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Abstract

Lima, V. M. A. Opinion Mining for App Reviews: Identifying and Prior-
itizing Emerging Issues for Software Maintenance and Evolution. 2023.

150p. Thesis (PhD in Computer Science) - Faculty of Computing of the Federal

University of Mato Grosso do Sul, Campo Grande - MS, 2023.

Context. Opinion mining for app reviews aims to analyze user comments

on app stores to support software engineering activities, primarily software

maintenance and evolution. One of the main challenges in maintaining soft-

ware quality is promptly identifying emerging issues, such as bugs. However,

manually analyzing these comments is challenging due to the large amount

of textual data. Methods based on machine learning have been employed to

automate opinion mining and address this issue. Gap. While recent methods

have achieved promising results in extracting and categorizing issues from

users’ opinions, existing studies mainly focus on assisting software engineers

in exploring users’ historical behavior regarding app functionalities and do

not explore mechanisms for trend detection and risk classification of emerg-

ing issues. Furthermore, these studies do not cover the entire issue analysis

process through an unsupervised approach. Contribution. This doctoral

project advances state of the art in opinion mining for app reviews by propos-

ing an entire automated issue analysis approach to identify, prioritize, and

monitor the risk of emerging issues. Our proposal introduces a two-fold ap-

proach that (i) identifies possible defective software requirements and trains

predictive models for anticipating requirements with a higher probability of

negative evaluation and (ii) detect issues in reviews, classifies them in a risk

matrix with prioritization levels, and monitors their evolution over time. Ad-

ditionally, we present a risk matrix construction approach from app reviews

using the recent Large Language Models (LLMs). We introduce an analytical

data exploration tool that allows engineers to browse the risk matrix, time se-

ries, heat map, issue tree, alerts, and notifications. Our goal is to minimize

the time between the occurrence of an issue and its correction, enabling the

xi



quick identification of problems. Results. We processed over 6.6 million re-

views across 20 domains to evaluate our proposal, identifying and ranking

the risks associated with nearly 270,000 issues. The results demonstrate the

competitiveness of our unsupervised approach compared to existing super-

vised models. Conclusions. We have proven that opinions extracted from

user reviews provide crucial insights into app issues and risks and can be

identified early to mitigate their impact. Our opinion mining process imple-

ments an entire automated issue analysis with risk-based prioritization and

temporal monitoring.
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Resumo

Lima, V. M. A. Mineração de Opiniões para Avaliações de Aplicativos:
Identificação e Priorização de Problemas Emergentes para Manutenção
e Evolução de Software. 2023. 150p. Tese (Doutorado em Ciência da Com-

putação) - Faculdade de Computação, Universidade Federal de Mato Grosso

do Sul, Campo Grande - MS, 2023.

Contexto. A mineração de opinião para avaliações de aplicativos tem como

objetivo analisar os comentários dos usuários nas lojas de aplicativos para

apoiar as atividades de engenharia de software, principalmente a manutenção

e evolução de software. Identificar prontamente problemas emergentes, como

bugs, é um dos principais desafios na manutenção da qualidade do soft-

ware. Lacuna. No entanto, analisar manualmente esses comentários é um

desafio devido à grande quantidade de dados textuais. Métodos baseados em

aprendizado de máquina têm sido empregados para automatizar a mineração

de opinião e lidar com essa questão. Embora métodos recentes tenham al-

cançado resultados promissores na extração e categorização de problemas a

partir das opiniões dos usuários, os estudos existentes concentram-se princi-

palmente em auxiliar os engenheiros de software a explorar o comportamento

histórico dos usuários em relação às funcionalidades do aplicativo e não explo-

ram mecanismos de deteção de tendências e classificação de risco de proble-

mas emergentes. Além disso, os estudos anteriores não abrangem o processo

completo de análise de problemas e riscos por meio de uma abordagem não

supervisionada. Contribuição. Este projeto de doutorado avança o estado da

arte na mineração de opinião para reviews de aplicativos, propondo uma abor-

dagem não supervisionada para identificar e priorizar problemas emergentes.

Nosso objetivo é minimizar o tempo entre a ocorrência de um problema e sua

correção, permitindo uma rápida identificação do problema. Propomos duas

novas abordagens que (i) identifica possíveis requisitos de software defeituosos

e treina modelos preditivos para antecipar requisitos com maior probabilidade

de avaliação negativa e (ii) detecta problemas a partir de avaliações, classifica-
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os em uma matriz de risco com níveis de priorização e monitora sua evolução

ao longo do tempo. Adicionalmente, apresentamos uma abordagem de con-

strução da matriz de risco usando os recentes Large Language Models (LLMs).
Resultados. Processamos mais de 6.6 milhões de comentários de usuários

para avaliar nossa proposta, identificando e classificando o risco associado

a quase 270.000 problemas. Os resultados demonstram a competitividade

de nossa abordagem não supervisionada em comparação com modelos su-

pervisionados existentes. Conclusões. Comprovamos que as opiniões extraí-

das dos comentários dos usuários fornecem percepções importantes sobre os

problemas e riscos associados aos aplicativos, que podem ser detectados an-

tecipadamente para mitigar seu impacto. Nosso processo de mineração de

opinião implementa a análise automatizada de problemas, com priorização

baseada em risco e monitoramento temporal.
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CHAPTER

1
Introduction

This chapter provides a comprehensive thesis overview, describing the ad-

dressed problems and research objectives. Section 1.1 presents an outline of

the research topic addressed in this thesis. Section 1.2 elucidates the objec-

tives and research questions of the work, which will be addressed in subse-

quent chapters. Section 1.3 briefly highlights the main contributions of this

thesis. Finally, Section 1.4 outlines the organization of the thesis and re-

search timeline, providing a concise description of the content covered in each

chapter.

1.1 Problem Outline

Opinions extracted from informative end-user reviews provide a wide range

of user feedback to support software engineering activities, such as bug report

classification, new feature requests, usage experience, or enhancements (i.e.,

suggestions for improvements) (Martin et al., 2016; AlSubaihin et al., 2019;

Dabrowski et al., 2020; Araujo and Marcacini, 2021; Malgaonkar et al., 2022).

However, mobile application (app) developers spend exhaustive manual efforts

identifying and prioritizing informative end-user reviews. Manually analyzing

a reviews dataset to extract helpful knowledge from the opinions is challenging

because of the large amount of data and the high frequency of new reviews

published by users (Johanssen et al., 2019; Martin et al., 2016). Therefore,

to deal with these challenges, opinion mining has been increasingly used for

computational analysis of people’s opinions from textual data (Liu, 2012a).

Furthermore, in the context of app reviews, opinion mining allows extracting

excerpts from comments and mapping them to emerging issues according to
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the users’ experience (Lima et al., 2022).

In this thesis, we define an emerging app issue as follows.

Definition 1.1 (Emerging App Issue) An issue is an Emerging App Issue (EAI)
if it reports in informative reviews from users in a specific time slice that repre-
sents bugs, misbehavior, environment failure, or negative user experience with
risks associated, where their occurrences distributions in the current time slice
correspond to a significant increase in measure terms compared to fluctuations
in previous time slices.

One of the most challenging difficulties for software quality maintenance

is quickly identifying emerging issues, such as bugs. These emerging issues

can result in enormous costs since users may fail to complete critical tasks

or experience dissatisfaction, leading them to uninstall the app. According

to a survey (Nayebi et al., 2018b), 78.3% of developers agree that deleting

unnecessary and malfunctioning features is equally or more important than

introducing new features. According to Lientz and Swanson (1980), mainte-

nance activities are categorized into four classes: i) adaptive - changes in the

software environment; ii) perfective - new user requirements; iii) corrective -

fixing errors; and iv) preventive - prevent problems in the future. By Bennett

and Rajlich (2000), it was demonstrated that a significant proportion, specifi-

cally approximately 21%, of the total maintenance effort was allocated towards

the final two categories.

In the context of mobile apps, Mcilroy et al. (2016a) has conducted research

demonstrating that the most commonly occurring update in app stores is bug

fixing, accounting for a substantial 63% of updates. As a result, approaches

that automate the analysis of concerns from app reviews are critical for strate-

gic updates and the prioritization and planning of new releases (Licorish et al.,

2017). Furthermore, app stores provide a more dynamic method of directly

distributing software to customers, with shorter release times than traditional

software systems, i.e., continuous update releases are performed every few

weeks or even days (Nayebi et al., 2016). In this context, app reviews pro-

vide immediate crowd feedback about software misbehavior or bad user ex-

perience that may not be replicated during routine development/testing pro-

cesses, such as device combinations, screen sizes, operating systems, and

network conditions (Palomba et al., 2018).

App developers can use this ongoing community feedback in developing

preventive maintenance processes. Given this, we argue that software engi-

neers would employ an opinion-mining approach to investigate bugs, misbe-

havior, and bad user experience early when an app receives negative reviews.

Opinion mining techniques can organize reviews based on the software fea-

tures and their associated user’s sentiment (Dabrowski et al., 2020; Araujo
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et al., 2022; Lima et al., 2022). Consequently, developers can investigate is-

sues to comprehend the user’s concerns about a faulty feature or compro-

mised user experience and potentially fix or improve it more quickly, i.e., be-

fore impacting many users and negatively affecting the app’s ratings (Lima

et al., 2022). Given this dynamic environment and a large amount of data,

the problem of detecting and prioritizing issues from reviews is crucial and

remains for practitioners and researchers (Licorish et al., 2017; Groen et al.,

2015; Malgaonkar et al., 2022).

A recent study on app review analysis showed that the temporal dynamics

of words and expressions associated with app malfunctions behave similarly to

trending topics on social networks (Gao et al., 2022). For example, a statistic

concept called burstiness often occurs in reviews, in which there is an accel-

erated growth of expressions reporting app malfunction, as illustrated in Fig-

ure 1.1 (app malfunction discovery period) (Lima et al., 2022). This scenario

generates negative app evaluations, which can remain even after corrective

updates.

Figure 1.1: Illustration of a temporal evolution pattern of a topic extracted
from reviews describing app malfunctions.

Different strategies have been recently proposed to support issue detection

and classification, (Zhao et al., 2020), such as issues categorization (Iacob

and Harrison, 2013; Galvis Carreño and Winbladh, 2013; Pagano and Maalej,

2013; Mcilroy et al., 2016b; Khalid et al., 2015; Chen et al., 2014; Gómez

et al., 2015; Gu and Kim, 2015; Maalej and Nabil, 2015; Villarroel et al., 2016;

Nayebi et al., 2017; Noei et al., 2021; Araujo et al., 2022; Herbold et al., 2020;

Messaoud et al., 2019; Al Kilani et al., 2019; Gao et al., 2022) and prioritization
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(Licorish et al., 2017; Malgaonkar et al., 2022).

Although previous studies are promising, they do not cover the entire pro-

cess from start to finish of issue analysis, from the automated collection of

reviews to the task of detection, prioritization, and analysis using an unsu-

pervised approach.

1.2 Objectives and Research Questions

Our main objective is to address the challenges faced by developers in ef-

ficiently analyzing informative end-user reviews, applying opinion mining to

automate the process of identifying and prioritizing emerging app issues, and

enabling proactive software quality maintenance through timely issue fixing,

user-centric improvements, and minimizing the time between issue occur-

rence and correction. We aim to ensure prompt issue identification and reso-

lution by achieving these goals, facilitating timely software maintenance and

evolution.

In this sense, we raise the followings research questions:

• RQ1 How do we predict initial trends on defective requirements from users’
opinions before negatively impacting the overall app’s evaluation?

• RQ2 How do we prioritize and address app issues from reviews in time
so that the app is competitive and guarantees the timely maintenance and
evolution of the software?

RQ1 was mainly addressed by the investigations and solutions reported in

Chapter 3, while RQ2 was mainly addressed in Chapters 4 and 5 of this thesis.

1.3 Main Contributions

This thesis introduces an innovative two-fold approach aimed at investigat-

ing emerging issues derived from user feedback. Firstly, it entails identifying

potential defective software requirements and developing predictive models to

anticipate issues that may lead to negative app evaluations. Secondly, it in-

volves detecting issues within reviews and categorizing them using a risk ma-

trix that assigns prioritization levels, thereby enabling the monitoring of their

evolution over time.

This approach enables us to effectively address reviews on time, mitigate

negative impacts on the overall app rating, and maintain the app’s competi-

tiveness, ensuring timely maintenance and facilitating software evolution.
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As a result of the above-mentioned main objectives, we present an analyt-

ical data exploration tool with an interactive dashboard and a real-time issue

monitor, illustrated in Figure 1.2.

In the following, we present individual summaries of the contributions

made by our proposed two-fold opinion mining approach, referred to as (i)
MApp-Reviews (Monitoring App Reviews) and (ii) MApp-IDEA (Monitoring App

for Issue Detection and Prioritization), and the proposed risk matrix construc-

tion using Large Language Models.

• The MApp-Reviews method contributes to the following points:

– Software requirements candidates extraction and clustering. We

introduce software requirements clustering to standardize different

variations of user descriptions of software requirements. We utilize

contextual word embeddings for software requirements representa-

tion, enabling us to quantify accurately negative user mentions over

time.

– Faulty requirement temporal dynamics analysis: We propose a

methodology for modeling the temporal dynamics of negative ratings

for clusters of software requirements using time series analysis. Our

approach employs equal-interval segmentation to determine the fre-

quency of software requirement mentions within each time interval.

This enables us to examine and visualize temporal variations, with a

particular focus on sudden increases in issues that may potentially

impact the future evaluation of an app.

– Incorporating domain-specific information into the forecast model.
We explore incorporating software domain-specific information in

time series forecasting. This information includes factors that affect

user behavior, such as holidays, app releases and updates, market-

ing campaigns, and other external events. We investigate automatic

and manual trend changepoint estimation to improve forecasting ac-

curacy.

• The MApp-IDEA method contributes to the following points:

– Issue detection approach. We introduce an issue detection method

that explores word embeddings to build acyclic graphs representing

app issues.

– Prioritizing issues approach. We introduce an approach that auto-

matically generates a risk matrix by combining sentiment analysis,

clustering, and graph theory. This approach helps in prioritizing is-

sues based on their significance and potential impact.
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– Risk temporal dynamics analysis Using time series analysis, we

present a method to generate the temporal dynamics of issues and

risks. We utilize interval segmentation to calculate the frequency of

problems in each time interval, focusing on identifying intervals with

sudden changes.

– Analytical data exploration tool. We introduce an interactive data

exploration tool, illustrated in Figure 1.2, that allows users to browse

the risk matrix, time series, heat map, and issue tree. Additionally,

our analytic system includes real-time performance reports, alerts,

and notification functionalities to inform users about significant con-

sequences.

• Large Language Models for issues priorization. We present a risk ma-

trix construction from app reviews using the recent Large Language Mod-

els (LLMs). By utilizing Open Pre-trained Transformers (OPT), our ap-

proach enables the use of LLMs in scenarios with limited computational

resources and data privacy constraints. We introduce a dynamic prompt

generation technique to extract app characteristics mentioned by users.

We also create instructions to classify risks into five levels of severity. Ex-

perimental results show competitiveness against proprietary models like

GPT (Generative Pre-trained Transformer).

Figure 1.2: Dashboard home screen information about notifications, sync sta-
tus, and time series of the last updated app
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1.4 Organization and Research Timeline

We present the organization and research timeline that ensures a logical

progression of proposals throughout the thesis. The proposed methods and

approaches build upon one another, with each chapter presenting advance-

ments and improvements over the previous ones. This sequential organiza-

tion strengthens the coherence and comprehensiveness of our research work.

Figure 1.3 presents an overview of the timeline and the chapters’ distribution.

Figure 1.3: Research timeline

The first chapter presents the research challenges in opinion mining from

the app reviews field, defines the problem, provides an overview of the pro-

posed approaches, and highlights the main contributions.

Chapter 2 offers a comprehensive literature review on mining user opin-

ions to support requirement engineering and identify and prioritize emerging

issues.

Chapter 3 introduces the temporal dynamics of requirements engineer-

ing using mobile app reviews. Here, we describe the MApp-Reviews method,

present its architecture, and discuss the key findings and results. Chapter 3

describes the initial direction of our research.

In Chapter 4, we examine issue detection and prioritization based on app

reviews, which enhances the opinion-mining process employed in the previous

approach presented in Chapter 3. We introduce the MApp-IDEA method and

experimentally evaluate it to derive outcomes and findings.

In this point, the status of the research is a 2-fold approach, in which the

stages of both methods can be explored to combine a third instantiation of

the opinion mining approach. However, the approach presented in Chapter 4

is superior and brings more technical advancements and results. In practice,

MApp-IDEA represents an evolution of MApp-Reviews.

Chapter 5 investigates how recent Large Language Models such as GPT

and OPT can be leveraged to facilitate the automatic construction of risk ma-
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trices from app reviews. This investigation encompasses various stages, from

extracting review features to classifying them into priority levels. The next

research direction is an improvement of the risk matrix construction of MApp-

IDEA (Chapter 4) to incorporate the proposed LLM-based approach presented

in Chapter 5.

Design patterns and technologies employed in our data mining analytics

tool are discussed in Chapter 6. Chapter 6 describes, from an architectural

perspective, the tool introduced in Chapter 4.

Lastly, the Conclusions (Chapter 7) summarize this thesis’s main contribu-

tions, address its limitations, offer final considerations, and suggest directions

for future research.
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CHAPTER

2
Fundamentals and Related Work

2.1 Introduction

This chapter presents the literature review of the fundamentals and related

work. First, in section 2.2, we discuss the problem of opinion mining and

sentiment analysis. Next, in section 2.2.1, we present the techniques for ex-

tracting aspects into four approaches: Frequency-based, Relation-based, Su-

pervised Learning, and Topic Modeling. In section 2.2.2, we discussed three

main approaches for aspect sentiment classification: Supervised Learning,

Lexicon-Based Learning, and Deep Learning. Section 2.2.3 covers clustering

concepts and approaches, such as partitional and hierarchical clustering and

some aspect clustering techniques. Section 2.3 defines time series analysis

concepts using machine learning and main components: trend, seasonality,

and residual. In section 2.4, we discuss data-driven requirements engineering

and point out the limitations of traditional requirements engineering. In sec-

tion 2.5 we discuss neural language model-based representations and recent

large language models. In the section 2.6, we discussed and compared the

related works about mining user opinions to support requirement engineering

and issue prioritization based on app reviews. Finally, we present the final

remarks highlighting the main limitation of the previous works.

2.2 Opinion Mining

Opinions influence people’s behavior, being essential in many human activ-

ities. For example, individuals want to know what others think before buying
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or using a particular product (Pozzi et al., 2017). Opinion mining, also called

sentiment analysis, studies people’s opinions, feelings, evaluations, and emo-

tions about entities and their attributes, such as products, services, organiza-

tions, people, topics, problems, and events (Liu, 2012b).

The detection of sentiment in a text can occur at different granularities, and

the decision of the level is subject to context and application. The analysis can

be done at the following levels (Liu, 2012b):

• Document: At this level, the task is to determine whether a document

expresses a positive or negative feeling. This granularity is suitable when

the document deals with a single entity, for example, a document that

provides an opinion about a given product;

• Sentence: This level determines the feeling of a specific sentence in a

document. This level is often used when the same document contains

opinions about several entities. It identifies and distinguishes objective

(facts) and subjective (opinion) sentences.

• Entity and Aspect: This level focuses on the opinion expressed, regard-

less of the constructs used to express it (e.g., documents, sentences,

clauses). In this case, the target of the opinion can be an entity or some

of its aspects. For example, consider the review "I love my X camera be-

cause the quality of its lens is exceptional. Too bad the price is so high".

We observe three opinions in two sentences: about the "X camera", and

about two of its aspects (price and lens). Only the opinion about the price

is negative, and the opinion about the lens and the camera, in general,

are positive. This level is the most complex level of analysis, which has

been extensively studied in product and service reviews (Tsytsarau and

Palpanas, 2011; Ghani et al., 2006; Hu and Liu, 2004).

Aspect expressions that are nouns and noun phrases are called explicit as-

pect expressions. Aspect expressions that are not nouns or noun phrases are

called implicit aspect expressions (Hu and Liu, 2004; Liu, 2012b). In practical

terms, explicit aspects are words or expressions that directly refer to a tech-

nical characteristic of a product or service. For example, in "The screen has

a good brightness", the aspect "screen" is a technical feature explicitly used

by the reviewer. On the other hand, implicit aspects are indirect references

to characteristics of products or services, usually through expressions about

the behavior of the aspect. For example, in the text "My photos are too dark",

the opinion is about the smartphone’s implicit aspect "camera" (Santos et al.,

2021).

The extraction of aspects and entities in texts and opinion polarity classi-

fication is called Aspect-Based Sentiment Analysis (ABSA) or Feature-based
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Opinion Mining (Zhang et al., 2015). Aspect-level opinion mining is based on

the premise that an opinion consists of an opinion term (positive or negative)

and a target (opinion target). Entities and their respective aspects define a

target. Therefore, it aims to classify the sentiment about the specific aspects

of each entity. An opinion identified without its target is of limited use (Liu,

2012b).

The ABSA can be divided into three main subtasks: i) Aspect extraction:

this task extracts the target of the opinion, i.e., the aspect or topic extracted

from a sentence; ii) Aspect clustering: this task groups synonymous into as-

pect categories, which each category represents a unique aspect.; and iii) As-

pect sentiment classification: this task determines whether the opinions on

different aspects are positive, negative, or neutral (Liu, 2012b; Pontiki et al.,

2016; Trisna and Jie, 2022). 2.1 shows the main subtasks in ABSA.

The aspect extraction and polarity classification in opinion mining can

be divided into machine learning, deep learning, lexicon-based, rule-based,

topic-based, deep learning, and hybrid approaches. We introduce the main

approaches in the following.

Figure 2.1: The sub-tasks of aspect-based opinion mining

2.2.1 Aspect Extraction

The process of identifying cited characteristics about an entity is called

aspect extraction (Khan et al., 2014). The central premise is that an opinion

always has a target. A target is often an aspect or topic discussed in the text.

Recognizing each expressed opinion and its target in a sentence (Liu, 2012b)
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is essential. Among different tasks of ABSA, aspect extraction is the most

important task and has been studied by many researchers (Rana and Cheah,

2016).

The techniques for extracting aspects are grouped into four main approaches:

Frequency-based, Rule-based, Supervised Learning, Topic Modeling, and Deep

Learning. Each approach has a group of techniques that use specific algo-

rithms (Liu, 2012b) (More and Ghotkar, 2016) (Dang et al., 2020). The follow-

ing is a brief introduction to these approaches.

2.2.1.1 Frequency-based Approach

The Frequency-based approach involves locating nouns, or nominal phrases,

frequently in texts as aspects. This approach to extract explicit aspects in a

given domain is mainly used. The approach is based on the user commenting

on aspects of a particular entity (More and Ghotkar, 2016).

In Hu and Liu (2004), a part-of-speech (POS) tagger identifies noun and

noun phrases. Then, the occurrence frequency of these nouns and noun

phrases is counted. Finally, a threshold is decided by manual tuning, and

only frequent nouns and noun phrases whose count is greater than a thresh-

old are considered. Popescu and Etzioni (2005) used the Pointwise Mutual

Information (PMI) similarity measure to compute a score for each candidate

based on their frequency and co-occurrence. Blair-Goldensohn et al. (2008)

improved the frequency-based approach by considering only noun phrases in

an opinion-containing sentence. Ku et al. (2006) used the TF-IDF measure to

find frequent terms in reviews that are major topics. Moghaddam and Ester

(2010) improved the frequency-based approach by removing non-aspect terms

with the help of a syntactic pattern-based filter.

In general, the frequency-based approach has the limitation of missing low-

frequency aspects and needing manual configuration and parameter tuning to

suit the selected dataset (Ishaq et al., 2020).

2.2.1.2 Relation-based Approach

The Relation-based approach, known as Rule-based and Syntax-based,

uses grammatical relation and syntactic patterns between aspect and opinion

words to find extraction rules. This approach aims to find a relationship be-

tween aspect and opinion words to identify aspects (More and Ghotkar, 2016).

Zhuang et al. (2006) use the dependency parser to identify dependency re-

lations for aspect extraction in reviews. After parsing, a dependency relation

links the words in a sentence. In Wu et al. (2009), a phrase dependency parser

extracts noun phrases and verb phrases as aspect candidates. A dependency

parser helps identify the dependence of individual words, but a phrase depen-
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dence parser helps identify the dependence of phrases, which is more accurate

for aspect extraction. Qiu et al. (2011) used the double propagation method, in

which different relations between opinion words and aspects, opinion words

and aspects themselves, are used to design extraction rules. In Poria et al.

(2014), a rule-based approach is used to detect both explicit and implicit as-

pects by exploiting common-sense knowledge and sentence dependency trees.

In Rana and Cheah (2017), a Two-fold Rules-based Model (TF-RBM) was pro-

posed, which uses rules defined based on sequential patterns mined from cus-

tomer reviews and identifies aspects associated with both domain-dependent

and independent opinions.

Unlike the Frequency-Based approach, the Rule-Based approach can de-

tect low-frequency aspects. However, More and Ghotkar (2016) argued that

this approach might produce many terms which are not real aspects and ir-

relevant features.

2.2.1.3 Approach based on Supervised Learning

Supervised Learning-based approaches involve building a model from train-

ing data and applying it to unlabeled datasets. In this context, identifying

aspects, opinions, and their polarity is a labeling problem where patterns are

learned from labeled data and applied to unlabeled data.

The most common learning models for aspect extraction are the Hidden

Markov Models (HMM) (Rabiner, 1989) and Conditional Random Fields (CRF)

(Lafferty et al., 2001) (More and Ghotkar, 2016). Jin and Ho (2009) used

lexicalized HMM model to learn patterns to extract aspects and opinion ex-

pressions. Jakob and Gurevych (2010) used CRF to train review sentences

from different domains for domain-independent extraction. Li et al. (2010)

used a variation of CRF, i.e., Skip-CRF and Tree-CRF, to find aspects and

opinions. Huang et al. (2012) proposed a CRF-based probabilistic learning

model to extract product aspects. Yang and Cardie (2013) formulated the task

of opinion entity identification as a sequence labeling problem and employed

CRF to learn the probability of a sequence assignment for a given sentence.

Other approaches also apply algorithms with SVM, NB, KNN, among others

(De Clercq et al., 2015; Guha et al., 2015; Jeyapriya and Selvi, 2015; Pekar

et al., 2014).

2.2.1.4 Topic Modeling Approach

The approach called Topic Modeling is considered an unsupervised learning

method to discover topics in textual documents considering that documents

consist of a mixture of topics and each topic is the probability distribution over

the words. That is, documents are considered to have a list of terms related
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to a topic and their respective frequency distribution. The probability of a

document dealing with one or more topics is seen from the co-occurrence of

the frequencies of these terms. The topic modeling helps to group aspects and

covers opinion and aspect words (More and Ghotkar, 2016; Wang and Ester,

2014).

Two basic models used are pLSA (Probabilistic Latent Semantic Analysis)

(Hofmann, 2013) and LDA (Latent Dirichlet allocation) (Blei et al., 2003). In

the context of opinion mining, discovered topics from topic models are aspects.

Hence, Topic modeling can be used for aspect extraction. Topic modeling help

in aspect grouping and cover both aspect and opinion words.

Zhao et al. (2010) proposed MaxEnt-LDA (Maximum Entropy and LDA com-

bination) hybrid model to discover both aspect words and aspect-specific opin-

ion words jointly. Lin and He (2009) proposed Joint Sentiment Topic (JST)

model. JST model considered topics and sentiments together. JST model

focuses on the extraction of opinion-aspect pair. Brody and Elhadad (2010)

used LDA model to find aspects. After aspect detection, adjectives are se-

lected for opinion word. Jo and Oh (2011) proposed Sentence-LDA (SLDA)

model to automate the identification of aspects, assuming words from a single

sentence belong to one aspect. The SLDA extends the Aspect and Sentiment

Unification Model (ASUM) to identify different opinions. The ASUM model

finds results in the form of aspect- opinion pair. Xueke et al. (2013) pro-

posed Joint Aspect/Sentiment Model (JAS). JAS model uses LDA to extract

aspect and aspect-related terms. Poria et al. (2016c) extracted implicit aspects

through SLDA that integrated common-sense reasoning in the computation of

word distributions. Shams and Baraani-Dastjerdi (2017) proposed the En-

riched LDA (ELDA) model, which incorporates the aspect co-occurrence rela-

tions as prior domain knowledge into LDA for aspect extraction. García-Pablos

et al. (2018) proposed W2VLDA, which used LDA combined with an unsuper-

vised pre-trained classification model for aspect identification and separation

of opinion words.

2.2.1.5 Deep Learning based Approach

Deep Neural Networks (DNN) based approaches have outperformed tradi-

tional or rule-based approaches (Poria et al., 2016a). Recently, DNN, Convo-

lutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and other

Neural Networks have been widely used for various Sentiment Analysis tasks,

including extraction of aspects.

Most common approaches to aspect extraction include standard and vari-

ants of CNN (Poria et al., 2016a; Xu et al., 2016, 2017; Ruder et al., 2016; Toh

and Jian, 2016), Long-Short Term Memory (LSTM) (Hochreiter and Schmidhu-
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ber, 1997; Liu et al., 2015; Chen et al., 2017; Mai and Le, 2018; Li and Lam,

2017; Jangid et al., 2018; Li et al., 2018; Santos et al., 2021) and Gated Re-

current Unit (GRU) (Cho et al., 2014; Jebbara and Cimiano, 2017; Wang et al.,

2017; Cheng et al., 2017; Zeng et al., 2019b). In order to increase the perfor-

mance of the models, studies have included pre-trained and fine-tuned word

embeddings, incorporating linguistic factors in the form of POS and grammat-

ical rules, and exploring concept-based knowledge (Do et al., 2019).

For example, Liu et al. (2015), used RNN with word Embedding to develop a

discriminative model for aspect extraction. Similarly, RNN is used in Jebbara

and Cimiano (2017) for the Two-Step Aspect-Extraction method. RNN is also

applied in Jangid et al. (2018) for the financial domain on tweets and news

headlines. CNN is used in both Xu et al. (2016) and Poria et al. (2016b) to

carry out aspect-extraction as a multi-label classification problem, using a

CNN approach to do automatic extraction of text features. Li et al. (2018) used

RNN to extract evaluative sentiment features. Zeng et al. (2019b) proposed an

aspect-level sentiment classification model based on a dual memory based on

attention mechanism (BMAM) in a GRU-based decoder to achieve Fine-grained

feature extraction.

Deep neural language models are currently referred to as state-of-the-art

for ABSA Dang et al. (2020). In particular, BERT (Bidirectional Encoder Repre-

sentations from Transformers) based deep neural language models are widely

used for ABSA Song et al. (2019); Zeng et al. (2019a); Rietzler et al. (2019);

Karimi et al. (2020).

2.2.2 Aspect Sentiment Classification

Classifying an aspect’s opinion involves determining the opinion orienta-

tion expressed in each aspect (Liu, 2012b). Polarity classification techniques

can be divided into four major groups: a) lexical, with the use of sentiment

dictionaries; b) machine learning, with the predominant use of classification

or regression techniques; c) statistics, which use techniques to assess the co-

occurrence of terms; d) semantics, which define the polarity of words as a

function of their semantic proximity to others of known polarity (Tsytsarau

and Palpanas, 2011).

The traditional techniques generally fall within two main predominant ap-

proaches to the Aspect-based sentiment classification: The supervised Learn-

ing approach and the Lexicon-based approach (Liu, 2012b; Tsytsarau and Pal-

panas, 2011). Deep learning approaches are recently widely used for aspect-

based sentiment classification (Wang et al., 2021). Techniques from these

different approaches can be combined to improve results.
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2.2.2.1 Supervised Learning Approach

In this approach, classification techniques such as Naive Bayes Classifier

(NB (Narayanan et al., 2013) (Baskar, 2013), Support Vector Machine (SVM)

(Narayanan et al., 2013), decision tree classifier (Narayanan et al., 2013), kNN

classifier (Lim, 2004) are used to categorize texts and classify words from opin-

ion about aspects on one of the polarity scales. The problem with supervised

learning techniques is that they rely on training data. Therefore, a classi-

fier trained from labeled data in one domain often performs poorly in another

domain.

The earliest supervised approach to sentiment classification was proposed

by Pang et al. (2002). They used three supervised machine learning ap-

proaches: NB, SVM, and Maximum Entropy (ME). Results state that the NB

approach outperformed the SVM.

2.2.2.2 Lexicon-based Approach

The methods of this approach are typically unsupervised. The lexicon-

based approach uses a sentiment lexicon (which contains a list of sentiment

words, phrases, and idioms), composite expressions, rules of opinions, and

(possibly) the sentence parse tree to determine the sentiment orientation on

each aspect in a sentence (Liu, 2012b).

A lexicon-based method first associates the aspects involved in a sentence

with words or phrases. Then, it infers the sentiment polarity of the aspect

by analyzing the sentiment polarity of each word or phrase in the lexicon (Liu

et al., 2020). In this approach, the lexical sentiment dictionaries carry out

the classification. These dictionaries have a set of words and their polarities.

In this way, the polarity is assigned if the text has words with the respec-

tive polarity. Moreover, dictionaries often have the intensity of each word’s

sentiment, and the message’s sentiment is calculated with the sum of the po-

larities, considering the weight of each word. If positive terms are greater than

negative ones, this technique indicates positive polarity rather than negative

(Hu and Liu, 2004; Taboada et al., 2011; Liu et al., 2020).

Hu and Liu (2004) presented a lexicon-based method for aspect-level clas-

sification using WordNet (Fellbaum, 1998). Esuli and Sebastiani (2006) and

Baccianella et al. (2010) propose using SentiWordNet to classify opinion words

in opinion mining.

The lexicon-based method approach can perform well in many cases, but it

is insufficient in others. One main shortcoming is that opinion words and

phrases do not cover all expressions that imply opinions (Liu and Zhang,

2012).
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2.2.2.3 Deep Learning based Approach

Deep learning is a machine learning method that uses algorithms to learn

data representations that take the outputs of one layer as inputs to the next

layer based on multilayer modules that analyze and classify the inputs.

Deep learning methods treat ABSA as a multiclassification problem, where

the sentiment polarity of each aspect is classified into positive, negative, or

neutral. However, no handcrafted features are required in deep learning meth-

ods; the sentiment polarity of an aspect can be directly identified from end to

end.

For deep learning methods to sentiment polarity classification, the methods

can be divided into four categories: CNN (Ruder et al., 2016; Du et al., 2016;

Wu et al., 2016; Akhtar et al., 2016; Gu et al., 2017; Xu et al., 2017), RNN

(Wang et al., 2016a,b; Tay et al., 2018), RecNN (Dong et al., 2014; Nguyen and

Shirai, 2015), and MN (Tang et al., 2016). RNN contains basic RNN, LSTM,

and GRU.

2.2.3 Aspect Categorization

In natural language text, people often write the same aspect differently. For

example, "call quality" and "voice quality" refer to the same aspect for phones.

Therefore, aspect expressions need to be grouped into synonymous aspect

categories after aspect extraction. Each category represents a unique aspect.

The process of grouping aspect expressions into aspect categories (aspects) is

called aspect categorization (Liu, 2012b).

2.2.3.1 Cluster Analysis

In cluster analysis, the objective is to organize a set of examples into groups

based on proximity measures. As a result, examples from the same group are

highly similar but dissimilar to examples from other groups (Wunsch and Xu,

2008). In other words, clustering is based on maximizing the internal similar-

ity of the groups and minimizing the similarity between the groups (Aggarwal

and Zhai, 2012). Cluster analysis is also known as observational learning or

exploratory data analysis. Examples are organized into groups by observing

regularities in the data, without (or with little) human supervision. In cluster-

ing processes, there are no predefined classes or labels for training a model,

i.e., learning is performed in an unsupervised way (Rokach, 2010).

The choice of proximity measure to define how similar two examples are

is fundamental to the clustering task. This choice depends on the dataset’s

characteristics, mainly the types and scale of the data. For example, there are

suitable proximity measures for (1) continuous data, such as Manhanttan,
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Euclidean, Pearson, and Cosine; (2) binary data, such as the Jaccard coeffi-

cient; and (3) mixing between continuous and binary data, such as the Gower

criterion (Gower, 1971). The proximity measures can calculate similarity and

dissimilarity (or distance) between examples.

After choosing a proximity measure, a clustering method is selected. Clus-

tering methods can be classified considering different aspects (Marcacini, 2014).

In general, clustering strategies can be organized into two types (Rokach,

2010): partitional and hierarchical. In partitional clustering, a set of examples

is divided into a simple partition of k groups, while in hierarchical clustering,

the examples are organized into groups and subgroups.

In partitional clustering, the objective is to divide the set of examples into k

groups, in which k is usually a value previously informed by the user. The K-

means algorithm (MacQueen et al., 1967) is the best-known representative for

partitional clustering and is widely used in textual data. In K-means, a group

representative called centroid is used, which is an average vector computed

from the vectors of the group. In this way, the centroid maintains a set of

central features of the group, representing all the examples that belong to the

group. K-means stop criterion is when there are no more changes in the clus-

ter or a maximum number of iterations. The complexity of K-means is linear

in relation to the number of examples, being efficient in different scenarios.

However, a disadvantage of the algorithm is the need to inform the number of

expected groups previously. In addition, the choice of initial centroids affects

the clustering result, which produces variability in the results. A possible so-

lution is to run the K-means with different initializations several times and

select the solution with the smallest error (Marcacini, 2014).

Hierarchical clustering algorithms can be agglomerative or divisive (Wun-

sch and Xu, 2008). In agglomerative hierarchical clustering, initially, each ex-

ample belongs to a cluster, and in each iteration, the closest pairs of clusters

are joined until a single cluster is formed. The divisive hierarchical grouping

starts with a group containing all the examples, which is then divided into

smaller groups until unitary groups remain (groups with only one example).

The main difference between the agglomerative hierarchical clustering al-

gorithms is the criterion for selecting the pair of closest clusters. The three

most popular criteria are (Aggarwal and Zhai, 2012; Marcacini, 2014):

• Single-Link: uses the nearest neighbor criterion, in which the distance

between two groups is determined by the distance of the pair of closest

examples, with each example belonging to one of these groups.

• Complete-Link: uses the criterion of furthest neighbor, where the dis-

tance between two groups is the greatest distance between a pair of ex-

amples, with each example belonging to a distinct group.
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• Average-Link: the distance between two groups is defined as the average

of the distances between all pairs of examples in each group, each pair

being composed of one example from each group.

2.2.3.2 Aspect Categorization Techniques

Several techniques were applied to group similar aspects in opinion mining,

such as Topic Modeling, K-Means clustering, Expectation-Maximization (EM),

and similarity metrics defined using similarity of strings, synonyms, and lexi-

cal distances using a lexical database.

Carenini et al. (2005) used the first method to deal with this problem. Their

method was based on several similarity metrics measured using WordNet (Fell-

baum, 1998). Guo et al. (2009) use multilevel latent semantic analysis to

group aspects. Zhai et al. (2011a) uses some information to group expressions

into categories for each aspect, such as lexical similarity by WordNet, the sim-

ilarity of the distribution of words in the corpus, and syntactic constraints.

Mukherjee and Liu (2012) use a semi-supervised model for grouping similar

aspects using contextual information from the co-occurrence of these terms.

Some works (Pavlopoulos and Androutsopoulos, 2014; Zhao et al., 2014) use

hierarchical clustering to produce multi-granular summaries, which can be

customized according to the user’s needs. Toh and Su (2016) trained word em-

beddings and processed the embedding files by generating K-means clusters

from them. Vargas and Pardo (2018) used linguistic resources to provide rela-

tions between aspects. Xu et al. (2020) applied K-means clustering for putting

sentence embeddings into groups and selecting the center words from clusters

as aspects. Topic modeling approach employs techniques, such as Latent Se-

mantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) (Blei et al., 2003),

in order to group similar aspects taking into account the semantic similarity

between aspects (Zhai et al., 2011b; Guo et al., 2009).

2.3 Machine Learning for Time Series

Time Series (TS) is a set of observations obtained sequentially over time, as

illustrated in 2.2. Thus, a TS Z of size m can be represented as an ordered

sequence of observations, i.e., Z = (z1,z2, ...,zm) where zt ∈ R represents an ob-

servation z at time t (Chatfield, 2003). The time series can be deterministic

or stochastic (Cheng et al., 2015). A series is deterministic when a function

represents its data in terms of time y = f (time), i.e., it has a regular and pre-

dictable behavior. A stochastic series has an additional term ε, represented

by the function y = f (time,ε), responsible for producing a series of non-regular

behavior. Many practical applications are based on stochastic time series,
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requiring more robust computational methods to perform the predictive task

(Naing and Htike, 2015).

Figure 2.2: Time series (normalized) of mentions of the software requirement
"Delivery Time Estimation" in negative reviews of the Foodpanda app

Time series prediction methods can be statistical or based on machine

learning. For decades, statistical methods were considered state-of-the-art

in this type of task, particularly methods based on moving averages and au-

toregression. In general, the objective is to identify the coefficients of a model

to fit a function to the series data (Box et al., 2015). The most used sta-

tistical method in the literature is ARIMA (Autoregressive Integrated Moving

Average Models), which considers both the autocorrelation between past and

future observations and moving averages to identify the trend (Montgomery

et al., 2015). The main characteristic of statistical methods is that they are

parametric, e.i., it is necessary to assume a priori that the observations fol-

low a certain distribution. On the other hand, this feature is also a limitation

of these models, as it requires specialist knowledge in both the application

domain and computational methods (Box et al., 2015).

On the other hand, methods based on machine learning have a differential

because they are non-parametric. Among a variety of methods, the use of Neu-

ral Networks (MLP - Multilayer Perceptron), Support Vector Machines (SVM),

and k-Nearest Neighbors (kNN-TSP) stands out (Ahmed et al., 2010; Chatfield

and Xing, 2019). A common point of these methods is that the time series is

divided into subseries. Subsets are used as a training set for learning, gen-

erally using a regression strategy, in which the class attribute of the learning

task is a numerical value. For example, given a substring of the series, its

class attribute is the next value of that substring (Rodrigues et al., 2018).

The main components of a time series are the trend, seasonality, and resid-

ual. Based on these elements, the TS Z can be formulated, according to
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Equations 2.1 and 2.2, by an additive or multiplicative decomposition of its

components (Cowpertwait and Metcalfe, 2009). In these equations, T , S, and

N correspond to the trend, the seasonality, and the residual at an instant t,

respectively.

Zt = Tt +St +Nt (2.1)

Zt = Tt ⋅St ⋅Nt (2.2)

In the additive model (2.2), the value of the variable of interest is constituted

by the result of the sum of the values of the components, which contemplate

the same unit of the observation Zt. In contrast, in the multiplicative model

(2.2), only the trend has the same unit as the investigated variable. The other

components exhibit values that can modify the trend, i.e., they assume values

greater than, less than, or exactly equal to 1. It is important to note that not

always an ST, even when the classical decomposition is considered, will cover

the three components mentioned (Parmezan and Batista, 2016).

The trend can be defined as the regular and slowly developed movement

along with the series. In other words, this component encompasses a be-

havior of extensive duration, which can be either increasing or decreasing

and assume a wide range of patterns, among which stand out (Parmezan and

Batista, 2016): i) Linear Growth: It comprises a constant growth rate for the

data, which obeys a linear proportion; ii) Exponential Growth: Characterized

by the progressive percentage increase in data over a period of time. The par-

ticulars of the growth rate are equivalent to the properties of an exponential

function; and iii) Damped Growth: Occurs when the growth rate of future data

is less than the current data, such as in situations where the expected growth

is 70% of the previous year for a given year.

A behavior that tends to repeat itself at different periods in the TS is known

as seasonality. Oscillations along the trend component represent seasonal

variations according to a given particularity (Brocklebank and Dickey, 2003).

Identifying regularly spaced peaks and troughs, which have a consistent di-

rection and approximately the same magnitude in each cycle, is an important

procedure in the subject of TS analysis. The detection of the seasonality com-

ponent can reveal valuable information, and its removal can highlight useful

patterns of TS (Chatfield, 2003). The seasonality component can be catego-

rized into two types: i) Additive Seasonality, where the series presents a stable

seasonal fluctuation without considering the global level of the series, and ii)

Multiplicative Seasonality is when the size of the seasonal fluctuation varies

according to the global level of the series (Parmezan and Batista, 2016).

The residual is represented in TS by random movements caused by fortu-
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itous and unexpected events. These events, which are not regular and also

do not repeat themselves in a particular pattern, may compromise the results

of some studies (Kirchgässner et al., 2013). The TS analysis assumes that

the systematic components, i.e., trend and seasonality, are not influenced by

stochastic disturbances and can be summarized by deterministic time func-

tions. Therefore, the residual component is what remains after the trend and

seasonality components have been estimated and removed from the series

(Cowpertwait and Metcalfe, 2009).

2.4 Data-driven Requirements Engineering

Data-driven requirements engineering allows developers, requirements an-

alysts, and managers to systematically use user feedback to support require-

ments engineering decisions (Maalej et al., 2016). Requirements Engineering

(RE) identifies, documents, negotiates, and manages the desired properties

and constraints of (Davis, 2003) software systems. Requirements are a verbal-

ization of decision alternatives about the functionality and quality of a system

(Aurum and Wohlin, 2003).

RE primarily focuses on engaging system users, capturing their needs, and

getting feedback. Conventional RE typically engages users through interviews

and workshops. Currently, RE decision-making is usually based on stake-

holder intuition and experience, logic (e.g., criteria, options, and arguments),

or both (Davis, 2003; Aurum and Wohlin, 2003). Intuition is subjective, poten-

tially inconsistent, and in need of explanation. Logic changes over time and

is difficult to capture and externalize. A large amount of user feedback avail-

able with the emergence of app stores suggests that exploring the combination

of computational intelligence and the human experience is promising (Maalej

et al., 2016). A range of information is available from the systematic obser-

vation of user reviews to support requirements decisions (Maalej and Pagano,

2011).

The trend is that future research will combine known and used data sources

(business requirements, technical and system requirements, stakeholder pref-

erences, and requirements interdependencies) with aggregated user data. These

trends suggest a shift towards user-centric and data-driven identification, pri-

oritization, and software requirements management. For this, it is necessary

to propose new methods of data analysis to synthesize information and provide

insights and constructive recommendations. In particular, predictive model-

ing, scenario analysis, and adaptive group decision-making technologies are

expected to support this process (Maalej et al., 2016).
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2.5 Neural Language Model-based Representations

A widespread use of language models is to predict a word (or sentence)

given previous words (or sentences) (Mikolov et al., 2013). Recent methods

use the idea of distributed representations, in which low-dimensional (real-

valued) vectors represent the texts (e.g., words or sentences) (De Mulder et al.,

2015). Thus, the correlation or distances between these vectors can help com-

pare the texts capturing syntactic and semantic relationships. Learning well-

distributed representations is a challenge, and neural networks are currently

used for this task, called Neural Language Models (NLM) (Otter et al., 2021).

NLM may be context-free or context-dependent. Context-free NLMs, such as

word2vec (Mikolov et al., 2013), map each word, sentence, or document into a

static feature vector (e.g., word embeddings).

Context-dependent NLMs, on the other hand, map each word, sentence,

or document into a dynamic feature vector, in which the final embedding of a

word depends on the sentence in which it occurs (Devlin et al., 2018). Context-

dependent NLMs perform better than the traditional language models (Devlin

et al., 2018; Otter et al., 2021; Araujo et al., 2022). NLMs may be unidirec-

tional or bidirectional. Unidirectional models analyze the text in a single way,

like the reading way. On the other hand, Bidirectional models analyze the text

in both ways, from left to right and vice-versa. Bidirectional NLMs perform

better than unidirectional NLMs (Devlin et al., 2018; Liu et al., 2019; Sanh

et al., 2019; Araujo et al., 2022).

Examples of bidirectional models are BERT (Devlin et al., 2018), RoBERTa

(Liu et al., 2019), and DistilBERT (Sanh et al., 2019). BERT-based models

use a masking strategy for training, in which a special token called [MASK]

replaces some words in a sentence. The model train to predict the masked

words by using non-masked word contexts. During the training stage, BERT-

based models use an attention mechanism that learns contextual relations

between words (Vaswani et al., 2017a).

The RoBERTa, DistilBERT, and Multilingual DistilBERT models are deriva-

tions of the BERT model. These derivations propose improving the results

and decreasing the BERT model’s computational cost (Devlin et al., 2018)).

RoBERTa model uses greater sequences of textual data than the original

model (Liu et al., 2019). This model also removes the next sentence prediction

goal and dynamically changes the masking pattern (Liu et al., 2019). The Dis-

tilBERT model, on the other hand, differs from BERT in the pre-training stage

by using a smaller number of parameters, a knowledge distillation technique

(training of a compacted model), and the triple loss technique (Sanh et al.,

2019). The Multilingual DistilBERT is a DistilBERT model that considers dif-
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ferent idioms. Our issue detector proposed in this work uses DistilBERT.

Recently, Generative Pre-trained Transformer (GPT) (Radford et al., 2018,

2019; Brown et al., 2020, 2021) and Open Pre-trained Transformer Language

Models (OPT) (Zhang, 2022) techniques for NLP tasks have been widely used.

GPT (Radford et al., 2018) is a multilayer transformer decoder (Vaswani

et al., 2017b). Its approach combines two existing ideas: transformers (Vaswani

et al., 2017b) and unsupervised pre-training (Howard and Ruder, 2018). GPT

is a large auto-regressive language model pre-trained with LM, a simple archi-

tecture that can be trained faster than an LSTM-based model. GPT uses the

BookCorpus dataset (Zhu et al., 2015), which contains over 7000 books from

various genres. It can learn complex patterns in the data by using the atten-

tion mechanism. The total number of trained parameters is 110M parameters.

GPT-2 (Radford et al., 2019) is a large auto-regressive language model. This

large transformer-based language model has 1.5 billion parameters. GPT-2

was trained on a dataset of 8 million web pages (40 GB of Internet text) called

WebText (10 × larger than GPT), and it was trained simply to predict the next

word (Language Model objective). GPT2 showcased zero-shot task transfer ca-

pabilities for various tasks, such as machine translation and reading compre-

hension. GPT-3 is an autoregressive model proposed by Brown et al. (2020).

About 3 trillion words were utilized to train GPT-3. In GPT-3, there are 175

billion parameters. There are ten times more parameters than the MT-NLG

language model and 100 times more parameters than GPT-2.

OPT, proposed by Zhang (2022), is a suite of decoder-only pre-trained

transformers ranging from 125M to 175B parameters. OPT-175B is trained

on public datasets. Results show that OPT-175B performance is comparable

to GPT-3 (Brown et al., 2020), requiring only 1/7th of the carbon footprint to

develop. To enable researchers to study the effect of scale alone, Zhang (2022)

released smaller-scale baseline models, trained on the same dataset and using

similar settings as OPT-175B.

Although NLM-based representations have achieved state-of-the-art results

in various natural language processing tasks, their use for the textual repre-

sentation of app reviews is still underexplored (Araujo et al., 2022).

2.6 Related Works

2.6.1 Opinion Mining to Support Requirement Engineering

The opinion mining of app reviews can involve several steps, such as soft-

ware requirements organization from reviews (Araujo and Marcacini, 2021),

grouping similar apps using textual features (Al-Subaihin et al., 2016; Har-

man et al., 2012), reviews classification in categories of interest to develop-
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ers (e.g., Bug and New Features) (Araujo et al., 2020), sentiment analysis of

the users’ opinion about the requirements (Dragoni et al., 2019; Malik et al.,

2020), and the prediction of the review utility score (Zhang and Lin, 2018). The

requirements extraction has an essential role in these steps since the failure

in this task directly affects the performance of the other steps.

Dabrowski et al. (2020) evaluated the performance of the three state-of-the-

art requirements extraction approaches: SAFE (Johann et al., 2017), ReUS

(Dragoni et al., 2019) and GuMa (Guzman and Maalej, 2014). These ap-

proaches explore rule-based information extraction from linguistic features.

GuMa (Guzman and Maalej, 2014) used a co-location algorithm, thereby iden-

tifying expressions of two or more words that correspond to a conventional way

of referring to things. SAFE (Johann et al., 2017) and ReUS (Dragoni et al.,

2019) defined linguistic rules based on grammatical classes and semantic de-

pendence. The experimental evaluation of (Dabrowski et al., 2020) revealed

that the low accuracy presented by the rule-based approaches could hinder

its use in practice.

Araujo and Marcacini (2021) proposed RE-BERT (Requirements Engineer-

ing using Bidirectional Encoder Representations from Transformers) method

for software requirements extraction from reviews based on Local Context

Word Embeddings (i.e., deep neural language model). RE-BERT models the

requirements extraction as a token classification task from deep neural net-

works. To solve some limitations of rule-based approaches, RE-BERT allows

the generation of word embeddings for reviews according to the context of

the sentence in which the software requirement occurs. Moreover, RE-BERT

explores a multi-domain training strategy to enable software requirements ex-

traction from app reviews of new domains without labeled data.

After extracting requirements from app reviews, there is a step to iden-

tify and organize more relevant requirements into groups of similar require-

ments. Traditionally, requirements obtained from user interviews are priori-

tized with manual analysis techniques, such as the MoSCoW (Tudor and Wal-

ter, 2006) method that categorizes each requirement into groups and applies

the AHP (Analytical Hierarchy Process) decision-making (Saaty, 1980). These

techniques are unsuitable for prioritizing large numbers of software require-

ments because they require domain experts to categorize each requirement.

Therefore, recent studies have applied data mining approaches and statistical

techniques (Pagano and Maalej, 2013).

The statistical techniques have been used to find issues such as to examine

how app features predict an app’s popularity (Chen and Liu, 2011), to analyze

the correlations between the textual size of the reviews and users’ dissatis-

faction (Vasa et al., 2012), lower rating and negative sentiments (Hoon et al.,

25



2012), correlations between the rating assigned by users and the number of

app downloads (Harman et al., 2012), to the word usage patterns in reviews

(Gómez et al., 2015; Licorish et al., 2017), to detect traceability links between

app reviews and code changes addressing them (Palomba et al., 2018), and

explore the feature lifecycles in app stores (Sarro et al., 2015). Some work

also focuses on defining taxonomies of reviews to assist mobile app develop-

ers with planning maintenance and evolution activities (Di Sorbo et al., 2016;

Ciurumelea et al., 2017; Nayebi et al., 2018b). In addition to user reviews, pre-

vious works (Guzman et al., 2016, 2017; Nayebi et al., 2018a) explored how

a dataset of tweets can provide complementary information to support mobile

app development.

From a labeling perspective, previous works classified and grouped soft-

ware reviews into classes and categories (Iacob and Harrison, 2013; Galvis

Carreño and Winbladh, 2013; Pagano and Maalej, 2013; Mcilroy et al., 2016b;

Khalid et al., 2015; Chen et al., 2014; Gómez et al., 2015; Gu and Kim, 2015;

Maalej and Nabil, 2015; Villarroel et al., 2016; Nayebi et al., 2017), such as

feature requests, requests for improvements, requests for bug fixes, and usage

experience. Noei et al. (2021) used topic modeling to determine the key topics

of user reviews for different app categories.

These approaches are descriptive models, i.e., they analyze historical data

to interpret and understand the behavior of past reviews. In our proposed

MApp-Reviews method, we are interested in predictive models that anticipate

the growth of negative reviews that can impact the app’s evaluation.

These approaches are concerned only with past reviews and acting in a

corrective way, i.e., these approaches do not have preventive strategies to an-

ticipate problems that can become frequent and impact more users in the

coming days or weeks. Analyzing the temporal dynamics of a requirement

from app reviews provides information about a requirement’s future behavior.

These current approaches focus solely on addressing past reviews and tak-

ing corrective actions. However, they lack preventive strategies to anticipate

and mitigate problems that may occur more frequently in the near future, af-

fecting a larger user base. By analyzing the temporal dynamics of app reviews

for a specific requirement, we can gain insights into its future behavior. This

information is valuable for developing proactive measures to anticipate and

address emerging issues.

2.6.2 Issue Prioritization based on App Reviews

Reviews classification is a strategic task for developers to plan actions for

the improvement and evolution of the app. These actions may involve: (i) fixing

a critical issue; (ii) designing a new feature; and (iii) prioritizing opportunities
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and urgent demands from a crowd of users (Al Kilani et al., 2019).

A significant portion of the prior research emphasizes classification and

categorization into classes and categories, such as feature requests, requests

for improvements, requests for bug fixes, and usage experience (Iacob and

Harrison, 2013; Galvis Carreño and Winbladh, 2013; Pagano and Maalej,

2013; Mcilroy et al., 2016b; Khalid et al., 2015; Chen et al., 2014; Gómez

et al., 2015; Gu and Kim, 2015; Maalej and Nabil, 2015; Villarroel et al., 2016;

Nayebi et al., 2017; Araujo et al., 2022; Herbold et al., 2020; Messaoud et al.,

2019; Al Kilani et al., 2019), and determine key topics (Phong et al., 2015; Vu

et al., 2016; Gao et al., 2022; Noei et al., 2021).

A study by Messaoud et al. (2019) analyzes which feature classes are rel-

evant for review classification. The authors concluded that different review

classes are ambiguous and that removing the Rating class improves the classi-

fication model. Similarly, Al Kilani et al. (2019) analyzed the impact of the clas-

sification model considering only training subsets labeled with greater confi-

dence by users. Both studies show that the quality of textual representation

significantly affects the review classification.

Regarding analyzing emerging issues from app reviews, existing studies are

usually based on topic modeling or clustering techniques. For example, LDA

(Latent Dirichlet Allocation) (Blei et al., 2003), DIVER (iDentifying emerging

app Issues Via usER feedback) (Gao et al., 2019) and IDEA (Gao et al., 2018)

approaches were used for app reviews. The LDA approach is a topic model-

ing method used to determine patterns of textual topics, i.e., to capture the

pattern in a document that produces a topic. LDA is a probabilistic distri-

bution algorithm for assigning topics to documents. A topic is a probabilistic

distribution over words, and each document represents a mixture of latent

topics (Guzman and Maalej, 2014). In the context of mining user opinions in

app reviews, especially to detect emerging issues, the documents in the LDA

are app reviews, and the extracted topics are used to detect emerging issues.

The IDEA approach improves LDA by considering topic distributions in a con-

text window when detecting emerging topics by tracking topic variations over

versions (Gao et al., 2018). In addition, the IDEA approach implements an

automatic topic interpretation method to label each topic with the most repre-

sentative sentences and phrases (Gao et al., 2021). In the same direction, the

DIVER approach was proposed to detect emerging app issues, but mainly in

beta test periods (Gao et al., 2019). The IDEA, DIVER, and LDA approaches

have not considered the sentiment of user reviews. Recently, the MERIT (iM-

proved EmeRging Issue deTection) (Gao et al., 2022) approach was proposed

and explored word embedding techniques to prioritize phrases/sentences of

each positive and negative topic. Phong et al. (2015) and Vu et al. (2016)
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grouped the keywords and phrases using clustering algorithms and then de-

termined and monitored over time the emergent clusters based on the occur-

rence frequencies of the keywords and phrases in each cluster. Palomba et al.

(2015) proposes an approach to tracking informative user reviews of source

code changes and monitoring the extent to which developers address user

reviews.

Recently, a proposal regarding issue prioritization was developed by Pilliang

et al. (2022), which proposes a risk matrix model for software development

projects. By employing BERT for sentence embedding, K-Means for grouping

and frequency calculation, and TextBlob for sentiment analysis, the model

determines risk priorities and quantifies their probability and impact.

2.6.3 Comparison of Related Works

In short, app reviews formed the basis for many studies and decisions

ranging from feature extraction to release planning of mobile apps.

However, when analyzing the temporal evolution of issues regarding soft-

ware requirements, previous related works focused on extracting aspects do

not explore the temporal dynamics with a predictive software requirements

model in reviews. Related works that incorporate temporal dynamics cover

only descriptive models, as shown in Table 2.1. Concerning works that fo-

cus on identifying bugs, related works that approach risk classification use a

supervised approach, as shown in Table 2.2.

Lin et al. (2022) provided a systematic literature review that analyzed 185

primary studies related to opinion mining for software development. Their re-

view presents studies that focused on identifying issues in app reviews (e.g.,

feature request, problem discovery, user experiences) (Lin et al., 2022). How-

ever, few primary studies focused on identifying bug reviews.

In Table 2.2, we present the works related with an emphasis on issue de-

tection and prioritization, in particular, bug reporting, and compare with the

MApp-IDEA method.

2.7 Final remarks

Despite the related studies presenting relevant strategies, existing studies

focus on only a few steps of the opinion-mining process from app reviews,

which hinders its use in real-world scenarios. None of the existing proposals

comprehensively cover the automated issue analysis process, nor do they en-

compass the process from start to finish through an unsupervised approach.

Our opinion mining process implements an entire automated issue analysis,

including automatic issue detection, risk-based prioritization, temporal moni-
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Table 2.1: Summary table of related works focused on extracting aspects (e.e.,
software features/requirements)

Reference Data Represen-
tation

Pre-processing
and Extraction
of Require-
ments

Requirements/Topics
Clustering and Labeling

Temporal
Dynam-
ics

Year

(Araujo and
Marcacini, 2021)

Word embed-
dings.

Token Classifi-
cation.

No. No. 2021

(Gao et al., 2022) Word embed-
dings.

Rule-based and
Topic modeling.

Yes. It combines word
embeddings with topic
distributions as the se-
mantic representations of
words.

Yes. De-
scriptive
Model.

2022

(Malik et al.,
2020)

Bag-of-words. Rule-based. No. No. 2020

(Gao et al., 2019) Vector space. Rule-based and
Topic modeling.

Yes. Anomaly Clustering
Algorithm.

Yes. De-
scriptive
model.

2019

(Dragoni et al.,
2019)

Dependency
tree.

Rule-based. No. No. 2019

(Gao et al., 2018) Probability vec-
tor.

Rule-based and
Topic modeling.

Yes. AOLDA - Adaptively
Online Latent Dirichlet
Allocation. The topic la-
beling method considers
the semantic similarity
between the candidates
and the topics.

Yes. De-
scriptive
model.

2018

(Johann et al.,
2017)

Keywords. Rule-based. No. No. 2017

(Vu et al., 2016) Word embed-
dings.

Pre-defined. Yes. Soft Clustering al-
gorithm that uses vector
representation of words
from Word2vec.

Yes. De-
scriptive
model.

2016

(Villarroel et al.,
2016)

Bag-of-words. Rule-based. Yes. DBSCAN cluster-
ing algorithm. Each clus-
ter has a label composed
of the five most frequent
terms.

No. 2016

(Gu and Kim,
2015)

Semantic De-
pendence
Graph.

Rule-based. Yes. Clustering aspect-
opinion pairs with the
same aspects.

Yes. De-
scriptive
model.

2015

(Phong et al.,
2015)

Vector space. Rule-based. Yes. Word2vec and K-
means.

Yes. De-
scriptive
model.

2015

(Guzman and
Maalej, 2014)

Keywords. Rule-based and
Topic modeling.

Yes. LDA approach. No. 2014

(Chen et al.,
2014)

Bag-of-words. Topic modeling. Yes. LDA and ASUM ap-
proach with labeling.

Yes. De-
scriptive
model.

2014

(Iacob and Harri-
son, 2013)

Keywords. Rule-based and
Topic modeling.

Yes. LDA approach. No. 2013

(Galvis Carreño
and Winbladh,
2013)

Bag-of-words. Topic modeling. Yes. Aspect and Sen-
timent Unification Model
(ASUM) approach.

No. 2013

(Harman et al.,
2012)

Keywords. Pre-defined. Yes. Greedy-based clus-
tering algorithm.

No. 2012

(Palomba et al.,
2018)

Bag-of-words. Topic-modeling. Yes. AR-Miner approach
with labeling.

No. 2018

MApp-Reviews Word embed-
dings.

Token Classifi-
cation.

Yes. K-means. Yes.
pre-
dictive
models

This
study
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Table 2.2: Summary table of related work concerning issue detection and
prioritization, with a focus on bug reporting

Author Software
Document

Classification Method Category Data Represen-
tation

Risk Clas-
sification

Year

Messaoud
et al. (2019)

Review Multi-label Active
Learning with Auxil-
iary Learner (Logistic
Regression, SVM)

Feature
requests
/ Bug re-
ports /
User expe-
riences

Bag-of-words No 2019

Al Kilani
et al. (2019)

Review Supervised Ap-
proaches: RF, NB,
NBM, SVM

Bug /Us-
ability/
New Fea-
ture/ Per-
formance/
Security

Bag-of-words No 2019

Herbold
et al. (2020)

Issue Supervised Ap-
proaches: Random
Forest (RF), Naïve
Bayes (NB), fastText

Bug / Non-
Bug

Bag-of-words,
word embedding

No 2020

Araujo
et al. (2022)

Review Supervised Ap-
proaches: k-Nearest
Neighbors (kNN),
Multinomial NB (MNB),
Support Vector Ma-
chines (SVM), Multi-
layer Perceptron (MLP),
and One-Class SVM
(OCSVM)

Feature
requests /
Bug report
/ User ex-
periences/
Irrelevant

Bag-of-words,
Neural Language
Models

No 2022

Gao et al.
(2022)

Review Unsupervised Ap-
proaches: BTM

Issue /
Non-issue

Bag-of-words,
Word embedding

No 2022

Malgaonkar
et al. (2022)

Review Supervised Ap-
proaches: NBM and
Multi-criteria heuristic
function

Useful /
Non-useful

Bag-of-words Yes 2022

Pilliang
et al. (2022)

Question BERT and K-means Issue Risk
(high,
medium
and low)

Neural Language
Models

Risk Matrix 2022

MApp-
IDEA

Review Unsupervised Ap-
proach

Issue Risk
(high,
medium
and low)

Neural Language
Models

Risk Matrix This
study

toring of issues and risks, and utilizing predictive models for identifying faulty

feature trends.

In response to these limitations, our proposal introduces a comprehen-

sive opinion-mining process to address these gaps in related work. Our pro-

posal introduces a two-fold approach: (i) MApp-Reviews, extracting software

requirements and integrating their temporal dynamics into predictive models,

and (ii) MApp-IDEA, detecting, monitoring, and prioritizing emerging issues

while also performing risk classification. Additionally, we present a risk ma-

trix construction approach from app reviews using the recent Large Language

Models (LLMs).
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CHAPTER

3
Temporal Dynamics of Requirements

Engineering from Mobile App Reviews

3.1 Introduction

In this chapter, we present the MAPP-Reviews (Monitoring App Reviews)

method. MAPP-Reviews explores the temporal dynamics of software require-

ments extracted from app reviews. First, we collect, pre-process, and extract

software requirements from large review datasets. Then, the software require-

ments associated with negative reviews are organized into groups according to

their content similarity by using a clustering technique. The temporal dynam-

ics of each requirement group are modeled using a time series, which indicates

the time frequency of a software requirement from negative reviews. Finally,

we train predictive models on historical time series to forecast future points.

Forecasting is interpreted as signals to identify which requirements may neg-

atively impact the app in the future, e.g., identify signs of app misbehavior

before impacting many users and prevent low app ratings.

The remainder of this chapter is organized as follows: Section 3.2 sum-

marizes the research objectives, outlining the specific goals to be achieved.

Section 3.3 highlights the main contributions of the work, discussing the

novel insights and advancements made in the field. Section 3.4 introduces the

MApp-Reviews method, presenting its architecture and key components. Sec-

tion 3.5 focuses on the MAPP-Reviews in action, which includes the five stages:

App Reviews, Requirements Extraction, Requirements Clustering, Time Series

Generation, and Predictive Models. In Section 3.6, the Experimental Eval-
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uation is conducted, encompassing the definition of research questions, the

datasets used, the experimental setup, the results obtained, the discussion of

the findings, and the limitations encountered. Finally, Section 3.7 concludes

the chapter with final remarks, summarizing the key points discussed and

offering insights for future research.

3.2 Summary of Objectives

The main objective of MAPP-Reviews is to explore the temporal dynamics of

software requirements extracted from app reviews:

• Collect, pre-process and extract candidate software requirements from

large review datasets.

• Using the clustering technique, organize the software requirements asso-

ciated with negative reviews into groups according to their content simi-

larity.

• A time series models the temporal dynamics of each requirement group,

which indicates the time-frequency of a software requirement from nega-

tive reviews.

• Train predictive models on historical time series to forecast future points.

• Identify requirements with higher negative evaluation trends to mitigate

the negative impact.

3.3 Main Contributions

Our main contributions presented in this chapter are briefly summarized

below:

• Although there are promising methods for extracting candidate software

requirements from application reviews, such methods do not consider

that users describe the same software requirement in different ways with

non-technical and informal language. Our MAPP-Reviews method in-

troduces software requirements clustering to standardize different soft-

ware requirement writing variations. In this case, we explore contextual

word embeddings for software requirements representation, which have

recently been proposed to support natural language processing. When

considering the clustering structure, we can more accurately quantify

the number of negative user mentions of a software requirement over

time.
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• Using time series, we present an approach to generate the temporal

dynamics of negative ratings of a software requirements cluster. Our

method uses equal-interval segmentation to calculate the frequency of

software requirements mentioned in each time interval. Thus, a time

series is obtained and used to analyze and visualize the temporal dynam-

ics of the cluster, where we are especially interested in intervals where

sudden changes happen.

• Time series forecasting is useful to identify in advance an upward trend of

negative reviews for a given software requirement. However, most exist-

ing forecasting models do not consider domain-specific information that

affects user behavior, such as holidays, new app releases and updates,

marketing campaigns, and other external events. In the MAPP-Reviews

method, we investigate the incorporation of software domain-specific in-

formation through trend changepoints. We explore both automatic and

manual changepoint estimation.

3.4 MApp-Reviews Method Architecture

To analyze the temporal dynamics of software requirements, we present

the MAPP-Reviews approach with five stages, as shown in Figure 3.1. First,

we collect mobile app reviews in app stores through a web crawler. Second, we

extract candidate software requirements from these reviews. Third, we group

similar extracted requirements by using clustering methods. Fourth, the most

relevant clusters are identified to generate time series from negative reviews.

Finally, we train the predictive model from time series to forecast software

requirements involved with negative reviews, potentially impacting the app’s

rating.

3.5 MApp-Reviews in Action

3.5.1 App Reviews

The app stores provide the textual content of the reviews, the publication

date, and the rating stars of user-reported reviews. In the first stage of MAPP-

Reviews, raw reviews are collected from the app stores using a web crawler tool

through a RESTful API. At this stage, there is no pre-processing in the textual

content of reviews. Data is organized in the appropriate data structure and

automatically batched to be processed by the requirements extraction stage of

MAPP-Reviews.
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Figure 3.1: Overview of the proposed method for analyzing temporal dynamics
of requirements engineering from mobile app reviews

3.5.2 Requirements Extraction

In this section, we focus on stage 2 of the MAPP-Reviews method, which

involves the extraction of candidate software requirements from app reviews

and the subsequent text pre-processing using contextual word embeddings.

MAPP-Reviews uses the pre-trained RE-BERT (Araujo and Marcacini, 2021)

model to extract software requirements from app reviews. The RE-BERT model

was trained using a labeled reviews dataset generated with a manual annota-

tion process, as described by Dabrowski et al. (2020). The reviews are from 8

apps of different categories as showed in Table 3.1. RE-BERT uses a cross-

domain training strategy, where the model was trained in 7 apps and tested in

one unknown app for the test step. RE-BERT software requirements extrac-

tion performance was compared to SAFE (Johann et al., 2017), ReUS (Dragoni

et al., 2019) and GuMa (Guzman and Maalej, 2014). Since RE-BERT uses

pre-trained models for semantic representation of texts, the extraction perfor-

mance is significantly superior to the rule-based methods. Given this scenario,

we selected RE-BERT for the requirement extraction stage. Figure 3.2 shows

an example of review and extracted software requirements. In the raw review

“I am ordering with delivery but it is automatically placing order with pick-up”,
four software requirements were extracted (“ordering”, “delivery”, “placing or-

der”, and “pick-up”). Note that “placing order” and “ordering” are the same

requirement in practice. In the clustering step of the MAPP-Reviews method,

these requirements are grouped in the same cluster, as they refer to the same
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feature.

Table 3.1: Statistics about the datasets from 8 apps of different categories
used to train the RE-BERT model.

eBay Evernote Facebook Netflix Photo editor Spotify Twitter WhatsApp

Reviews 1,962 4,832 8,293 14,310 7,690 14,487 63,628 248,641

Category Shopping Productivity Social Entertainment Photography Music and Audio Social Communication

Figure 3.2: Example of a review and extracted requirements

RE-BERT returns the probability that each token (e.g. word) is a software

requirement. Consecutive tokens in a sentence are concatenated to obtain

software requirements expressions composed of two or more tokens. We filter

reviews that are more associated with negative comments through user feed-

back. Consider that the user gives a star rating when submitting a review

for an app. Generally, the star rating ranges from 1 to 5. This rating can be

considered as the level of user satisfaction. In particular, we are interested in

defective software requirements, and only reviews with 1 or 2 rating stars were

considered. Thus, we use RE-BERT to extract only software requirements

mentioned in reviews that may involve complaints, bad usage experience, or

malfunction of app features.

RE-BERT extracts software requirements directly from the document re-

views and we have to deal with the drawback that the same requirement can

be written in different ways by users. Thus, we propose a software require-

ment semantic clustering, in which different writing variations of the same

requirement must be standardized. However, the clustering step requires that

the texts be pre-processed and structured in a format that allows the calcula-

tion of similarity measures between requirements.
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We represent each software requirement through contextual word embed-

ding. Word embeddings are vector representations for textual data in an em-

bedding space, where we can compare two texts semantically using similarity

measures. Different models of word embeddings have been proposed, such

as Word2vec (Mikolov et al., 2013), Glove (Pennington et al., 2014), FastText

(Bojanowski et al., 2017) and BERT (Devlin et al., 2018). We use the BERT

Sentence-Transformers model (Reimers and Gurevych, 2019) to maintain an

neural network architecture similar to RE-BERT. BERT is a contextual neu-

ral language model, where for a given sequence of tokens, we can learn a

word embedding representation for a token. Word embeddings can calculate

the semantic proximity between tokens and entire sentences, and the embed-

dings can be used as input to train the classifier. BERT-based models are

promising to learn contextual word embeddings from long-term dependencies

between tokens in sentences and sentences (Araujo and Marcacini, 2021).

However, Araujo and Marcacini (2021) highlight that a local context more im-

pacts the extraction of software requirements from reviews, i.e., tokens closer

to those of software requirements are more significant (Araujo and Marcacini,

2021). Therefore, RE-BERT explores local contexts to identify relevant can-

didates for software requirements. Formally, let E = {r1,r2, ...,rn} be a set of n

extracted software requirements, where ri = (t1, ...,tk) are a sequence of k tokens

of the requirement ri. BERT explore a masked language modeling procedure,

i.e., BERT model first generates a corrupted x̂ version of the sequence, where

approximately 15% of the words are randomly selected to be replaced by a

special token called [MASK] (Araujo and Marcacini, 2021). One of the training

objectives is the noisy reconstruction defined in Equation 3.1,

p(r̄∣r̂) =
k
∑
j=1

m j
exp(h⊺c jwt j)

∑t′ exp(h⊺c jwt′)
(3.1)

where r̂ is a corrupted token sequence of requirement r, r̄ is the masked to-

kens, mt is equal to 1 when t j is masked and 0 otherwise. The ct represents

context information for the token t j, usually the neighboring tokens. The to-

ken embeddings are extracted from the pre-trained BERT model, where hc j

is a context embedding and wt j is a word embedding of the token t j. The

term ∑t′ exp(h⊺c wt′) is a normalization factor using all tokens t′ from a context c.

BERT uses the Transformer deep neural network to solve p(r̄∣r̂) of the Equation

3.1. Figure 3.3 illustrates a set of software requirements in a two-dimensional

space obtained from contextual word embeddings. Note that the vector space

of embeddings preserves the proximity of similar requirements, but written

in different ways by users such as “search items”, “find items”, “handles my
searches” and “find special items”.
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Figure 3.3: Set of software requirements in a two-dimensional space obtained
from contextual word embeddings

3.5.3 Requirements Clustering

After mapping the software requirements into word embeddings, MAPP-

Reviews uses a technique to obtain a clustering model of semantically similar

software requirements. For this task, we use the K-means clustering algo-

rithm.

Formally, let R = {r1,r2, ...,rn} a set of extracted software requirements, where

each requirement r is a m-dimensional real vector from an word embedding

space. The K-means clustering aims to partition the n requirements into k

(2 ≤ k ≤ n) clusters C = {C1,C2, ...,Ck}, thereby minimizing the within-cluster sum

of squares as defined in Equation 3.2, where µi is the mean vector of all re-

quirements in Ci.

∑
Ci∈C
∑
r∈Ci

∥r−µi∥
2 (3.2)

We observe that not all software requirements cluster represents a func-

tional requirement in practice. Then, we evaluated the clustering model using

a statistical measure called silhouette (Rousseeuw, 1987) to discard clusters

with many different terms and irrelevant requirements. The silhouette value

of a data instance is a measure of how similar a software requirement is to
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its own cluster compared to other clusters. The silhouette measure ranges

from −1 to +1, where values close to +1 indicate that the requirement is well

allocated to its own cluster (Vendramin et al., 2010). Finally, we use the re-

quirements with higher silhouette values to support the cluster labeling, i.e.,

to determine the software requirement’s cluster name. For example, Table 3.2

shows the software requirement cluster “Payment” and some tokens allocated

in the cluster with their respective silhouette values.

Table 3.2: Example of software requirement cluster “Payment” and some to-
kens allocated in the cluster with their respective silhouette values.

Cluster
Label

Tokens with Silhouette (s)

Payment “payment getting” (s = 0.2618), “payment get” (s = 0.2547), “getting payment” (s =
0.2530), “take payment”(s = 0.2504), “payment taking” (s = 0.2471), “payment” (s =
0.2401)

To calculate the silhouette measure, let ri ∈Ci a requirement ri in the cluster

Ci. Equation 3.3 compute the mean distance between ri and all other soft-

ware requirements in the same cluster, where d(ri,r j) is the distance between

requirements ri and r j in the cluster Ci. In the equation, the expression 1
∣Ci∣−1

means the distance d(ri,ri) is not added to the sum. A smaller value of the sil-

houette measure a(i) indicates that the requirement i is far from neighboring

clusters and better assigned to its cluster.

a(ri) =
1

∣Ci∣−1
∑

r j∈Ci,ri≠r j

d(ri,r j) (3.3)

Analogously, the mean distance from requirement ri to another cluster Ck

is the mean distance from ri to all requirements in Ck, where Ck ≠Ci. For each

requirement ri ∈Ci, Equation 3.4 defines the minimum mean distance of ri for

all requirements in any other cluster, of which ri is not a member. The cluster

with this minimum mean distance is the neighbor cluster of ri. So this is the

next best-assigned cluster for the ri requirement. The silhouette (value) of the

software requirement ri is defined by Equation 3.5.

b(ri) =min
k≠i

1
∣Ck∣
∑

r j∈Ck

d(ri,r j) (3.4)

s(ri) =
b(ri)−a(ri)

max{a(ri),b(ri)}
, if ∣Ci∣ > 1 (3.5)

At this point in the MAPP-Reviews method, we have software requirements

pre-processed and represented through contextual word embeddings, as well

as an organization of software requirements into k clusters. In addition, each

cluster has a representative text (cluster label) obtained according to the re-
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quirements with higher silhouette values.

Figure 3.4: Two-dimensional projection of clustered software requirements
from approximately 86,000 food delivery app reviews

Figure 3.4 shows a two-dimensional projection of clustered software re-

quirements from approximately 86,000 food delivery app reviews, which were

used in the experimental evaluation of this work. High-density regions rep-

resent clusters of similar requirements that must be mapped to the same

software requirement during the analysis of temporal dynamics.

In the next section, techniques for generating the time series from software

requirements clusters are presented, as well as the predictive models to infer

future trends.

3.5.4 Time Series Generation

Time series can be described as an ordered sequence of observations (Chat-

field and Xing, 2019). A time series of size s is defined as X = (x1,x2, ...,xs) in

which xt ∈R represents an observation at time t.
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MAPP-Reviews generates time series for each software requirements clus-

ter, where the observations represent how many times each requirement oc-

curred in a period. Consequently, we know how many times a specific require-

ment was mentioned in the app reviews for each period. Each series models

the temporal dynamics of a software requirement, i.e., the temporal evolution

considering occurrences in negative reviews.

Some software requirements are naturally more frequent than others, as

well as the tokens used to describe these requirements. For the time series

analysis to be compared uniformly, we generate a normalized series for each

requirement. Each observation in the time series is normalized according to

Equation 3.6,

xnormalized =
x
zp

(3.6)

where xnormalized is the result of the normalization, where x is the frequency of

cluster (time series observation) C in the period p, zp is the total frequency of

the period.

Figure 3.5: Time series with the normalized frequency of “Arriving time” re-
quirement from Zomato App in negative reviews

Figure 3.5 shows an example of one of the generated time series for a soft-

ware requirement. The time dynamics represented in the time series indi-

cate the behavior of the software requirement concerning negative reviews.

Note that there are significant increases in the mention of the requirement in

some periods, thereby indicating that users have negatively evaluated the app

for that requirement. Predicting the occurrence of these periods for software

maintenance, aiming to minimize the number of future negative reviews, is the

objective of the MAPP-Reviews predictive model discussed in the next section.
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3.5.5 Predictive Models

Predictive models for time series are very useful to support an organization

in its planning and decision-making. Given a confidence interval, such models

explore past observations to estimate observations in future horizons. In our

MAPP-Reviews method, we aim to detect the negative reviews of software re-

quirements that are starting to happen and make a forecast to see if they will

become serious in the subsequent periods, i.e., a high frequency of negative

reviews. The general idea is to use p points from the time series to estimate

the next p+h points, where h is the prediction horizon.

MAPP-Reviews uses the Prophet Forecasting Model (Taylor and Letham,

2018). Prophet is a model from Facebook researchers for forecasting time

series data considering non-linear trends at different time intervals, such as

yearly, weekly, and daily seasonality. We chose the Prophet model for the

MAPP-Reviews method due to the ability to incorporate domain knowledge into

the predictive model. The Prophet model consists of three main components,

as defined in Equation 3.7,

y(t) = g(t)+ s(t)+h(t)+ tε (3.7)

where g(t) represents the trend, s(t) represents the time series seasonality,

h(t) represents significant events that impacts time series observations, and

the error term tε represents noisy data.

A time series can be divided into training and testing during model train-

ing. The terms g(t), s(t), and h(t) can be automatically inferred by classical

statistical methods in the area of time series analysis, such as the Generalized

Additive Model (GAM) (Hastie and Tibshirani, 1987) used in Prophet. In the

training step, the terms are adjusted to find an additive model that best fits

the known observations in the training time series. Next, we evaluated the

model in new data, i.e., the testing time series.

In the case of the temporal dynamics of the software requirements, domain

knowledge is represented by specific points (e.g., changepoints) in the time

series that indicate potential growth of the requirement in negative reviews.

Figure 3.6 shows the forecasting for a software requirement. Original obser-

vations are the black dots, and the blue line represents the forecast model.

The light blue area is the confidence interval of the predictions. The vertical

dashed lines are the time series changepoints.

Changepoints play an important role in forecasting models, as they repre-

sent abrupt changes in the trend. changepoints can be estimated automat-

ically during model training. However, domain knowledge, such as the date

of app releases, marketing campaigns, and server failures, are changepoints
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Figure 3.6: Prophet forecasting with automatic changepoints of a requirement

that software engineers can manually add. Therefore, the analyst could specify

the changepoints using known dates of product launches and other growth-

altering events or may be automatically selected given a set of candidates.

In MAPP-Reviews, we have two options for selecting changepoints in the pre-

dictive model. The first option is automatic changepoint selection, where the

Prophet specifies 25 potential changepoints, which are uniformly placed in

the first 80% of the time series. The second option is the manual specification

with a set of dates provided by a domain analyst. In this case, the change-

points could be entirely limited to a small set of dates. Suppose no available

dates are provided by default. In that case, we use the most recent observa-

tions, which have a value greater than the average of the observations, i.e.,

we want to emphasize the highest peaks of the time series, as they indicate

critical periods of negative revisions from the past.

In the experimental evaluation, we show the MAPP-Review’s ability to pre-

dict perceptually important points in the software requirements time series,

allowing the identification of initial trends in defective requirements to sup-

port preventive strategies in software maintenance.

Table 3.3 shows an emerging issue being predicted 6 weeks in advance in

the period from October 2020 to January 2021. The table presents a time-

line represented by the horizon (h) in weeks, with the volume of negative raw

reviews (Vol.). An example of a negative review is shown for each week until

reaching the critical week (peak), with h = 16. The table row with h = 10 high-

lighted in bold shows when MAPP-Reviews identified the uptrend. In this case,

we show the MAPP-Reviews alert for the “Time of arrival” requirement of the
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Uber Eats app. In particular, the emerging issue identified in the negative

reviews is the low accuracy of the estimated delivery time in the app. The

text of the user review samples has been entered in its entirety without any

pre-treatment. Figure 3.7 shows a graphical representation of this prediction.

Table 3.3: Example of emerging issue prediction alert for the “Time of arrival”
requirement of the Uber Eats app reviews triggered by MAPP-Reviews.

h Vol. Token Review

1 768 Delivery
time

Listed delivery times are inaccurate majority of the time.

2 849 Time
frame

This app consistently gives incorrect, shorter delivery time frame to get you to order, but the
deliveries are always late. The algorithm to predict the delivery time should be fixed so that
you’ll stop lying to your customers.

3 896 Arrival
time

Ordered food and they told me it was coming. The wait time was supposed to be 45 minutes.
They kept pushing back the arrival time, and we waited an hour and 45 minutes for food, only
to have them CANCEL the order and tell us it wasn’t coming. If an order is unable to be placed
you need to tell customers BEFORE they’ve waited almost 2 HOURS for their food.

4 1247 Delivery
time

The app was easy to navigate but the estimated delivery time kept changing and it took almost
2hrs to receive food and I live less than 4 blocks away pure ridiculousness if I would of know
that I would of just walked there and got it.

5 1056 Estimated
time

Everyone cancels and it ends up taking twice the estimated time to get the food delivered. You
dont get updated on delays unless you actively monitor. Uber has failed at food delivery.

6 997 More
time

Uber Eats lies. Several occasions showed delays because ”the restaurant requested more time”
but really it was Uber Eats unable to find a driver. I called the restaurants and they said the
food has been ready for over an hour!

7 939 Delivery
time

Your app is unintuitive. Delivery times are wildly inaccurate and orders are canceled with no
explanation, information or help.

8 854 Estimated
time

This service is terrible. Delivery people never arrive during the estimated time.

9 994 Time Delivery times increase significantly once your order is accepted. 25-45 mins went up to almost
2 hours! Not easy to cancel. Also one restaurant that looked available said I was too far away
after I had filled my basket. Other than that the app is easy to use.

10 1257 Time
esti-
mate

Use door dash or post mates, uber eats has definitely gone down in quality. Extremely
inaccurate time estimates and they ignore your support requests until its to late to
cancel an order and get a refund.

11 1443 Delivery
time

Delivery times are constantly updated, what was estimated at 25-35 minutes takes more than
two hours. I understand it’s just an estimate, but 4X that is ridiculous.

12 1478 Delivery
time

Inaccurate delivery time

13 1376 Estimated
time

Used to use this app a lot. Ever since they made it so you have to pay for your delivery to come
on time the app is useless. You will be stuck waiting for food for an hour most of the time. The
estimated time of arrival is never accurate. Have had my food brought to wrong addresses or
not brought at all. I will just take the extra time out of my day to pick up the food myself rather
than use this app.

14 1446 Estimated
time

Terrible, the estimated time of arrival is never accurate and has regularly been up to 45 MIN-
UTES LATE with no refund. Doordash is infinitely better, install that instead, it also has more
restaurants

15 1354 Estimed
time

App is good but this needs to be more reliable on its service. the estimated arrival time needs to
be matched or there should be a option to cancel the order if they couldnt deliver on estimated
time. Continuesly changing the estimated delivery time after the initial order confirmation is
inappropriate.

16 1627 Estimed
time

I use this app a lot and recently my order are always late at least double the time im originally
quoted. Every time my food is cold. Maybe the estimated time should be adjusted to reflect
what the actual time may be.

In our proposal, we use the Prophet model to forecast time series. How-

ever, we will investigate other time series prediction methods to improve the

accuracy of the results.

3.6 Experimental Evaluation

In this section, we present an evaluation and discussion of the key findings

from the MAPP-Reviews method. The experimental evaluation was carried out

to verify whether it is possible to detect emerging issues days or weeks in
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advance to mitigate the impact of negative ratings on the overall evaluation

of the app. In this sense, our experiment models the temporal dynamics of

software requirements associated with negative user reviews to predict upward

complaints trends. Furthermore, we demonstrate that it is possible to use a

predictive model with satisfactory accuracy to predict the temporal dynamics

of a software requirement.

3.6.1 Definition of Research Questions

We raise the following research question: how do we predict initial trends

on defective requirements from users’ opinions before negatively impacting the

overall app’s evaluation?

3.6.2 Datasets

For this experimental evaluation, we used a dataset with 86,610 reviews

of three popular food delivery apps from the Google Play store: Uber Eats,

Foodpanda, and Zomato. These apps were chosen based on their popularity

and the number of reviews available. Furthermore, these apps represent a dy-

namic and complex environment consisting of restaurants, food consumers,

and drivers operating in highly competitive conditions (Williams et al., 2020).

In addition, this environment means a real scenario of commercial limita-

tions, technological restrictions, and different user experience contexts, which

makes detecting emerging issues early an essential task.

The dataset was obtained in the first stage (App Reviews) of MAPP-Reviews

and is available at https://github.com/vitormesaque/mapp-reviews. The

reviews are from September 2018 to January 2021.

3.6.3 Experimental Setup

Initially, we iterated the first step of the method to collect only negative

app reviews. Then, the second step extracts the software requirements using

the negative reviews with the RE-BERT tool. After extracting the software

requirements, we again iterate the first stage to collect all reviews regardless of

your rating, i.e., reviews with all ratings. At this point, 149.635 requirements

were extracted, excluding duplicates. After that, we run the clustering stage

with k=300, count how many times each cluster appears in reviews, and rank

the most frequent clusters. We consider all reviews and not just negative

reviews to calculate this amount.

As a result, we obtain a time series that captures the evolution of each

requirement over time. In order to focus on the more significant clusters, we

discard the time series of clusters with low volumes, i.e., infrequent clusters.
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The most frequent clusters are identified and labeled based on the silhouette

value of the requirements assigned to each cluster. Subsequently, we generate

a normalized time series by app and cluster.

In stage four, the general idea is to use time series points to estimate the

following points. However, in our context would not be feasible to predict the

following months as it is tough to find a correlation between what happens

today and what will happen in the next few months regarding bug reports.

Therefore, it makes sense for our experiment to make predictions at the weekly

level. That way, we can take problems starting to happen and predict whether

they will get serious in the coming weeks.

We then discard the time series data before week 37 of the year 2018

(2018W37) so that all series start at the same point. Then, we train the model

with n previous points for each time series and perform forecasts with the

horizon ranging from h = 1 to h = 4, i.e., we want to forecast the next four weeks.

We evaluate the MAPE prediction error (average of all predictions) for each

requirement/cluster, organized by prediction horizon (h). After that, we cal-

culate the points/periods that show a significant increase in the time series.

We utilize the Prophet model to perform time series forecasting, considering

a range of horizon values h from 1 to 4. This analysis involves the incorpora-

tion of both automatic and custom changepoints. The custom changepoints,

denoted as cp, are determined based on the predicted values y of the train-

ing set. Specifically, data points in the training set with y values exceeding

the mean plus the standard deviation of all y values are identified as custom

cp. These custom changepoints play a significant role in capturing significant

deviations and trends in the time series data, enhancing the accuracy of the

forecasting process.

The forecast with the Prophet was made with the following parameters:

growth = “linear′′,weekly_seasonality = True,daily_seasonality = True,yearly_seasonality =

True.

3.6.4 Results

After the software requirements extraction and clustering stage (with k = 300
clusters), the six most popular (frequent) requirements clusters were consid-

ered for time series prediction. The following software requirements clusters

were selected: “Ordering”, “Go pick up”, “Delivery”, “Arriving time”, “Advertis-

ing”, and “Payment”. The requirements clusters are shown in Table 3.4 with

the associated words ordered by silhouette.

In the MAPP-Reviews prediction stage, we evaluated two scenarios using

Prophet. The first scenario is the baseline, where we use the automatic pa-

rameters fitting of the Prophet. By default, Prophet will automatically detect
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Table 3.4: Software requirements clusters for food delivery apps used in the
experimental evaluation. Tokens well allocated in each cluster (silhoutte mea-
sure) were selected to support the cluster labeling.

Cluster Label Tokens with Silhouette values (s)

Ordering “ordering” (s = 0.1337), “order’s” (s = 0.1250), “order from” (s = 0.1243), “order
will” (s = 0.1221), “order” (s = 0.1116), “the order”, (s = 0.1111)

Go pick up “go pick up”(s = 0.1382)”, “pick up the” (s = 0.1289)”, “pick up at”, (s = 0.1261),
“to take” (s = 0.1176), “go get” (s = 0.1159)

Delivery “delivering parcels” (s = 0.1705), “delivery options” (s = 0.1590), “waive deliv-
ery” (s = 0.1566), “delivery charges” (s = 0.1501), “accept delivery” (s = 0.1492)

Arriving time “arrival time” (s=0.3303), “waisting time” (s = 0.3046), “arriving time” (s =
0.3042), “estimate time” (s = 0.2877), “delievery time” (s = 0.2743)

Advertising “anoyning ads” (s= 0.3464), “pop-up ads” (s= 0.3440), “ads pop up” (s= 0.3388),
“commercials advertise” (s = 0.3272), “advertising” (s = 0.3241)

Payment “payment getting” (s = 0.2618), “payment get” (s = 0.2547), “getting payment”
(s = 0.2530), “take payment”(s = 0.2504), “payment taking” (s = 0.2471), “pay-
ment” (s = 0.2401)

the changepoints. In the second scenario, we specify the potential change-

points, providing domain knowledge for software requirements rather than

automatic changepoint detection. Therefore, the changepoint parameters are

used when we provide the dates of the changepoints instead of the Prophet de-

termining them. In this case, we use the most recent observations that have a

value greater than the average of observations, i.e., critical periods with high

frequencies of negative reviews in the past.

We used the MAPE (Mean Absolute Percentage Error) metric to evaluate the

forecasting performance (Makridakis, 1993), as defined in Equation 5.4,

MAPE =
1
h
∑

h
t=1
∣realt − predt ∣

realt
(3.8)

where realt is the real value and predt is the predicted value by the method, and

h is the number of forecast observations in the estimation period (prediction

horizon). In practical terms, MAPE is a measure of the percentage error that,

in a simulation, indicates how close the prediction was made to the known

values of the time series. We consider a prediction horizon (h) ranging from 1
to 4, with weekly seasonality.

Table 3.5 summarizes the main experimental results. The first scenario (1)

with the default parameters obtains superior results compared to the second

scenario (2) for all forecast horizons. In general, automatic changepoints ob-

tains 9.33% of model improvement, considering the average of MAPE values

from all horizons (h = 1 to h = 4).

In particular, we are interested in the peaks of the series since our hy-

pothesis is that the peaks represent potential problems in a given software re-

quirement. Thus, Table 3.6 shows MAPE calculated only for time series peaks
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Table 3.5: Comparison of MAPE in General.

MAPE (Mean ± SD)
*
h (1) Automatic changepoint (2) Specifying the changepoints

1 13.82±16.42 15.47±14.42

2 15.58±19.09 16.94±17.20

3 16.26±20.18 17.60±18.71

4 16.09±19.24 17.47±18.37

during forecasting. In this case, predictions with the custom changepotins

locations (scenario 2) obtained better results than the automatic detection for

all prediction horizons (h = 1 to h = 4), obtaining 3.82% of forecasting improve-

ment. These results provide evidence that domain knowledge can improve

the detection of potential software requirements to be analyzed for preventive

maintenance.

Table 3.6: MAPE analysis (at the peaks of the time series) of each scenario
considering the software requirements.

MAPE (Mean ± SD)
*
h (1) Automatic changepoint (2) Specifying the changepoints

1 10.65±8.41 10.30±8.06

2 11.61±8.80 11.00±8.71

3 11.81±8.86 11.42±8.52

4 11.49±8.71 11.19±8.34

In particular, analyzing the prediction horizon, the results show that the

best predictions were obtained with h = 1 (1 week). In practical terms, this

means the initial trend of a defective requirement can be identified one week

in advance. We can note that a prediction error rate (MAPE) of up to 20% is

acceptable. For example, consider that the prediction at a given point is 1000

negative reviews for a specific requirement, but the model predicts 800 neg-

ative reviews. Even with 20% of MAPE, we can identify a significant increase

in negative reviews for a requirement and trigger alerts for preventive software

maintenance.

Finally, to exemplify MAPP-Reviews forecasting, Figure 3.7 shows the train-

ing data (Arriving time software requirement) represented as black dots and

the forecast as a blue line, with upper and lower bounds in a blue shaded

area. At the end of the time series, the darkest line is the real values plotted

over the predicted values in blue. The lines plotted vertically represent the

changepoints.

For reproducibility purposes, we provide a GitHub repository at https://

github.com/vitormesaque/mapp-reviews containing the source code and
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details of each stage of the method, as well as the raw data and all the results

obtained.

Figure 3.7: Forecasting for software requirement cluster (Arriving time) from
Uber Eats App reviews

3.6.5 Discussion

An issue related to a software requirement reported in user reviews is de-

fined as an emerging issue when there is an upward trend for that requirement

in negative reviews. Our method trains predictive models to identify require-

ments with higher negative evaluation trends, but a negative review will in-

evitably impact the rating. However, our objective is to mitigate this negative

impact.

The prediction horizon (h) is crucial in detecting emerging issues and mit-

igating their negative impacts. Software engineers and the development team

must be aware of software problems as early as possible to proactively ad-

dress them. However, predicting issues several months in advance proves

challenging, as finding a correlation between current occurrences and future

bug reports becomes difficult. As a result, our approach, MAPP-Reviews, fo-

cuses on weekly predictions. By doing so, we can identify emerging issues and

forecast whether they will escalate in the upcoming weeks.

Even at the weekly level, having the shortest forecast horizon possible is

most effective, such as one week (h= 1). Using longer horizons, like three weeks

(h = 3) or four weeks (h = 4), may be too late to prevent an issue from worsen-

ing and causing a significant impact on the overall app rating. Experimental
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evaluations demonstrate that our method achieves the most accurate predic-

tions with the shortest horizon (h = 1). Practically speaking, MAPP-Reviews can

identify the initial trend of a defective requirement one week in advance.

Furthermore, it is worth noting that a prediction error rate (MAPE) of up to

20% is deemed acceptable. For instance, suppose the model predicts 800 neg-

ative reviews for a specific requirement at a given point, while the actual num-

ber is 1000 negative reviews. Even with a 20% MAPE, we can still identify a

significant increase in negative reviews for that requirement and trigger alerts

for preventive software maintenance. In other words, when MAPP-Reviews

predict an upward trend, the software development team should receive an

alert.

In Figure 3.7, the time series forecast illustrates how the model successfully

predicted the peak of negative reviews for the “Arriving time” requirement one

week in advance.

An emerging issue detection system based only on the frequency of a topic

could trigger many false detections, i.e., it would not detect defective func-

tionality but issues related to the quality of services offered. Analyzing user

reviews, we found that some complaints are about service issues rather than

defective requirements. For example, the user may complain about the delay

in the delivery service and negatively rate the app. However, they are com-

plaining about the restaurant, i.e., a problem with the establishment service.

We have seen that this pattern of user complaints is repeated across other

app domains, not just the food delivery service. In delivery food apps, these

complaints about service are constant, uniform, and distributed among all

restaurants available in the app. In Table 3.3, it is clear that the emerg-

ing issue refers to the deficient implementation of the estimated delivery time

prediction functionality. Our results show that when there is a problem in

the app related to a defective software requirement, there are increasing com-

plaints associated with negative reviews regarding that requirement.

An essential feature in MAPP-Reviews is changepoints. Assume that a time

series represents the evolution of a software requirement over time, observ-

ing negative reviews for this requirement. Also, consider that time series fre-

quently have abrupt changes in their trajectories. Given this, the change-

points describe abrupt changes in the time series trend, i.e., a specific date

indicating a trend change. Therefore, specifying custom changepoints be-

comes significantly important for the predictive model because the uptrend

in time series can also be associated with domain knowledge factors. By de-

fault, our model will automatically detect these changepoints. However, we

have found that specifying custom changepoints improves prediction signif-

icantly in critical situations for the emerging issue detection problem. The
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automatic changepoint detection generally had better MAPE results in most

evaluations. However, the custom changepoints obtained the best predictions

at the time series peaks for all horizons (h = 1 to h = 4) of experiment simu-

lations. Our experiment suggests a greater interest in identifying potential

defective requirements trends in the time series peaks. As a result, we con-

clude that specifying custom changepoints in the predictive model is the best

strategy to identify potential emerging issues.

Furthermore, the results indicate the potential impact of incorporating

changepoints into the predictive model using the information of app devel-

opers, i.e., defining specific points over time with a meaningful influence on

app evaluation. In addition, software engineers can provide sensitive company

data and domain knowledge to potentially explore and improve the predictive

model. For this purpose, we depend on sensitive company data related to the

software development and management process, e.g., release planning, server

failures, and marketing campaigns. In particular, we can investigate the rela-

tionship between the release dates of app updates and the textual content of

the update publication with the upward trend in negative evaluations of a soft-

ware requirement. In a real-world scenario in the industry, software engineers

using MAPP-Reviews will provide domain-specific information.

3.6.6 Limitations

Despite the significant results obtained, we can still improve the predictive

model. In the scope of our experimental evaluation, we only investigate the

incorporation of software domain-specific information through trend change-

points. The predictive model did not consider company-sensitive information

and the development team’s domain knowledge because we don’t have access

to this information. Therefore, we intend to evaluate our proposed method in

the industry and explore more specifics of the domain knowledge to improve

the predictive model.

Another issue that is important to highlight is sentiment analysis in app

reviews. We assume that it is possible to improve the classification of negative

reviews by incorporating sentiment analysis techniques. We can incorporate

a polarity classification stage (positive, negative, and neutral) of the extracted

requirement, allowing a software requirements-based sentiment analysis. The

MApp-Reviews only consider negative reviews with low ratings and associate

them with the software requirements mentioned in the review.

Finally, to use MAPP-Reviews in a real scenario, there must be already a

sufficient amount of reviews distributed over time, i.e., a minimum number

of time-series observations available for the predictive model to work properly.

Therefore, in practical terms, our method is more suitable when large volumes

50



of app reviews can be analyzed.

3.7 Final Remarks

In this chapter, we introduce the MAPP-Reviews method. It provides soft-

ware engineers with tools to perform software maintenance activities, mainly

preventive maintenance, by automatically monitoring the temporal dynamics

of software requirements.

We conducted an experimental evaluation involving approximately 86,000

reviews over 2.5 years for three food delivery apps:

• The experimental results show that it is possible to find significant points

in the time series that can provide information about the future behavior

of the requirement through app reviews.

• The results indicate the potential impact of incorporating changepoints

into the predictive model using the information of app developers.

• Our method can provide important information to software engineers re-

garding software development and maintenance.

• The model can predict the peaks of negative reviews for the software re-

quirement one week in advance.

• Software engineers can act proactively through the proposed MAPP-Reviews

approach and reduce the impacts of a defective requirement.
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CHAPTER

4
Issue Detection and Prioritization

based on App Reviews

4.1 Introduction

The MApp-Reviews method presented in the previous Chapter has certain

limitations that need to be addressed. Firstly, the analysis primarily focuses

on negative reviews with low ratings and their association with software re-

quirements, disregarding sentiment analysis that can provide a more nuanced

understanding of user sentiment. By incorporating sentiment analysis tech-

niques to classify reviews into positive, negative, and neutral categories, the

accuracy of the classification can be significantly improved. Another limitation

of MApp-Reviews is its dependence on a substantial volume of app reviews

distributed over time. This requirement makes the method less suitable for

scenarios with limited review data, as a minimum number of observations is

necessary to generate reliable predictions.

To overcome these limitations and offer alternative approaches to enhance

issue analysis, we introduce the MApp-IDEA method. MApp-IDEA incorpo-

rates sentiment analysis and is designed to be effective even with smaller

datasets. Additionally, we expand the scope of issue detection in MApp-IDEA

to capture general issues that may not be directly associated with specific

software requirements.

This chapter introduces the MApp-IDEA (Monitoring App for Issue Detec-

tion and Prioritization) method, which explores word embedding techniques

to construct acyclic graphs performing as representations of app-related is-
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sues. This novel method is designed to promote the timely identification and

prioritization of emergent issues and potential risks involving app features,

environment, and user experience. Furthermore, the MApp-IDEA performs in

real-time, enhancing its practical utility and responsiveness. We have trained

a multilingual BERT-based model with more than 100.000 nodes. Our pro-

posal is an unsupervised approach, while promising methods for detecting

issues from app reviews use supervised approaches.

The rest of this chapter is structured as follows. In Section 4.2, we high-

light the key contributions of this chapter. Our approach, MApp-IDEA (Moni-

toring App for Issue Detection and Prioritization), is presented in Section 4.3,

followed by a demonstration of MApp-IDEA in action in Section 4.4. The ex-

periment design used to validate our approach is described in Section 4.5, and

the validation results and discussion are presented in Section 4.6. We address

the threats to the validity of our investigation in Section 4.7. Lastly, Section

5.6 provides our conclusions and final remarks.

4.2 Main Contributions

Our main contributions presented in this chapter are briefly summarized

below:

1. We introduce the prioritizing issues approach that automatically gener-

ates a risk matrix, combining sentiment analysis, clustering, and graph

theory.

2. We present a method to generate the temporal dynamics of issues and the

risk matrix using time series. Our method uses interval segmentation to

calculate the frequency of problems in each time interval, where we are

especially interested in intervals where abrupt changes occur.

3. Finally, we introduce an analytical data exploration tool that allows you

to interactively browse the risk matrix, time series, heat map, and issue

tree. Additionally, our analytic system triggers alerts and notifications.

We have shown that opinions extracted from app reviews provide essential

information about the app’s issues and risks. We experimentally evaluated our

unsupervised issue detection approach with state-of-the-art supervised meth-

ods, and the findings indicate that our approach is competitive. Regarding the

issue prioritization approach, we empirically evaluated a sample of 50 apps to

validate our proposal. We process over 6.6 million reviews in 20 domains to

evaluate our proposal, identifying and ranking the risk associated with nearly

270,000 issues. The findings show that issues detected and prioritized early

with our approach are associated with later fix releases by developers.
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4.3 MApp-IDEA Method Architecture

To detect and prioritize EAI, we introduce MApp-IDEA. Our method is di-

vided into five stages, as shown in Figure 4.1. First, we collect mobile app

reviews from app stores via a web crawler. Second, these reviews are pro-

cessed on a multilingual network model with over 100,000 nodes. We found

the network node most associated with each review’s snippets and searched

the network for the best label to display. Third, we prioritize reviews in a risk

matrix divided into three priority levels. Fourth, we model the risk matrix

in time series to detect issue peaks over time and trigger alerts. Finally, we

present the output of the previous stages in a user-friendly real-time interface

through an interactive dashboard. An overview can be seen in Figure 4.1.

Figure 4.1: The architecture of the MApp-IDEA framework for detecting and
prioritizing emerging issues

4.3.1 App Reviews

In the first stage of MApp-IDEA, raw reviews are collected from app stores

using a web crawler tool via RESTful API. The app stores provide the textual

content of the reviews, the publication date, and the rating stars of the reviews

reported by users. In addition to reviews, we collect app metadata and metrics

such as release dates, versions, number of installs, overall rating, and the

total number of reviews. We use app metadata to drive overall performance

and provide additional analysis of the temporal dynamics of metrics.

In this step, all configuration is done through a user-friendly interface, as
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shown in Figure 4.3. The developer enters the app ID of the app store, the

language, and the number of reviews to be processed. The crawler process

runs in the background, and upon completion, the data is organized into the

appropriate data structure for processing by the MApp-IDEA issue detection

stage, as shown in Figure 4.2.

Figure 4.2: Control panel to manage all apps

After app registration and initial processing, new app reviews are auto-

matically processed and synchronized in the background over time, as shown

in Figure 4.4. From this moment on, all app information is automatically

tracked.

Figure 4.3: Initial app settings

4.3.2 Issue Detector

We explore word embeddings to build acyclic graphs for representing app

issues. Word embeddings have recently been proposed to support NLP. They
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Figure 4.4: Synchronization process and automatic update of new reviews and
issues

can calculate the semantic proximity between tokens and entire sentences,

and the embeddings can be used as input to train the classifier. Additionally,

graph-based methods have been widely used in several NLP tasks, such as

text classification and summarization (Mihalcea and Radev, 2011).

In our approach, we have an acyclic graph, where each issue is a vertex,

and edges are defined by the similarity between issues based on the prox-

imity of the issues vectors. In practice, we have a tree where each issue is a

node, and similar issues with spelling variations or related issues are adjacent

and connected by an edge. Therefore, we represent each issue through word

embedding.

In graph theory, a tree is an undirected graph in which any two vertices are

connected by exactly one path or, equivalently, a connected acyclic undirected

graph. A forest is an undirected graph in which any two vertices are connected

by at most one path, an acyclic undirected graph, or a disjoint union of trees

(Williamson, 2010).

Our approach has a forest represented by the disconnected graph of the

disjoint union of 3-tier trees. Each tree in the forest can have up to 3 tiers,

wherein we have the best issue formations on the first and second tiers. The

child nodes are connected to the parent nodes with better formations, but this

is the same or related issue in practice. Therefore, we can group related issues

and search the tree for the best node to display. We might have structurally

weak issues in the tree, but we can search the tree and find the best good

issue to display, as shown in Figure 4.5. However, a forest can have singleton

graphs consisting of a single isolated node with no edges. In our approach, we

can have issues that are not connected to any other.

To generate the issues graph, we used a multilingual model based on the

BERT (Devlin et al., 2018), which allows the processing of reviews in several

languages for issue detection. We collected negative user opinions from dif-

ferent data sources and domains to train the model, e.g., repositories, app
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Figure 4.5: Details of issues detected in a review. For each review, MApp-IDEA
extracts the review that is associated with the issue

stores, and social networks. We have a trained model with more than 100.000

nodes.

BERT is a contextual NLM where we can learn a word embedding represen-

tation for a token for a given sequence of tokens. Formally, let E = {i1, i2, ..., in}

be a set of n extracted issues, where i = (t1, ...,tk) are a sequence of k tokens

of the issue i. BERT explores a masked language modeling procedure, i.e.,

the BERT model first generates a corrupted x̂ version of the sequence, where

approximately 15% of the words are randomly selected to be replaced by a

special token called [MASK] (Araujo and Marcacini, 2021). One of the training

objectives is the noisy reconstruction defined in Equation 4.1,

p(ī∥î) =
k
∑
j=1

m j
exp(h⊺c jwt j)

∑t′ exp(h⊺c jwt′)
(4.1)

where î is a corrupted token sequence of issue i, ī is the masked tokens, mt is

equal to 1 when t j is masked and 0 otherwise. The ct represents context infor-

mation for the t j token, usually the neighboring tokens. The token embeddings

are extracted from the pre-trained BERT model, where hc j is a context embed-

ding, and wt j is a word embedding of the token t j. The term ∑t′ exp(h⊺c wt′) is a

normalization factor using all tokens t′ from a context c. BERT uses the Trans-

former deep neural network to solve p(ī∥î) of the Equation 4.1. For example,
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the vector space of embeddings preserves the proximity of similar issues but

written in different ways by users such as “problem with the payment”, “i can’t
pay”, “ i can’t complete the payment” and “payment error”.

In our architecture, we use a version of the BERT model called DistilBERT

(a distilled version of BERT) (Sanh et al., 2019), which has the same architec-

ture as the BERT model. In summary, the DistilBERT is a general-purpose

pre-trained version of BERT, 40% smaller and 60% faster, that retains 97% of

the language understanding capabilities (Sanh et al., 2019).

We use the Facebook AI Similarity Search (Faiss) (Johnson et al., 2017)

to detect similarity between vectors. This library allows us to search high-

dimensional vectors similar to each other using nearest-neighbor search im-

plementations. Given a query vector, the similarity search returns a list of

vectors closest to that vector in terms of Euclidean distance. Our issue de-

tector classifier receives the correlation threshold and n-gram size parameters

set to 0.8 and 7, respectively. The correlation threshold parameter defines the

minimum similarity correlation between the vectors. A snippet is an issue if

the distance between the most similar vectors exceeds the minimum correla-

tion threshold. The n-gram size parameter is the maximum size of words that

an issue can assume.

Summarly, we found the graph node most associated with each review’s

snippets and searched the 3-tier tree for the best label to display. From this,

we can prioritize the most critical issues through sentiment analysis and par-

ticulars of the issues graph.

4.3.3 Issue Prioritization

After identifying issues, app developers must prioritize and address the

most critical issues and ensure timely software maintenance and evolution.

We propose prioritizing issues through an automatically generated risk matrix

combining sentiment analysis, clustering, and graph techniques. Therefore,

given an app and its reviews, we summarize reviews with one or more issues

into a risk matrix, as shown in Figure 4.6.

We introduce the automatic generation of a risk matrix to predict issues

with the most significant potential negative impact and probability of occur-

ring. First, we assume that the likelihood of an issue i occurring is related to

the similarity distance di of the issue i in relation to other nodes in the graph.

We also assume that the issue’s negative impact is related to how negative the

issue’s sentiment score is. Therefore, for each detected issue, we need a mea-

sure to calculate how many nodes are associated with the issue in the graph

and the issue’s sentiment score.
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Figure 4.6: Navigable risk matrix. By clicking on the cell, it is possible to
browse the time series of each cell

4.3.3.1 Negative Impact

To calculate the issue sentiment score, we use VADER (Valence Aware

Dictionary for Sentiment Reasoning), a model used for text sentiment anal-

ysis sensitive to both polarities (positive/negative) (Hutto and Gilbert, 2014).

VADER sentiment analysis relies on a dictionary that maps lexical features to

emotion intensities known as sentiment scores. The sentiment score of a text

can be obtained by summing the intensity of each word in the text.

The compound score is a metric that calculates the sum of all the lexi-

con ratings which have been normalized between −1 (most extreme negative)

and +1 (most extreme positive): (i) positive sentiment (compoundScore ≥ 0.05), (ii)

neutral sentiment (compoundScore > −0.05), and (iii) (compoundScore < 0.05) nega-

tive sentiment (compoundscore ≤ −0.05). For our risk matrix, we consider negative

sentiment, i.e., the compound score less than or equal to zero (Cs ≤ 0). On the

x-axis of the matrix is the discretization of the negative sentiment score into

four levels.

To show the result more understandably, we present the negative impact

in absolute (positive) values, ranging from 0 to 10, as shown in Figure 4.7.

4.3.3.2 Likelihood

On the y-axis (likelihood), we have the discretization of the degree of simi-

larity of the issue with other issues in the graph in four levels. The higher the

60



Figure 4.7: Navigable risk matrix. By clicking on the cell, it is possible to
browse the time series of each cell

level, we have more related issues. The lower the level, the less similarity the

issue has to other issues.

We use a partitional clustering strategy to calculate the issue degree mea-

sure in the graph. We cannot simply compute the degree of the node in the

graph to generate the x-axis value because, in our model, we may have too

many singleton graphs, which would unbalance the matrix. Therefore, we

need to consider this to calculate the likelihood. Let V be the number of ver-

tices in the graph. We group all vertices of the graph into
√
∣V ∣ clusters and

define the x-axis value of each node as the size of its cluster, i.e., the number

total number of issues that are in the cluster.

In partitional clustering, the main goal is to partition a set of examples

into k groups, where the user typically determines the value of k. MApp-

Reviews utilizes the K-means algorithm (MacQueen et al., 1967), which is a

widely recognized and extensively employed method for partitional clustering,

particularly in the analysis of textual data.

Formally, let R = {i1, i2, ..., in} a set of issues, where each issue i is a m-

dimensional real vector from an word embedding space. The K-means clus-

tering aims to partition the n issues into k (2 ≤ k ≤ n) clusters C = {C1,C2, ...,Ck},

thereby minimizing the within-cluster sum of squares as defined in Equation

4.2, where µi is the mean vector of all issues in Ci.

∑
Ci∈C
∑
r∈Ci

∥r−µi∥
2 (4.2)
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We defined the cluster number k as
√

n, where n is the total issues (nodes).

Then, for each issue, we define its likelihood as the size of the cluster in which

it is inserted. We then normalize this value between 0 and 1 using Min-Max

(4.3). Therefore, the likelihood of the issue occurring is associated with the

similarity between the nodes in the network, as a very frequent issue will have

many occurrences, variations of writing, and different ways of describing the

same problem by users.

4.3.3.3 Risk Matrix Construction

Our algorithm for calculating the risk matrix places the reviews with one or

more issues in their respective cell [i,j] of the matrix according to the thresh-

olds of negative impact and likelihood.

With the algorithm’s output, we prioritized the analysis, observing the most

likely and critical problems, as shown in Figure 4.8. The algorithm subdivides

the matrix into three priority levels: level 1 (low), level 2 (medium), and level 3

(high). Implementation details follow in the algorithm’s pseudocode 1.

Algorithm 1: Algorithm that calculates the i,j position of each issue
detected in the Risk Matrix

1: function RISKMATRIXGENERATOR(reviews)
2: M ← [5][5]
3: levels ← [L, M, H]
4: I← [0.15,0.3,0.6,0.7,1]
5: P← [1,0.7,0.6,0.3,0.15]
6: issueCollection← issueDetector(reviews)

for issue← 1 to issueCollection.length do
7: priority← issueCollection[issue].degree
8: impact ← issueCollection[issue].negativeScore

for i← 1 to 5 do
for j← 1 to 5 do

if (level← checkInterval(priority, impact,P,I, i, j)) then
9: M[i][ j]←M[i][ j]+1

10: levels[level]← levels[level]+1
end

end
end
end

11: return M
12: end function
13: function CHECKINTERVAL(priority, impact,P,I, i, j)
14: level← checks the range of (priority, impact) matches the threshold range
(P,I) in (i, j) of the matrix

15: return level
16: end function
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Figure 4.8: Risk matrix where each cell contains the number of reviews with
issues. Colors vary from green to red, indicating three critical and priority
levels

4.3.4 Temporal Dynamic

Considering that the issue time series is a set of observations obtained se-

quentially over time, as illustrated in Figure 4.9, we can model the occurrence

of issues over time in a time series to detect upward trends in their frequency,

as shown in Figure 4.10. Formally, an issue time series I of size s can be repre-

sented as an ordered sequence of observations denoted as I = (i1, i2, ..., is), where

each observation it at time t belongs to the set of real numbers (R) and repre-

sents the number of issues observed at that particular time point (Chatfield,

2003).

Figure 4.9: Issue time series “can’t play specific songs”
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Figure 4.10: Time series of Spotify app issues with peak issues on January
10th and 23rd. Red lines indicate an uptrend in the time series.

In addition to capturing the temporal dynamics of issues, we also explore

the temporal dynamics of the risk matrix. Once we have constructed the risk

matrix, we examine its temporal behavior for each cell and prioritize level.

Figure 4.11 visually depicts the time series of priority levels associated with

the identified issues. The green, yellow, and red lines in the figure correspond

to low, medium, and high priority levels, respectively. This analysis provides

insights into how the risk levels evolve over time and allows us to monitor the

changing prioritization of issues.

Figure 4.11: Time series of issues with three lines representing issues in pri-
ority levels. The colors green, yellow, and red represent levels 1, 2, and 3

4.4 MApp-IDEA in Action

We present an example of MApp-IDEA’s usage in this section.
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4.4.1 Monitor

On the home screen, MApp-IDEA presents all monitored applications, with

daily performance statistics of apps concerning comment volume and star

rating, as shown in Figure 4.13. We also provide a summary of notifications

and flips, the daily trend of top issues, the volume of issues detected for all

apps, and changelog statistics, as shown in Figure 4.12 and Figure 4.14.

Figure 4.12: Dashboard with daily performance information for each app on
the star rating and number of reviews

Figure 4.13: Dashboard with daily performance information for each app on
the star rating and number of reviews

65



Figure 4.14: Summary dashboard of top-n issues of the day for monitored
apps

4.4.2 3-tier Navigable Tree

In this visualization approach, interactive navigation across the three lay-

ers of the tree is facilitated, enhancing the understanding of the underlying

data structure. The size (diameter) of each node in the visualization corre-

sponds to the volume of issues associated with the subtree rooted at that

node, as illustrated in Figure 4.16. Larger nodes indicate a higher frequency

of issues. Furthermore, each distinct tree in the visualization is assigned

a color, representing a group of related issues categorized within up to three

levels, as illustrated in Figure 4.15. This visualization technique enables users

to explore and analyze similar issue groups effectively.

4.4.3 Network Exploratory Heatmap

We developed an exploratory issue network called a heat map, which em-

phasizes issues with higher priority according to the volume of occurrences

and degree of the node in the graph. In this form of visualization, we use the

most representative nodes of the tree, from layers 1 and 2, to generate a new

graph of issues with approximately 600 nodes.

Mathematically, a network is defined as an undirected graph G = (V,E),

formed by a set V = (v1,v2, ...,vn) of nodes (words). A set E = (e1,e2, ...,en) of edges

that are represented by an adjacency matrix A, whose elements Ai j are equal

to 1 whenever there are an edge connecting nodes (words) i and j, and equal

to 0 otherwise.

This new graph allows us to identify critical regions of the graph through

the volume of issues related to each node and categorize the visualization into

different critical levels. Each node of this graph is connected to similar nodes,

calculated by the distance of similarity between the vectors. The “payment
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Figure 4.15: Facebook app’s issue tree into a dynamic and interactive 3-tier
structure between March 15 and June 13, 2023

problem” node will be close to the “credit card problem” node, with an edge

connecting these two nodes. We call this new graph a Heat Map, representing

the critical nodes in 4 levels, from the least critical to the most critical, as

shown in Figure 4.17 and Figure 4.18.

For example, consider app A, with 10,000 reviews in the last 30 days. After

detecting the issues, we already know which tree nodes are related to the

issues. The identified application A issues can belong to any of the three

layers of the original tree, with layers 1 and 2 being the most representative.

Suppose 200 issues of application A were detected. These detected issues

are distributed in the graph according to their representation. Consider that

50% of these issues are related to the “app stopped working” node, 25% are

related to the “payment problem” node, 15% are related to the “I can’t access

my account” node, and 10% are related to other nodes. The Heat Map Graph

has 600 nodes in all. However, these three detected nodes will be highlighted,

as exemplified in Figure 4.19. In this example, the “app stopped working” will

be marked with red color, flashing on the screen, and with a larger diameter

than all the others.

The “payment problem” node will be marked red, but without flashing and

with a smaller diameter. The “I can’t access my account” node will be marked

in yellow. The other nodes in the network will be marked in blue or gray. Nodes

marked in blue are nodes not detected by the issue detector for application
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Figure 4.16: 3-tier tree dashboard

A, with a high vertex degree, i.e., they are more strongly connected to other

nodes. If these blue nodes turn yellow or red, it could be a severe problem.

The nodes marked in gray were not detected by the issue detector and had a

low vertex degree value, i.e., they are problems of lesser impact.

To calculate the threshold between the critical levels of the graph, we cal-

culate the frequency of occurrence of each node. Then we normalize the fre-

quency to obtain values between 0 and 1, using the Min-max scale, according

to equation 4.3.

m =
(x−xmin)

(xmax−xmin)
(4.3)

where m is the new value, x is the original value of the cell, xmin is the minimum

frequency value, and xmax is the maximum value of the frequency.

Subsequently, the computed value of m is compared to a threshold value

determined by the software engineer. The choice of the threshold influences

the sensitivity of the heat map graph coloring. A lower threshold increases the

level of sensitivity, resulting in more evident variations in the color scheme of

the heat map graph, as shown in Figure 4.20.

The expectation is that denser regions at higher critical levels will receive

prioritization. If there are numerous red dots clustered in a specific region,

it indicates that app users are reporting a common and frequent problem.

Such frequent issues tend to occur repeatedly, and spelling variations will be

a “hub” in the network.

Our platform offers interactive navigation within the graph, allowing visu-

alization of reviews associated with each node and access the top-n issues
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Figure 4.17: Heatmap network where each node represents an issue and is
connected by similarity

Figure 4.18: Description of color variation in heatmap

linked to those reviews.

4.4.4 Interactive Risk Matrix

The risk matrix generated by our algorithm is presented in a dynamic and

navigable way. Each cell of the matrix is clickable, where we can view the

issues related to each cell and the reviews and sentences linked to the issues.

We can also sort issues by priority, likelihood, and negative impact levels.

For each cell in the matrix, we also display the temporal modeling, i.e., the

evolution of that cell over time, as shown in Figure 4.21.

Additionally, we provide summary reports of issue priority levels, as shown

in the screen example (Figure 4.22).

4.4.5 Time series

The MApp-IDEA presents different types of time series to observe the time

evolution of issues and identify trends.
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Figure 4.19: Heat map details. The size and color of each node represent the
volume and the critical issue. The larger the node diameter, the greater the
number of reviews associated with that issue. Colors vary from light gray to
red

The trend detector time series is based on the moving average displayed in

three colors on the lines. Red represents the uptrend, green represents the

downtrend, and light blue represents stability, as shown in Figure 4.23.

We use a peak detection algorithm based on the dispersion principle (Z-

score). If a new data point is a given x number of standard deviations from

some moving average, the algorithm triggers +1 or −1. The system triggers an

Uptrend alert if a +1 signal is returned. If a −1 signal is triggered, we alert a

Downtrend.

Formally, a raw score x is converted into a standard score (Z-score) accord-

ing to equation 4.4:

z =
x−µ

σ
(4.4)

where µ is the issues mean and σ is the issues standard deviation.

The absolute value of z represents the distance between this raw score x

and the issues mean in standard deviation units. z is negative when the raw

score is below the mean and positive when it is above.

The issue detector algorithm receives three parameters: (i) the moving win-

dow, (ii) threshold (the Z-score on which the algorithm signals), and (iii) influ-

ence (value between 0 and 1 that implies the influence of new signals on the

average and in standard deviation).

With the risk matrix output, we generate a stacked area time series with

three priority levels of issues stacked on each other. Therefore, we can com-

pare the evolution of the whole and the contributions of individual parts over
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Figure 4.20: Variations in the color scheme of the heat map graph based on
the sensitivity threshold

time, as shown in Figure 4.24.

In addition, we present trend detection signals, i.e., a time series empha-

sizing trend detection points. Red areas represent uptrends, and downtrends

are represented by green areas, as shown in Figure 4.25. Each point in the

time series has a complete report of all reviews and detected issues, as shown

in Figure 4.26.

4.4.6 Notification System

Issue alerts occur when MApp-IDEA monitoring detects risks associated

with an increased volume of issues. MApp-IDEA generates intelligent alerts to

notify the team about changes, high-risk issues, or environmental failures, as

shown in Figure 4.27.

Due to the way the issue detector module is implemented, even if there is no

defective functionality related to a software requirement in the app, the MApp-

IDEA alert system will still be able to identify failures in the environment, e.g.,

offline resources or processing web requests taking longer than usual, de-

creasing database latency, or app policy changes. These environmental issues

are also frequently reported by users, although described differently.

The purpose of alerts is to quickly identify and resolve issues that affect app

availability, speed, and functionality without manual monitoring. Using auto-

matic features to monitor apps and generate alerts, developers can minimize

downtime and reduce diagnostic time and the associated high cost.
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Figure 4.21: Time evolution of a risk matrix cell

Figure 4.22: General report of issue classification distribution in 3 critical
levels

4.4.7 Online Performance Reports

The MApp-IDEA dashboard generates a complete real-time report of the

relationship between releases and issue peaks, reports on average updates,

average issues detected per day, and the average interval between releases. In

addition, it presents a summary of the total reviews collected and processed

and the total number of issues detected. A sample screen is shown in Figure

4.28.

4.5 Experiment Design

We conducted a quasi-experiment (a type of empirical study where the as-

signment of treatments to subjects is not random) to evaluate the approach

presented in this paper (Wohlin et al., 2012). To do so, we followed the guide-

lines proposed by Wohlin et al. (2012). The experimental design is detailed in
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Figure 4.23: Uptrend detector based on moving average of the time series
displayed in three colors on the lines

Figure 4.24: Stacked area chart with three priority levels of issues stacked on
each other

the remainder of this section.

4.5.1 Definition of Research Questions

Our central research question is: how do we prioritize and treat app reviews
in time so that the app is competitive and guarantees the timely maintenance
and evolution of the software?

To answer this main question, we divided it into four specific research ques-

tions, as follows:

• RQ1: Can we detect issues using an unsupervised approach that is com-

petitive compared to supervised methods and requires less effort?

• RQ2: Can we apply opinion mining to detect issues and monitor their

evolution over time?
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Figure 4.25: Trend detector to emphasize uptrends and downtrends in the
time series

Figure 4.26: Details of a point in the Spotify app time series.

• RQ3: Can we prioritize issue candidates at different priority levels?

• RQ4: Can we monitor the relationship between release dates and issue

uptrends?

The experiment was conducted to address the research questions pre-

sented in this section.

4.5.2 Experiment Definition

The experiment is defined as follows (Wohlin et al., 2012):

• analyze MApp-IDEA issue detector classifier and prioritization method,

• concerning effectiveness, efficiency, and perceived quality,
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Figure 4.27: Notification system when there is an upward or downward trend
of issues

Table 4.1: Stages of the experiment.

MApp-IDEA Experimentation

Stage 1 (S1) Stage 2 (S2)

Experimental Object Issue detection
classifier

Issue prioritization
approach

Research questions RQ1
RQ2

RQ3
RQ4

• from the point of view of the researcher,

• in the context of crowd feedback from app user reviews.

4.5.3 Preparation and Planning

The experiment plan comprises the sample selection, description of the

experimental package, definition of variables, and description of employed de-

sign principles. To better understand the experiment plan, we separate the

evaluation into two stages: (i) issue detection approach and (ii) issue prioriti-

zation approach.

Table 4.1 shows the stages related to research questions and experimental

objects.

4.5.3.1 Stage 1 (S1) - Issue Detection

Our strategy uses an unsupervised approach. To evaluate the performance

of the issue detection approach, we compare our strategy with well-known

classifiers that use a supervised approach.

4.5.3.2 S1 Sample Selection

To evaluate the issue detector model, we used two annotated datasets,

described by Table 4.2.

75



Figure 4.28: Notification system when there is an upward or downward trend
of issues

4.5.3.3 S1 Experimental Package

The experimental package is publicly available on GitHub 1 for reproducibil-

ity. It has the following document:

• Description of the reference dataset: The experiment package describes

all the information each object uses.

• Definition of objects: We use Python programming to define each object.

The source code is available on GitHub.

• Description of the hyperparameters for each machine learning classifi-

cation algorithm: We chose five supervised classification algorithms that

are used in state of the art to support issue detection: k-Nearest Neigh-

bor (kNN), Multi-layer Perceptron (MLP), Multinomial Naive Bayes (MNB),

Random Forest (RF), and Support Vector Clustering (SVC). In addition to

these classifiers, a Dummy Classifier (DC) makes predictions that ignore

the input features. This dummy classifier is a simple baseline to com-

pare against other more complex classifiers. The stratified strategy that

generates predictions by respecting the class distribution of the training

data was used.

1https://github.com/vitormesaque/mapp-idea
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Table 4.2: Annotated reviews from tweets.

Dataset Type
Re-
views Lang. Classes Filter by class

TEN
Tweets 10364

En-
glish

1) Problem found that
must be fixed.

2) Wish or Request for a
new feature.
3) Irrelevant noisy feed-
back.

Class (1)

BFRU Tweets
3691

En-
glish

1) User explanation for a
given score;

2) Experience of using a
specific feature.
3) Problem found that
must be fixed.
4) Wish or request for a
new feature.

Class (1) if starRating ≤ 1

Class (2) if starRating ≤ 1
Class (3)

4.5.3.4 S1 Variables

The independent variable (factor) controlled in the experiment was the issue

detector approach. The values assigned to this variable (treatments) are seven

classifiers (kNN, MLP, MNB, RF, SVC, DC, and MApp-IDEA). The dependent

variable, which is affected by the treatment, is the F1-Score, a measure of the

accuracy of a test (RQ1 and RQ2).

We use the F1 evaluation measure that corresponds to the harmonic mean

of Precision (5.1) and Recall (5.2), where TP (True Positive) refers to the number

of issues that were both extracted and annotated; FP (False Positive) are issues

that were extracted but not annotated, and FN (False Negative) refers to the

issues annotated but not extracted. Equation 5.3 defines the F1 measure.

P =
T P

T P+FP
(4.5)

R =
T P

T P+FN
(4.6)

F1 =
2∗P∗R

P+R
=

2∗T P
2∗T P+FP+FN

(4.7)

4.5.3.5 S1 Experimental Design

In this quasi-experiment, the experimental design has one factor (issue

detection approach) and seven treatments (KNN, MLP, MNB, RF, SVC, DC,

and MApp-IDEA) with crossover (Wohlin et al., 2012).
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4.5.3.6 S1 Operation of the Experiment

We evaluated our issue detector classifier through cross-validation with five

widely used supervised models, using 80% training and 20% data testing. Data

are classified into two classes, issues and non-issues.

4.5.3.7 Stage 2 (S2) - Issue Prioritization

To evaluate our issue prioritization approach, we analyzed the relationship

between update release dates and issue spikes detected by our prioritization

method.

4.5.3.8 S2 Sample Selection

We used the 50 most popular apps in the Google Play store from 20 do-

mains between February 6th and February 10th, 2023, as detailed in Table

4.3 to evaluate the issue detector model. Our crawler downloaded the last

100.000 reviews for each app. Reviews from the last six months were consid-

ered to generate enough data for the apps to be compared fairly. For example,

newer apps would have fewer reviews and releases than older apps. For some

apps with high reviews, we used 200.000 or 500.000 reviews to reach the mini-

mum 6-month data period for the analysis. Almost 5 million reviews of these

apps were processed. In the evaluation, we analyze the reviews of the last six

months of each app.

4.5.3.9 S2 Experimental Package

The experimental package is publicly available at GitHub 2 for reproducibil-

ity purposes. It has the following document:

• Description of the reference dataset: The experiment package describes

all the information each object uses.

• Definition of objects: We use Python and PHP programming to define each

object. We also use PostgreSQL, JavaScript, and CSS (Cascading Style

Sheets) to explore the data. The base source code is available on GitHub.

• Description of the parameters for each run: We run the issue prioriti-

zation model by varying the window (w) in days and the period (p) in

months, where w is the range of days observed before and after an issue

peak and p is the total period of observed data. We evaluated by varying

w from 1 to 7 and p from 1 to 6.

2https://github.com/vitormesaque/mapp-idea
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Table 4.3: Apps used in evaluation grouped by category.

Category Apps

Business Google Chat / Microsoft Teams

Communcation
WhatsApp Messenger / Discord: Talk /

Chat & Hang Out / Skype / Telegram /

TextNow: Call + Text Unlimited

Dating Bumble - Dating. Friends. Bizz

Education Duolingo: language lessons

Entertainment

Amazon Prime Video / Disney+ / Paramount+ /

HBO Max: Stream TV & Movies /

MISTPLAY: Play to earn rewards / Netflix /

Peak Streaming / Peacock TV: Stream TV & Movies /

Pluto TV - Live TV and Movies / Tubi - Movies & TV Shows

Rewarded Play: Earn Gift Cards /

Finance Cash App / PayPal - Send, Shop, Manage / Venmo

Food & Drink
DoorDash - Food Delivery / McDonald’s /

Uber Eats: Food Delivery

Graphic & Design Canva: Design / Photo & Video

Lifestyle Amazon Alexa / Pinterest

Maps & Navigation Waze Navigation & Live Traffic / Uber - Request a ride

Music & Audio
Deezer: Music & Podcast Player /

Spotify: Music, Podcasts, Lit

News & Magazines NewsBreak: Local News & Alerts

Shopping
Temu: Shop Like a Billionaire / SHEIN-Fashion Shopping Online /

Walmart Shopping & Grocery

Social Media Facebook / Instagram / Instagram / Snapchat / TikTok / Twitter

Sports ESPN / FOX Sports: Watch Live

Travel & Local Booking.com: Hotels and more / Hopper: Hotels / Flights & Cars

Utility & Productivity Firefox Fast & Private Browser / Microsoft Excel: Spreadsheets

Video Call Google Meet / Zoom - One Platform to Connect

Video Players & Editors CapCut - Video Editor

4.5.3.10 S2 Variables

The independent variable (factor) controlled in the experiment was the

MApp-IDEA issue prioritization approach. The values assigned to this vari-

able (treatments) are window (ranging from 1 to 7) and period (ranging from

1 to 6). The dependent variable, which is affected by the treatment, is the

match-related peaks with release dates measured with mean and standard

deviation (RQ3 and RQ4).

A mean is a number expressing a data set’s central or typical value. Vari-

ance is the sum of squares of differences between all numbers and means.

Standard Deviation (S) is the square root of variance. It measures the extent

to which data varies from the mean, as follows equation 4.8.
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S =

¿
Á
ÁÀ 1

N −1

N
∑
i=1
(xi−x)2 (4.8)

, where N is the total number of elements or frequency of distribution.

4.5.3.11 S2 Experimental Design

In this quasi-experiment, the experimental design has one factor (MApp-

IDEA issue prioritization approach) and two treatments (window and period)

without crossover (Wohlin et al., 2012).

4.5.3.12 S2 Operation of the Experiment

We analyze the relationship between the high volume of issues detected

by MApp-IDEA and software updates to evaluate the issue prioritization ap-

proach. We assume that the spikes should be associated with releases of new

features, general improvements, and bug fixes. So, if a peak of problems is de-

tected one day after an update, we can say that this update triggered this peak

of complaints. When launching a new release, the development team makes

publicly available what was done, improved, or corrected in the application in

that release. Thus, in addition to relating the high volume of increased issues

to a defective release, we can analyze the change log of the next release after

the peak to validate whether the correction made by the development team is

related to the previous peak of issues. Not all developers report the changes

in those releases and provide default text. However, we explore some cases

where the developer has made updated details available in the data analysis

section.

Figure 4.29: Time series of the Instagram app between January 1st and March
1st, 2023, stacked lines by criticality levels with the relationship between peak
points and release dates
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Figure 4.30: Ranking of top issues within a selected time range

4.6 Results and Discussion

Regarding the issue detector classifier, our proposal had the fourth-best

performance in the overall evaluation compared to supervised classifiers. The

best results were obtained by supervised classifiers SVC, Random Forest, and

MLP, as shown in Table 4.4. For the BRFU dataset, our classifier obtained an

F1-Score of 0.8027±0.0350, only 0.9473±1.0453 less than the MPL classifier,

as shown in Figure 4.31.

Figure 4.31: Comparison chart of our approach with supervised approaches

The results show that our unsupervised strategy, without data annotation,

obtained a promising result compared to supervised strategies since obtaining

annotated data is extremely costly or even impossible.
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Table 4.4: Average F1-Score of the issue detector compared to supervised
models.

*

Model

F1-Score Average and Standard Deviation

BRFU TEN Total

AVG SD AVG SD AVG±SD

DC 0,7405230909 0,0039126259 0,513355459 0,00624702464 0,626939275 ± 0,119828659

k-NN 0,7784388303 0,0076876306 0,598531535 0,03378892565 0,688485182 ± 0,097593118

MLP 0,8474143289 0,0335658706 0,601225506 0,04136394154 0,724319917 ± 0,134525055

MNB 0,780618454 0,0036905403 0,622960909 0,07428282406 0,701789681 ± 0,096762013

MApp-IDEA 0,8027877657 0,0350887219 0,612294485 0,07823482048 0,707541125 ± 0,115531067

RF 0,8272610402 0,0156180859 0,663513493 0,07302492679 0,745387266 ± 0,099632327

SVC 0,8473141606 0,0295036641 0,665387544 0,08281196334 0,756350852 ± 0,112376541

Total 0,803479667 0,042666978 0,61103841 0,073786739 0,70725904 ± 0,11389653

Regarding our approach for prioritizing issues, we analyzed Table 4.5 sta-

tistically for 3 populations (All, Before, and After). This was accomplished

by examining 7 paired samples, each representing a distinct interval of time

denoted in days as a window. The family-wise significance level of the tests

is al pha = 0.050. We failed to reject the null hypothesis that the population is

normal for all populations (minimal observed p− value = 0.479). Therefore, we

assume that all populations are normal. We applied Bartlett’s test (Bartlett,

1937) for homogeneity and failed to reject the null hypothesis (p = 0.704) that

the data is homoscedastic. Thus, we assume that our data is homoscedastic.

Because we have more than two populations and all populations are normal

and homoscedastic, we use repeated measures Analysis of Variance (ANOVA)

(Girden, 1992) as an overall test to determine if there are any significant differ-

ences between the mean values of the populations. If the results of the ANOVA

test are significant, we use the post-hoc Tukey HSD test (Tukey, 1949) to in-

fer which differences are significant. We report each population’s mean value

(M) and standard deviation (SD). Populations are significantly different if their

confidence intervals are not overlapping. We reject the null hypothesis (p =

0.000) of the repeated measures ANOVA that there is a difference between the

mean values of the populations Before (M=43.633±10.524, SD=16.116), Af-

ter (M=54.607±10.524, SD=12.284), and All (M=64.156±10.524, SD=17.422).

Therefore, we assume that there is a statistically significant difference be-

tween the mean values of the populations. Based on the post-hoc Tukey HSD

test (Tukey, 1949), we assume no significant differences within the following

groups: After and All. All other differences are significant.

Our statistical analysis reveals a strong correlation between peaks and up-
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Table 4.5: Summary of results by window.

Window
(days)

Release Related Peak (%)

All Before After

7 82.63 ± 18.85 60.61 ± 21.37 67.26 ± 19.92

6 80.24 ± 19.80 57.74 ± 21.05 65.31 ± 19.58

5 74.67 ± 21.18 53.66 ± 22.36 62.44 ± 20.22

4 68.14 ± 21.49 47.78 ± 22.44 58.35 ± 21.53

3 59.49 ± 22.46 39.19 ± 21.95 50.88 ± 22.59

2 48.58 ± 20.66 30.32 ± 19.66 44.23 ± 22.44

1 35.34 ± 19.89 16.13 ± 14.82 33.78 ± 21.54

Table 4.6: General results separated by groups.

Group
Metrics Release Related Peak (%)

Number
of reviews

Avg
Changelog

Avg Issues
per Day

Before After All

All 12035 - 370937 6.9 ± 1.7 37.7 ± 42.7 43.85 ± 26.02 54.69 ± 25.40 64.34 ± 27.16

Low 12035 - 26502 6.2 ± 2.3 6.3 ± 3.0 58.55 ± 34.09 71.24 ± 30.92 76.87 ± 27.33

Medium 46764 - 119486 7.0 ± 1.7 30.5 ± 26.4 42.05 ± 24.52 51.84 ± 23.53 61.58 ± 26.45

High 204694 - 370937 6.3 ± 0.6 43.6 ± 29.8 52.26 ± 30.73 55.76 ± 25.15 68.77 ± 29.54

ward trends in the time series and app release dates. This is illustrated in

Figure 4.29, which presents a stacked line representation of the Instagram

app’s time series, categorized by criticality levels. The results indicate that

app releases tend to occur more frequently after detecting issue spikes. How-

ever, it is noteworthy that only 50% of releases occur within three days or less

after the issue peak, and approximately 66% occur within seven days.

Table 4.6 further supports this relationship, showing a significant asso-

ciation between release dates and detected issue spikes. Specifically, when

considering a window of three days before and three days after the peak,

an average of 39.19% ± 21.95% of releases occurred before the peak, while

50.88% ± 22.59% occurred after the peak. This pattern holds true across var-

ious observation window sizes. Notably, as the observation window decreases,

a positive correlation becomes more pronounced between patch releases and

the releases that caused issues. This implies that issues resulting from a

release may take several days to manifest and impact the overall volume of

reported issues.

However, our approach demonstrates the capability to detect ascending

patterns of issues within the temporal sequence leading up to their culmi-

nation. This empowers software professionals to proactively anticipate the

release of corrective solutions, thereby mitigating potential issues before they

escalate.
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A commonly used statistical measure to assess risk is the standard devia-

tion, which quantifies the dispersion of data in a distribution. A higher stan-

dard deviation indicates more significant variability around the mean. In Table

4.6, the standard deviation of issues per day is reported as 37.7 ± 42.7%. This

indicates that there are periods of significant variation, suggesting the pres-

ence of issue peaks in the time series. Such variations are of interest to us as

they help identify outliers.

An interesting finding in our results is that approximately 64% of updates

are associated with issue spikes. This aligns with the findings of a previous

study by Mcilroy et al. (2016a), which reported that 63% of updates are bug

fixes.

We conducted an empirical analysis and observed the generated results

regarding the prioritization of levels using our risk matrix. Figure 4.32 illus-

trates issues allocated in the lower-left position of the matrix (i1, j5), indicating

a low priority level. In this context, a low priority level corresponds to bugs,

enhancements, or requests that are perceived as optional and do not signifi-

cantly impact the app’s functionality or performance (Malgaonkar et al., 2022).

On the other hand, at the top-right position of the matrix (i5, j1), we have a high

priority level that represents bugs, enhancements, or requests considered crit-

ical and have a significant impact on the app’s functionality or performance

(Malgaonkar et al., 2022).

Figure 4.32: Issues assigned a low priority level

4.7 Threats to Validity

In this section, we present threats to the validity of our experiment. The

identified threats are discussed in four types of validity: construct validity, in-

84



Figure 4.33: Issues assigned a high priority level

Table 4.7: Summary of results by the period in months.

Data
Period

Release Related Peak (%) Metrics

All Before After Avg Issues
per day (%)

Changelog
in period

Avg between
releases (%)

1 59.01 ±19.55 41.60 ±17.53 50.28 ±19.61 39.5 ±43.6 1804.00 ±665.42 7.22 ±1.64

2 59.93 ±18.38 44.06 ±17.53 49.16 ±17.78 37.4 ±43.0 2274.07 ±887.19 7.21 ±1.71

3 61.26 ±19.71 45.26 ±17.85 51.73 ±19.76 40.0 ±43.6 2800.00 ±1087.98 7.05 ±1.76

4 74.07 ±21.80 43.17 ±28.15 62.57 ±29.86 34.8 ±42.0 559.26 ±214.75 5.92 ±1.55

5 69.62 ±22.44 42.39 ±20.39 61.71 ±20.92 36.9 ±42.8 962.50 ±332.68 6.79 ±1.71

6 60.54 ±22.00 44.82 ±22.01 52.40 ±19.26 39.4 ±42.3 1360.87 ±498.47 7.19 ±1.67

ternal validity, external validity, and conclusion validity (Wohlin et al., 2012).

Construction validity concerns the relationship between theory and observa-

tion, i.e., if the treatment reflects the cause well, the result reflects the ef-

fect well. Inferences about the causal relationship between treatments and

outcomes are considered for internal validity. External validity is the gen-

eralizability of our experimental results. The validity of concluding refers to

the correct inference about the relationship between the treatment and the

experimental result (Wohlin et al., 2012).

4.7.1 Construct validity

Our experiment aims to evaluate the performance of our issue detection

model compared to supervised models. We used a cross-validation scheme to

compare our model directly with supervised models. To compare our proposal

with supervised models that use 80% training and 20% testing, we compare

the same 20%.

To assess issue prioritization ability, we correlated issue spikes and app

releases. If there is an issue that becomes severe over some time, that issue

was most likely introduced by a faulty app update. Going in, we need a volume

of reviews for this to work. To mitigate this, we consider apps with a minimum

review volume.
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4.7.2 Internal validity

In the validation of the issue detection method, we depend on the quality

of the dataset annotation to verify the classification. However, in our study,

all classification methods run with the same data preprocessing and default

configuration. No results were obtained through special preprocessing steps

or adjustment settings according to the evaluated method.

When evaluating issue prioritization, we must ensure that app releases are

properly reported in the app stores. However, some updates can be done with-

out going through the app store, e.g., Web-View, remote database response

latency, and server crashes. To mitigate this, we drop apps that do not have a

minimum number of releases.

4.7.3 External validity

To use MApp-IDEA in a real scenario is necessary to have a sufficient num-

ber of revisions distributed over time, that is, a minimum number of available

time series observations for the problem detection and prioritization model to

work correctly. Therefore, our method is best suited in practical terms when

large volumes of app reviews can be analyzed.

4.7.4 Conclusion validity

To reach the correct conclusion about the relationships between treatments

and experimental results, we took the following precautions: (i) we followed

the recommendations presented by (Wohlin et al., 2012); (ii) objective mea-

sures were adopted to increase the reliability of the results; (iii) treatments

were uniformly applied to all datasets; and (iv) the study was carried out in a

laboratory environment under the same circumstances.

To increase the reliability of our study analysis, we chose only objective

measures with the independent variable. We used the statistical analysis pro-

posed by (Herbold, 2020), a framework for comparing (multiple) paired popu-

lations.

4.8 Final Remarks

In this chapter, we introduce the MApp-IDEA method to detect issues, clas-

sify the issues in a risk matrix with prioritization levels, and monitor the tem-

poral dynamics of issues and risks. Our method contributes an efficient so-

lution to the research question of prioritizing and addressing user reviews in

time so that the app is competitive and guarantees the timely maintenance

and evolution of the software.
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The findings demonstrate that the opinions extracted from user reviews

provide information about app issues and risks. The results indicated that our

unsupervised approach is competitive compared to supervised approaches for

issue detection. Our method can prioritize issues in criticality levels and mon-

itor the temporal evolution of issues and risks. MApp-IDEA aims to reduce the

gap between issue incidence and identification by introducing an automated

dashboard that enables developer access to automatic notifications, alerts,

issue heat map networks, issue trees, issue time series, and issue detector

trends. MApp-IDEA allows the prioritization of issues through a dynamic and

user-friendly risk matrix while also monitoring temporal trends in identified

risks.

The findings revealed that approximately 64% of the releases are associated

with issue peaks in the analyzed time series. Upon identification of a peak in

the time series, merely half (50%) of the app releases are performed within

three days or less, and approximately two-thirds (66%) within seven days.

Our findings indicate that issues detected early by our approach are associ-

ated with later fix releases by developers, and issues caused by app releases

can take more days to increase the volume of reported issues significantly.

Nonetheless, by utilizing a risk matrix and temporal modeling, MApp-IDEA

can effectively establish priorities and detect an ascending trend of potential

issues before their culmination. The expeditious resolution of prioritized is-

sues in a fiercely competitive environment is imperative in preventing unfavor-

able app evaluations. The MApp-IDEA promotes the anticipation of issue-fix

releases by software engineers.
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CHAPTER

5
Learning Risk Factors from App

Reviews: A Large Language Model
Approach for Risk Matrix Construction

5.1 Introduction

The analysis of mobile app reviews enables the identification of trends and

issue patterns that can affect user experience and app reputation in app stores

(Genc-Nayebi and Abran, 2017). Based on this analysis, developers can pri-

oritize bug fixes, add requested features, and respond to user complaints to

improve app quality and increase positive ratings. To achieve this, it is neces-

sary to link user feedback extracted from reviews with app development and

maintenance practices (Araujo et al., 2021).

A simple and intuitive way to organize and prioritize actions for software

maintenance, aiming to reduce negative ratings, is through a risk matrix (Xi-

aosong et al., 2009; Pilliang et al., 2022). This matrix consists of a graphical

representation where risks are positioned on a Cartesian plane based on their

probability of occurrence and impact/severity. Risks are classified according

to their importance and potential to harm app quality, as shown in Figure

5.1. Thus, it assists software engineering professionals in identifying the most

critical areas that require prioritized attention. However, manual construction

of a risk matrix often consumes a significant amount of time as stakeholders

(Paltrinieri et al., 2019), such as project managers and product owners, need

help understanding the context of risks recorded by the development team.
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For example, using different descriptions to report the same risk and the large

volume of reviews make risk assessment challenging. Therefore, there is a

need for automatic machine learning-based methods to extract risks from re-

views and classify their priority.

Figure 5.1: Risk matrix

Some initiatives in the literature already automate risk matrix generation

using machine learning methods. For example, Chaouch et al. (2019) and

Hammad and Inayat (2018) use Scrum with risk matrix, but with manual

assessments. A recent study proposed using language models (e.g., BERT)

and data clustering methods (e.g., K-Means) to automate risk matrix gener-

ation in software development projects (Pilliang et al., 2022). However, such

studies have not yet explored the app review domain and rely on manually

constructed resources, such as a vocabulary or lexicon to define risk priority.

Another limitation is the lack of a step to extract app features from reviews,

which is crucial for the development team.

To address this gap, we argue that recent Large Language Models (LLMs)

are promising to automatically construct a risk matrix using information ex-

tracted from app reviews, such as features and bugs, organized according

to the probability of occurrence and impact/severity to the app ratings. LLMs

can analyze and understand complex contextual information present in review

texts due to their extensive pre-training corpus (Ross et al., 2023).

This chapter presents a novel approach for generating Risk Matrix from

App Reviews using Large Language Models, specifically the OPT model (Open

Pre-trained Transformer Language Models) (Zhang et al., 2022). While large-
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scale language models like GPT (Brown et al., 2020) are widely used, we opted

for OPT, an open-access language model. By providing specific instructions

to the model through prompt engineering, it is possible to direct its attention

to particular aspects of reviews, such as app features mentioned by users

and the evaluation of risks’ impact/severity associated with the apps. Our

contributions are three-fold:

1. Dynamic and automatic prompt generation: We introduce an approach

that enables the creation of customized instructions for each review to be

analyzed, allowing the OPT model to extract app features as described by

users in natural language. This enables more accurate and automated

review analysis through few-shot learning, resulting in feature extraction

with limited labeled data.

2. Prompt instructions to identify risk impact: We develop suitable in-

structions to automatically identify the severity or impact of risks men-

tioned in the reviews, classifying them into five levels: negligible, minor,

moderate, major, and critical. In this case, we employ zero-shot learning,

meaning there is no need to provide examples to the model.

3. Evaluation of Open Pre-trained Large Language Models: We evaluate

how prompt engineering for OPT-based models compares to large pro-

prietary language models such as GPT. By adopting OPT, we enable the

use of large language models in scenarios with limited computational re-

sources and constraints involving sensitive and private user data. This

democratizes access to the usage of LLMs in more restricted contexts.

We conducted experimental evaluations using a database of reviews from

eight mobile apps. Through the proposed approach, we constructed risk ma-

trix for each app and compared them with their respective reference risk ma-

trix constructed with annotated data. The experimental results demonstrate

that, with proper prompt optimization, OPT models are capable of generating a

competitive risk matrix compared to GPT. While there is room for improvement

compared to reference risk matrices, our results indicate a significant step to-

ward the maintenance and evolution of software products, enabling feature

prioritization that requires more attention from developers.

The rest of this chapter is structured as follows. Section 5.2 provides the

background and discusses related works in the field. Section 5.3 presents the

LLM-based risk matrix learning approach applied to app reviews with a focus

on dynamic prompt construction for feature extraction (5.3.1), the estimation

of review impact (5.3.2), and addresses the estimation of occurrence likeli-

hood 5.3.3. Section ?? presents the experimental evaluation, describing the
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datasets used (??), experimental setup (??), and discussing the results (5.4.9).

Section 5.5 highlights the limitations of the approach, and finally, Section 5.6

offers the final remarks of the chapter, summarizing the main findings and

contributions.

5.2 Background and Related Works

Early initiatives for analyzing reviews focusing on software maintenance

explore named entity extraction techniques (such as software features) from

reviews using predefined linguistic rules, such as Safe (Johann et al., 2017),

GuMA (Guzman and Maalej, 2014), and ReUS (Dragoni et al., 2019). These

approaches require sets of linguistic patterns, relying on experts to constantly

update them. With the advancement of machine learning methods, models

are trained to identify the entities of interest from a large set of labeled data.

An example of such an approach is RE-BERT (Araujo and Marcacini, 2021),

which uses annotated data to fine-tune a pre-trained BERT model to identify

features or software requirement candidates mentioned by users in reviews.

With the recent emergence of Large Language Models (LLMs), such as GPT-

3 and OPT (Zhang et al., 2022), opinion mining and sentiment analysis have

also evolved to incorporate such models, although still with few applications

in the context of app reviews. These models have architectures with billions

of parameters and are pre-trained on large amounts of text, thereby providing

capabilities for understanding and extracting knowledge from textual data.

While the general aim of these models is text generation, their outputs can

be conditioned through instructions or prompts (Strobelt et al., 2022). For

example, the task of feature extraction or entity extraction from reviews can be

performed using a paradigm called few-shot learning (Logan IV et al., 2022).

In this case, the model receives a prompt that provides information about

the type of feature to be extracted and a few samples related to that feature.

It is worth noting that, in addition to feature extraction, the same LLM can

also be used to identify the impact of reviews according to their severity level,

where prompts can be used to guide the model in classifying the severity of

the evaluations.

Another common strategy for app review analysis is the use of clustering

methods or topic modeling based on review characteristics to organize them

according to their similarities (Noei et al., 2021). This allows for identifying

groups of reviews that mention similar problems, indicating the likelihood of

bugs or complaints related to those issues. By combining feature extraction,

severity classification, and the identification of the likelihood of app reviews,

we can automate the construction of risk matrices (Pilliang et al., 2022). These
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matrices can provide an overview of the risks associated with an app based on

the information extracted from user reviews.

A review of the existing studies reveals various aspects related to risk man-

agement in software projects. In (Xiaosong et al., 2009; Chaouch et al., 2019;

Hammad and Inayat, 2018), the authors discuss risk management in agile

software development projects. Xiaosong et al. (2009) presents basic risk

management concepts for software development projects, while Chaouch et al.

(2019) proposes a framework for integrating risk management in agile projects

using Scrum. Additionally, Hammad and Inayat (2018) also explores the inte-

gration of risk management in the Scrum framework, highlighting the impor-

tance of an iterative risk management process for project success.

In Hammad et al. (2019) and Ionita et al. (2019), the authors focus on

identifying the risks faced by agile development practitioners and mitigation

strategies. (Hammad et al., 2019) reveals that project deadlines and changing

requirements are the most commonly encountered risks, while Ionita et al.

(2019) proposes a framework that uses a risk assessment process to prioritize

security requirements.

Pilliang et al. (2022) propose a risk matrix model for software development

projects, using natural language processing and machine learning techniques

to prioritize risks. The proposed model offers an approach for the automated

construction of risk matrices by combining sentiment analysis based on lexi-

cons or vocabularies to identify the impact of the risk and clustering methods

to identify the likelihood of occurrence.

Although these studies address different aspects of risk management in

software projects and the application of risk matrices, it is important to high-

light some general limitations. Most studies focus on specific contexts, such

as agile development or information security, which may limit the generaliz-

ability of their findings to other types of software projects. There is a gap in

the literature on generating risk matrices from app reviews. Our focus is on

generating a risk matrix based on reviews, especially in scenarios with little

labeled data, which can be used in a wider range of applications at different

stages of software development, from its conception to its maintenance.

5.3 LLM-based Risk Matrix Learning from App Reviews

The proposed approach leverages Large Language Models (LLMs) to extract

relevant information from user reviews and utilize it in constructing a risk

matrix. In general, the idea is to exploit the text generation capability of an

LLM, but conditioned for a specific task.

Formally, the task of predicting the next word in an LLM can be formulated
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as finding the most likely word P(wi+1∣w1,w2, ...,wi) given a sequence of words

w1,w2, ...,wi. This probability is estimated using the neural weights of the LLM,

which is pre-trained on large textual corpora. The pretraining of the LLM is

accomplished through a process called autoregressive language modeling in a

Transformer neural architecture. During pretraining, the model learns to cap-

ture linguistic patterns and construct representations of words and phrases

that can be used to predict the next word in a sequence.

Considering the context of software reviews as input, the proposed ap-

proach aims to condition the prediction of the next word through a prompt.

Now, the conditioned probability P(wi+1∣w1,w2, ...,wi;Θ), where Θ represents the

prompt, is used to guide the prediction of the next word.

In the proposed method, we use the Open Pre-trained Transformers (OPT)

as the Large Language Model (LLM). Most models available through APIs do

not provide access to the full model weights obtained during pretraining, mak-

ing it difficult to study them in detail and reproduce the experimental results.

On the other hand, the OPT was developed to overcome this limitation by

providing pre-trained models with different numbers of parameters. For ex-

ample, models range from 125 million to 175 billion parameters. The authors

of OPT conclude from their experiments that OPT-175B is comparable to GPT-

3 (Zhang et al., 2022). However, some smaller models can achieve promising

results through the appropriate use of prompts, as proposed in the next sec-

tion.

Figure 5.2 provides an overview of the our method used for constructing

the risk matrix.

5.3.1 Dynamic Prompt Construction for Feature Extraction

The first step of the proposed method involves the dynamic construction

of prompts from a knowledge base of reviews from other apps, different from

the target app, thereby avoiding the need for labeled data from the target

application to be analyzed.

The knowledge base is represented through embeddings of reviews, which

are numerical vectors that capture the semantics and context of words and

phrases. These embeddings are obtained using deep learning algorithms, such

as Sentence-BERT (Reimers and Gurevych, 2019), which map texts into vector

representations in latent spaces. Formally, given a set of software reviews in

the knowledge base, we can represent them as R1,R2, ...,Rn, where Ri represents

a specific review.

Each review Ri is converted into a vector representation using a pre-trained

embedding model. This representation is denoted as e(Ri), where e() repre-

sents the embedding function. In this way, we have a set of vectors represent-
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Figure 5.2: The overview of our Risk Matrix construction method

ing the reviews in the knowledge base: e(R1),e(R2), ...,e(Rn).

To retrieve the most similar reviews to a target review of interest, we employ

the k-nearest neighbors technique. In this approach, we calculate the simi-

larity between the embedding vector of the target review and the embedding

vectors of all the reviews in the knowledge base. The similarity is commonly

measured by the cosine of the angle between the vectors. Formally, to find

the k-nearest neighbors of a target review Ri, we denote this list as KNN(Ri)

and define it as KNN(Ri) = argmaxk(sim(e(Ri),e(Rk))), where sim() represents the

similarity function and argmaxk returns the k indices corresponding to the most

similar reviews to Ri.

The k-nearest neighbors are then used to generate prompts related to the

extraction of text snippets that describe software features. This nearest neigh-

bors search approach allows the method to leverage the existing knowledge

base and learn from similar examples, becoming a type of few-shot learning

for the task of feature extraction from software reviews.

Figure 5.3 shows a prompt generated for the Instagram app. In blue are

examples identified by similarity from the knowledge base generated through

reviews and features of other applications. In red, it is the review to be pro-

cessed. The model is induced to generate a list of features from the review

after the “@” symbol.
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Figure 5.3: Example of a prompt generated for the Instagram app

5.3.2 Estimating Review Impact

Building upon the previous step, we have a list of features extracted from

software reviews. Thus, the second step of the method utilizes each extracted

feature from the previous step into a prompt to instruct the LLM to identify

the severity or impact on five levels: negligible, minor, moderate, major, and

critical. Figure 5.4 presents an example of the prompt used. Note that we pro-

vide the prompt constructed along with the feature and let the model complete

the severity classification. Unlike the previous step, we condition the model to

offer an answer within a limited set of options.

This zero-shot learning process enables the model to identify the severity

of features even without receiving specific prior examples for each feature. Al-

though the model has not been explicitly trained on specific examples of sever-

ity classification in software reviews, it is capable of inferring patterns and

generalizing based on the information captured during model pre-training.

5.3.3 Estimating Occurrence Likelihood

While the first two steps allow mapping reviews onto the "impact" dimen-

sion of the risk matrix, the third step is responsible for mapping reviews onto

the "occurrence likelihood" dimension. In this step, a graph-based strategy is
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Figure 5.4: Prompt generated to obtain the severity classification for the In-
stagram app

employed.

The reviews and extracted features from the previous step are represented

as textual expressions of interest and treated as vertices in a graph. Similar

pairs of vertices are connected through edges. The similarity between the

expressions is measured using embeddings and cosine similarity. In this case,

consider a set of expressions extracted from software reviews, represented as

E = {t1,t2, ...,tm}, where each ti is an expression from the review containing the

extracted feature. Similar to the first step, these expressions are converted

into embeddings, which maps each expression to a feature vector.

The similarity between two embedding vectors is calculated using a metric

such as cosine similarity. Let sim(e(ti),e(t j)) be the function that computes the

similarity between two expressions. If the similarity value exceeds a predefined

threshold, an edge is created between the corresponding vertices. Based on

these similarities, we can construct the graph G = (V,E), where V is the set of

vertices and E is the set of edges, as illustrated in Figure 5.5.

The degrees of the graph’s vertices identify expressions that have a higher

likelihood of occurrence. The degree values are discretized into five levels

representing different levels of occurrence likelihood. For this purpose, the
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Figure 5.5: Edge is created between the corresponding vertices if the similarity
value exceeds a predefined threshold

discretization also considers the average degree of the graph, using this value

for normalization following a normal distribution. This normalization allows

mapping the node degree values onto a standardized scale. Using the mean

and standard deviation of the degree values, the normal distribution function

is applied, where values close to the mean have a higher probability and values

farther from the mean have a lower probability.

Finally, the risk matrix is constructed considering the previous steps’ im-

pact and occurrence likelihood dimensions. The next section presents an ex-

perimental evaluation of the proposed approach.

5.4 Experiment Design

We conducted an experiment to evaluate the approach presented in this

paper. To do so, we followed the guidelines proposed by Wohlin et al. (2012).

The experimental design is detailed in the remainder of this section.

5.4.1 Definition of Research Questions

Our central research question is: how do we learn risk factors from app
reviews using Large Language Models and prioritize app reviews and anticipate
to mitigate risks?

To answer this main question, we divided it into two specific research ques-

tions, as follows:

• RQ1: How can we extract features using LLMs with limited labeled data?
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• RQ2: How can we identify the severity or impact of risks mentioned in

the reviews and automatically organize them into a risk matrix?

The experiment was conducted to address the research questions pre-

sented in this section.

5.4.2 Experiment Definition

The experiment is defined as follows (Wohlin et al., 2012):

• analyze risk matrix construction method using LLM,

• to evaluate feature extraction, impact estimation, and likelihood estima-

tion,

• with respect to model performance,

• from the point of view of the researcher,

• in the context of crowd feedback from app user reviews.

5.4.3 Preparation and Planning

The experiment plan comprises the sample selection, description of the

experimental package, definition of variables, and description of employed de-

sign principles.

To evaluate the performance of the risk matrix construction approach, we

compare our strategy with other state-of-art approaches.

5.4.4 Sample Selection

To evaluate the risk matrix construction approach, we selected app review

datasets used in previous studies of review mining (Dabrowski et al., 2020).

In this context, we utilized human-labeled data consisting of reviews, app

features, and corresponding sentiment to generate the impact of a risk matrix.

We used eight mobile apps from these datasets, as described in Table 5.1.

We included apps from different categories to enhance the generalizability of

our results. The ground truth consists of 1,000 reviews for the eight analyzed

apps, with 1,255 distinct features, meaning they are mentioned only once,

making extracting app features from reviews more challenging.
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Table 5.1: The overview of the datasets used for automatic risk matrix con-
struction.

Labeled Distinct

App Reviews reviews Sentences Features features

eBay 1,962 125 294 206 167

Evernote 4,832 125 367 295 259

Facebook 8,293 125 327 242 204

Netflix 14,310 125 341 262 201

Photo editor 7,690 125 154 96 80

Spotify 14,487 125 227 180 145

Twitter 63,628 125 183 122 99

WhatsApp 248,641 125 169 118 100

5.4.5 Experimental Package

In our experiment, we have three objects:

• feature extraction;

• impact estimation; and

• likelihood estimation.

The following components are part of the experiment package:

• Reference dataset description: Our experiment utilized human-labeled

data containing reviews, app features, and sentiment. This dataset was

obtained from Dabrowski et al. (2020).

• Object definition: We use Python programming to define each object.

• Machine learning classification methods: We compared our proposed

OPT-based approach with three rule-based methods (GuMa, SAFE, ReUS),

a fine-tuning method of language models (RE-BERT), and a large lan-

guage model (GPT 3.5).

5.4.6 Variables

The independent variables (factors) controlled in the experiment were fea-

ture extraction and risk estimation, and their respective treatments are de-

scribed below.
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5.4.6.1 Feature Extraction Factor

The values assigned to this variable (treatments) are six classifiers (GuMa,

SAFE, ReUS, RE-BERT, GPT, and our OPT-based Proposal). The dependent

variable, which is affected by the treatment, is (i) the F1-Score, a measure of

the accuracy of a test (RQ1), and (ii) MAPE / MAE employs typical measures

from the regression field for prediction error (RQ2).

To evaluate the feature extraction step, we use the F1 measure for feature

matching, as proposed by (Dabrowski et al., 2020), that corresponds to the

harmonic mean of Precision (5.1) and Recall (5.2), where TP (True Positive)

refers to the number of features that were both extracted and annotated; FP

(False Positive) are features that were extracted but not annotated, and FN

(False Negative) refers to the features annotated but not extracted. Equation

5.3 defines the F1 measure.

This measure allows us to assess the precision and recall of feature extrac-

tion in relation to annotated reference features. The parameter n of the Feature

Matching allows for flexible matching, where n = 0 indicates exact matching,

while n > 0 represents the difference between the sizes of the extracted and

labeled sequences. We used n = 2 in the experimental evaluation.

P =
T P

T P+FP
(5.1)

R =
T P

T P+FN
(5.2)

F1 =
2∗P∗R

P+R
=

2∗T P
2∗T P+FP+FN

(5.3)

5.4.6.2 Risk Estimation Factor

The risk matrix is evaluated in the impact dimension by comparing the nu-

merical level of the reference impact with the impact estimated by our method.

For this evaluation, we employ typical measures from the regression field,

such as the Mean Absolute Percentage Error (MAPE) and the Mean Absolute

Error (MAE), as defined in Equation 5.4 and 5.5 respectively,

MAPE =
1
n
∑

n
t=1
∣realt − predt ∣

realt
(5.4)

MAE =
∑

n
t=1 ∣realt − predt ∣

n
(5.5)

where realt is the real value and predt is the predicted value by the method, and

n is the sample size.
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5.4.7 Experimental Design

In this experiment, the experimental design has two factors (feature extrac-

tion and risk estimation) with the following treatments (Wohlin et al., 2012):

• Feature extraction treatments: GuMa, SAFE, ReUS, RE-BERT, GPT, and

OPT-based approach.

• Risk estimation treatments: GPT and OPT-based approach.

For the step of extracting features from reviews of applications, we com-

pared the proposed OPT-based approach with three rule-based methods (GuMa,

SAFE, ReUS), a fine-tuning method of language models (RE-BERT), and a large

language model (GPT 3.5).

Concerning the second aspect of evaluation, we compared the proposed

approach with GPT. In this scenario, both models operate in the zero-shot

learning format.

5.4.8 Operation of the Experiment

Concerning the step of extracting features, GuMa performs feature extrac-

tion using a collocation search algorithm, which identifies commonly used

expressions of two or more words that convey a specific meaning through co-

occurrence-based measures. SAFE, relies on manually identified linguistic

patterns, including patterns of parts of speech and sentences, to extract fea-

tures from applications. ReUS utilizes linguistic rules composed of patterns

of parts of speech and semantic dependency relations. These rules allow for

simultaneous feature extraction and sentiment analysis. To determine sen-

timent, the method employs lexical dictionaries. In contrast, RE-BERT uses

pre-trained language models to generate semantic textual representations, fo-

cusing on the local context of software requirement tokens. However, RE-

BERT is a supervised learning method, i.e., it requires a labeled dataset for

model training.

The proposed method employs the OPT-6.7b model, which contains 6.7

billion parameters, for the step of extracting features from application re-

views. In this step, we employ the proposed strategy of dynamically gener-

ating prompts. We use a cross-domain approach, where reviews from other

applications (source apps) are used as a knowledge base to generate specific

prompts for each review of the target app. This cross-domain approach with

dynamic prompt generation allows the model to be fed with information from

related applications, expanding its ability to generalize without requiring prior

knowledge about a specific target app. To perform this prompt generation, we
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use the Sentence-BERT (Reimers and Gurevych, 2019) embedding model with

k = 10 to compute the nearest neighbors based on cosine similarity.

For identifying the impact of the feature-review pair, our proposal utilizes

the OPT-IML-1.3b model (Iyer et al., 2022). This model results from a fine-

tuning process of large pre-trained language models on a collection of tasks

described through instructions, also known as instruction-tuning. This pro-

cess aims to improve the generalization capability of these models for previ-

ously unseen tasks. Our proposal employs the zero-shot learning strategy in

this step. This means that the model is capable of learning to identify the im-

pact of a feature-review pair, even without receiving specific examples of this

relationship during training.

Finally, we also use GPT 3.5 as the reference model, which is another pre-

trained language model, but in the category of Large Language Models. It is

used for both the extraction of features from reviews and the identification of

review impact. We employ a zero-shot learning strategy by providing instruc-

tions and only examples of how the extraction output should be formatted.

5.4.9 Results and Discussion

The experimental results are analyzed considering two main aspects: (1)

the performance of the F1 score in the matching of feature extraction from

app reviews, and (2) the error (MAPE and MAE) in constructing the risk ma-

trix, particularly in the impact dimension. The likelihood dimension in the ref-

erence risk matrices was obtained in the same way as the proposed method.

Hence there are no significant variations for comparison.

Regarding the first aspect, we analyze the proposed dynamic prompt gen-

eration for OPT and the few-shot prompt learning, compared to a supervised

reference approach based on RE-BERT and classical rule-based methods. The

aim is to demonstrate the performance of OPT models in the absence of labeled

data and the generalization capability of LLMs for new tasks and domains.

Table 5.2 presentes an overview of the experimental results in the task of ex-

tracting features from application reviews.

We observed that the proposed approach achieves superior results com-

pared to rule-based methods but inferior results to the supervised RE-BERT

model. However, it is important to note that supervised models require a

significant amount of annotated data, necessitating the annotation of all fea-

tures in each review of the training set for a model generation — a very time-

consuming task. Although this strategy shows promising results, it may not

be feasible in scenarios with a lack of domain experts or in dynamic settings

with frequent review updates, which is common in mobile application quality

monitoring and maintenance through reviews.
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Table 5.2: Comparison of approaches GuMa, SAFE, ReUS, RE-BERT, GPT
(zero-shot learning) and OPT (Proposal with few-shot learning) for feature ex-
traction from app reviews.

APP F1 Matching Score (n = 2)

GuMa SAFE ReUS RE-BERT GPT Proposal

eBay 0.22 0.36 0.21 0.53 0.22 0.39

Evernote 0.24 0.33 0.28 0.63 0.14 0.46

Facebook 0.19 0.24 0.19 0.61 0.20 0.40

Netflix 0.21 0.28 0.27 0.62 0.23 0.41

PhotoEditor 0.28 0.34 0.26 0.81 0.32 0.56

Spotify 0.28 0.35 0.27 0.60 0.17 0.48

Twitter 0.27 0.35 0.26 0.67 0.25 0.47

WhatsApp 0.26 0.39 0.24 0.61 0.18 0.47

Our approach yielded promising results compared to the proprietary GPT

model with zero-shot learning. In addition to requiring less labeled data than

fully supervised models, our few-shot prompt learning strategy is based on

open models, without restrictions on proprietary APIs or limitations on pro-

cessing private or sensitive data.

Concerning the second aspect of evaluation, we compared the proposed ap-

proach with GPT. In this scenario, both models operate in the zero-shot learn-

ing format. However, it should be noted that we used OPT-IML (instruction

meta-learning), which is fine-tuned with hundreds of instructions but with a

smaller number of parameters. In this case, the utilized OPT-IML model has

1.3 billion parameters, and we analyzed the risk matrices generated with the

features extracted from the previous step. As illustrated in Table 5.3, OPT-IML

exhibits a lower error in constructing the risk matrix in the impact dimension,

highlighting it as a promising alternative compared to the proprietary GPT

model.

Figure 5.6 illustrates a risk matrix constructed automatically with the pro-

posed approach for Netflix app. Note that reviews and app features catego-

rized as critical impact and with a high likelihood of occurrence are frequent

complaints with a strong negative sentiment. This occurs because the model

identifies that such complaints have a greater severity on the application’s

reputation, meaning they directly affect the app’s ratings in the store.

In summary, the experimental results suggest that open and accessible

Large Language Models (LLMs) can play an important role in developing auto-

mated tools for analyzing mobile application reviews, facilitating risk identifi-

cation, as well as contributing to monitoring and prioritizing software mainte-

nance tasks.
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Table 5.3: Error comparison in the Risk Matrix construction.

APP GPT-3.5 OPT-IML

MAE MAPE MAE MAPE

eBay 1.000 0.517 0.913 0.335

Evernote 1.053 0.532 1.160 0.388

Facebook 1.092 0.331 0.965 0.285

Netflix 1.255 0.446 1.061 0.359

PhotoEditor 0.957 0.443 0.929 0.301

Spotify 1.034 0.344 0.840 0.244

Twitter 0.943 0.267 0.971 0.253

Whatsapp 1.133 0.378 1.120 0.357

5.4.10 Findings to Research Questions

Returning to the initial primary research question: “How do we learn risk
factors from app reviews using Large Language Models and prioritize app re-
views and anticipate to mitigate risks?”. We addressed it by formulating two

specific questions (see Section 5.4.1) and answering them based on the results

obtained from the conducted experiment.

We present objective answers to each research question below (RQ1 and

RQ2), highlighting the main findings:

• (RQ1) Feature extraction with limited labeled data. We introduced

the analysis and classification of app reviews using Large Language Mod-

els (LLMs) with limited computational resources and data privacy con-

straints. We incorporated a dynamic and automatic prompt generation

technique to extract specific app characteristics mentioned in the re-

views. The experimental results showed that our OPT-based proposed

approach is superior to rule-based and has advantages over supervised

methods that require a significant amount of labeled data. The find-

ings demonstrated that our proposal is competitive compared to large

proprietary language models like GPT-3.5. Despite potential areas for

improvement, the findings suggest significant progress in extracting fea-

tures using LLMs with limited labeled data.

• (RQ2) Automated risk matrix construction. We developed and evalu-

ated instructions to classify the severity or impact of risks mentioned in

app reviews. These instructions served as prompts to guide our Large

Language Model (LLM) in categorizing the risks into five levels: negligible,

minor, moderate, major, and critical. The experimental results indicated
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Figure 5.6: Risk matrix constructed automatically with the proposed approach
for Netflix app

that our proposed approach, using LLMs, effectively identified the sever-

ity or impact of risks mentioned in the reviews and organized them into a

risk matrix. Our research reveals a significant advancement in the field

of software product maintenance and evolution using LLMs.

5.5 Threats to Validity

5.5.1 Internal Validity

Potential threats to internal validity include the quality and representative-

ness of the knowledge base of app reviews used for prompt construction. If

the knowledge base is biased or lacks diversity, it may impact the effective-

ness of the method. Additionally, the classification of risk severity based on

the app rating may introduce subjectivity and potential errors. To mitigate

these threats, we utilized review datasets from apps in different domains. We

also employed a cross-domain validation strategy, where we used datasets to

generate prompts from reviews of apps that are different from the target app

being analyzed.
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5.5.2 Construct Validity

Construct validity could be threatened if the classification of risk severity

based on the app rating does not truly reflect the impact of the risks. In

this study, our assumption is that one of the main risk factors for the app

is actions that impact its reputation (average overall rating) in the app store

and, therefore, increase the chances of being uninstalled or not even installed

by users. To enhance construct validity, further research should focus on

evaluating other types of risks associated with apps, such as security and

malfunctions that affect users’ smartphones.

5.5.3 External Validity

The external validity may be limited by the specific LLM used (OPT model)

and the dataset of app reviews. Different LLM architectures or datasets from

other domains may yield different results. The effectiveness of the approach

may also vary depending on the characteristics of the target app. To improve

external validity, conducting replication studies using different LLMs and di-

verse datasets from various app domains would be valuable. User studies or

obtaining feedback from software engineering professionals would also help

validate the practical usefulness and effectiveness of the risk matrices gener-

ated from app reviews.

5.6 Final Remarks

We introduced the analysis and classification of app reviews through a risk

matrix using Large Language Models (LLMs), specifically open-access methods

suitable for scenarios with limited computational resources and data privacy

constraints, in contrast to proprietary models like GPT.

Our proposed approach incorporates a dynamic and automatic prompt

generation technique, enabling the extraction of specific application charac-

teristics mentioned by users in the reviews. We also developed and evaluated

instructions to classify the severity or impact of the risks mentioned in the

reviews. These instructions serve as prompts to guide the LLM in classify-

ing the risks into five levels: negligible, minor, moderate, major, and critical.

This standardizes the risk assessment and facilitates the automatic construc-

tion of the risk matrix. The experimental results provide evidence that the

proposal, through Open Pre-trained Transformers (OPT), is competitive com-

pared to large proprietary language models such as GPT-3.5. Although there

is room for improvement regarding the risk matrices generated by supervised

reference models, our results indicate a significant advancement in software
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product maintenance and evolution.

Direction for future work involves the development of tools to support decision-

making, visualization, and monitoring associated with the risk matrices. These

tools would provide actionable insights and facilitate the interpretation of the

risk assessment results. Additionally, exploring techniques to enhance the

accuracy and granularity of the risk classification levels could further improve

the effectiveness of the risk matrix approach. Furthermore, investigating the

integration of external data sources, such as social media and user forums,

could provide additional context and insights into app-related risks. The de-

velopment of part of these tools is addressed and better discussed in the next

chapter.
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CHAPTER

6
Design and Architecture of the
Analytical Data Exploration Tool

6.1 Introduction

This chapter provides a comprehensive technical and documentary overview

of the architecture and implementation of our analytical tool designed for data

exploration, called the MApp-IDEA tool.

The rest of this chapter is structured as follows. In section 6.2, we will

discuss various system design and implementation aspects. We will start by

presenting the technologies schema 6.3, which provides an overview of the key

technologies components separated in a stacked layer schema. Next, we will

delve into patterns 6.4, specifically architectural patterns and design patterns.

We will explore the characteristics of these patterns and how they are used in

the project. Section 6.5 explores the system’s graphical interface, discussing

user interface design principles and frameworks employed. Additionally, we

will explore the RESTful Bus (6.6) architecture for communication, explaining

its concept, advantages, and implementation details in the system. Finally,

we will provide some final remarks (6.7).

RESTful architecture for communication

6.2 Component-based Development

Software development is a complex process that can benefit significantly

from adopting a component-based development approach. Component-based
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development focuses on building software systems by assembling reusable

and self-contained components, each responsible for a specific functionality

or service Szyperski (2002).

The MApp-IDEA tool is based on components aimed at reusability and in-

teroperability between systems and services. The components was designed to

be independent and self-contained, making them highly reusable in different

contexts and projects Clements et al. (2002). By reusing existing components,

we can save time and effort, leading to increased productivity and improved

software quality.

We highlight important keys about component-based development adopted

by the MApp-IDEA tool:

• Modularity. Components are developed, tested, and maintained inde-

pendently, allowing for better code organization and easier maintenance

Budgen (2003). Changes made to one component are less likely to have

an impact on other parts of the system, making it easier to update and

evolve the software.

• Scalability. Components are designed to be loosely coupled and inde-

pendent, so it becomes easier to scale specific parts of a software system

without affecting the entire application Szyperski (2002). This enables ef-

ficient resource utilization and ensures optimal performance even under

high loads.

• Collaboration. By providing well-defined interfaces and contracts, com-

ponents enable developers to work together effectively Clements et al.

(2002). Teams can focus on developing specific components (e.g., APIs)

that can be seamlessly integrated into the larger system. This encourages

specialization and facilitates code reuse and knowledge sharing within

the development team.

• Maintainability. The modularity of components makes updating or re-

placing individual components easier without impacting the entire sys-

tem Budgen (2003). This allows for efficient bug fixes, enhancements,

and system evolution, making software maintenance less challenging and

costly.

The component-based development approach adopted in the MApp-IDEA

tool offers numerous advantages. It promotes reusability, modularity, scala-

bility, collaboration, maintainability, and extensibility. By leveraging pre-built

components and assembling them into a cohesive system, we can streamline

development and improve productivity.
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6.3 Technologies Schema

The development of the MApp-IDEA tool involved utilizing several key tech-

nologies, e.g., frameworks,libraries, NL models and APIs. Each of these tech-

nologies played a crucial role in different aspects of the tool, contributing to

its functionality and user experience.

To facilitate comprehension of the technology interaction, we have orga-

nized it into a stacked layer scheme, where the technologies are grouped based

on different scope levels. This division allows for a clearer understanding of

the relationships and interactions between the various components involved,

as fllowing:

• Data collect. Involves the process of collecting data, e.g., reviews and

app metrics.

• Opinion Mining. Involves analyzing text to identify and classify issues

from opinions expressed by app users.

• Persistence. Refers to the storage and retrieval of data in a durable and

reliable manner.

• Application. Refers to the practical implementation and utilization of a

system or software. It involves software components, integrating different

technologies and user interfaces to provide functionalities and solutions

to end users.

• Synchronization. Involves data replication, conflict resolution, and com-

munication protocols to achieve consistency and maintain coherence be-

tween entities and data.

Figure 6.1 shows an overview of the technologies separated by the stacked

layer scheme. The following is a summary list of technologies. Additional

information can be found in the project’s public repository on Github 1.

• Programming languages: PHP, Python, Javascript, CSS (style), and HTML

(markup);

• Frameworks: Laminas, Bootstrap;

• NL Model: DestilBERT;

• Database: Postgres; and

• Libraries: Faiss, Nltk, NetworkX, Sklearn, VADER, Transformers, Pan-

das, Numpy, SciPy, ONNX Runtime, Vijs, Am5Chart, and others.

1https://github.com/vitormesaque/mapp-idea
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These technologies stack facilitated seamless server-side and client-side

functionality integration, enabling an efficient and user-friendly tool for data

analysis.

Several of these technologies intermingle and depend on each other to han-

dle specific functionalities, e.g., crawling, issue detection, and synchroniza-

tion. For example, PHP code made background calls to Python code, which

utilized its rich ecosystem of libraries and tools for these tasks.

Through the RESTFul bus, with log systems, notifications, and listeners,

it is possible to integrate all technologies transparently for the user. For in-

stance, after completing each step, the Python module responsible for issue

detection sends a message to the communication bus (Figure 6.4). Subse-

quently, the PHP modules can access the bus as a listener to check for new

communication messages.

Figure 6.1: Scheme of technologies used separated by stacked layers
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6.4 Patterns

Design patterns and architectural patterns are both important concepts in

software engineering, but they differ in their scope and level of abstraction.

The following sections will discuss the patterns incorporated into the MApp-

IDEA tool.

6.4.1 Architectural Patterns

Architectural patterns deal with higher-level structures and the organiza-

tion of entire software systems. They provide a framework for designing the

overall structure and interaction between major components and subsystems.

Architectural patterns define the fundamental principles and guidelines for

system organization, distribution of responsibilities, and communication be-

tween different parts of the system (Sommerville, 2013).

6.4.1.1 Model-View-Controller Pattern

MApp-IDEA tool uses the MVC (Model-View-Controller) architectural pat-

tern widely used in software development. It provides a structured approach

for designing and organizing applications by separating the concerns of data,

presentation, and user interaction Gamma et al. (1995).

In the MVC pattern, the application is divided into three main components

Gamma et al. (1995); Reenskaug (1979):

• Model represents the application’s data and business logic. It encap-

sulates data access, data manipulation, and business rules. The Model

component is responsible for managing the state and behavior of the ap-

plication.

• View is responsible for the application’s presentation layer. It displays

the data from the Model to the user and handles the user interface ele-

ments. The View is focused on providing a visually appealing and intu-

itive user interface.

• Controller acts as an intermediary between the Model and the View. It

receives input from the user or external systems, performs the necessary

actions, and updates the Model and View accordingly. The Controller

handles user interactions, interprets requests, and coordinates data flow

between the Model and the View.

The MVC pattern promotes modularity, maintainability, and code reusabil-

ity by separating data, presentation, and user interaction concerns. It allows
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developers to change one component without affecting the others, facilitating

code organization and collaboration in larger projects Gamma et al. (1995).

Overall, the MVC pattern provides a clear separation of responsibilities,

making developing, testing, and maintaining software applications easier. It is

widely used in web development frameworks, desktop applications, and mobile

app development.

Figure 6.2: MVC architecture of the MApp-IDEA tool

6.4.1.2 MVC Framework

In our project we use the Laminas framework 2 to support the implemen-

tation of the MVC architectural pattern. The Laminas is a PHP framework for

building robust web applications.

One of the key advantages of the Laminas is its modular architecture. The

framework is designed as a collection of independent and reusable modules,

allowing developers to selectively use and integrate the necessary components

for their specific application requirements. This modular approach promotes

code organization, reduces development time, and facilitates code reuse and

integration across multiple projects.

In addition to its modular architecture, the Laminas offers seamless inte-

gration with various databases. It provides convenient abstractions and utili-

ties for working with different database systems, making it easier for develop-

ers to handle database operations such as querying, data manipulation, and

transaction management. This integration simplifies the development process

and ensures compatibility with different database backends.

2https://getlaminas.org
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Furthermore, the Laminas Framework emphasizes the importance of community-

driven development. It has an active and supportive community that provides

regular updates, extensive documentation, and a wide range of resources.

This community-driven approach fosters collaboration, knowledge sharing,

and continuous improvement, making it easier for developers to learn and

leverage the capabilities of the Laminas Framework.

6.4.2 Design Patterns

As described by Gamma et al. (1995), design patterns focus on solving spe-

cific design problems at the class or object level. They provide reusable solu-

tions to recurring design challenges and encapsulate best practices for design-

ing individual components or interactions within a system. Design patterns

address object creation, structuring relationships, and behavior delegation.

Several popular design patterns have been widely adopted and studied in

the field. We highlight the characteristics and applications of the main pat-

terns (Factory, Singleton, Observer, Adapter, Strategy, and Table Data Gate-

way) (Gamma et al., 1995; Fowler, 2002) used in the MApp-IDEA tool.

• Factory. Focuses on creating objects without specifying their concrete

classes. It encapsulates object creation logic within a separate class or

method, providing a centralized and flexible approach to object instanti-

ation (Gamma et al., 1995). The Factory pattern promotes easy modifica-

tion and extension of the object creation process.

• Hydrator. Focuses on separating the process of object creation from the

process of populating that object with data. It acts as a bridge between

data sources (e.g., databases or APIs), and object-oriented programming

models.

• Singleton. Restricts the instantiation of a class to a single object. It

ensures that only one instance of a class exists throughout the applica-

tion, providing global access to that instance. The Singleton pattern is

useful in scenarios where a single shared resource or state must be ac-

cessed from multiple system parts. It simplifies coordination and avoids

unnecessary resource duplication .

• Observer. Establishes a one-to-many dependency between objects, where

the dependent objects (observers) are notified and updated automatically

when the state of the subject object changes (Gamma et al., 1995). This

pattern decouples the subjects and observers, enabling them to evolve

independently and reducing their interdependencies.
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• Adapter. Allows incompatible interfaces of different classes to work to-

gether. It acts as a bridge between two incompatible interfaces, convert-

ing the interface of one class into another that clients expect (Gamma

et al., 1995). The Adapter pattern enables the integration of legacy code

or third-party libraries into new systems without modifying their existing

interfaces, promoting component interoperability.

• Strategy. Focuses on encapsulating interchangeable algorithms or be-

haviors within a family of classes. It allows clients to select different

strategies dynamically, depending on their requirements, without modi-

fying the client code (Gamma et al., 1995). The Strategy pattern promotes

flexible design and enables easy extension and modification of the sys-

tem’s behavior.

• Table Data Gateway. Provides a centralized gateway for accessing a

database or data source. It encapsulates the data access logic within

a single class, which handles all interactions with the underlying data

store. The Table Data Gateway pattern abstracts the database operations

and provides a convenient interface for clients to query and manipulate

data (Fowler, 2002).

6.5 Graphical Interface

To build a robust and standardized graphical interface, we use a well-

known framework called Bootstrap 3 to build. It provides pre-designed and

responsive components, saving time and effort. Bootstrap ensures visual con-

sistency and a professional standard. It has extensive documentation and a

supportive community. The framework is mobile-first, enhancing responsive-

ness and usability.

The MApp-IDEA aims to provide an efficient and user-friendly experience

for users accessing it through different devices, including smartphones, tablets,

and desktop computers. By implementing a responsive design, the MApp-

IDEA tool ensures that users can easily navigate and interact with the tool’s

features, regardless of the screen size or device they use. This adaptability

enhances usability and accessibility, allowing users to access the tool’s func-

tionality on their preferred devices conveniently. Additionally, a responsive

graphical interface reduces development and maintenance costs by eliminat-

ing the need to create separate versions for different devices.

We developed dark mode navigation to improve the navigation experience,

as Figure 6.3 illustrates. The availability of a dark mode option in apps en-

3https://getbootstrap.com
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hances visual comfort, saves battery life, and improves accessibility. Dark

mode provides a high-contrast interface that can benefit users with visual im-

pairments or sensitivities. The darker background and lighter text make it

easier for individuals with low vision or color blindness to read and navigate

the app’s content.

Figure 6.3: Dark mode home screen

6.6 RESTful Bus

The RESTful bus refers to a messaging infrastructure that follows the prin-

ciples of REST architectural style. The RESTful bus allows communication

and coordination between different software components or services using

HTTP as the underlying protocol. It relies on the principles of REST, such

as the use of uniform resource identifiers (URIs) to identify resources, state-

less communication, and standard HTTP methods (e.g., GET and POST) for

performing operations on these resources.

For better understanding, we define communication messages into two dis-

tinct levels: i) RESTFull bus messages, and ii) alert trigger messages, as fol-

lowing:

• RESTFull bus messages. Refer to the general communication exchanged

between different components or nodes within the bus service.

– Notification. Notifications are messages that provide general infor-

mation about certain events, system states, or updates.
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• Alert system messages. Messages sent about monitoring issues and

risks associated with trends detected by the tool.

– Notice. Notices are informational messages that communicate gen-

eral information without requiring immediate attention or action.

– Alert. Alerts are specific messages that are used to indicate urgent

or critical situations that require immediate attention.

6.6.1 Synchronization

The MApp-IDEA tool offers a remarkable capability of real-time issue anal-

ysis and prioritization. It is essential to download reviews and detect issues in

the background to enable this analysis, considering the substantial amount

of data being processed and the associated computational demands. Given

that many operations are conducted in the background, a communication

bus becomes crucial for facilitating the exchange of status messages among

the involved components. Also, background services are constantly running

with synchronization tasks and alerts.

Once an app is registered in the tool, it is periodically synchronized. The

sync period can be customized, but by default it is five minutes. In the sched-

uled time interval for synchronization, the process is called in the background,

making a series of checks to find the last updated review and processing the

newly collected reviews. To optimize the review download and processing time,

the system estimates how many reviews will be downloaded according to the

time of the last update and the average of reviews the app receives per day.

The system performs the following steps in the background on synchro-

nization illustrated in Figure 6.4.

Figure 6.4: Synchronization process steps and triggering alerts

Depending on the volume of reviews processed, the synchronization may

take a few minutes, but the user can follow the processing progress.
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During the synchronization process, whenever there is a status update,

a message is sent to the RESTful bus to notify about the new status. This

enables the view layer to query the bus and retrieve the updated status infor-

mation.

6.6.2 Alert Trigger

Once the synchronization process is completed, the system notifies the

RESTful bus about the synchronization status. Subsequently, the RESTful

bus forwards this information to the alert trigger system, which initiates the

scanning process to identify and trigger alerts and notices related to app issues

and risks. Similar to the synchronization process, the alert trigger system

operates in real-time.

By utilizing the RESTful bus, we ensure that potential app issues and risks

are promptly detected, and appropriate actions are taken through efficient

communication and real-time availability of status updates, enhancing the

overall responsiveness and functionality of the application.

As an illustration, Figure 6.5 displays an Alert message dated May 26, gen-

erated by the Netflix app to inform users about an app update that revised the

policy regarding simultaneous screens in the family plan. Figure 6.6 exhibits

a notice message from the Facebook application on May 25, 2023.

Figure 6.5: Alert message from the Netflix app on May 26, when there was an
app update changing the policy for simultaneous screens in the family plan.

Figure 6.6: Facebook application notice message on May 25, 2023

The MApp-IDEA tool includes a dedicated component for message manage-

ment, ensuring that all sent messages are stored, as shown in Figure 6.7.

When a message is opened, the system marks it as read to provide users with
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a clear indication of their message status. Even if a user chooses to delete a

message (whether it’s an alert or a notice), the system retains a record of it

in the database for traceability purposes. Therefore, while the message may

appear unavailable to the user, it is not permanently deleted from the sys-

tem. This approach ensures data integrity and allows tracking and auditing

of message-related activities.

Figure 6.7: Component for managing triggered messages related to the detec-
tion and prioritization of issues.

6.7 Final Remarks

In this chapter, we discussed the design and architecture of the MApp-

IDEA tool, focusing on key aspects such as component-based development,

technologies schema, patterns, and the graphical interface.

The design and architecture of the MApp-IDEA tool were carefully crafted to

deliver a powerful and user-friendly data analysis solution. Reusable compo-

nents were leveraged through component-based development, enabling mod-

ularity, scalability, collaboration, and maintainability. Various technologies,

such as frameworks, models, and libraries, were seamlessly integrated to cre-

ate a cohesive system. Architectural patterns (e.g., MVC), and design pat-

terns (e.g., Factory, Singleton, Adapter, Strategy, and Table Data Gateway),

enhanced code structure, flexibility, and extensibility. The graphical inter-

face, built with Bootstrap, ensured a responsive and visually appealing user

experience. The synchronization process and real-time alerts optimized the

processing of app reviews. In summary, the MApp-IDEA tool embodies in-

dustry best practices, resulting in a powerful and user-friendly solution for

analytical data exploration.
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CHAPTER

7
Conclusions

This chapter presents the conclusions of this thesis. In Section 7.1, the

final remarks, the main findings, and the research implications are summa-

rized. In Section 7.2, we answered the research questions raised in the intro-

ductory chapter (1.2) of this thesis. Section 7.3 highlights the original contri-

butions made by the thesis to the field of study. The Publications section (7.4)

provides a list of relevant publications resulting from the research. Section

7.5 specifies the availability of the data and codes used in the research, en-

suring transparency and reproducibility. Finally, in Section 7.6, Limitations

and Future works, the limitations of the current research are discussed, and

potential directions for future studies are suggested.

7.1 Final Remarks

Opinion mining for app reviews can provide helpful user feedback to sup-

port software engineering activities. The automated issue detection, analysis,

prioritization, and monitoring process from app reviews combines machine

learning and software engineering techniques to offer a new software mainte-

nance and evolution field.

This doctoral project contributes to the field of software maintenance and

evolution by providing a novel approach for detecting and predicting emerging

software requirements issues based on user reviews. It offers valuable insights

into the temporal dynamics of issues and associated risks and emphasizes

the importance of proactive maintenance to ensure software quality and user

satisfaction.

We introduce a two-fold approach, called MApp-Reviews and MApp-IDEA,
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to explore emerging issues from user feedback to proactively detect, predict,

prioritize, and monitor issues and risks over time. We also introduce an ap-

proach using the recent LLM for the risk matrix construction, incorporating

a dynamic and automatic prompt generation technique for classifying. These

approaches enable us to effectively address reviews on time, mitigate negative

impacts on the overall app rating, and maintain the app’s competitiveness,

ensuring timely maintenance and facilitating software evolution.

Our research results show new promising prospects for the future, and

new possibilities for innovation research in this area have emerged with our

results so far.

7.2 Answer to Research Questions

In this thesis, we investigate two primary research questions and present

objective answers to each.

• (RQ1) Predict negative app rating trends. We show that the predic-

tion of initial trends on defective requirements from users’ opinions can

be accomplished by a method capable of to incorporates contextual word

embeddings for software requirements representation and clustering, en-

abling to quantify accurately negative user mentions over time and iden-

tify potential issues and trends related to defective requirements using

predictive models, before they negatively impact the overall evaluation of

the app. This enables developers to proactively address these issues and

make improvements to ensure user satisfaction. Chapter 3 addressed

this issue by introducing the MApp-Reviews method.

• (RQ2) Prioritize and address app issues. We show that the prioritiza-

tion and timely resolution of app issues from reviews can be achieved

by exploring word embeddings to build acyclic graphs representing app

issues, combining sentiment analysis and graph techniques to gener-

ate a risk matrix for identifying and prioritizing app issues mentioned in

user reviews. This allows developers to allocate resources efficiently and

promptly address critical issues, ensuring the app’s competitiveness and

facilitating timely maintenance and evolution of the software. Chapters

4 and 5 addressed this issue by introducing the MApp-IDEA method and

an LLM approach for risk matrix construction.

7.3 Thesis Contributions

The main contributions of this doctoral project are as follows:
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• Presents a two-fold approach, MApp-Reviews and MApp-IDEA, to explore

emerging issues from user feedback to proactively detect, predict, priori-

tize, and monitor risks and issues over time.

• MApp-Reviews method identifies possible defective software requirements

and trains predictive models for anticipating requirements with a higher

probability of negative evaluation.

• MApp-IDEA method detects issues in reviews, classifies them in a risk

matrix with prioritization levels, and monitors their evolution over time.

• Proposes an unsupervised approach that leverages user reviews to de-

tect and prioritize app issues. This approach is competitive compared

to supervised methods, highlighting its effectiveness in identifying and

managing app issues.

• Presents a dynamic risk matrix that allows prioritizing issues based on

their criticality levels. This feature enables software engineers to focus

their attention and resources on the most impactful and urgent issues,

leading to more efficient issue resolution.

• Introduces a risk matrix construction approach using Large Language

Models (LLMs), exploring open-access methods suitable for scenarios with

limited computational resources and data privacy constraints, in con-

trast to proprietary models like GPT.

• Introduces a comprehensive platform that facilitates app issue manage-

ment. The platform includes features such as an automated dashboard

and various visualizations (e.g., risk matrices, issue heat maps, issue

trees, and issue time series) to enable developers to monitor and address

issues efficiently.

• Bridgings the gap between issue incidence and identification aims to re-

duce the time lag between the occurrence of app issues and their de-

tection by introducing automated notifications and alerts. This feature

helps developers stay informed about emerging issues and take timely

actions to mitigate their impact.

These contributions have the potential to enhance app development pro-

cesses and improve user satisfaction by enabling software professionals to

manage and resolve app issues effectively.

The findings showed that this doctoral project contributes an efficient so-

lution to the research question of prioritizing and addressing user reviews in

time so that the app is competitive and guarantees the timely maintenance

and evolution of the software.
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7.4 Publications and Other Intellectual Contributions

Throughout the development of this doctoral project, contributions from

the point of view of research and technological innovation were disseminated

through journals, conferences, technical reports and software. The results

directly related to this doctoral thesis are presented below.

• Journals

– Paper 1 (Chapter 3) Lima, V. M. A., Araújo, A. F., and Marcacini,

R. M. (2022). Temporal dynamics of requirements engineering from

mobile app reviews. PeerJ Computer Science, 8, e874.

– Paper 2 (Chapter 4) Lima, V. M. A., Barbosa, J. R., and Marcacini,

R. M. (2023). Issue detection and prioritization based on app reviews.

10.21203/rs.3.rs-2838568/v1.

– Paper 3 (Chapter 5) Lima, V. M. A., Barbosa, J. R., Brandao, L.

S., and Marcacini, R. M. (2023). Learning Risk Factors from App

Reviews: A Large Language Model Approach for Risk Matrix Con-

struction. 10.21203/rs.3.rs-3182322/v1

• Conference

– Paper 4 (Chapters 4 and 6) Lima, V. M. A., Barbosa, J. R., and

Marcacini, R. M. (2023). MApp-IDEA: Monitoring App for Issue De-

tection and Prioritization. 37th Brazilian Symposium on Software

Engineering (submitted).

• Technical Reports

– Paper 5 (Chapter 6) Lima, V. M. A., Barbosa, J. R., and Marcacini,

R. M. (2023). MApp-IDEA: Design and Architecture of the Analytical

Data Exploration Tool. Technical Reports of the Institute of Mathe-

matics and Computer Sciences, University of São Paulo.

• Software

– Software Registration (Chapters 4 and 6) Lima, V. M. A., Barbosa,

J. R., and Marcacini, R. M. (2023). Analytical Data Exploration Tool

for Opinion Mining from App Reviews. Software Registration. Na-

tional Institute of Industrial Property.
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7.5 Data and Codes Availability Statement

Data and source code files that support the findings and contributions of

this doctoral thesis are available at:

• https://github.com/vitormesaque/mapp-reviews

• https://github.com/vitormesaque/mapp-idea

7.6 Limitations and Future Works

Future work directions encompass evaluating MAPP-Reviews and MApp-

IDEA in various scenarios to incorporate and compare different types of do-

main knowledge into the predictive models. This includes considering factors

like new app releases, marketing campaigns, server failures, competing apps,

and other relevant information that may impact app evaluations. Further-

more, developing an accessible API for the models would enable third parties

to utilize and benefit from them easily.

Moreover, additional future work involves evaluating MApp-IDEA in diverse

software company settings to incorporate various types of domain knowledge

and establishing an experimental design to assess the method by software

engineers. Another direction is to incorporate predictive models into the tem-

poral dynamics of the risk matrix, building upon the proven efficiency demon-

strated in Chapter 3. A promissory research direction is an improvement of

the risk matrix construction of MApp-IDEA (Chapter 4) to incorporate the pro-

posed LLM-based approach presented in Chapter 5.

To gain deeper insights, we intend to explore our method further to de-

termine the input variables that contribute most to the output behavior and

the non-influential inputs or to determine some interaction effects within the

model. In addition, sensitivity analysis can help us reduce the uncertainties

found more effectively and calibrate the model.
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