accuracy, also referred to as "random chance," signi-
fies the probability of accurately identifying a class by merely
selecting the most prevalent class, as:

Baseline Accuracy = max
i

Ni

Ntotal
(5)

where:
ì‘ represents each class in the dataset
Ǹ_i‘ is the number of images in class ‘i‘
Ǹ_total‘ is the total number of images in the dataset.

3.3 Protocol for Edge and Line Detection Evaluation

For the edge and line detections, we asked Visual ChatGPT to
perform both the “Edge Detection On Image”, and “Line De-
tection On Image” functions, extracting the edge and straight
line features in the images. To investigate its capabilities, we
compared them with two traditional edge detection methods,

the Canny filter [5] and the Sobel filter [29] , and with manual
annotation of straight lines present in the images. Both filters
were manually fine-tuned over the same images to provide the
overall most interesting results, thus differentiating from the
default, fully-automated approach, of Visual ChatGPT. For this,
we used the selected 49 images from the LoveDa dataset [34] to
be processed by the filters and compared. The Python program-
ming language was utilized for this implementation, relying on
the NumPy, imageio, and scikit-image libraries.

First, the image file was loaded where a function was employed
to read the image in grayscale format, simplifying the image for
further processing. The resulting image matrix was converted
into a floating-point data type and normalized to the range of
[0, 1] by dividing each pixel value by 255. This normaliza-
tion step was crucial for maintaining consistency across images
and ensuring the edge detection algorithms could process them
appropriately.

The Canny edge detection filter was applied to the normalized
grayscale images. This was accomplished by passing the image
and a sigma value, varying between 1 and 3, to its function. The
sigma parameter determines the amount of Gaussian smoothing
applied to the image, effectively controlling the sensitivity of
the algorithm to any noise. The Canny edge detection filter
aims to identify continuous edges in an image by performing
non-maximum suppression and double thresholding to remove
unwanted pixels [5]. The resulting edge map consists of pixels
representing the detected edges.

Next, the Sobel edge detection filter was applied to the nor-
malized grayscale images by implementing its function. This
calculates the gradient magnitude at each pixel in the image, and
the output is a continuous-valued edge map, providing an ap-
proximation of the edge intensity [29]. The Sobel edge detection
algorithm is a simpler method. It is based on the convolution of
the image with two 3x3 kernels, one for the horizontal gradient
and one for the vertical gradient. This method is computation-
ally efficient and straightforward but may be more susceptible
to noise compared to the Canny edge detection filter.

After applying both edge detection filters, we saved the resulting
images as 8-bit grayscale images into separate folders. The con-
version to 8-bit grayscale format was performed by multiplying
the processed image arrays by 255 and then casting them to the
unsigned 8-bit integer data type before saving them. The data
was stored to later be used to compare against the edge detection
performed by Visual ChatGPT.

For the straight line detection approach, we compare the results
of the straight lines detected by Visual ChatGPT with manually
labeled lines from the dataset. The manually labeled lines served
as the ground-truth for evaluating its performance. For this, we
identified, in the same 49 images, line aspects like roads, rivers,
plantations, and terrain that resembled linear characteristics and
that are of overall interest when dealing with remote sensing
data. These images were saved and stored in a folder to be
promptly loaded and compared.

As such, we compared both the line and edge detection perfor-
mances following the same protocol. To achieve this, we defined
a function to load and preprocess the images. This function takes
two image file paths as input (one from Visual ChatGPT and
the other from our “ground-truth”) and performs the following
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steps: 1. Load the images in the grayscale format; 2. Resize
both images to the same dimensions (512x512 pixels); 3. Apply
Otsu’s thresholding method to obtain the optimal threshold for
each image to create edge and line binary maps, and; 4. Flatten
the binary maps into 1D arrays for extracting the comparison
metrics.

Finally, for each image pair, we called the process_images
function to obtain the performance metrics and stored them in a
list called “results”. After processing the images, we calculated
various performance metrics, such as True Positive Rate (TPR),
False Positive Rate (FPR), Area Under the Curve (AUC),
as well as Precision, Recall, F-Score, and Accuracy using
scikit-learn’s metrics module. These metrics were essential for
evaluating and comparing the performance of the methods in
terms of their ability to identify true and false lines and edges,
and overall accuracy. Since we already explained Precision,
Recall, F-Score, and Accuracy, the remaining metrics to be
described are [26]:

True Positive Rate (TPR): TPR is the proportion of TP instances
among the actual positive instances. The higher the TPR, the
better the model is at identifying true lines and edges.

TPR =
T P

(T P + FN)
(6)

False Positive Rate (FPR): FPR is the proportion of FP instances
among the True Negative (TN) instances. The lower the FPR,
the better the model is at avoiding false edge and line detections.

FPR =
FP

(FP + T N)
(7)

Area Under the Curve (AUC): AUC is a measure of the overall
performance of a classification model. It’s calculated by plot-
ting the Receiver Operating Characteristic (ROC) curve, which
shows the trade-off between TPR and FPR. AUC ranges from 0
to 1, where a higher value indicates better performance.

3.4 Protocol for Image Segmentation Evaluation

To evaluate the performance of Visual ChatGPT’s image segmen-
tation capabilities on remote sensing data, we used the previously
separated 49 images from the LoveDa dataset [34], which in-
cludes manually labeled data as masks to segmentation training.
The protocol used for this task comprises a two-step procedure
by comparing the Visual ChatGPT’s segmented output with
the manually labeled ground-truth images. This VLM uses the
"Segmentation on Image" function, which brings the Unified
transFormer (UniFormer) [17] model to perform image segmen-
tation.

The Unified transFormer (UniFormer) is a model developed to
handle both local redundancy and complex global dependency
typically found in visual data. This model blends the merits of
Convolution Neural Networks (CNNs) and Vision Transformers
(ViTs) in a unified format. UniFormer incorporates three crucial
modules: Dynamic Position Embedding (DPE), Multi-Head Re-
lation Aggregator (MHRA), and Feed-Forward Network (FFN).
DPE, as an initial step, dynamically incorporates position infor-
mation into all tokens, which is particularly effective for visual

recognition with arbitrary input resolution. Next, MHRA en-
hances each token by exploring its contextual tokens through
relation learning. MHRA fuses convolution and self-attention,
mitigating local redundancy while capturing global dependen-
cies. Lastly, FFN enhances each token individually, following
the typical ViTs approach, encompassing two linear layers and
a non-linear function (GELU) [17].

Since Visual ChatGPT doesn’t know which classes to look at on
the image, it tries to guess them based on its current capabili-
ties when implementing the “Segmentation on Image” function.
Thus, it is not possible to perform a "direct" comparison between
the ground-truth classes with which the class Visual ChatGPT
imagines it to be. Therefore, metrics like Precision, Recall, F-
Score, and Accuracy are not feasible to evaluate this task. Since
we are comparing two segmented images with different classes,
we opted to use metrics that quantify the similarity or dissim-
ilarity between the images and determine how well they align
with each other. To achieve this, we extracted two key metrics:
the Structural Similarity Index Measure (SSIM) [32] and the
Universal Image Quality Index (UQI) [43].

The SSIM is a metric used to measure the similarity between
two images or patches based on structural information. It ranges
between -1 and 1, with 1 indicating a perfect match and -1 indi-
cating a complete mismatch. The Sewar library likely provides
local and global SSIM values. Local SSIM averages the score,
providing a fine-grained evaluation and identifying local varia-
tions in image quality. Global SSIM computes the score for the
entire image, providing a holistic evaluation of overall similarity.
Having both local and global SSIM scores can help identify ar-
eas or regions where image quality is poorer or the modifications
have had a more significant impact. The SSIM equations (both
Local and Global) are defined by [32]:

SSIM(x, y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x + µ

2
y +C1)(σ2

x + σ
2
y +C2)

(8)

where:
x and y are local regions (patches) of the two images being
compared
µx and µy are the average intensities of the patches x and y
σ2

x and σ2
y are the variances of the patches x and y

σxy is the covariance between the patches x and y
C1 and C2 are small constants to stabilize the division (typically,
C1 = (K1L)2 and C2 = (K2L)2, where L is the dynamic range of
the pixel values, and K1 and K2 are small constants)

Global SSIM(X, Y) =
1
N

N∑
i=1

S S IM(xi, yi) (9)

where:
X and Y are the two images being compared
xi and yi are local patches of the images X and Y
N is the number of local patches in the images

The UQI is a full-reference image quality metric that compares
processed images with the original or reference image (ground-
truth in this case). It measures the similarity between images
using their structural information, based on their luminance and
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contrast. The UQI calculates the mean, standard deviation, and
covariance of luminance and contrast values for the two images,
and combines them using a weighted average to obtain a final
UQI value ranging from 0 to 1. Thus, higher UQI values indicate
higher image quality and similarity between the processed and
reference images. This metric is widely used to evaluate image
processing and compression algorithms for both objective and
subjective image quality evaluations. The UQI is defined by the
following equation [43]:

UQI(X, Y) =
4σXYµXµY

(σ2
X + σ

2
Y )(µ2

X + µ
2
Y )

(10)

where:
X and Y are the two images being compared
µX and µY are the average intensities of the images X and Y
σ2

X and σ2
Y are the variances of the images X and Y

σXY is the covariance between the images X and Y

In the first part of the procedure, we preprocessed the ground-
truth images. We begin by loading the black and white images
and converting them to grayscale using the PIL library. Then,
a color map was defined, assigning a specific color to each of
the 7-pixel values in the ground-truth image. These colors were
defined based on the colors used by Visual ChatGPT to return
segmented regions of similar characteristics. By iterating over
the width and height of each image, the black and white images
were converted to colored images using this color map. The final
step involves resizing the colored image to a 512x512 resolution
and saving it to the appropriate directory.

The second part of the procedure focuses on computing the im-
age quality metrics. To accomplish this, the necessary libraries
were imported, including the Sewar library for full-reference im-
age quality metrics, the imageio library for image input/output,
and the skimage library for image processing. We then defined
a list of dictionaries containing the file paths for pairs of the
ground-truth and the predicted images. As the function iterates
through each image pair, it loads, normalizes, and resizes the
ground-truth and predicted images to the desired size of 512x512
pixels. The images are then converted back to uint8 format. For
each image pair, we calculate the SSIM and UQI metrics using
the Sewar library. These metrics were stored in a dictionary and
appended to a list.

The SSIM and UQI metrics served as valuable tools for as-
sessing the performance of Visual ChatGPT’s image segmenta-
tion, considering our current limitation on dealing with different
classes. In summary, these metrics were chosen because the
SSIM measures the structural similarity between the predicted
and ground-truth images, taking into account changes in sim-
ilarity and structures, while the UQI provides a scalar value
indicating the overall quality of the predicted image in compar-
ison to the ground-truth image. By analyzing these metrics, it
was possible to identify areas where the segmentation model
excels or falters, assisting in guiding further model improvement
and evaluation.

4 Results

4.1 Scene Classification

We initially evaluated Visual ChatGPT’s ability to classify re-
mote sensing scenes using the AID dataset [36]. To support this
analysis, Figure 2 presents a heatmap visualization of the calcu-
lated confusion matrix, generated from the scene classification
predictions.

Based on the confusion matrix, we also calculated the Precision,
Recall, and F-Score metrics and displayed them in a horizontal
bar chart, presented in Figure 3. The overall accuracy of the
model for this task was 0.381 (or 38.1%), with the averaged
weighted values between all the classes as 0.583 (58.3%), 0.381
(38.1%), and 0.359 (35.9%) for Precision, Recall, and F-Score,
respectively.

The selected classes offered valuable insights into the model’s
ability to interpret satellite imagery. The graphics (Figures 2
and 3) demonstrated that the model more accurately identified
scenes containing Baseball Fields, Bridges, Beaches, and Moun-
tains, as evidenced by the high F-Scores achieved. Conversely,
it struggled to recognize landscapes such as Bareland, Meadows,
and Deserts, resulting in lower performance metrics. Addition-
ally, the model encountered difficulties in distinguishing urban
scenes, including Commercial, Church, Center, Industrial, and
Dense Residential areas. This was indicated by high Precision
values, but low Recall and F-Scores, which fell significantly
below the "random-guess" threshold.

Although the overall accuracy of the model is 38.1%, which
might seem relatively low, it’s important to consider the con-
text of the problem with 17 classes. The "random chance"
(baseline accuracy) for this classification task is about 5.88%.
Furthermore, the Visual ChatGPT model effectively interpreted
and classified a considerable number of images across various
classes, demonstrating its potential for handling remote sensing
imagery.

Figure 4 showcases examples of instances that were accurately
classified by the model. Contrarily, Figure 5 displays exam-
ples of instances inaccurately classified by it, demonstrating the
necessity for additional tuning. Ensuring the incorporation of
appropriate training sets into the learning process may further
enhance the model’s capabilities.

In the first example of Figure 4, an Airport, the model correctly
identified the image as an aerial view of an airport with visible
airplanes. The Medium Residential image example showcases
the model’s ability to detect a large group of houses. However, it
incorrectly stated that these houses were located in the "suburbs
of Chicago." The Forest scene example was also accurately
classified, as the model identified it as an aerial photo of a forest
with trees covering the landscape. Another instance, a Baseball
Field scene, received a precise description as a baseball field
with clear markings and layout. This was also the best-identified
class in our tests.

The Visual ChatGPT model, however, misinterpreted and mis-
classified images across various classes, thus the reason why it
presented lower accuracy overall. This highlights the challenges
the model faces when handling aerial or satellite imagery, but
it’s mostly because it hasn’t incorporate appropriate training sets
of remote sensing data into its learning process.
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Figure 2: Confusion matrix from the evaluated portion of the AID dataset classified by Visual ChatGPT. The color intensity and the numeric
values within each cell of the heatmap indicate the number of instances of the predicted label.
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Visual ChatGPT Description: *image/6b70a413.png* contains an aerial
view of an airport. From the Answer Question About The Image tool, the
answer to the question "What is in this figure?" is "airplane".
Therefore, I would classify the image content as Airport.

Visual ChatGPT Classification: Airport
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group of houses in the suburbs of chicago. From the Answer Question
About The Image tool, the answer to the question "What is in this
figure?" is "houses". Therefore, I would classify the image content as
MediumResidential.

Visual ChatGPT Classification: MediumResidential
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Visual ChatGPT Description: *image/97d1cbdd.png* contains an aerial
aerial photo of a forest. From the Answer Question About The Image
tool, the answer to the question "What is in this figure?" is "trees".
Therefore, I would classify the image content as Forest.

Visual ChatGPT Classification: Forest
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Visual ChatGPT Description: *image/12ea2db6.png* contains a baseball
field with a baseball field. From the Answer Question About The Image
tool, the answer to the question "What is in this figure?" is
"baseball field". Therefore, I would classify the image content as
BaseballField.

Visual ChatGPT Classification: BaseballField

Figure 4: Sample images with correct Visual ChatGPT descriptions and classifications. For each image, two accompanying text boxes were
provided. The first text box contains the description generated by Visual ChatGPT, while the second text box specifies the scene classification
provided by the model. The images are arranged with each image being accompanied by a title on the left side, indicating its ground-truth label.

The first example of Figure 5 features a Beach, and the model
recognizes the presence of a body of water and a "kite flying
in the sky". However, Visual ChatGPT incorrectly classifies
the image content as Park. This misclassification may have
resulted from the additional objects present in the image. The
Commercial example depicts an aerial view of a city center with

various buildings, but Visual ChatGPT mistakenly classifies
the image content as Center. This instance highlights the chal-
lenges in accurately classifying this dataset, primarily due to the
similarities between urban centers and commercial areas. The
Desert example showcases a desert landscape, but the model
incorrectly assumes it contains "a person wearing a red shirt
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Visual ChatGPT Description: *image/969c933c.png* contains a body of
water. From the Answer Question About The Image tool, the answer to
the question "What is in this figure?" is "kite". Therefore, I would
classify the image content as Park.

Visual ChatGPT Classification: Park
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Visual ChatGPT Description: *image/258e9e91.png*. The observation is
that the image contains an aerial view of the city of Amman, with the
city center. Based on this observation, I would classify the image
content as Center.

Visual ChatGPT Classification: Center
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Visual ChatGPT Description: *image/485aedcb.png* contains a man in a
red shirt and a black shirt standing in the middle east. From the
Answer Question About The Image tool, the answer to the question "What
is in this figure?" is "skier". Therefore, I would classify the image
content as Mountain.

Visual ChatGPT Classification: Mountain
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Visual ChatGPT Description: *image/f00650ee.png* contains an aerial
photo of a farm in the middle of the country. From the Answer Question
About The Image tool, the answer to the question "What is in this
figure?" is "tractor". Therefore, I would classify the image content
as Farmland.

Visual ChatGPT Classification: Farmland

Figure 5: Sample images with incorrect Visual ChatGPT descriptions and misclassifications. Each image has a title specifying the true label of
the scene, while the textboxes with incorrect descriptions and classifications are placed on the right side of each image.

and black shorts in the Middle East". Oddly, Visual ChatGPT
misclassifies the image content as Mountain. In the Meadow
example, the model identifies the scene as an aerial photo of
farmland, wrongfully noting a "visible tractor", and therefore
erroneously classifies it as Farmland.

The possible reasons for these mistakes can be attributed to
the presence of similar features between the misclassified and

true classes, or the model’s reliance on specific visual cues that
might not be present in every instance. These examples demon-
strate the challenges and pitfalls in classifying certain aspects
of an image. Nevertheless, some of the responses of Visual
ChatGPT indicate its potential to accurately identify elements
within these images, if fine-tuning and additional data training
implementations were to be incorporated.
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4.2 Edge Detection

In this section, we examine the performance of Visual Chat-
GPT’s submodel in edge detection for remote sensing images.
As the LoveDa dataset [34] did not provide edge ground-truth
labels created by human specialists, and considering the labor-
intensive and challenging nature of the edge labeling task for
innumerous objects, we opt to compare Visual ChatGPT’s edge
detection capabilities with the Canny and Sobel filters. This
comparison highlights the similarities between the automated
edge detection by Visual ChatGPT and these well-established
methods.

The Canny edge detection method is generally more accurate
and robust to noise compared to the Sobel edge detection. It is
particularly useful for remote sensing images, where the pres-
ence of noise is common due to atmospheric effects, sensor
limitations, or image acquisition conditions. The filter is effec-
tive in detecting continuous edges and suppressing noise, which
is essential for accurately delineating features and boundaries in
the images.

The Sobel edge detection algorithm is computationally efficient,
making it suitable for large-scale remote sensing data processing.
However, the Sobel edge detection method is more susceptible to
noise compared to the Canny edge detection, which might lead
to false edges or missing features. Despite its limitations, Sobel
edge detection can still provide valuable information about the
presence and direction of edges, particularly when applied to
high-quality remote sensing images with minimal noise.

Figure 6 illustrates that, for most image pairs, Visual ChatGPT
achieves a True Positive Rate (TPR) above the "random-guess"
threshold. However, due to the high False Positive Rate (FPR)
observed, its Precision and F-Score are understandably lower
than the other metrics.

When examining the TPR values, the edge detector model em-
ployed by Visual ChatGPT, which is based on the Canny edge
from the OpenCV library, demonstrated greater similarity to
our Canny edge filter compared to the Sobel filter. This out-
come aligns with expectations since they are based on the same
method, but considering we manually adjusted the Canny fil-
ter parameters to possibly yield superior visual results for each
image. The findings are noteworthy as they reveal that the auto-
mated task performed by Visual ChatGPT closely approximates
what a human might deem suitable.

However, it is crucial to acknowledge the substantial FPR and
the low F-Score values. This can be primarily attributed to
Visual ChatGPT’s detector being sensitive to certain types of
land cover, particularly in densely forested areas and heavily
populated urban regions. Figure 7 presents image examples of
the detection results in such locations, which exhibit overall
enhanced similarity with both Canny and Sobel filters.

In areas covered with vegetation, Visual ChatGPT exhibited
greater sensitivity than the Canny filter, though not as much
as the Sobel filter. This pattern was also observed in built-up
regions, particularly those with taller structures. Despite these
limitations, Visual ChatGPT is capable of providing visually
pleasing results in specific instances, such as detecting roads
and bodies of water edges. However, the model generated a
significant number of False Positives, which is undesirable as it

introduces noise when interpreting the image. Figure 8 show-
cases image examples where the FPR was among the highest
observed, illustrating how farmlands and even less dense vegeta-
tion can influence the detection process.

These images demonstrate the differences in edge detection
performance between the Canny and Sobel methods, as they
indicate how difficult it is to extract this feature in certain con-
ditions or areas characteristics. To enhance Visual ChatGPT’s
edge detection model on such instances, it is crucial to fine-tune
it using a dataset tailored for edge detection tasks, incorporating
proven methods like the Canny or Sobel filters, and adopting
regularization techniques to prevent overfitting. Additionally,
augmenting training data, evaluating alternative architectures,
utilizing ensemble methods, and applying post-processing tech-
niques can also further improve the model’s performance. By
adopting these strategies, Visual ChatGPT could deliver more
accurate and reliable edge detection results.

4.3 Straight Line Detection

Straight line detection in remote sensing images serves various
purposes, such as building extraction, road detection, pipeline
identification, etc. It proves to be a potent tool for image anal-
ysis, offering valuable insights for users. The evaluation of
Visual ChatGPT’s model for detecting straight lines employed
the same protocol as edge detection. However, unlike the pre-
vious approach, we used manually labeled images, providing a
more accurate ground-truth sample. Figure 9 presents a swarm
plot illustrating the evaluation metrics used to compare Visual
ChatGPT’s detection results with their respective ground-truth
counterparts.

The results revealed that, concerning line detection, Visual Chat-
GPT’s performance was quantitatively subpar. Given that lines
typically constitute a small proportion of an image’s pixels, met-
rics such as Accuracy are not well-suited for accurate measure-
ment due to significant class imbalance. Moreover, the model
generated a strikingly high number of False Positives compared
to its TPR, primarily because it identified certain object edges as
lines. To address this issue and provide a clearer understanding,
we showcase image examples in Figure 10, which highlight
the disparities in line detection between rural and urban areas.
By examining such visual comparisons, we noted the model’s
limitations and potential areas for improvement.

As observed, farmland areas exhibit a large number of lines, pri-
marily due to plantations and tractor roads between them. Identi-
fying these lines can be challenging, even for human specialists.
However, Visual ChatGPT managed to detect a considerable
number of roads interspersed among the plantation fields. It was
capable of identifying the boundaries of these fields, which is
an important aspect of feature extraction for these areas. In ur-
ban settings, however, extracting streets can be difficult, mainly
because objects and shadows partially obscure them. These are
also heavily dense areas, with multiple objects overlapping the
streets.

Figure 10 also highlights the overall best and worst results in its
3rd and 4th columns, featuring dirt roads and a paved highway,
respectively. For the dirt roads, it is understandable that their
winding nature may pose a challenge for the model. Conversely,
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Figure 6: Swarm comparison of the performance metrics for both Canny and Sobel edge detections. The swarm plot displays the distribution of
values measured by the multiple pairs of compared images, with the median value labeled. Although not all individual data points are shown, the
swarm plot gives a general indication of the trend of the values. We included a red dashed line at y=0.5 to indicate the "random-guess" point.
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Figure 7: A comparison of the edge detection techniques on three example images. The visualizations are displayed using the “viridis”
colormap symbolizing the magnitude of the detection, specifically in Sobel’s. The TPR values of the Canny and Sobel images in comparison to

Visual ChatGPT’s detection are overlaid in the lower-left corner.

the paved highways represent the best overall detections by
Visual ChatGPT, showcasing its potential in these contexts.

Improving Visual ChatGPT’s line detection and extraction capa-
bilities in remote sensing imagery involves practically the same

procedures as described previously, like fine-tuning the model
on a tailored dataset, augmenting training data, and also apply-
ing pre-processing techniques to enhance input image quality.
Additionally, incorporating domain-specific knowledge, explor-
ing alternative model architectures, utilizing ensemble methods,

45



0 100 200 300 400 500

0

100

200

300

400

500

RGB Image

0 100 200 300 400 500

0

100

200

300

400

500

Visual ChatGPT

0 100 200 300 400 500

0

100

200

300

400

500
FPR: 84.0%

Canny Edge Detection

0 100 200 300 400 500

0

100

200

300

400

500
FPR: 76.3%

Sobel Edge Detection

0 100 200 300 400 500

0

100

200

300

400

500
0 100 200 300 400 500

0

100

200

300

400

500
0 100 200 300 400 500

0

100

200

300

400

500
FPR: 86.6%

0 100 200 300 400 500

0

100

200

300

400

500
FPR: 77.7%

0 100 200 300 400 500

0

100

200

300

400

500
0 100 200 300 400 500

0

100

200

300

400

500
0 100 200 300 400 500

0

100

200

300

400

500
FPR: 71.7%

0 100 200 300 400 500

0

100

200

300

400

500
FPR: 83.1%

Figure 8: A visual comparison of edge detection techniques applied to three example images that returned low similarity. The visualizations use
the ’RdPu’ colormap indicating the magnitude of the edges, specifically useful for visualizing Sobel’s detection. The FPR values, comparing

both images with Visual ChatGPT’s result, are displayed in the lower-left corner of the respective Canny and Sobel images.
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Figure 9: A swarm plot comparing performance metrics for the straight line detection model from Visual ChatGPT. The plot displays the
distribution of values for each metric, with median values indicated in black text. We include a red dashed line at y=0.5 as a reference point for

the "random-guess" threshold. While not all individual data points are displayed, the swarm plot provides an overall representation of the
direction of the values.

and employing enhanced post-processing techniques can further
optimize its performance on returning satisfying results.

4.4 Image Segmentation

As stated, image segmentation is the process of partitioning an
image into homogeneous regions based on features such as color,46
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Figure 10: Comparative visualization of original RGB images (top row), manually annotated images (middle row), and Visual
ChatGPT-generated images (bottom row) for four different sets. True positive rate (TPR) values are displayed in white text on the

ChatGPT-generated images.

texture, or spectral properties, with multiple applications in im-
age analysis. However, for the Visual ChatGPT model, handling
remote sensing data can be challenging due to the diverse and
complex nature of these images. Factors such as varying spatial
resolutions, the presence of shadows, seasonal variations, and
spectral similarities among different land cover types may hin-
der the model’s performance, necessitating further optimization
or the integration of domain-specific knowledge to effectively
address these complexities. Still, VLMs can provide a valuable
approach to the image segmentation task by enabling non-expert
users to perform segmentation using text-based guidance. This
capability has the potential to be integrated into remote sensing
applications.

However, in the case of Visual ChatGPT, our tests with various
prompts revealed that controlling the "Segmentation on Image"
tool was not as feasible as it was for the "Get Image Descrip-
tion" and "Answer Question About Image" tools. Consequently,
we were unable to guide Visual ChatGPT to segment specific
classes from our images. As a reminder, since classification
metrics like Precision, Recall, and F-Score necessitate matching
classes in both ground-truth and predicted values, these metrics

were unsuitable for comparing Visual ChatGPT’s performance
in this task. Instead, we employed metrics that assessed the
similarity between image pairs, which, when combined with
qualitative analysis, offered insight into the model’s effective-
ness in handling this type of data.

To evaluate the predictions of Visual ChatGPT, we compared
the ground-truth data from the LoveDA dataset [34] to the seg-
mented images generated by the model. Figure 11 presents
the values of both Local and Global SSIM metrics, as well as
the UQI values for this comparison. The Local SSIM metric
is particularly noteworthy in this context, as it is designed to
focus on local variations during image analysis. Meanwhile, the
Global SSIM calculates a score for the entire image, offering a
comprehensive assessment of overall similarity. The UQI metric
compares structural information based on luminance and con-
trast between colors, making it a more suitable metric for overall
performance.

In our comparison, the majority of the data revealed notable
similarity values, with more pronounced negative effects on lo-
cal analysis (Local SSIM) than on the full-scale (Global SSIM
and UQI) assessment. These images predominantly featured
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Figure 11: Horizontal box plots comparing image comparison metrics (Local SSIM, Global SSIM, and UQI) for the segmented images with the
Visual ChatGPT model. The 25th, 50th (median), and 75th percentiles are displayed on each box plot, allowing for a clear assessment of the

central tendency and spread of the data, and a red dashed line at x=0.5 serves as a reference point.

farmlands, as well as scenes with both urban and rural elements,
resulting in a more varied landscape. Contrarily, some images
exhibited high similarity with the ground-truth data. These im-
ages typically displayed less diverse features, such as extensive
vegetation cover, large bodies of water, or densely clustered
structures of a similar nature. To corroborate this, Figures 12
and 13 were included, showcasing both the challenges and po-
tential of the Visual ChatGPT segmentation model. This visual
comparison enables a clear evaluation of the model’s perfor-
mance to the manual annotations.

Visual ChatGPT utilizes a powerful image segmentation model
underneath, thus making it an impressive tool. However, its
knowledge is not specifically associated with aerial or satellite
imagery, but more with the terrestrial type of images, while the
segmentation classes are more diverse. Additionally, the model
was not effective in incorporating additional textual information
to segment remote sensing images, as our tests have shown that
by asking the model to segment images, with or without human
instructions, it yielded the same results. Furthermore, Visual
ChatGPT did not indicate appropriately which classes it has
segmented over the investigated images, even when prompted
with a specific command. Instead, the model segments the
image and uses the "Answer Question about Image" function to
respond to it, using information about the context of the original
RGB image rather than the labels/classes that it identified.

The segmentation model demonstrates both potential and chal-
lenges when dealing with various land cover types. While the
model shows promising performance in images with less diverse
features or densely clustered structures of a similar nature, it
encounters difficulties in accurately segmenting more complex
scenes. The difficulties primarily arise in the local analysis,
as evidenced by lower Local SSIM values, which could be at-
tributed to the model’s limited exposure to such diverse data
during training.

Nonetheless, Visual ChatGPT’s ability to achieve high similar-
ity with ground-truth data in certain cases indicates that, with
targeted improvements, it could be adapted to effectively handle
a wider range of land covers and deliver more accurate segmen-

tation results. As such, to fully realize the potential of Visual
ChatGPT in these scenarios, further improvements and fine-
tuning are required to better handle the diverse and intricate
characteristics of different land types.

5 Discussion

The investigation into the Visual ChatGPT model’s proficiency
in handling remote sensing imagery yielded intriguing results,
indicating both its potential and limitations. While the overall
model accuracy of 38.1% is considerably higher than the ran-
dom chance baseline of 5.88% in a 17-class classification task,
there were notable disparities in performance across different
classes. The model exhibited proficiency in accurately identi-
fying scenes containing Baseball Fields, Bridges, Beaches, and
Mountains, as demonstrated by high F-Scores. However, it faced
challenges recognizing and classifying Bareland, Meadows, and
Deserts, evidenced by lower performance metrics. Additionally,
the model encountered difficulties distinguishing urban scenes
such as Commercial, Church, Center, Industrial, and Dense
Residential areas.

The edge detection analysis revealed that the model demon-
strated similarity to our adjusted Canny edge filter. Despite
the similarity, the substantial False Positive Rate and the low
F-Scores, particularly in densely forested areas and heavily pop-
ulated urban regions, highlight a crucial area for improvement.
The model’s performance in straight-line detection was also
mixed. It demonstrated potential in farmland areas by detect-
ing numerous roads interspersed among plantation fields and
boundaries of fields. However, it struggled with the extrac-
tion of streets in urban settings and the winding nature of dirt
roads. Conversely, it performed optimally when detecting paved
highways, which suggests a solid foundation on which future
optimizations can be built.

Image segmentation is another area that highlighted the model’s
potential and its current limitations. The ViT implemented
model demonstrated strong performance in images with less
diverse features or densely clustered structures of a similar na-
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Figure 12: Examples of labeled images compared to the Visual ChatGPT segmentations that scored higher on the similarity metrics. In the
bottom row, Local SSIM (LSSIM) values are displayed in the left corner of each segmented image, providing a quantitative measure of the

similarity between the annotations and the Visual ChatGPT segmentations.

ture but faced difficulties accurately segmenting more complex
scenes. It also didn’t effectively leverage additional textual infor-
mation to improve segmentation results, a feature that would be
a significant enhancement to be implemented in future versions
of it. While it is evident that the model can correctly interpret
and classify images across several classes, it also made mis-
takes, underlining the importance of further model fine-tuning
and incorporation of more diverse and representative training
datasets.

As stated, the "Segment on Image" function incorporates the
Uniform model [17], a vision-based transformer that was not
specifically designed for remote sensing data. While not specif-
ically trained for it, its architecture enables it to reduce local
redundancy and capture global dependency effectively, which
could be the reason behind the segmentation results in some
cases. As such, it was capable of segmenting a broad range of
land covers, although not without its mistakes. The recent litera-
ture, however, suggest that models based on ViT can be capable
of performing zero-shot segmentation on different domains, or
at least be adapted with few-shot learning [30, 12, 40, 27].

ViT-based models currently represent the state-of-the-art in han-
dling remote sensing data as they have triumphed in areas where
traditional Convolutional Neural Networks (CNNs) faced chal-
lenges. The potential of these models has already been demon-
strated, but only when specifically trained with remote sensing
data [3]. In different land cover segmentation and classification
tasks, models such as SegFormer, UNetFormer, and RSSFormer
returned impressive results, with F-Scores values above 90%
[33, 9, 37]. Furthermore, since the current segmentation model
is not capable of discerning text-to-image, an integration with ca-
pable LLMs with the ViT models may improve the segmentation
of these images [41].

As last, in the current state of its development, Visual ChatGPT
may present certain challenges for non-experts in the realm of
image processing tasks. The complexity of the interface and
operations, an inherent characteristic of this early-stage technol-
ogy, poses a potential barrier to its widespread adoption. Our
research delineates the significant potential of Visual ChatGPT
for remote sensing tasks; however, the transition from potential
to practical usage necessitates further improvements, primarily
targeted at enhancing its user-friendliness. We envisage that the
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Figure 13: Examples of labeled images juxtaposed with Visual ChatGPT segmentations that scored the lowest on similarity metrics. In the
bottom row, LSSIM values are shown, in black or white depending on its background, for each segmented image, offering a quantitative

assessment of the dissimilarity between the ground-truth and the model’s segmentations.

near future will witness concerted efforts towards improving the
usability of such models, fostering an environment conducive
for both experts and non-experts. We anticipate these improve-
ments to manifest in the form of more intuitive user interfaces
and comprehensive guidance, thus broadening the accessibility
and usability of Visual ChatGPT.

6 Improving Visual LanguageModels for Remote
Sensing Analysis

In this section, we provide a broader vision of Visual Language
Models (VLMs) in remote sensing analysis and discuss possibil-
ities for future implementations. While our experiments focused
on Visual ChatGPT, it is clear that novel VLMs will be able
to tackle different tasks and be useful, in general, in multiple
domains. VLMs are a class of machine learning models that
are designed to understand and generate content that combines
both visual and textual information [21]. VLMs are trained to
associate images with their related text, and this enables them to
carry out tasks that involve understanding and generating such
multimodal content [2]. VLMs are often built by combining

techniques from the fields of computer vision, which focuses on
understanding and processing images, and NLP, which focuses
on understanding and processing text. As Visual ChatGPT is
one of the many VLMs that are surging recently, it is important
to discuss their involvement with image manipulation and how
they can be adapted into the remote sensing domain.

With the constantly increasing amount of remote sensing data
available, there is a growing need for efficient methods to pro-
cess and analyze this data [6]. As VLMs continue to evolve
and improve, their applications in multiple fields are expected
to expand significantly. By incorporating additional techniques
and algorithms, it can become a powerful tool for non-experts to
analyze and understand complex remote-sensing images. In this
section, we explore the future perspectives of these technologies
in remote sensing practice, discuss possible applications, and
outline the necessary research directions to guide their develop-
ment and improvement.

Firstly, to apply VLMs to remote sensing data, it would be nec-
essary to collect a large dataset of labeled images. This may
involve manually annotating the images, which can be a time-
consuming and expensive process [30]. Alternatively, transfer
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learning techniques can be used to fine-tune pre-trained models
on a smaller set of labeled images, possibly reducing the amount
of labeled data required for training [31]. By learning from a
limited number of examples, few-shot learning models, for in-
stance, can develop better generalization capabilities [2], as they
can be more robust to variations in remote sensing data. Such
an approach can enable the models to recognize and analyze
unique features, patterns, and structures present in satellite or
aerial images, thereby significantly improving their performance
and applicability in this domain.

By adapting VLMs like Visual ChatGPT for remote sensing
analysis, we can also create powerful tools to aid profession-
als, students, and enthusiasts in their work. These models can
facilitate the development of image and data processing, pro-
vide guidance in choosing and applying the most appropriate
algorithms and techniques, and offer insights into the interpre-
tation of remote sensing data [20]. The models can help users
overcome coding challenges, offer guidance on data processing
techniques, and facilitate collaboration between individuals with
varying levels of expertise and study fields [39, 41]. In turn, this
assistance can enhance the efficiency and accuracy of remote
sensing workflows, allowing them to focus on higher-level tasks
and decision-making.

A potential for Visual ChatGPT or VLMs, in general, is that
they can be seamlessly integrated with a variety of geospatial
tools and platforms to significantly elevate user experience. By
combining advanced models with existing geospatial software,
toolboxes, or cloud-computation platforms, users can access an
enriched suite of functionalities that cater to a wide range of
applications. This integration not only amplifies the capabilities
of existing tools [21] but also unlocks innovative possibilities
for analyzing and interpreting geospatial data. By leveraging the
natural language understanding and visual processing abilities
of VLMs, the interaction with these platforms can become more
intuitive, leading to improved efficiency and accessibility.

In essence, the improved versions of VLMs can be applied to
a wide range of remote sensing tasks. These applications can
benefit from the model’s ability to provide real-time feedback,
generate code snippets, and analyze imagery, thus streamlining
the overall process. For example, a model could be trained to
identify common patterns in remote sensing data and generate
code to automatically detect and analyze these patterns. This has
the potential to help to speed up the processing of large datasets
and minimize the intricacies of manual intervention.

As for applications, VLMs can be expanded to encompass var-
ious essential image tasks, such as texture analysis, principal
components analysis, object detection, and counting, but also
curated to domain-specific remote sensing practices as well. By
integrating change detection algorithms [28] into these VLMs,
for instance, users can interact with the models to automatically
identify landscape alterations, facilitating the monitoring and as-
sessment of the impacts caused by human activities and natural
processes on the environment. Anomaly detection, a technique
that identifies unexpected or unusual features in remote sensing
images [11], can also greatly benefit from this integration. Time
series analysis is also a valuable method that involves analyzing
changes to reveal patterns, trends, and relationships in land cover
[8] and could be added to it. Consequently, by incorporating
tailored algorithms into VLMs, users can examine multiple im-

ages over time, gaining insights into the dynamics of the Earth’s
surface.

Furthermore, the integration of machine and deep learning al-
gorithms specifically designed for remote sensing applications,
such as convolutional neural networks and vision transformers
[15, 3], can help enhance the performance and capabilities of
visual models. These methods can improve the VLM’s ability
to recognize and analyze complex patterns, structures, and fea-
tures in remote sensing images, leading to more accurate and
reliable results. Currently, there are multiple networks and deep
learning models trained for various remote sensing tasks that are
available and could be potentially implemented [4, 25].

Overall, the potential for VLMs like Visual ChatGPT to aid
in remote sensing image processing is vast and varied. As the
technology continues to evolve and improve, we will likely see
an increasing number of innovative applications in this field,
with new features and capabilities being developed to meet the
specific needs of users. Looking to the future, it is likely that
VLMs will continue to play an increasingly important role in
image data analysis. As these models become more advanced
and better integrated with existing tools and workflows, they
have the potential to greatly improve the efficiency and accuracy
of remote sensing practices.

Although our experiments with Visual ChatGPT only consist of
one perspective, VLMs have, in general, an important role in
image analysis. In short, to guide the development and improve-
ment of VLMs in remote sensing, several research directions
could be explored:

• Investigating the optimal methods and strategies for
fine-tuning and adapting models to remote sensing
tasks;
• Developing performance benchmarks and evaluation

metrics specific to remote sensing applications on these
models;
• Exploring the integration of these models with other re-

mote sensing tools and platforms, such as Geographic
Information Systems (GIS), for a seamless user experi-
ence;
• Conducting user studies to understand how the mod-

els can best work for these data and how they can be
adjusted to user behavior;
• Studying the limitations and biases of the models when

applied to remote sensing imagery, and devising strate-
gies to mitigate them.

And, in terms of applicability, the following areas can also be
considered to be pursued, thus contributing to enhancing the
development of VLMs in remote sensing imagery processing:

• Investigating the effectiveness of incorporating domain-
specific knowledge and expertise into the models, such
as spectral indices;
• Examining the scalability and efficiency of the models

when working with large-scale remote sensing datasets;
• Assessing the robustness and generalizability of the

models across various remote sensing data types,
including multispectral, hyperspectral, Synthetic-
Aperture Radar (SAR), and LiDAR;
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• Evaluating these models for real-time or near-real-time
remote sensing analysis;

• Exploring the potential of combining VLMs with other
advanced machine learning techniques, such as rein-
forcement learning;

• Investigating the implementation for data fusion tasks,
where information from different remote sensing sen-
sors or platforms are combined.

7 Conclusions

In this study, we investigated the applicability and performance
of Visual ChatGPT, a VLM, for remote sensing imagery process-
ing tasks, highlighting its current capabilities, limitations, and
future perspectives. We have demonstrated the effectiveness and
problems of this model in various remote sensing tasks, such as
image classification, edge and line detection, and image segmen-
tation. Additionally, we have discussed its role in assisting users
and facilitating the work of professionals, students, and enthu-
siasts in the remote sensing domain by providing an intuitive,
easy-to-learn, and interactive approach to image processing.

In our investigation we found that, despite its ability to perform
scene classification above the random-guess baseline, the model
faced difficulties distinguishing certain landscape classes and
urban scenes. The model showed potential in edge detection and
straight-line identification, especially in farmland areas and on
paved highways, but struggled in densely populated regions and
complex landscapes. While the model’s segmentation showed
promising results in less diverse or densely clustered scenes,
it faced difficulties in more complex environments. Still, al-
though some results may not appear impressive, we believe that
these initial findings lay a groundwork for future research and
improvements.

While Visual ChatGPT shows promise in its current state, there
is still plenty of room for improvement, fine-tuning, and adapta-
tion to better suit the unique needs of remote sensing analysis.
Future research could focus on optimizing the model by either
fine-tuning with techniques such as few-shot learning, or improv-
ing their natural language capacities to recognize objects based
on their class and segment them in a more guided manner, be it
though label or text-based prompts. By doing so, we can unlock
the capacity of these models in a wide range of remote sens-
ing applications, varying from environmental monitoring and
disaster management to precision agriculture and infrastructure
planning.

In light of our findings, the integration of VLMs into remote
sensing has immense potential to transform the way we process
and analyze Earth’s surface data. With continued evolution and
adaptation to the specific needs of aerial/satellite data, these
models can prove to be essential resources in assisting important
challenges in image processing. It is crucial to emphasize the
significance of ongoing research in this area and encourage
further exploration of the capabilities of Visual ChatGPT, as
well as other VLMs in dealing with remote sensing tasks in the
near future.
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TERCEIRO CAPÍTULO: O SEGMENT ANYTHING MODEL EM 

APLICAÇÕES DE SENSORIAMENTO REMOTO 

 

Resumo: A segmentação é uma etapa essencial para o processamento de imagens de 

detecção remota. Este estudo visa avançar a aplicação do Segment Anything Model 

(SAM), um inovador modelo de segmentação de imagens desenvolvido pela Meta AI, no 

campo da análise de imagens de detecção remota. O SAM é conhecido por suas 

excepcionais capacidades de generalização e aprendizado zero-shot, tornando-o uma 

abordagem promissora para o processamento de imagens aéreas e orbitais de diversos 

contextos geográficos. Nossa exploração envolveu o teste do SAM em conjuntos de dados 

multiescala usando vários estímulos de entrada, como caixas delimitadoras, pontos 

individuais e descritores de texto. Para melhorar o desempenho do modelo, 

implementamos uma nova técnica automatizada que combina um exemplo geral derivado 

de estímulo de texto com treinamento one-shot. Esse ajuste resultou em uma melhoria na 

precisão, sublinhando o potencial do SAM para implantação em imagens de detecção 

remota e reduzindo a necessidade de anotação manual. Apesar das limitações encontradas 

com imagens de resolução espacial inferior, o SAM exibe uma adaptabilidade promissora 

para a análise de dados de detecção remota. Recomendamos pesquisas futuras para 

melhorar a proficiência do modelo por meio da integração com técnicas de ajuste fino 

suplementares e outras redes. Além disso, disponibilizamos o código de fonte aberta de 

nossas modificações em repositórios online, incentivando adaptações ainda mais amplas 

do SAM para o domínio da detecção remota. 
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Abstract
Segmentation is an essential step for remote sensing image processing. This study aims to advance the application of the
Segment Anything Model (SAM), an innovative image segmentation model by Meta AI, in the field of remote sensing
image analysis. SAM is known for its exceptional generalization capabilities and zero-shot learning, making it a promising
approach to processing aerial and orbital images from diverse geographical contexts. Our exploration involved testing SAM
across multi-scale datasets using various input prompts, such as bounding boxes, individual points, and text descriptors. To
enhance the model’s performance, we implemented a novel automated technique that combines a text-prompt-derived general
example with one-shot training. This adjustment resulted in an improvement in accuracy, underscoring SAM’s potential for
deployment in remote sensing imagery and reducing the need for manual annotation. Despite the limitations, encountered
with lower spatial resolution images, SAM exhibits promising adaptability to remote sensing data analysis. We recommend
future research to enhance the model’s proficiency through integration with supplementary fine-tuning techniques and other
networks. Furthermore, we provide the open-source code of our modifications on online repositories, encouraging further
and broader adaptations of SAM to the remote sensing domain.

1 Introduction

The field of remote sensing deals with capturing images of the
Earth’s surface from airborne or satellite sensors. Analyzing
these images allows us to monitor environmental changes, man-
age disasters, and plan urban areas efficiently [15, 52, 65]. A
critical part of this analysis is the ability to accurately identify
and segment various objects or regions within these images, a
process known as image segmentation. Segmentation allows us
to isolate specific objects or areas within an image for further
study or monitoring [23]. Traditional segmentation techniques
often require extensive human input and intervention for accu-
rate results. However, with the advent of advanced artificial
intelligence (AI) and deep learning methods [5, 3], the segmen-
tation process has become more automated, albeit still facing
challenges, particularly in the effective segmentation of images
with minimal human input.

The Segment Anything Model (SAM), developed by Meta AI,
is a groundbreaking approach to image segmentation that has
demonstrated exceptional generalization capabilities across a
diverse range of image datasets, requiring no additional training
for unfamiliar objects [22]. This approach enables it to make
accurate predictions with little to no training data. However, its
potential can be limited when facing specific domain conditions.
To overcome this limitation, SAM can be modified by a re-
learning approach [70], feeding it with a single example of a
new class or object for better results.

Zero-shot learning pertains to a model’s capability to accurately
process and act upon input data that it hasn’t explicitly encoun-
tered during training [2, 54]. This ability is derived from gaining
a generalized understanding of the data rather than specific in-
stances. Zero-shot learning systems can recognize objects or
understand tasks they have never seen before based on learn-
ing underlying concepts or relationships. In contrast, one-shot
learning denotes a model’s ability to interpret and make accu-
rate inferences from just a single example of a new class [70].
By feeding SAM with a single example (or ’shot’) of this new
class, we can potentially enhance its performance, as it has more
specific information to work with.

The best-known one-shot methods for SAM are named Per-
SAM and PerSAM-F, both being training-free personalization
approaches [70]. Given a single image with a reference mask,
PerSAM localizes the target concept using a location prior to
an initial estimate of where the object of interest is likely to be.
The second method is PerSAM-F, a variant of PerSAM that uses
one-shot fine-tuning to reduce mask ambiguity. In this case, the
entire SAM is frozen (i.e., its parameters are not updated during
the fine-tuning process), and two learnable weights are intro-
duced for multi-scale masks. This one-shot fine-tuning variant
requires training only two parameters and can be done in as little
as ten seconds to enhance performance [70]. Both are capable
of improving SAM, making it a flexible model.

Another important aspect relates to SAM’s ability to perform
segmentation with minimal input, requiring only a bounding
box or a single point as a reference, or even a prompt text as
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guidance [22]. This capability has the potential to reduce human
labor during the annotation process. Many existing techniques
require intensive annotations for each new object of interest,
resulting in significant computational overhead and potential
delays in time-sensitive applications. SAM, on the other hand,
presents an opportunity to alleviate this time-intensive task.

Since SAM’s release in April 2023, the geospatial community
has shown strong interest in adapting SAM for remote sensing
image segmentation. However, a more in-depth investigation is
needed. In this context, we present a first-of-its-kind evaluation
of SAM, developing both its zero and one-shot learning per-
formance on segmenting remote sensing imagery. We adapted
SAM to our data structure, benchmarked it against multiple
datasets, and assessed its potential to segment multiscale images.
We then evolved SAM’s zero-shot characteristic to a one-shot
approach and demonstrated that with only one example of a new
class, SAM’s segmentation performance can be significantly
improved.

Our proposal’s innovation is within the one-shot technique,
which involves using a prompt-text-based segmentation as a
training sample (instead of a human-labeled sample), making it
an automated process for refining SAM on remote sensing im-
agery. In this study, we also discuss the implications, limitations,
and potential future directions of our findings. Understand-
ing the effectiveness of SAM in this domain is of paramount
importance for novel development. In short, with its promise
of zero-shot and one-shot learning, SAM has the potential to
transform current practices by significantly reducing the time
and resources needed for training and annotating data, thereby
enabling a quicker, more efficient approach.

2 Remote Sensing Image Segmentation: A Brief
Summary

The remote sensing field has experienced impressive advance-
ments in recent years, largely driven by improvements in aerial
and orbital platform technologies, sensor capabilities, and com-
putational resources [56, 44]. One of the most critical tasks
in remote sensing is image segmentation, which involves parti-
tioning images into multiple segments or regions, each, ideally,
corresponding to a specific object or class [23]. In this sec-
tion, we focus on providing comprehensive information regard-
ing segmentation processes, deep learning-based methods, and
techniques, and explain the overall importance of conducting
zero-to-one shot learning.

Traditional image segmentation techniques in remote sensing
often rely on pixel-based or object-based approaches. Pixel-
based methods, such as clustering and thresholding, involve
grouping pixels with similar characteristics, while object-based
techniques focus on segmenting images based on properties of
larger regions or objects [18, 57]. However, these methods can
be limited in their ability to handle the complexity, variability,
and high spatial resolution of modern remote sensing imagery
[23].

Segmentation involves various methods designed to separate or
group portions of an image based on certain criteria [68]. Each
method has a unique approach and application. Interactive Seg-
mentation, for example, is a niche within image segmentation

that actively incorporates user input to improve the segmenta-
tion process, making it more precise and tailored to specific
requirements [24, 61]. Different interactive segmentation meth-
ods utilize various strategies to include human intelligence in the
loop. This makes interactive segmentation particularly useful in
tasks where high precision is required, and generic segmentation
methods may not suffice.

Super Pixelization is another method that groups pixels in an
image into larger units, or "superpixels," based on shared charac-
teristics such as color or texture [14]. This grouping can simplify
the image data while preserving the essential structure of the
objects. Object Proposal Generation goes a step further by sug-
gesting potential object bounding boxes or regions within an
image [18, 53]. These proposals serve as a guide for a more ad-
vanced model to identify and classify the actual objects’ pixels.
Foreground Segmentation, also known as background subtrac-
tion, is a technique primarily used to separate the main subjects
or objects of interest (the foreground) from the backdrop (the
background) in an image [72, 36].

Semantic Segmentation is a more comprehensive approach
where every pixel in an image is assigned to a specific class,
effectively grouping regions of the image based on semantic
interest [67, 1]. Instance Segmentation identifies each pixel
recognizes distinct objects of the same class and recognizes
the individual objects as separate entities or instances [13, 49].
Panoptic Segmentation merges the concepts of semantic and
instance segmentation, assigning every pixel in the image a class
label and a unique instance identifier [19, 10]. This method aims
to give a complete understanding of the image by identifying
and classifying every detail.

All these methods have been intensively studied, but one that
surged in recent years, with the advancements of Visual Foun-
dation Models (VFM) and Large Multimodal Models (LMM),
is known as "Promptable Segmentation," an approach that aims
to create a versatile model capable of adapting to a variety of
segmentation tasks [39, 71]. This is achieved through "prompt
engineering," where prompts are carefully designed to guide
the model toward generating the desired output [33, 54]. This
concept is a departure from traditional multi-task systems where
a single model is trained to perform a fixed set of tasks. The
unique feature of a promptable segmentation model is its abil-
ity to take on new tasks at the time of inference, serving as a
component in a larger system [54, 39]. For instance, to perform
instance segmentation, a promptable segmentation model could
be combined with an existing object detector.

Object detection is a crucial task in computer vision, focusing
on identifying and locating objects within images. This task
is foundational for various applications such as surveillance,
autonomous vehicles, and many others. In the realm of object
detection and image segmentation, different techniques have
been employed. Traditional methods often focus on detecting
objects that the model has been specifically trained on, known as
closed-set detection. However, real-world applications demand
more flexibility and the ability to detect and classify objects not
seen during training, known as open-set detection.

One state-of-the-art open-set object detector that stands out is
Grounding DINO (GroundDINO), an enhanced transformer-
based object detector capable of identifying a broader range of
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objects based on various human inputs [30]. This system is an
enhancement of the Transformer-based object detector called
DINO [69], enriched with grounded pre-training to be able to
identify a broader range of objects based on human inputs, such
as category names or referring expressions. An open-set detector
is meant to identify and classify objects that weren’t part of the
model’s training data, as opposed to a closed-set detector that
can only recognize objects it has been specifically trained on.
The information from Grounding DINO can potentially be used
to guide the segmentation process, providing class labels or
object boundaries that the segmentation model could use.

Most NLMs incorporate deep-learning-based networks and, with
the rise of these methods, more advanced segmentation tech-
niques have been developed for remote sensing applications.
Convolutional Neural Networks (CNNs), which emerged as a
popular choice due to their ability to capture local and hier-
archical patterns in images [38, 7], have widely been used as
the backbone for these tasks. CNNs consist of multiple convo-
lutional layers that apply filters to learn increasingly complex
features, making them well-suited for segmenting objects in
many remote sensing images [66, 5]. However, they are compu-
tationally intensive and may require substantial training data.

Generative Adversarial Networks (GANs) have also shown po-
tential in the field of image processing. GANs consist of a
generator and a discriminator network, where the generator tries
to create synthetic data to fool the discriminator, and the dis-
criminator aims to distinguish between real and synthetic data
[21]. For image segmentation, GANs can be used to generate
realistic images and their corresponding segmentations, which
can supplement the training data and improve the robustness of
the segmentation models [6].

Vision Transformer (ViT), on the other hand, is a recent de-
velopment in deep learning that has shown promise in image
segmentation tasks. Unlike CNNs, which rely on convolutional
operations, ViT employs self-attention mechanisms that allow
it to model long-range dependencies and global context within
images [28, 29]. This approach has demonstrated competitive
performance in various computer vision tasks, including remote
sensing image segmentation [3], and it is currently outperform-
ing CNNs in remote sensing data [16].

Another capability of deep learning that can enhance the segmen-
tation process is transfer learning. With it, a model pre-trained
on a large dataset is adapted for a different but related task [55].
For instance, a CNN or ViTr trained on a large-scale image
recognition dataset like ImageNet can be fine-tuned for the task
of remote sensing image segmentation [42, 45]. The advantage
of transfer learning is that it can leverage the knowledge gained
from the initial task to improve performance on the new task,
especially when the amount of labeled data for the new task is
limited.

One of the main challenges in applying deep learning tech-
niques to remote sensing image segmentation is the need for
large volumes of labeled ground-truth data [9]. Acquiring and
annotating this data can be time-consuming and labor-intensive,
requiring expert knowledge and resources that may not be read-
ily available. Furthermore, the variability and complexity of
remote sensing imagery can make the labeling process even
more difficult [4]. As such, it becomes imperative to develop

robust, efficient, and accessible solutions that can aid in the
processing and analysis of such data. A model that can perform
segmentation with zero domain-specific information may offer
an important advantage for this process.

In this sense, the Segment Anything Model (SAM) has emerged
as a potential tool for assisting in the segmentation process of
remote sensing images. SAM design enables it to generalize
to new image distributions and tasks effectively and already
resulted in numerous applications [22]. By using minimal hu-
man input, such as bounding boxes, reference points, or simply
text-based prompts, SAM can perform segmentation tasks with-
out requiring extensive ground-truth data. This capability can
reduce the labor-intensive process of manual annotation and
be incorporated into the image processing pipeline, potentially
accelerating its workflow.

SAM has been trained on an enormous dataset, of 11 million
images and 1.1 billion masks, and it boasts impressive zero-shot
performance on already a variety of segmentation tasks [22].
Foundation models such as this, which have shown promising
advancements in NLP and, more recently, in computer vision,
can carry out zero-shot learning. This means they can learn
from new datasets and perform new tasks often by utilizing
’prompting’ techniques, even with little to no previous exposure
to these tasks. In the field of NLP, "foundation models" refer to
large-scale models that are pre-trained on a vast amount of data
and are then fine-tuned for specific tasks. These models serve as
the "foundation" for various applications [37, 39, 62].

SAM’s ability to generalize across a wide range of objects and
images makes it particularly appealing for remote sensing ap-
plications. That it can be retrained with a single example of
each new class at the time of prediction [70], demonstrates the
models’ high flexibility and adaptability. The implementation of
a one-shot approach may assist in designing models that learn
useful information from a small number of examples – in con-
trast to traditional models which usually require large amounts
of data to generalize effectively. This could potentially revolu-
tionize how we process remote-sensing imagery. As such, by
investigating SAM’s innovative technology, we may be able to
provide more interactive and adaptable remote sensing systems.

3 Materials andMethods

In this section, we describe how we evaluated the performance of
the Segment Anything Model (SAM), for both zero and one-shot
approach, in the context of remote sensing imagery. The method
implemented in this study is summarized in Figure 1. The data
for this study consisted of multiple aerial and satellite datasets.
These datasets were selected to ensure diverse scenarios and a
large range of objects and landscapes. This helped in assessing
the robustness of SAM and its adaptability to different situations
and geographical regions.

The study particularly investigated SAM’s segmentation capac-
ity under different prompting conditions. First, we used the
general segmentation approach, in which SAM was tasked to
segment objects and landscapes without any guiding prompts.
This provided a baseline for SAM’s inherent segmentation ca-
pabilities with zero-shot. For this, we only evaluated its visual
quality, since it segments every possible object in the image,
instead of just the ones with ground-truth labels. It also is not
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Figure 1: Schematic representation of the step-by-step process undertaken in this study to evaluate the efficacy of SAM’s approach in remote
sensing image processing tasks.

guided by any means, thus resulting in the segmentation of un-
known classes, serving as just a traditional segmentation filter.

In the second scenario, bounding boxes were provided. These
rectangular boxes, highlighting specific areas within the images,
were used to restrict SAM’s segmentation per object and see
its proficiency in recognizing and segmenting them. Next, we
conducted segmentation using points as prompts. In this setup, a
series of specific points within the images were provided to guide
SAM’s processing. It allowed us to test the precision potential of
SAM. Finally, we experimented with the segmentation process
using only textual descriptions as prompts. This was conducted
with an implementation of SAM alongside GroundingDINO’s
method [30]. This permitted an evaluation of these models’
capabilities to understand, interpret, and transform textual inputs
into precise segmentation outputs.

To measure SAM’s adaptability and potential to deal with remote
sensing imagery, we then devised a one-shot implementation.
For each of the datasets, we presented an example of the target
class to SAM. For that, we adapted the model with a novel com-
bination of the text-prompt approach and the one-shot learning
method. Specifically, we selected the best possible example
(highest logits) of the target object, using textual prompts to
define the object for mask generation. This example was then
presented to SAM as the sole representative of the class, effec-
tively guiding its learning process. The rationale behind this
combined approach was to leverage the context provided by the
text prompts and the efficacy of the one-shot learning method to
the adaptability of SAM to an automated enhancement process.

3.1 Description of the Datasets

We begin by separating our dataset into three categories related
to the platform used for capturing the images: 1. Unmanned
Aerial Vehicle (UAV); 2. Airborne, and; 3. Satellite. Each of
these categories provides unique advantages and challenges in
terms of spatial resolution and coverage. In our study, we aim
to evaluate the performance of SAM across these sources to
understand its applicability and limitations in diverse contexts.

Their characteristics are summarized in Table 1. We also pro-
vided illustrative examples from these datasets in Figure 2 as in
bounding boxes and point prompts.

The UAV category comprises data that have the advantage of
very-high spatial resolution, returning images and targets with
fine details. This makes them particularly suitable for local-
scale studies and applications that require high-precision data.
However, the coverage area of UAV datasets is limited compared
to other data sources. The images comprised particularly single-
class objects per dataset, so they were tackled in binary form.
In the case of linear objects, specifically continued plantation
crops cover, we used multi-points spread within its extremes, to
ensure that the model was capable of understating it better. For
more condensed targets such as houses and trees, we used the
centered position of the object as a point prompt.

The second category is Airborne data, which includes data col-
lected by manned aircraft. These datasets typically offer a good
compromise between spatial resolution and coverage area. We
processed these datasets with the same approach as with the
UAV images since they also consisted of binary problems. The
total quantifiable size of these datasets surpasses 90 Gigabytes
and comprises more than 10,000 images and image patches. Part
of the dataset, specifically the aerial one (UAV and Airborne), is
currently being made public in the following link for others to
use: Geomatics and Computer Vision/Datasets. These datasets
cover different area sizes and their corresponding ground-truth
masks were generated and validated by specialists in the field.

The third category consists of Satellite data, which provides the
widest coverage and is focused on multi-class problems. The
spatial resolution of satellite data is generally lower than that of
UAV and Airborne data. Furthermore, the quality of the images
is more affected by atmospheric conditions, with differing illu-
mination conditions, thus providing additional challenges for the
model. These datasets consist of publicly available images from
the LoveDA dataset [59] and from the SkySat ESA archive [12]
and present a multi-class segmentation problem. To facilitate’s
SAM evaluation, specifically with the guided prompts (bounding
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Table 1: Overview of the distinct attributes and specifications of the datasets employed in this study.
# Platform Resolution Area Target General Box Point Text Reference

00 UAV 0.04 m 70 ha Tree Yes Yes Centroid Tree
01 UAV 0.04 m 70 ha House Yes Yes Centroid House
02 UAV 0.01 m 4 ha Plantation Crop Yes No Multiple Plantation [43]
03 UAV 0.04 m 40 ha Plantation Crop Yes No Multiple Plantation
04 UAV 0.09 m 90 ha Building Yes Yes Centroid Building [13]
05 UAV 0.09 m 90 ha Car Yes Yes Centroid Car
06 Airborne 0.20 m 120 ha Tree Yes Yes Centroid Tree
07 Airborne 0.20 m 120 ha Vehicle Yes Yes Centroid Vehicle
08 Airborne 0.45 m 190 ha Lake Yes Yes Centroid Lake
09 Satelitte 0.30 m – Building; Road; Water; Barren; Forest; Farm Yes Yes Multiple Building; Road; Water; Barren; Forest; Farm LoveDA [59]
10 Satelitte 0.50 m 480 ha Building; Street; Water; Vehicle; Tree Yes Yes Yes Building; Street; Water; Vehicle; Tree SkySat ESA [12]

Figure 2: Collection of image samples utilized in our research. The
top row features UAV-based imagery with bounding boxes and point

labels, serving as prompts for SAM. The middle row displays
airborne-captured data representing larger regions, with both points

and rectangular polygon shapes provided as model inputs. The bottom
row reveals satellite imagery, again with bounding boxes and points as
prompt inputs, offering a trade-off between lower spatial resolution and

wider area coverage.

box, point, and text), we conducted a one-against-all approach,
in which we separated the classes into individual classifications
("specified class" versus "background").

3.2 Protocol for Promptable Image Segmentation

In this section, we explain how we adapted SAM to the remote
sensing domain and how we conducted the prompable image
segmentation with it. All of the implemented code, specifically
designed for this paper, is made publicly available in an under-
construction educational repository [47]. Also, as part of our
work, we are focusing on developing the "segment-geospatial"
package [60], which implements features that will simplify the
process of using SAM models for geospatial data analysis. This
is a work in progress, but it is publicly available and offers a suite
of tools for performing general segmentation on remote-sensing
images using SAM. The goal is to enable users to engage with
this technology with a minimum of coding effort.

Our geospatial analysis was conducted with the assistance of a
custom tool, namely "SamGeo", which is a component of the
original module. SAM possesses different models to be used,
namely: ViT-H, ViT-L, and ViT-B [22]. These models have
different computational requirements and are distinct in their
underlying architecture. In this study, we used the ViT-H SAM
model, which is the most advanced and complex model currently
available, bringing most of the SAM capabilities to our tests.

To perform the general prompting, we used the generate method
of the SamGeo instance. This operation is simple enough since
it segments the entire image and stores it as an image mask file,
which contained the segmentation masks. Each mask delineates
the foreground of the image, with each distinct mask allocated a
unique value. This allowed us to segment different geospatial
features. The result is a non-classified segmented image that
can also be converted into a vector shape. As mentioned, we
only evaluated this approach visually, since it was not possible
to appropriately assign the segmented regions outside of our
reference class.

For the bounding box prompt, we used the SamGeo instance
in conjunction with the objects’ shapefile. Bounding boxes
are extracted from any multipart polygon geometry returning a,
which returned a list of geometric boundaries for our image data
based on its coordinates. To efficiently process these boundaries,
we initialized the predictor instance. In this process, the image
was segmented and passed through the predictor along with a
designated model checkpoint. Once established, the predictor
processed each clip box, creating the masks for the segmented
regions. This process enabled each bounding box’s contents
to be individually examined as instance segmentation masks.
These binary masks were then merged and saved as a single
mosaic raster to create a comprehensive visual representation of
the segmented regions. Although not focused on remote sensing
data, the official implementation is named Grounded-SAM [17].
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The single-point feature prompt was implemented similarly to
the bounding-box method. For that, we first defined functions
to convert the geodata frame into a list of coordinates [x, y] in-
stead of the previous [x1, y1, x2, y2] ones. We utilized SamGeo
again for model prediction but with the distinction of setting
its automatic parameter to ’False’ and applying the predictor
to individual coordinates instead of the bounding boxes. This
approach was conducted by iterating through each point, predict-
ing its features in instances, and saving the resulting mask into
a unique file per point (also resulting in instance segmentation
masks). After the mask files were generated, we proceeded to
merge these masks into a single mosaic raster file, giving us a
complete representation of all the segmented regions from the
single-point feature prompt.

The text-based prompt differentiates from the previous approach
since it required additional steps to be implemented. This
method combines GroundingDINO’s [30] capabilities for zero-
shot visual grounding with SAM’s object segmentation function-
ality for retrieving the pre-trained models. For instance, once
Grounding DINO has detected and classified an object, SAM
is used to isolate that object from the rest. As a result, we’ve
been able to identify and segment objects within our images
based on a specified textual prompt. This procedure opens up a
new paradigm in geospatial analysis, harnessing the power of
state-of-the-art models to extract image features based only on
natural language input.

Since remote sensing imagery often contained multiple instances
of the same object (e.g., several ’houses’, ’cars’, ’trees’, etc.),
we’ve added a looping procedure. The loop identifies the object
with the highest probability in the image (i.e. logits), creates
a mask for it, removes it from the image, and then restarts the
process to identify the next highest probable object. This process
continues until the model reaches a defined minimum threshold
for both detection, based on a box threshold, and text prompt
association, also based on an specific threshold. The precise
balancing of these thresholds (randing from 0 to 1) is crucial,
with implications for the accuracy of the model, so we manually
set them for each dataset based on trial and error tentatively:

• Box Threshold: Utilized for object detection in images.
A higher value augments model selectivity, isolating
only those instances the model identifies with high
confidence. A lower value, conversely, expands model
tolerance, enhancing overall detections but possibly
including less certain ones.

• Text Threshold: Utilized for associating detected ob-
jects with provided text prompts. An elevated value
mandates a robust association between the object and
text, ensuring precision but potentially limiting associa-
tions. A diminished value permits broader associations,
potentially boosting the number of associations but
potentially compromising precision.

These thresholds are critical for ensuring the balance between
precision and recall based on specific data and user require-
ments. The optimal values may diverge depending on the nature
and quality of the images and the specificity of text prompts,
warranting user experimentation for optimal performance. The
segmented individual images and their corresponding boxes are

subsequently generated, while the resulting segmentation mask
is saved and mosaicked.

3.3 One-Shot Text-Based Approach

The one-shot training was conducted following the recommen-
dation in [70] by using its PerSAM and PerSAM-F approaches.
We begin by adapting the text-based approach of the combina-
tion of the GroundDINO [30] and SAM [22] methods to return
the overall most probable object belonging to the specified class
in its description. By doing so, we enable an automated process
of identifying a single object and including it on a personalized
pipeline for training SAM with this novel knowledge. In this
section, we describe the procedures involved in the one-shot
training mechanism as well as the methods used for object iden-
tification and personalization. To summarize the whole process,
we illustrate the main phases in Figure 3.

Following Figure 3, the initial phase of the one-shot training
mechanism involves the model derived from the object with
the highest logits calculated from the text-based segmentation.
This ensures the object is accurately recognized and selected for
further steps. It’s this aspect of the process that the text-based
approach starts, capitalizing on GroundDINO’s capabilities for
zero-shot visual grounding combined with SAM’s object seg-
mentation for pre-trained model retrieval. As such, the selected
object becomes the "sample" of the one-shot training process
due to its high probability of belonging to the specified class by
the text.

Once the object has been identified through this method, the next
phase involves creating a single-segmented object mask. This
mask is used for the retraining of SAM in a one-shot manner.
The text-based approach adds value by helping SAM distinguish
between the different object instances present in the remote
sensing imagery, such as multiple "houses", "cars", or "trees",
for example. Each object is identified based on its individual
likelihood, leading to the creation of a unique mask for retraining
SAM. The third phase starts once the object with the highest
probability has been identified and its mask has been used for
SAM’s one-shot training. The selected input object is removed
from the original image, making the remaining objects ready for
further segmentation.

The final phase involves a dynamic, interactive loop, where the
remaining objects are continuously segmented until no more
objects are detectable by the PerSAM approach [70]. This
phase is critical as it ensures that every potential object within
the image is identified and segmented. Here again, the loop
approach aids the process, using a procedure that identifies the
next highest probable object, as it creates a mask, removes
it from the image, and repeats. This cycle continues until a
breakpoint is reached, where it detects the previous position
again.

Another important aspect of the one-shot approach regards the
choice of the method for its training. An early exploration of
both PerSAM and PerSAM-F methods [70] was conducted to
assess their utility in the context of remote sensing imagery.
Our investigations have shown that PerSAM-F emerges as a
more suitable choice for this specific domain. PerSAM, in its
original formulation, leverages one-shot data through a series
of techniques such as target-guided attention, target-semantic
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Figure 3: Visual representation of the one-shot-based text segmentation process in action. The figure provides a step-by-step illustration of how
the model identifies and segments the most probable object based on a text prompt with "car" and "tree" as examples.

prompting, and cascaded post-refinement, delivering favorable
personalized segmentation performance for subjects in a variety
of poses or contexts. However, there were occasional failure
cases, notably where the subjects comprised hierarchical struc-
tures to be segmented.

Examples of such cases in traditional images are discussed in
[70], where ambiguity provides a challenge for PerSAM in
determining the scale of the mask as output (e.g. a "dog wearing
a hat" may be segmented entirely, instead of just the "dog").
In the context of remote sensing imagery, such hierarchical
structures are commonly encountered. An image may contain a
tree over a house, a car near a building, a river flowing through
a forest, and so forth. These hierarchical structures pose a
challenge to the PerSAM method, as it struggles to determine
the appropriate scale of the mask for the segmentation output.
An example of such a case, where a tree covers a car, can be
seen in Figure 4.

To address this challenge, we used PerSAM-F, the fine-tuning
variant of PerSAM. As previously mentioned, PerSAM-F
freezes the entire SAM to preserve its pre-trained knowledge
and only fine-tunes two parameters within a ten seconds training
window [70]. Crucially, it enables SAM to produce multiple
segmentation results with different mask scales, thereby allow-
ing for a more accurate representation of hierarchical structures
commonly found in remote sensing imagery. PerSAM-F em-
ploys learnable relative weights for each scale, which adaptively
select the best scale for varying objects. This strategy offers an
efficient way to handle the complexity of segmentation tasks in

Figure 4: Comparative illustration of tree segmentation using
PerSAM and PerSAM-F. On the left, the PerSAM model segments not
only the tree but also its shadow and a part of the car underneath it. On
the right, the PerSAM-F model, fine-tuned for hierarchical structures
and varying scales, accurately segments only the tree, demonstrating
its improved ability to discern and isolate the target object in remote

sensing imagery.

remote sensing imagery, particularly when dealing with objects
that exhibit a range of scales within a single image. This, in
turn, preserves the characteristics of the segmented objects more
faithfully.

As such, PerSAM-F exhibited better segmentation accuracy in
our early experiments, thus being the chosen method to be in-
corporated with the text-based approach. In our training phase
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with PerSAM-F, the DICE loss and Sigmoid Focal Loss are
computed, and their summation forms the final loss that is back-
propagated to update the model weights. The learning rate is
scheduled using the Cosine Annealing method [34], and the
model is trained for 1000 epochs. With hardware acceleration
incorporated, the model can be trained within a reasonable time
frame without requiring excessive computational resources. This
careful setup ensures the extraction of meaningful features from
the reference image, contributing to the effectiveness of our
one-shot text-based approach.

To evaluate the performance and utility of the text-based one-
shot learning method, we conduct a comparative analysis against
a traditional one-shot learning approach. The traditional method
used for comparison follows the typical approach of one-shot
learning, providing the model with a single example from the
ground-truth mask, manually labeled by human experts. To
ensure fairness, we provided the model with multiple random
samples from each dataset, and mimic the image inputs to return
a direct comparison for both approaches. We calculated the
evaluation metrics from each input and returned its average value
alongside with its standard deviation. Since the text approach
always uses the same input (i.e. the highest logits object), we
were able to return a single measurement of their accuracies.

3.4 Model Evaluation

The performance of both zero-shot and one-shot models was
measured by evaluating their prediction accuracy on a ground-
truth mask. For that, we used metrics like Intersection over
Union (IoU), Pixel Accuracy, and Dice Coefficient. These met-
rics are commonly used in evaluating imaging segmentation, as
they provide a more nuanced understanding of model perfor-
mance. For that, we compared pairs of predicted and ground-
truth masks.

Intersection over Union (IoU) is a common evaluation metric
for object detection and segmentation problems. It measures
the overlap between the predicted segmentation and the ground
truth [51]. The IoU is the area of overlap divided by the area
of the union of the predicted and ground truth segmentation. A
higher IoU means a more accurate segmentation. The equation
to achieve it is presented as:

IoU =
T P

T P + FP + FN
(1)

Here, TP represents True Positives (the correctly identified posi-
tives), FP represents False Positives (the incorrectly identified
positives), and FN represents False Negatives (the positives that
were missed).

Pixel Accuracy is the simplest used metric and it measures the
percentage of pixels that were accurately classified [40]. It’s
calculated by dividing the number of correctly classified pixels
by the total number of pixels. This metric can be misleading if
the classes are imbalanced. The following equation returns it:

Pixel Accuracy =
T P + T N

T P + FP + T N + FN
(2)

Here, TN represents True Negatives (the correctly identified
negatives).

Dice Coefficient (also known as the Sørensen–Dice index) is
another metric used to gauge the performance of image seg-
mentation methods. It’s particularly useful for comparing the
similarity of two samples. The Dice Coefficient is twice the
area of overlap of the two segmentations divided by the total
number of pixels in both images (the sum of the areas of both
segmentations) [40]. The Dice Coefficient ranges from 0 (no
overlap) to 1 (perfect overlap). The equation to perform it is
given as follows:

Dice Coe f f icient = 2 ∗
T P

2 ∗ T P + FP + FN
(3)

We also utilized other metrics, particularly, True Positive Rate
(TPR) and False Positive Rate (FPR) to measure the effective-
ness of SAM, juxtaposed with the accurately labeled class from
each dataset. The interpretation of these metrics as per [48] is:
The True Positive Rate (TPR) denotes the fraction of TP cases
among all actual positive instances, while the False Positive Rate
(FPR) signifies the fraction of FP instances out of all negative
instances. A model with a higher TPR is proficient at correctly
pinpointing lines and edges and performs better at avoiding in-
correct detections of lines and edges when the FPR is lower.
Both metrics are calculated as:

TPR =
T P

(T P + FN)
(4)

FPR =
FP

(FP + T N)
(5)

In alignment with the inherent structure of SAM, a transformer
network, our objective was to maintain the comprehensive con-
text of our images to fully harness the model’s attention mech-
anism. This consideration led to our decision to process larger
image crops or entire orthomosaics as a single unit, rather than
fragmenting them into fixed-sized smaller patches. While this
approach enhances the model’s contextual understanding, it un-
derstandably augments the computational time.

For most larger patches or quartered orthomosaics, the inference
duration on a GPU was kept under 10 minutes, providing a bal-
ance between computational load and contextual analysis. When
processing entire datasets as a whole, the time requirement ex-
tended to approximately 1 to 2 hours. Despite the augmented
processing time for larger datasets, the assurance of comprehen-
sive contextual analysis justifies this computational investment.
Still, in fixed-sized patches such as the ones from the publicly
available datasets, the inference time was under a second for
each patch. These inferences were executed on an NVIDIA RTX
3090 equipped with 24 GB GDDR6X video memory and 10,496
CUDA cores, operating on Ubuntu 22.04.

4 Results and Discussion

4.1 General Segmentation

Our exploration of SAM for remote sensing tasks involved an
evaluation of its performance across various datasets and sce-
narios. This section presents the results and discusses their
implications for SAM’s role in remote sensing image analysis.
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This process commenced with an investigation of SAM’s gen-
eral segmentation approach, which requires no prompts. By
merely feeding SAM with remote sensing images, we aimed
to observe its inherent ability to detect and distinguish objects
on the surface. Examples of different scales are illustrated in
Figure 5, where we converted the individual regions to vector
format. This approach demonstrates its adaptability and suit-
ability for various applications. However, as this method is not
guided by a prompt, it is not returning specific segmentation
classes, making it difficult to measure its accuracy based on our
available labels.

As depicted in Figure 5, the higher the spatial resolution of an
image, the more accurately SAM segmented the objects. An
interesting observation pertained to the processing of satellite
images where SAM encountered difficulties in demarcating the
boundaries between contiguous objects (like large fragments
of trees or roads). Despite this limitation, SAM exhibited an
ability to distinguish between different regions when considering
very-high spatial resolution imagery, indicative of an effective
segmentation capability that does not rely on any prompts. This
approach offers value for additional applications that are based
on object regions, such as classification algorithms. Moreover,
SAM can expedite the process of object labeling for refining
other models, thereby significantly reducing the time and manual
effort required for this purpose.

4.2 Zero-Shot Segmentation

Following this initial evaluation, we proceeded to test SAM’s
promptable segmentation abilities using bounding boxes, points,
and text features. The resulting metrics for each dataset are sum-
marized in Table 2. Having compiled a dataset across diverse
platforms, including UAVs, aircraft devices, and satellites with
varying pixel sizes, we noted that SAM’s segmentation efficacy
is also quantitatively influenced by the image’s spatial resolution.
These findings underscore the significant influence of spatial
resolution on the effectiveness of different prompt types.

For instance, on the UAV platform, text prompts showed superior
performance for object segmentation tasks such as trees, with
higher Dice and IoU values. However, bounding box prompts
were more effective for delineating geometrically well-defined
and larger objects like houses and buildings. The segmentation
of plantation crops was a unique case. Point prompts performed
well at a finer 0.01 m resolution for individual plants. However,
as the resolution coarsened to 0.04 m and the plantation types
changed, becoming denser with the plant canopy covering entire
rows, bounding box prompts outperformed the others. This
outcome suggests that, for certain objects, the type of input
prompt can greatly influence detection and segmentation in the
zero-shot approach.

With the airborne platform, point prompts were highly effective
at segmenting trees and vehicles at a 0.20 m resolution. This
trend continued for the segmentation of lakes at a 0.45 m resolu-
tion. It raises the question of whether the robust performance of
point prompts in these scenarios is a testament to their adaptabil-
ity to very high-resolution imagery or a reflection of the target
object’s specific characteristics. These objects primarily consist
of very defined features (like cars and vehicles) or share similar
characteristics (as in bodies of water).

In the context of satellite-based remote sensing imagery, point
prompts proved most efficient for multi-class segmentation at
the examined resolutions of 0.30 m and 0.50 m. This can be at-
tributed to the fact that bounding box prompts tend to overshoot
object boundaries, producing more false positives compared to
point prompts. This finding indicates the strong ability of point
prompts to manage a diverse set of objects and categories at
coarser resolutions, making them a promising tool for satellite
remote sensing applications. The text-based approach was found
to be the least effective, primarily due to the model’s difficulty in
associating low-resolution objects with words. Still, it is impor-
tant to notice that, from all the datasets, the satellite multiclass
problem proved to be the most difficult task for the model, with
generally lower metrics than the others.

Qualitatively, our observations also revealed that bounding boxes
were particularly effective for larger objects (Figure 6). However,
for smaller objects, SAM tended to overestimate the object
size by including shadows in the segmented regions. Despite
this overestimation, the bounding box approach still offers a
useful solution for applications where an approximate estimate
of such larger objects suffices. For these types of objects, a single
point or central location does not suffice, they are defined by a
combination of features within a particular area. Bounding boxes
provide a more spatially comprehensive prompt, encapsulating
the entire object, which makes them more efficient in these
instances.

The point-based approach outperformed the others across our
dataset, specifically for distinct objects. By focusing on a singu-
lar point, SAM was able to provide precise segmentation results,
thus proving its capability to work in detail (Figure 7). In the
plantation dataset with 0.01 m resolution, for instance, when
considering individual small plants, the point approach returned
better results than bounding boxes. This approach may hold par-
ticular relevance for applications requiring precise identification
and segmentation of individual objects in an image. Also, when
isolating entities like single trees and vehicles, these precise
spatial hints might suffice for the model to accurately identify
and segment the object.

The textual prompt approach also yielded promising results, par-
ticularly with very high-resolution images (Figure 8). While
it was found to be relatively comparable in performance with
the point and bounding box prompts for the aerial datasets, the
text prompt approach had notable limitations when used with
lower spatial resolution images. The text-based approach also
returned worse predictions on the plantation with 0.04 m. This
may be associated with the models’ limitation on understanding
the characteristics of specific targets, especially when consid-
ering the bird’s eye view of remote sensing images. Since it
relies on GroundDINO to interpret the text, it may be more of a
limitation on it than on SAM, mostly because, when applying
the general segmentation, the results visually returned overall
better segmentation on these datasets (Figure 5).

Text prompts, though generally trailing behind in performance,
still demonstrated commendable results, often closely following
the top-performing prompt type. Text prompts offer ease of im-
plementation as their primary advantage. They don’t necessitate
specific spatial annotations, which are often time-consuming and
resource-intensive to produce, especially for extensive remote
sensing datasets. However, their effectiveness hinges on the
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Figure 5: Examples of segmented objects using SAM’s general segmentation method, drawn from diverse datasets based on their platforms.
Objects are represented in random colors. As the model operates without any external inputs, it deduces object boundaries leveraging its

zero-shot learning capabilities.

model’s ability to translate text to image information. Currently,
their key limitation is that they are typically not trained specifi-
cally on remote sensing images, leading to potential inaccuracies
when encountering remote sensing-specific terms or concepts.
Improving the effectiveness of text prompts can be achieved
through fine tuning models on remote sensing-specific datasets
and terminologies. This could enable them to better interpret
the nuances of remote sensing imagery, potentially enhancing

their performance to match or even surpass spatial prompts like
boxes and points.

4.3 One-Shot Segmentation

Regarding our one-shot approach, we noticed that the models’
performance is improved in most cases, as evidenced by the seg-
mentation metrics calculated on each dataset. Table 3 presents a
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Table 2: Summary of metrics for the image segmentation task across different platforms, targets, and resolutions, and using different prompts for
SAM in zero-shot. The values in red indicate the best performance for a particular target under specific conditions.

# Platform Target Resolution Prompt Dice IoU Pixel Acc. TPR FPR
00 UAV Tree 0.04 m Box 0.888 0.799 0.960 0.942 0.036

Point 0.918 0.848 0.976 0.916 0.014
Text 0.922 0.852 0.981 0.921 0.012

01 UAV House 0.04 m Box 0.927 0.863 0.984 0.974 0.015
Point 0.708 0.548 0.840 0.966 0.192
Text 0.892 0.798 0.956 0.971 0.101

02 UAV Plantation 0.01 m Box 0.862 0.828 0.855 0.882 0.111
Point 0.958 0.920 0.950 0.980 0.092
Text 0.671 0.644 0.665 0.686 0.120

03 UAV Plantation 0.04 m Box 0.801 0.689 0.952 0.944 0.104
Point 0.727 0.571 0.935 0.934 0.065
Text 0.441 0.328 0.499 0.450 0.061

04 UAV Building 0.09 m Box 0.697 0.535 0.813 0.955 0.228
Point 0.691 0.528 0.842 0.911 0.175
Text 0.663 0.509 0.772 0.907 0.240

05 UAV Car 0.09 m Box 0.788 0.650 0.970 0.660 0.002
Point 0.900 0.819 0.991 0.867 0.003
Text 0.927 0.843 0.973 0.893 0.001

06 Airborne Tree 0.20 m Box 0.688 0.524 0.912 0.844 0.079
Point 0.917 0.847 0.935 0.883 0.029
Text 0.890 0.822 0.907 0.856 0.037

07 Airborne Vehicle 0.20 m Box 0.861 0.756 0.995 0.869 0.003
Point 0.863 0.759 0.991 0.785 0.001
Text 0.846 0.744 0.971 0.769 0.002

08 Airborne Lake 0.45 m Box 0.574 0.403 0.983 0.988 0.017
Point 0.972 0.945 0.999 0.991 0.001
Text 0.894 0.869 0.919 0.912 0.008

09 Satelitte Multiclass 0.30 m Box 0.391 0.225 0.945 0.226 0.004
Point 0.823 0.567 0.878 0.678 0.037
Text 0.740 0.510 0.791 0.610 0.039

10 Satelitte Multiclass 0.50 m Box 0.261 0.150 0.936 0.151 0.005
Point 0.549 0.378 0.870 0.452 0.042
Text 0.494 0.340 0.783 0.407 0.044

detailed comparison of the different models’ performance pro-
viding a summary of the segmentation results. Figure 9 offers
a visual illustration of example results obtained from both ap-
proaches, particularly highlighting the performance of the model.
The metrics indicate that, while the PerSAM approach with a
human-sampled example may be more appropriate than the pro-
posed text-based approach, this may not always be the case when
considering the metric’s standard deviation. This opens up the
potential for adopting the automated process instead. However,
in some instances, specifically where GroundDINO’s not capa-
ble of identifying the object, to begin with, the human-labeling
provides a more appropriate result.

In its zero-shot form, SAM tends to favor selecting shadows
in some instances alongside its target, which can lower its per-
formance in tasks like tree detection. Segmenting objects with
similar surrounding elements, especially when dealing with con-
struction materials like streets and sidewalks, can be challenging
for SAM, as noticed in our multi-class problem. Moreover, its
performance with larger grouped instances, particularly when
using the single-point mode, can be unsatisfactory. Also, the
segmentation of smaller and irregular objects poses difficulties
for SAM independently from the given prompt. SAM may
generate disconnected components that do not correspond to
actual features, specifically in satellite imagery where the spatial
resolution is lower.

The text-based one-shot learning approach, on the other hand,
automates the process of selecting the example. It uses the text-
based prompt to choose the object with the highest probability
(highest logits) from the image as the training example. This
not only reduces the need for manual input but also ensures
that the selected object is highly representative of the specified
class due to its high probability. Additionally, while the text-
based approach is capable of handling multiple instances of
the same object class in a more streamlined manner, thanks to
the looping mechanism that iteratively identifies and segments
objects based on their probabilities. The one-example policy,
however, excluded some of the objects in the image to favoring
only the objects similar to the given sample.

In summary, upon comparing these two methods, we found
that the traditional one-shot learning approach outperforms the
zero-shot learning approach in all datasets. Additionally, the
combination of text-based with one-shot learning also, even
when not improving on it, gets close enough in most cases. This
comparison underscores the benefits and potential of integrating
state-of-the-art models with natural language processing capabil-
ities for efficient and accurate geospatial analysis. Nevertheless,
it is important to remember that the optimal choice between
these methods may vary depending on the specific context and
requirements of a given task.
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Figure 6: Illustrations of images processed using bounding-box prompts. The first column consists of the RGB image, while the second column
demonstrates how the prompt was handled. The ground-truth mask is presented in the third column and the prediction result from SAM in the

fourth. The last column indicates the false positive (FP) pixels from the prediction.
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Figure 7: Illustrations of images processed using point prompts. The first column presents the RGB image, while the second column
demonstrates the handling of the point prompt. The third column showcases the ground-truth mask, and the fourth column shows the prediction

result from SAM. The final column highlights the false positive (FP) pixels from the prediction.
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Figure 8: Examples of images processed through text-based prompts. The first column contains the RGB image, while the second column
indicates the text prompt used for the model. The ground-truth mask is shown in the third column, with the prediction result from SAM in the

fourth. The last column indicates the false positive (FP) pixels from the prediction.
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Table 3: Comparison of segmentation results on different platforms and targets when considering both the one-shot and the
text-based one-shot approaches. The baseline values are referent to the best metric obtained by the previous zero-shot investigation,
be it from a bounding box, a point, or a text prompt. The red colors indicate the best result for each scenario.

# Platform Target Resolution (m) Sample Dice (%) IoU (%) Pixel Acc. (%) TPR (%) FPR (%)
00 UAV Tree 0.04 Baseline 92.2 85.2 98.1 92.1 1.2

PerSAM-F 94.5 ± 4.2 87.4 98.8 94.4 1.1
Text PerSAM-F 95.0 ± 4.9 87.8 99.3 96.3 0.9

01 UAV House 0.04 Baseline 92.7 86.3 98.4 97.4 1.5
PerSAM-F 95.4 ± 2.1 88.9 99.3 98.1 1.1

Text PerSAM-F 95.0 ± 2.7 88.5 98.8 99.8 1.4
02 UAV Plantation Crop 0.01 Baseline 80.1 68.9 95.2 94.4 10.4

PerSAM-F 82.1 ± 6.4 70.6 98.8 96.8 9.6
Text PerSAM-F 64.1 ± 7.2 55.1 76.2 75.5 15.6

03 UAV Plantation Crop 0.04 Baseline 95.8 92.0 95.0 98.0 9.2
PerSAM-F 98.2 ± 1.1 94.3 98.8 100.4 8.5

Text PerSAM-F 76.7 ± 1.3 73.6 76.0 78.4 13.8
04 UAV Building 0.09 Baseline 69.7 53.5 81.3 95.5 22.8

PerSAM-F 87.2 ± 6.2 66.9 98.0 96.6 21.0
Text PerSAM-F 73.2 ± 6.7 54.9 94.3 97.9 21.1

05 UAV Car 0.09 Baseline 92.7 84.3 97.3 89.3 0.1
PerSAM-F 95.0 ± 2.4 86.4 98.8 91.5 0.1

Text PerSAM-F 95.5 ± 3.0 86.9 99.3 93.3 0.1
06 Airborne Tree 0.20 Baseline 91.7 84.7 93.5 88.3 2.9

PerSAM-F 94.0 ± 1.3 86.8 98.8 90.5 2.7
Text PerSAM-F 94.5 ± 1.5 87.3 99.3 92.3 2.1

07 Airborne Vehicle 0.20 Baseline 86.3 75.9 99.1 78.5 0.1
PerSAM-F 88.4 ± 5.6 77.8 99.8 80.4 0.2

Text PerSAM-F 86.7 ± 6.5 76.3 99.6 78.9 0.1
08 Airborne Lake 0.45 Baseline 97.2 94.5 99.9 99.1 0.1

PerSAM-F 97.6 ± 1.5 94.9 99.9 99.5 0.1
Text PerSAM-F 97.3 ± 1.3 94.6 99.8 99.2 0.1

09 Satellite Multiclass 0.30 Baseline 82.3 56.7 87.8 67.8 3.7
PerSAM-F 90.5 ± 5.2 68.0 96.6 74.5 3.5

Text PerSAM-F 89.7 ± 5.3 61.8 95.8 73.9 3.5
10 Satellite Multiclass 0.50 Baseline 54.9 37.8 87.0 45.2 4.2

PerSAM-F 60.3 ± 10.4 45.3 95.7 49.7 3.9
Text PerSAM-F 59.8 ± 12.3 41.2 94.8 49.2 4.0

5 Future Perspectives on SAM for Remote
Sensing

SAM has several advantages that make it an attractive option for
remote sensing applications. First, it offers zero-shot general-
ization to unfamiliar objects and images without requiring addi-
tional training [22]. This capability allows SAM to adapt to the
diverse and dynamic nature of remote sensing data, which often
consists of varying land cover types, resolutions, and imaging
conditions. Second, SAM’s interactive input process can signifi-
cantly reduce the time and labor required for manual image seg-
mentation. The model’s ability to generate segmentation masks
with minimal input, such as a text prompt, a single point, or a
bounding box, accelerates the annotation process and improves
the overall efficiency of remote sensing data analysis. Lastly, the
decoupled architecture of SAM, comprising a one-time image
encoder and a lightweight mask decoder, makes it computation-
ally efficient. This efficiency is crucial for large-scale remote
sensing applications, where processing vast amounts of data on
time is of utmost importance.

However, our study consists of an initial exploration of this
model, where there’s still much to be investigated. In this sec-
tion, we discuss future perspectives on SAM and how it can be
improved upon. Despite its potential, SAM has some limitations
when applied to remote sensing imagery. One challenge is that

remote sensing data often come in different formats, resolutions,
and spectral bands. SAM, which has been trained primarily on
RGB images, may not perform optimally with multispectral or
hyperspectral data, which are common in remote sensing ap-
plications. A possible approach to this issue consists of either
adapting SAM to read in multiple bands by performing rotated
3-band combinations or performing a fine-tuning to domain
adaption. In our early experiments, a simple example run on
different multispectral datasets demonstrated that, although the
model has the potential to segment different regions or features,
it still needs further exploration. This is something that we in-
tend to explore in future research, but expect that others may
look into it as well.

Regardless, the current model can be effectively used in vari-
ous remote sensing applications. For instance, we verified that
SAM can be easily employed for land cover mapping, where it
can segment forests, urban areas, and agricultural fields. It can
also be used for monitoring urban growth and land use changes,
enabling policymakers and urban planners to make informed
decisions based on accurate and up-to-date information. Further-
more, SAM can be applied in a pipeline process to monitor and
manage natural resources. Its efficiency and speed make it suit-
able for real-time monitoring, providing valuable information to
decision-makers. This is also a feature that could be potentially
explored by research going forward with its implementation.
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Figure 9: Visual illustration of the segmentation results using PerSAM and text-based PerSAM. from The last two columns highlights the
difference in pixels the PerSAM prediction and the text-based PerSAM prediction to its ground truth. The graphic compares the range from the

Dice values of both PerSAM and text-based PerSAM, illustrating how the proposed approach remains similar to the traditional PerSAM
approach, underscoring the potential of most practices to adopt the automated process in such cases.

Nevertheless, it is crucial to underscore a significant limitation
concerning the complexity of our data. While our primary objec-
tive was to analyze results across varying spatial resolutions and
broad remote sensing segmentation tasks, the limited regional
diversity of our data may not fully capture the range of object
characteristics encountered worldwide. Future research, there-
fore, could emphasize utilizing and adapting to a more diverse
array of the same object, thereby bolstering the robustness and
applicability of the model or its adaptations. For instance, in the
detection of buildings and water bodies, exploration of publicly
available datasets from diverse regions [8, 74] could provide
a more comprehensive understanding of these objects’ varied
characteristics, and contribute to the enhancement of algorithmic
performance across varied geographical contexts.

For the one-shot technique based on SAM, which is the capacity
to generate accurate segmentation from a single example [70].
Our experimental results indicate an improvement in perfor-
mance across most investigated datasets, especially considering
the border of the objects. However, it is essential to note that
one-shot learning may pose challenges to the generalization ca-
pability of the model. This may be an issue of remote sensing
data that often exhibit a high degree of heterogeneity and diver-
sity [75]. For instance, a "healthy" tree can be a good sample
for the model, but it can bias it to ignore "unhealthy" trees or
canopies with different structures.

Expanding the one-shot learning to a few-shot scenario could
potentially improve the model’s adaptability to different envi-
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ronments or tasks by enabling it to learn from more than one
example (2 to 10) instead of a single one. This would involve
using a small set of labeled objects for each land cover type
during the training process [54, 27]. A more robust learning ap-
proach, which uses a larger number of examples for each class,
could further enhance the model’s ability to capture the nuances
and variations within each class. This approach, however, may
require more computational resources and training data, and
thus may not be suitable for all applications.

Additionally, While SAM is a powerful tool for image segmen-
tation, its effectiveness can be boosted when combined with
other techniques. For example, integrating SAM into another
ViT framework in a weakly-supervised manner could potentially
improve the segmentation result, better handling the spatial-
contextual information. However, it’s worth noting that integrat-
ing it might also bring new challenges [58]. One potential issue
could be the increased model complexity and computational re-
quirements, which might limit its feasibility. But, as the training
of transformers typically requires large amounts of data, SAM
can provide fast and relatively accurate labeled regions for it.

Furthermore, one of the key challenges to tackle would be im-
proving SAM’s performance when applied to low spatial res-
olution imagery. Thus, as the original training data of SAM
primarily consisted of high-resolution images, it is inherently
more suitable for similar high-resolution conditions, even in the
remote sensing domain. The noticeable decrease in accuracy at
resolutions above 30 cm, noted in our tests, further substantiates
this observation. This shortcoming can be further explored by
coupling SAM with a Super-Resolution (SR) technique [64],
for instance, creating a two-step process, where the first step
involves using an SR model to increase the spatial resolution of
the imagery, and the second step involves using the enhanced
resolution image as an input to SAM. It is acknowledged that
while this method can theoretically enhance the performance of
SAM with low-resolution images, the Super-Resolution tech-
niques themselves can introduce errors, potentially offsetting the
benefits [64]. Therefore, the proposed two-step process should
be approached with caution, ensuring meticulous testing and
validation. A dedicated exploration into refining and optimizing
SAM for lower-resolution images, possibly involving adaptation
and training of the model on lower-resolution data, will be inte-
gral to ensuring its effective and reliable application in diverse
remote sensing scenarios.

Lastly, as we explored the integration of SAM with other types of
methods, such as GroundDINO [30], we noticed both strengths
and limitations that were already discussed in the previous
section. This combination demonstrates a high degree of ver-
satility and accuracy in tasks such as instance segmentation,
where GroundDINO’s object detection and classification guided
SAM’s segmentation process. However, the flexibility of this ap-
proach extends beyond these specific models. Any similar mod-
els could be swapped in as required, expanding the applications
and robustness of the system. Alternatives such as GLIP [25]
or CLIP [31] may replace GroundDINO, allowing for further
experimentation and optimization [73]. Furthermore, integrating
language models like ChatGPT [41] could offer additional layers
of interaction and nuances of understanding, demonstrating the
far-reaching potential of combining these expert models. This
modular approach underpins a potent and adaptable workflow

that could reshape our capabilities in handling remote sensing
tasks.

The integration of Geographical Information Systems (GIS)
with models like SAM holds significant promise for enhancing
the annotation process for training specific segmentation and
change detection models. A fundamental challenge often lies
in the discrepancy between training data and the image data
employed since the data used could be marred with annotator
errors, leading to a compatibility issue with the used image
[63]. The integration with SAM could help users optimize the
creation of annotations and, when suitable, improve its results
with editing, thus creating a quicker and more robust dataset.

In short, our study focused on demonstrating the potential of
SAM adaptability for the remote sensing domain, as well as
presenting a novel, automated approach, to retrain the model
with one example from the text-based approach. While there
is much to be explored, it is important to understand how the
model works and how it could be improved upon. To summarize
this discussion, there are many potential research directions and
applications for SAM in remote sensing applications, which can
be condensed as follows:

• Examining the most effective approaches and tech-
niques for adapting SAM to cater to a variety of remote
sensing data, including multispectral and hyperspectral
data.
• Analysing the potential of coupling SAM with few-shot

or multi-shot learning, to enhance its adaptability and
generalization capability across diverse remote sensing
scenarios.
• Investigating potential ways to integrate SAM with

prevalent remote sensing tools and platforms, such as
Geographic Information Systems (GIS), to augment
the versatility and utility of these systems.
• Assessing the performance and efficiency of SAM in

real-time or near-real-time remote sensing applications
to understand its capabilities for timely data processing
and analysis.
• Exploring how domain-specific knowledge and exper-

tise can be integrated into SAM to enhance its ability
to understand and interpret remote sensing data.
• Evaluating the potential use of SAM as an alternative

to traditional labeling processes and its integration with
other image classification and segmentation techniques
in a weakly-supervised manner to boost its accuracy
and reliability.
• Integrating SAM with super resolution approach to

enhance its capability to handle low-resolution imagery,
thereby expanding the range of remote sensing imagery
it can effectively analyze.

6 Conclusions

In this study, we conducted a comprehensive analysis of both
the zero and one-shot capabilities of the Segment Anything
Model (SAM) in the domain of remote sensing imagery process-
ing, benchmarking it against aerial and satellite datasets. Our
analysis provided insights into the operational performance and
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efficacy of SAM in the sphere of remote sensing segmentation
tasks. We concluded that, while SAM exhibits notable promise,
there is a tangible scope for improvement, specifically in manag-
ing its limitations and refining its performance for task-specific
implementations.

In summary, our data indicated that SAM delivers notable per-
formance when contrasted with the ground-truth masks, thereby
underscoring its potential efficacy as a significant resource for
remote sensing applications. Our evaluation reveals that the
prompt capabilities of SAM (text, point, box, and general),
combined with its ability to perform object segmentation with
minimal human supervision, can also contribute to a significant
reduction in annotation workload. This decrease in human input
during the labeling phase may lead to expedited training sched-
ules for other methods, thus promoting more streamlined and
cost-effective workflows.

The chosen datasets were also selected with the express purpose
of representing a broad and diverse context at varying scales,
rather than exemplifying complex or challenging scenarios. By
focusing on more straightforward datasets, the study went in
on the fundamental aspects of segmentation tasks, without the
additional noise of overly complicated or intricate scenarios. In
this sense, future research should be oriented towards improving
SAM’s capabilities and exploring its potential integration with
other methods to address more complex and challenging remote
sensing scenarios.

Nevertheless, despite the demonstrated generalization, there are
certain limitations to be addressed. Under complex scenarios,
the model faces challenges, leading to less optimal segmenta-
tion outputs, by overestimating most of the objects’ boundaries.
Additionally, SAM’s performance metrics display variability
contingent on the spatial resolution of the input imagery (i.e.,
being prone to increase mistakes as the spatial resolution of
the imagery is lowered). Consequently, identifying and rectify-
ing these constraints is essential for further enhancing SAM’s
applicability within the remote sensing domain.

Supplementary

Here, we provide an open-access repository designed to facilitate
the application of the Segment Anything Model (SAM) within
the domain of remote sensing imagery. The incorporated codes
and packages provide users the means to implement point and
bounding box-based shapefiles in combination with the SAM.
The repositories also include notebooks that demonstrate how to
apply the text-based prompt approach, alongside one-shot modi-
fications of SAM. These resources aim to bolster the usability
of the SAM approach in diverse remote sensing contexts, and
can be accessed via the following online repositories: GitHub:
AI-RemoteSensing [47] and; GitHub: Segment-Geospatial [60].
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CONSIDERAÇÕES FINAIS 

 

Esta tese, intitulada “Avanços em Aprendizagem Profunda Aplicada ao 

Sensoriamento Remoto”, forneceu uma análise das recentes inovações na aplicação de 

DL em imagens de sensoriamento remoto, incluindo os métodos baseados em DNN, os 

modelos visuais de processamento de linguagem natural e a segmentação zero-shot de 

imagens. O documento foi dividido em três capítulos, dos quais detalham os experimentos 

conduzidos e as constatações encontradas. 

No capítulo um, por meio da exploração de aplicações de DNN no sensoriamento 

remoto aéreo, ficou evidente que o DL revolucionou as tarefas de processamento digital 

de imagens neste campo, trazendo resultados mais acurados em diferentes aplicações 

geográficas que utilizam de imagens do sensoriamento remoto. O artigo apontou a 

trajetória de métodos e perspectivas futuras que foram exploradas nos artigos 

subsequentes (capítulos dois e três).  

No capítulo dois, as avaliações do uso do Visual ChatGPT no contexto de 

imagens de sensoriamento remoto, também se mostraram promissoras, mesmo que em 

estágio inicial de desenvolvimento. Modelos de linguagem natural visual possuem o 

potencial de tornar o processamento de imagens de sensoriamento remoto cada vez mais 

acessível e prático à diversos usuários. 

No capítulo três, SAM, apesar da limitação pela sua aprendizagem em zero-shot, 

demonstrou desempenho satisfatório na segmentação de imagens, possibilitando reduzir 

os esforços da anotação manual e produzir dados úteis para processamentos subsequentes. 

A sua incorporação com a aprendizagem one-shot a partir de textos também revelou o 

potencial do modelo em realizar uma segmentação guiada de objetos em imagens de 

sensoriamento remoto.  
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Em suma, as ferramentas e perspectivas discutidas nos três capítulos discutidos 

permitiram levantar uma visão prática de recentes inovações em DL aplicadas ao contexto 

do sensoriamento remoto aéreo e orbital. Este trabalho apresentou tanto os avanços 

notáveis quanto os desafios existentes, delineando caminhos para o desenvolvimento de 

possíveis pesquisas futuras. Entendemos que o DL tem potencial para transformar o 

processamento de imagens deste domínio, permitindo extrair informações mais precisas 

e rápidas. Esperamos que os pontos levantados a as descobertas apresentadas nesta tese 

inspirem outros estudos, incentivando o refinamento e a integração dessas tecnologias, e 

que contribua para o desenvolvimento de soluções mais eficientes e práticas. 

 



 

79 

REFERÊNCIAS BIBLIOGRÁFICAS 

 

ALEISSAEE, A. A. et al. Transformers in Remote Sensing: A Survey. Remote Sensing, 

MDPI AG, 30 mar. 2023. Disponível em: < http://dx.doi.org/10.3390/rs15071860 >. 

Acesso em: 14 maio. 2023. 

 

CHI, M. et al. Big Data for Remote Sensing: Challenges and Opportunities. Proceedings 

of the IEEE, Institute of Electrical and Electronics Engineers (IEEE), nov. 2016. 

Disponível em: < http://dx.doi.org/10.1109/jproc.2016.2598228 >. Acesso em: 15 maio. 

2023. 

 

GÓMEZ, C.; WHITE, J. C.; WULDER, M. A. Optical remotely sensed time series data 

for land cover classification: A review. ISPRS Journal of Photogrammetry and 

Remote Sensing, Elsevier BV, jun. 2016. Disponível em: < 

http://dx.doi.org/10.1016/j.isprsjprs.2016.03.008 >. Acesso em: 15 maio. 2023. 

 

KIRILLOV, A. et al. Segment Anything. arXiv:2304.02643, 2023. Disponível em: < 

https://doi.org/10.48550/arXiv.2304.02643 >. Acesso em: 14 maio. 2023. 

 

KOTARIDIS, I.; LAZARIDOU, M. Remote sensing image segmentation advances: A 

meta-analysis. ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier BV, 

mar. 2021. Disponível em: < http://dx.doi.org/10.1016/j.isprsjprs.2021.01.020 >. Acesso 

em: 15 maio. 2023. 

 

LI, J. et al. Deep learning in multimodal remote sensing data fusion: A comprehensive 

review. International Journal of Applied Earth Observation and Geoinformation, 

Elsevier BV, ago. 2022. Disponível em: < http://dx.doi.org/10.1016/j.jag.2022.102926 >. 

Acesso em: 14 maio. 2023. 

 

SHAFIQUE, A. et al. Deep Learning-Based Change Detection in Remote Sensing 

Images: A Review. Remote Sensing, MDPI AG, 11 fev. 2022. Disponível em: < 

http://dx.doi.org/10.3390/rs14040871 >. Acesso em: 15 maio. 2023. 

 

http://dx.doi.org/10.3390/rs15071860
http://dx.doi.org/10.1109/jproc.2016.2598228
http://dx.doi.org/10.1016/j.isprsjprs.2016.03.008
https://doi.org/10.48550/arXiv.2304.02643
http://dx.doi.org/10.1016/j.isprsjprs.2021.01.020
http://dx.doi.org/10.1016/j.jag.2022.102926
http://dx.doi.org/10.3390/rs14040871


 

80 

TONG, X.-Y. et al. Land-cover classification with high-resolution remote sensing images 

using transferable deep models. Remote Sensing of Environment, Elsevier BV, fev. 

2020. Disponível em: < http://dx.doi.org/10.1016/j.rse.2019.111322 >. Acesso em: 14 

maio. 2023. 

 

WU, C. et al. Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation 

Models. arXiv: 2303.04671, 2023. Disponível em: < 

https://doi.org/10.48550/arXiv.2303.04671 >. Acesso em: 15 maio. 2023. 

 

YUAN, Q. et al. Deep learning in environmental remote sensing: Achievements and 

challenges. Remote Sensing of Environment, Elsevier BV, 2020. Disponível em: < 

http://dx.doi.org/10.1016/j.rse.2020.111716 >. Acesso em: 15 maio. 2023. 

 

ZHANG, R. et al. Personalize Segment Anything Model with One Shot. arXiv: 

2305.03048. Disponível em: < https://arxiv.org/abs/2305.03048 >. Acesso em: 27 maio. 

2023. 

http://dx.doi.org/10.1016/j.rse.2019.111322
https://doi.org/10.48550/arXiv.2303.04671
http://dx.doi.org/10.1016/j.rse.2020.111716
https://arxiv.org/abs/2305.03048

