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Abstract

Deep learning has been widely studied, mainly to solve problems consid-

ered complex. In general, these problems can be described and divided into

a set of tasks. These tasks are intrinsic to the general problem, that is, they

are naturally defined because they are part of the essence of the problem. In

addition, they can be learned in isolation but are related to the solution of

the general problem. Another important factor is that for a larger computer

vision problem, performing the distinct tasks individually becomes expensive

in memory and inference time. To solve these problems, several approaches

as Multi-task Learning (MTL) was proposed. The idea is to simulate human

learning, in which people can learn new tasks through experiences gained in

learning similar tasks. This approach allows the learning of the tasks simul-

taneously, building a relationship between them. From these directions, this

work in the form of a collection of articles presents MTL approaches for solving

computer vision problems. Initially, two problems were addressed: detection

of plantation lines in the first article and detection of fingerlings in the second.

In the detection of plantation lines the idea is to divide the problem into iden-

tifying the plants individually and detecting the plantation lines. In fingerling

detection, the tasks are divided into detecting the fingerling and identifying

the fingerling direction in subsequent frames. For both problems, a method

was proposed with a backbone that extracts the initial features for all tasks.

Taking the initial features as input, independent branches learn the solution

of each task. The exchange of information between tasks occurs through the

concatenation of features extracted at specific points in each branch. The re-

sults showed that sharing between tasks is important for the solution, achiev-

ing results superior to the state-of-the-art. In addition to the two proposals, a

new semantic segmentation method using MTL and attention mechanism was

proposed. The main advance was the use of weights learned by Transformers

to indicate the importance of a task to others. Thus, only image regions con-

sidered relevant influence other tasks. Results on two problems, plantation
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line and gaps, and leaf segmentation and defoliation, showed the effectiveness

of the approach compared to the state-of-the-art.
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Resumo

O aprendizado profundo tem sido amplamente estudado, principalmente

para resolver problemas considerados complexos. De forma geral, esses prob-

lemas podem ser descritos e divididos em um conjunto de tarefas. Essas

tarefas são intrínsecas ao problema geral, ou seja, são definidas de forma nat-

ural por fazer parte da essência do problema. Além disso, elas podem ser

aprendidas de forma isolada porém estão relacionadas para solução do prob-

lema geral. Outro fator importante é que para um problema maior de visão

computacional, realizar as tarefas distintas individualmente se torna muito

custoso em memória e tempo de inferência. Para solucionar esses problemas

uma abordagem chamada Aprendizado Multitarefa (MTL) foi proposta. A ideia

é simular o aprendizado humano, em que pessoas podem aprender novas

tarefas através de experiências obtidas no aprendizado de tarefas similares.

Essa abordagem permite o aprendizado das tarefas do problema de maneira

simultânea, construindo uma relação entre elas. A partir desses direciona-

mentos, este trabalho na forma de coleção de artigos apresenta abordagens

MTL para a resolução de problemas de visão computacional. Inicialmente,

dois problemas foram abordados: detecção de linhas de plantação no primeiro

artigo e detecção de alevinos no segundo. Na detecção de linhas de plan-

tação a ideia é dividir o problema em identificar as plantas individualmente e

detectar as linhas de plantação. Na detecção de alevinos as tarefas são divi-

didas em detectar o alevino e identificar a direção desse alevino nos quadros

subsequentes. Para ambos os problemas, um método foi proposto com um

backbone que extrai as características iniciais para todas as tarefas. Tendo

como entrada as características iniciais, ramos independentes aprendem a

solução de cada tarefa. A troca de informações entre as tarefas ocorre por

meio da concatenação das características extraídas em pontos específicos de

cada ramo. Os resultados mostraram que o compartilhamento entre as tarefas

é importante para a solução, alcançando resultados superiores ao estado-da-

arte. Além das duas propostas, um novo método de segmentação semântica
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usando MTL e mecanismo de atenção foi proposto. O principal avanço foi o

uso de pesos aprendidos por Transformers para indicar a importância de uma

tarefa nas demais. Assim, apenas regiões da imagem consideradas relevantes

influenciam em outras tarefas. Os resultados em dois problemas, segmen-

tação de linhas e falhas de plantação, e segmentação da folha e desfolha,

mostraram a eficácia da abordagem frente ao estado-da-arte.
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CHAPTER

1
Introduction

1.1 Motivation

Deep Learning, Convolutional neural networks (CNNs) and, more recently,

transformers have been widely studied in the literature due to the great ad-

vances obtained in computer vision problems, such as classification (Dosovit-

skiy et al., 2021; Pan et al., 2020) and image segmentation (Gonçalves et al.,

2020a; Osco et al., 2021a; Lobo Torres et al., 2020). These computer vision

problems can be described as a set of tasks that are defined intrinsically to

the problem. In general, CNNs perform one task at a time, which for larger

computer vision problems becomes expensive in memory and inference time.

This is because it is usually necessary for these problems to be divided into

smaller parts to be solved by these networks. However, studies have discussed

whether this division leads to a loss of generalization (Crawshaw, 2020; Zhang

and Yang, 2021).

To solve these problems, an approach called Multi-task Learning (MTL)

(Caruana, 1998) has been proposed. This idea was inspired by human learn-

ing, where people can learn new tasks through experiences gained in learning

similar or correlated tasks. Unlike transfer learning (Zhuang et al., 2021),

these tasks are learned simultaneously. Therefore, this approach allows si-

multaneous learning of multiple tasks that may have some relationship with

each other. Several challenges are faced in the implementation of this ap-

proach, the two main ones being: building the CNN architecture and updating

the weights considering simultaneous tasks.

• Building the network architecture: the challenge is to establish how

1



CNN is built to allow the exchange of learning between the multiple tasks

addressed by the problem.

• Weights Update: the challenge is to find weights for the layers that indi-

cate the relationship between the multiple tasks.

This work aims to propose methods using MTL and deep learning. Given

a problem, the proposal is to learn two or more tasks, that is, to define tasks

that help in solving the general problem. This work initially addresses two ap-

plications: plantation line detection and fingerling detection. In the detection

of plantation lines, the idea is to divide the problem into two tasks: identify

the plants individually and detect the plantation lines. We can observe that

the identification of individual plants can help in the detection of the planta-

tion line, because the lines are composed of plants. Likewise, detecting a line

assists in detecting individual plants as, in general, plants tend to be located

only in the plantation line. In fingerling detection, the tasks are divided into

detecting the fingerling and identifying the direction of movement in subse-

quent frames. Identifying a fingerling (first task) facilitates the identification

of its movement direction (second task), as well as identifying its movement

direction facilitates the detection of individual fingerlings in the next frame.

The architecture proposed in these works allows the information of tasks ex-

tracted by different branches of CNN to be shared with each other through

concatenation at specific points. This exchange of information between the

tasks of the two problems and the results are further explored in Chapters 2

and 3.

Considering recent advances in attention mechanisms, we also propose a

semantic segmentation method for MTL based on Transformers in Chapter 4.

The problems consist of: i) segmenting plantation lines and gaps (sequence of

the line without plants) and ii) segmenting a main leaf and its defoliation (area

absent due to pests). The main challenge of the first problem is to segment the

gaps, as their visual characteristics are similar to the background and, in fact,

a gap can only be identified if the plantation lines are identified properly. The

second problem consists of segmenting a leaf in the foreground and its absent

area caused by pests, called defoliation. Defoliation segmentation can only be

performed properly with knowledge of the leaf shape, especially when defolia-

tion occurs at the leaf edges. This shows that the problems are composed of

correlated tasks that benefit from information sharing. For sharing, an atten-

tion mechanism was proposed in which each region of the image of a specific

task can directly influence the features of other tasks through a weight. This

sharing proved to be effective mainly in tasks that depend on others, as in the

aforementioned problems.
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1.2 Related Works

Several works on MTL have been proposed in the literature (Caruana, 1998;

Doersch and Zisserman, 2017). The first works studied methods of shar-

ing features between tasks using different classification models (Kumar and

Daumé, 2012; Xue et al., 2007; Passos et al., 2012). Ruder (2017) presented

an overview of MTL in deep learning. This work showed that most proposals

in the literature have two MTL approaches: hard and soft parameter sharing.

Figure 1.1 presents the hard parameter sharing approach. In this approach,

all tasks have a shared backbone followed by a branch for each task, and

there is no more sharing between these branches. Figure 1.2 presents the soft

parameter sharing approach. In this case, each task has independent layers,

but information is shared between the branches of the tasks.

Figure 1.1: Illustration of the hard parameter sharing approach.

Figure 1.2: Illustration of the soft parameter sharing approach.

Hard Parameter Sharing

In this approach, the sharing of parameters takes place in the hidden lay-

ers of the CNN between the tasks of the problem. Several works have been

proposed in the literature using this approach. Ranjan et al. (2019) presented
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a work for simultaneous face detection, landmark location, pose estimation

and gender recognition called HyperFace. The main idea is to present a CNN

to learn the common features of these tasks and explore the similarities be-

tween them. Finally, they built a new CNN that shares some layers to learn

the features of the tasks through their similarities.

Jou and Chang (2016) proposed a residual learning extension that allows

the learning of several tasks at the same time. For this, connections between

these networks called cross-residual learning (CRL) were proposed, which can

be seen as a form of regularization of the network and allow a greater gener-

alization. The authors indicated that CRL can be integrated into multi-task

CNNs. Dvornik et al. (2017) presented a CNN called BlitzNet to perform object

detection and semantic segmentation at the same time. They showed that,

when trained simultaneously, each task benefits from the other, in addition to

the computational gain of having a single network to perform both tasks.

Other MTL proposals have addressed multi-branch architecture learning,

using greedy optimization to measure task affinity, such as Lu et al. (2017)

and Vandenhende et al. (2020). Lu et al. (2017) proposed an MTL approach to

design multi-task deep learning architectures. The idea is to start with a small

network and dynamically scale up greedily during training, using a cluster of

similar tasks as a criterion. Using the same multi-branch approach, Vanden-

hende et al. (2020) presented an approach to automatically build multi-task

networks using the affinities of the tasks. This approach generates architec-

tures, in which the first layers learn more general features of the tasks, while

the deeper ones learn more specific features.

Finally, methods used convolutional filter clustering to create multi-task

networks, such as the work of Bragman et al. (2019). They presented a proba-

bilistic approach to learning the shared and specific features of tasks in CNNs.

The idea was to propose stochastic filter groups (SFG) that assign convolution

kernels in each layer to specialist or generalist groups, that is, that are specific

or shared by the tasks of the problem. These modules determine the connec-

tivity between the layers and the network structure between the tasks, that

is, how much information is exchanged between the tasks. All these works

described above use the hard parameter sharing approach as they share the

learning of the hidden layers of the CNNs among the different tasks of the

problem.

Soft Parameter Sharing

This approach consists of dividing each task into columns, where each

column contains its own parameters and model. Unlike the hard parameter

sharing approach, there is no exchange of information between the deep hid-
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den layers of the network, so it is necessary to define a way of sharing between

these columns, which in general, consists of a backbone that allows the initial

exchange of information. Several works have been proposed in the literature

using this approach such as Cross-stitch (Misra et al., 2016)], Sluice (Ruder

et al., 2019) and NDDR (Gao et al., 2019).

Misra et al. (2016) presented Cross-stitch which is an approach to learning

ways to share between tasks. They proposed a new sharing unit called cross-

stitch unit that combines the activations of several CNNs. The idea is that a

network with these units can learn an optimal sharing combination between

tasks. Ruder et al. (2019) also developed an approach that learns a multi-

task architecture. They showed that multi-task learning involves searching a

huge space of possibilities for sharing architectures, which becomes complex.

Therefore, they proposed a new architecture that learns: which layers to share

between CNNs, which parts of the layers are best to share, and how much of

those layers are shared. Gao et al. (2019) proposed a new CNN framework for

multi-task that allows automatic merging of features in each layer of differ-

ent tasks. This automatic fusion occurs in the layers and occurs through a

combination of the existing CNN components, but in a new way, aiming at a

reduction of discriminative dimensionality. This reduction was called Neural

Discriminative Dimensionality Reduction (NDDR).

Other approaches that are being proposed in the literature are attention-

based methods (Attention-based methods). Liu et al. (2019) developed a new

multi-task learning architecture that allows learning the level of attention for

each feature of a given task. The idea is to build a Multi-task Attention Net-

work (MTAN) that consists of a single shared network containing a set of global

features, along with what they called a soft attention module for each task in

the problem. These modules allow the learning of the specific features of each

task from the global features and also allows the sharing of these features

between the tasks.

1.3 Objectives

From these directions, the general objective of this work is the develop-

ment of methods using MTL in deep learning and its application in relevant

problems using images.

To achieve the general objective, the following specific objectives were de-

fined:

• Build image datasets of the problems to be applied, such as plantation

lines and fingerlings;
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• Propose and implement methods for sharing features of tasks involving

images;

• Extend the sharing proposal to temporal tasks composed of a sequence

of images.

• Propose and implement a method combining transformers and Multi-

task learning;

• Validate the proposals comparing with methods presented in the litera-

ture.

1.4 Structure of the Thesis

The rest of this work is described below. The presentation is a collec-

tion of articles, in which the general objective is achieved through the specific

objectives of each article. The papers present methods based on multi-task

learning. The proposal combines the two approaches: soft and hard param-

eter sharing. Soft parameter sharing occurs because there are independent

branches for tasks. In addition, the methods also perform hard parameter

sharing because an exchange of information between these branches takes

place in deep layers. Thus, the methods proposed in this work benefit from

the advantages of both approaches to multi-task learning. Chapter 2 presents

the first article with the proposal for the detection of plantation lines. Chapter

3 describes the work for fingerling detection where temporal information is

considered. Chapter 4 presents a new approach that combines Transformers

and MTL for semantic segmentation. Finally, Chapter 5 presents final consid-

erations and future work.
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CHAPTER

2
A Deep Learning Approach Based on

Graphs to Detect Plantation-Lines

Preface

Identifying plantation lines in aerial images of agricultural landscapes is

required for many automatic farming processes. Deep learning-based net-

works are among the most prominent methods to learn such patterns and ex-

tract this type of information from diverse imagery conditions. However, even

state-of-the-art methods may stumble in complex plantation patterns. Here,

we propose a deep learning approach based on graphs to detect plantation

lines in UAV-based RGB imagery, presenting a challenging scenario contain-

ing spaced plants. The first module of our method extracts a feature map

throughout the backbone, which consists of the initial layers of the VGG16.

This feature map is used as an input to the Knowledge Estimation Module

(KEM), organized in three concatenated branches for detecting 1) the plant

positions, 2) the plantation lines, and 3) for the displacement vectors between

the plants. A graph modeling is applied considering each plant position on

the image as vertices, and edges are formed between two vertices (i.e. plants).

Finally, the edge is classified as pertaining to a certain plantation line based

on three probabilities (higher than 0.5): i) in visual features obtained from

the backbone; ii) a chance that the edge pixels belong to a line, from the KEM

step; and iii) an alignment of the displacement vectors with the edge, also from

the KEM step. Experiments were conducted initially in corn plantations with

different growth stages and patterns with aerial RGB imagery to present the
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advantages of adopting each module. We assessed the generalization capabil-

ity in the other two cultures (orange and eucalyptus) datasets. The proposed

method was compared against state-of-the-art deep learning methods, and

achieved superior performance with a significant margin considering all three

datasets. This approach is useful in extracting lines with spaced plantation

patterns and could be implemented in scenarios where plantation gaps occur,

generating lines with few-to-none interruptions.

Relation of the paper with MTL. The method proposed in this first paper

has a shared backbone between the tasks to extract a feature map. Given

the backbone feature map, each task is learned in an independent branch.

As described in the literature review, this architecture belongs to the category

of hard parameter sharing. However, there is an exchange of information be-

tween tasks through the concatenation of feature maps in specific layers of

branches, which characterizes the category of soft parameter sharing. There-

fore, the architecture of the proposed method can be considered as hybrid pa-

rameter sharing, reducing the computational cost with the shared backbone

but keeping the information sharing between tasks in deep layers.

2.1 Introduction

Linear objects, also denominated linear features in the photogrammetric

context, are common in images, especially in anthropic scenes. Consequently,

they are used in several photogrammetric tasks, such as orientation or trian-

gulation (Kubik, 1991; Schenk, 2004; Tommaselli and Junior, 2012; Marcato

Junior and Tommaselli, 2013; Sun et al., 2019; Yavari et al., 2018), recti-

fication (Li and Shi, 2014; Long et al., 2015b), matching (Wei et al., 2021),

restitution (Lee and Bethel, 2004), and camera calibration (Ravi et al., 2018;

Babapour et al., 2017). The registration of images and LiDAR (Light Detec-

tion And Ranging) data is also a topic that benefits from this type of object

(Habib et al., 2005) (Yang and Chen, 2015). Previous works proposed sev-

eral approaches to automatically detect lines in images based on traditional

digital image processing techniques. But, these approaches usually require

a significant number of parameters and are not always robust when deal-

ing with challenging situations, including shadows, pixel-pattern, geometry,

among others.

In recent years, artificial intelligence methods, especially those based on

deep learning, have been adapted to process remote sensing images from sev-

eral spatial-spectral-resolution traits, aiming to attend distinct application ar-

eas, including agriculture and farming (Hasan et al., 2021; Osco et al., 2020b;

Kamilaris and Prenafeta-Boldú, 2018; Ramos et al., 2020). Deep learning-
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based methods are state-of-the-art, well-known for their ability to deal with

challenging and varied tasks, involving scene-wise recognition, object detec-

tion, and semantic segmentation problems (Osco et al., 2021b). For each of

these problems-domain specifics, several attempts have been made, and great

results were found. As such, deep neural networks (DNN) are quickly becom-

ing one of the most prominent paths to learn and extract information from

remote sensing data. This is mainly because it is difficult for the same method

to evaluate different domains with the same performance, while deep learning

developments aim to produce intelligent and robust mechanisms to deal with

multiple learning patterns.

Based on recent literature analysis in the remote sensing field, few studies

were developed focusing on deep learning to detect linear objects. Some deep

networks based on segmentation approaches were proposed for line pattern

detection, being mostly of them in road and watercourse extraction of aerial or

orbital imagery. Yang et al. (2019), for example, developed a multitask learning

method to segment roads simultaneously and to detect their respective cen-

terlines. Their framework was based on recurrent neural networks and the U-

Net method (Ronneberger et al., 2015a). A more recent publication (Wei et al.,

2020) proposed an innovative solution to segment and detect road centerlines.

Similarly, semantic segmentation approaches were developed in environmen-

tal applications with linear patterns, like river margin extraction in remote

sensing imagery. An investigation (Xia et al., 2019) proposed a deep network

adopting the ResNet (He et al., 2016) as the backbone of their framework for

river segmentation in orbital images of medium-resolution. Another study

(Weng et al., 2020) presented a separable residual SegNet (Badrinarayanan

et al., 2017) method to segment rivers in remote sensing images, showing sig-

nificant improvements over other deep learning-based approaches, including

FCN (Long et al., 2015a) and DeconvNet (Noh et al., 2015). Wei et al. (2020)

developed a semantic distance-based segmentation approach to extract rivers

in images obtaining an F1-score superior to 93%, which outperformed several

state-of-the-art algorithms.

In agricultural applications, a previous related-work (Osco et al., 2021a)

proposed a method to simultaneously detect plants and plantation lines in

the agriculture field using UAV (Unmanned Aerial Vehicle) imagery datasets

through deep learning algorithms. However, for this task, only visual fea-

tures of the plants and plantation lines were considered by the DNN algorithm.

Consequently, the plants’ locations (i.e., points) from different plantation lines

were considered, in some situations, as belonging to the same line due to

their proximity. This, however, indicated a limited potential of this approach

mainly when gaps or adverse patterns in the plantations occurred. In other
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agricultural-related remote sensing tasks, Rosa et al. (2020) proposed an ap-

proach based on semantic segmentation associated with geometric features to

detect citrus plantation lines. Still, segmentation-based methods are not ad-

equate to deal with spaced plants (non-continuous objects), which is the case

for most crops in the initial stage. Moreover, another problem is when planta-

tion gaps occur in later stages, wherein, for instance, plants are removed due

to diseases or environmental hazards (e.g., strong winds). Additionally, line

extraction, when associated with gap detection, is essential to conduct the re-

planting process, minimizing the losses in the cultivars, but that still remains

an unsolved question inside both remote sensing and agricultural contexts

supported by deep learning approaches.

A potential alternative that may support the aforementioned issues regard-

ing differences in patterns and space between the objects (e.g., plants, for

instance) is the adoption of graph theory at the learning and extraction pro-

cesses. Graphs are a type of structure that considers that some pairs of ob-

jects are related to a given feature or real-world space scene. Therefore, they

can be useful for representing the relationship between objects in multiple

domains and can even inherit complicated structures containing rich under-

lying values (Zhang et al., 2022). As such, recent deep learning-based ap-

proaches have been proposed to evaluate or implement graph patterns for dis-

tinct problems-domain. Some of these approaches include strategies related to

graph convolutional and/or recurrent neural networks, graph autoencoders,

graph reinforcement learning, graph adversarial methods, and others (Zhang

et al., 2022). Since graphs work by representing both the domain concept and

their relationships, it makes them an innovative approach for improving the

inference ability of objects in remote sensing imagery. Therefore, the com-

bination of graph reasoning with the deep learning capability may work as

complementary advantages of both techniques.

It is worth mentioning that few recent investigations integrating graphs in

deep network models were conducted in the remote sensing and agriculture

domains. One of which demonstrated the potential of implementing a seman-

tic segmentation network with a graph convolutional neural network (CNN)

to perform the segmentation of urban aerial imagery, identifying features like

vegetation, pavement, buildings, water, vehicles, as others (Ouyang and Li,

2021). Another study (Ma et al., 2019) used an attention graph convolution

network to segment land covers from SAR imagery, which demonstrated its

high potential. A graph convolutional network was also used in a scene-wise

classification task (Gao et al., 2021), discriminating between varied scenes

from publicly available repositories containing images from several examples

of land cover. In the hyperspectral domain, one approach (Hong et al., 2021)
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was capable of successfully presenting a graph convolutional network-based

method to pixel-wise classify differential land cover in urban environments.

Furthermore, in urban areas, a graph convolutional neural network was in-

vestigated to classify building patterns using spatial vector data (Yan et al.,

2019). In the agricultural context, a cross-attention mechanism was adopted

with a graph convolution network (Cai and Wei, 2022) to separate (scene-wise

classification) different crops, such as soybeans, corn, wheat, wood, hay, and

others. The results were compared against state-of-the-art deep learning net-

works, outperforming them.

Regardless, up to the time of writing, no single-step approach to a DNN ar-

chitecture was proposed with the integration of graphs to solve issues related

to the identification and refinement of a plantation-line position in remote

sensing imagery. In this paper, we propose a novel deep learning method

based on graphs that estimate the displacement vectors linking one plant to

another on the same plantation line. Three information branches were con-

sidered, being the first used for extracting the plants’ positions, the second for

extracting the plantation lines, and the third for the displacement vectors. To

demonstrate this approach effectiveness, experiments were conducted within

a corn plantation field at different growth stages, where some plantation gaps

were identified due to problems that occurred during the planting process.

Moreover, to verify the robustness of our method with the addition of graphs,

we compared it against both a baseline and other state-of-the-art deep neural

networks, like (Lin et al., 2020) and (Zhang et al., 2019). Our study brings

an innovative contribution related to extracting plantation lines at challenging

conditions, which may support several precision agriculture-related practices,

since identifying plantation-lines in remote sensing images is necessary for

automatic farming processes.

The rest of this paper is organized as follows. In section 2, we detail the

structure of our neural network and demonstrate how each step in its ar-

chitecture is used in favor of extracting the plantation lines. In section 3,

we present the results of the experiment, highlighting the performance of our

network in relation to its baselines, as well as comparing it against state-of-

the-art deep learning-based methods. For section 4, we discuss in a broader

tone the implications of implementing graph information into our model, as

well as indicating future perspectives in our approaches. Lastly, section 5

concludes the research presented here.

Initially, the proposed method estimates the necessary information from

the input image using a backbone and a knowledge estimation module, as

shown in Figure 2.1. The first information consists of a confidence map that

corresponds to the probability of occurrence of plants in the image (Figure
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2.1 (b)). Through this confidence map, it is possible to estimate the position

of each plant, which is useful in estimating the plantation lines. The second

information corresponds to the probability that a pixel belongs to a crop line

(Figure 2.1 (c)). Finally, the third information is related to the estimate dis-

placement of vectors linking one plant to another on the same plantation line

(Figure 2.1 (d)). These three information steps are relevant and help in detect-

ing the plantation lines and estimating the number of plants in the image.

After these estimates, the problem of detecting plantation lines is mod-

eled using a graph similar to Zhang et al. (2019). Each plant identified in

the confidence map is considered a vertex in the graph. The vertices/plants

are connected forming a complete graph (Figure 2.1 (e)). Each edge between

two vertices is represented by a set of features extracted from the line that

connects the two vertices in the image. These features and information from

the knowledge estimation module are used in the edge classification module

(Figure 2.1 (f)) that classifies the edges as a planting line. The sections below

describe these modules in detail. In Figure 2.1, the features are extracted

from the image by means of a backbone and used to extract knowledge related

to the position of each plant and line, in addition to displacement vectors be-

tween the plants. The position of each plant is modeled on a complete graph

and each edge is classified based on the extracted knowledge.

Backbone

(a)

Knowledge
Estimation
Module

Edge	
Classification

Module

(b)

(c)

(d)

(e)

(f)

Figure 2.1: The proposed approach composed of different modules.

2.1.1 Backbone - Feature Map Extraction

The first module of the proposed method consists of extracting a feature

map F through a backbone as shown in Figure 3.1. In this work, the backbone

consists of the initial layers of the VGG16 network (Simonyan and Zisserman,
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2015). The first and second convolutional layers have 64 filters of size 3× 3
and are followed by a max-pooling layer with window 2 × 2. Similarly, six

convolutional layers (two with 128 filters and four with 256 filters of size 3×3)

and a max-pooling layer are then applied. To obtain a resolution large enough,

a bilinear upsampling layer is applied to double the resolution of the feature

map. Finally, two convolutional layers with 256 and 128 3×3 filters are used

to obtain a feature map that describes the image content. All convolutional

layers have the ReLU activation function (Rectified Linear Units). Given an

input image I with resolution w× h, a feature map F with resolution w
2 × h

2 is

obtained.

64

128
256

(a) Frames t-1 and t (b) Convolutional layers

(c) Feature map

Backbone

256 128

Figure 2.2: The backbone used in the proposed structure is composed of the
initial layers of VGG16 and a bilinear upsampling layer.

2.1.2 Knowledge Estimation Module (KEM)

The feature map F is used as an input to the Knowledge Estimation Module

- KEM (Figure 2.3). The information is estimated through three branches,

each branch consisting of T stages. The first stage of each branch receives

the feature map F and estimates a confidence map for the plant positions

Cp
1 (first branch), a confidence map for plantation lines Cr

1 (second branch),

and the displacement vectors Cv
1 that connect a plant to another on the same

plantation line (third branch). The estimation in the first stage is performed

by five convolutional layers: three layers with 128 filters of size 3×3 and one

layer with 512 filters of size 1× 1. The 1× 1 filter can perform a channel-wise

information fusion and dimensionality reduction to save computational cost.

Finally, the last layer has a single filter for estimating plants Cp
1 and plantation

lines Cr
1, and two filters (i.e., displacement in x,y) for the displacement vectors

Cv
1.

At a later stage t, the estimates from the previous stage Cp
t−1,C

r
t−1,C

v
t−1 and

the feature map F are concatenated and used to refine the estimates Cp
t ,Cr

t ,C
v
t .
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Figure 2.3: Knowledge estimation module related to a confidence map of
plants and plantation lines, in addition to displacement vectors between plants
on the same line.

The T −1 final stages consist of seven convolutional layers, five layers with 128

filters of size 7×7, one layer with 128 filters of size 1×1 and the final layer for

estimation according to the first stage.

The multiple stages assist in hierarchical and collaborative learning in es-

timating the occurrence of plants, lines and displacement vectors (Osco et al.,

2020a, 2021a). The first stage performs the rough prediction of the informa-

tion that is refined in the later stages.

2.1.3 Graph Modeling

The problem of detecting plantation lines is modeled by a graph G = (V,E)

composed of a set of vertices V = {vi} and edges E = {ei j}. Each detected plant

is represented by a vertex vi = (xi,yi) with the spatial position of the plant in the

image. The vertices are connected to each other forming a complete graph.

The plants are obtained from the confidence map of the last stage, Cp
T . For

this, the peaks (local maximum) are estimated from Cp
T by analyzing a 4-pixel

neighborhood. Thus, a pixel is a local maximum if Cp
T (x,y) > Cp

T (x+ l,y+m) for

all neighbors given by (l±1,m) or (l,m±1). To avoid detecting plants with a low

probability of occurrence, a plant is detected only if Cp
T (x,y)> τ. In addition, we

consider a minimum distance δ so that the detection of very close plants does

not occur. After preliminary experiments, we set τ = 0.15 and δ = 1 pixels.
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2.1.4 Edge Classification Module (ECM)

Given the complete graph, the detection of plantation lines consists of clas-

sifying each edge (Figure 2.4). Here, the feature vectors of the backbone are

sampled from the line connecting the vertices i and j and from the estimates

made by the knowledge estimation module. This information is used to clas-

sify an edge as a plantation line. Each edge ei j is equal to one (existing) only

if the vertices vi and v j (i.e., plants i and j) belong to the same plantation line.

For this, this module estimates three probabilities of a given edge belonging to

a plantation line, being related to: i) visual features obtained from the back-

bone, ii) chance that the edge pixels belong to a line, and iii) alignment of the

displacement vectors with the edge, the last two obtained by the knowledge

estimation module. Therefore, an edge is classified as a plantation line if the

three probabilities are greater than 0.5. The use of different characteristics for

the edge classification makes it more robust. The subsections below describe

the calculation of the three probabilities.

Figure 2.4: Module for extracting features and classifying an edge ei j.

Visual Features Probability

Given an edge ei j, L equidistant points are sampled between vi = (xi,yi) and

v j = (x j,y j). For each sampled point, a feature vector is obtained from the

backbone activation map. In this way, each edge ei, j is represented by a set of

features Fei, j = { f ei, j
1 , . . . , f ei, j

l , . . . , f ei, j
L } | f ei, j

l ∈ ℜC, where C is the number of chan-

nels in the activation map (C = 128 in this work). To classify an edge using
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visual features, Fei j is given as input for three 1D convolutional layers with

128,256,512 filters. At the end, a fully connected layer with sigmoid activa-

tion corresponds to the probability of the edge belonging to a plantation line.

Figure 2.4 (c) illustrates the process and the features that represent an edge.

Displacement Vector Probability

For each sampled point l on edge ei j, we measure the alignment between

the line connecting vi and v j and the displacement vector at l. For the two

vertices vi and v j of ei j, we sample the displacement vectors predicted in Cv
T

along the line to calculate an association weight (Cao et al., 2017):

ω
ei j
l =Cv

T (l) ·
v j − vi

∥v j − vi∥2
, (2.1)

where Cv
T (l) corresponds to the displacement vector for the sampled point l

between vi and v j. Finally, the edge probability based on the displacement

vectors is given by the mean, p(ei j | displacement vectors) = 1
L ∑

L
l=1 ω

ei j
l .

Figure 2.5(a) illustrates the process for estimating the probability of an

edge based on the displacement vectors. The blue edge connects two ver-

tices/plants of the same plantation line while the red edge connects two ver-

tices of different lines. For each edge, points are sampled along the line and

the weights of the predicted vector alignment and the line connecting the ver-

tices are shown. We can observe that points sampled in a plantation line tend

to have a greater weight than points sampled in the background regions. As

an illustration, Figure 2.6 presents an example of the displacement vectors

estimated by KEM for another test image.

2.1.5 Pixel Probability

This probability is calculated to estimate the edge importance based on the

probability that the pixels are from a plantation line. Similarly to the previous

section, we sample the points along the line vi and v j on the confidence map

Cr
T obtained from the KEM. The probability is given by the average of each

sampled pixel l:

p(ei j | pixel probability) =
1
L ∑

l
Cr

T (l). (2.2)

Figure 2.6 presents the calculation for two edges. We can see that the

probability of a pixel belonging to a plantation line presents a good initial

estimate, although it is not enough to obtain completely connected lines.
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(a) (b)

Figure 2.5: (a) Example of the probability of two edges based on the displace-
ment vectors and (b) example of the vectors estimated by the proposed method
in a test image.

2.1.6 Proposed Method Training

Although the entire method can be trained end-to-end, we initially trained

the knowledge estimation module (KEM). Next, we keep the KEM weights

frozen and train the 1D convolutional layers of the edge classification mod-

ule. This step-by-step training process was adopted to save computational

resources. To train KEM, the loss function is applied at the end of each stage

according to Equations 3.4, 3.5 and 3.6 for the estimate made for the confi-

dence map of the plant positions, line and displacement vectors, respectively.

The overall loss function is given by Equation 3.7.

f p
t = ∑

i
∥ Ĉp

t (i)−Cp
t (i) ∥2

2 (2.3)

f r
t = ∑

i
∥ Ĉr

t (i)−Cr
t (i) ∥2

2 (2.4)

f v
t = ∑

i
∥ Ĉv

t (i)−Cv
t (i) ∥2

2 (2.5)

f =
T

∑
t=1

f p
t + f r

t + f v
t (2.6)

where Ĉt
p
,Ĉt

r
and Ĉt

v
are the ground truths for plant position, lines and dis-

placement vectors, respectively.

Ĉt
p

is generated for each stage t by placing a Gaussian kernel in each center

of the plants (Osco et al., 2021a). The Gaussian kernel of each stage t is

different and has a standard deviation σt equally spaced between [σmax,σmin].
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Figure 2.6: Calculation of the probability based on the chance of a pixel be-
longing to a plantation line.

In preliminary experiments, we defined σmax = 3 and σmin = 1. Similarly, Ĉt
r

is generated considering all the pixels of the plantation lines and placing a

Gaussian kernel with the same parameters as before. On the other hand, Ĉt
v

is constructed using unit vectors. Given the position of two plants vi and v j,

the value Ĉt
v
(l) of a pixel l is a unit vector that points from vi to v j if l lies on

the line between the two plants and both belong to the same plantation line;

otherwise, the value Ĉt
v
(l) is a null vector. In practice, the set of pixels on the

line between two plants is defined as those within the distance limit of the line

segment (two pixels in this work).

Figure 3.5 shows examples of ground truths for the three branches of KEM.

The RGB image is shown in Figure 3.5(a) while the ground truths for the

branches and with three stages are shown in Figures 3.5(b), 3.5(c) and 3.5(d).

The training of the 1D convolutional layers of the edge classification module

is performed using binary cross-entropy loss. Given a set of features that

describes an edge ei j, its prediction yei j is obtained and compared with the

ground truth ŷei j (edge belongs or not to a plantation line) according to:

loss = ŷei j · logyei j +(1− ŷei j) · log(1− yei j). (2.7)

2.2 Experiments and Results

2.2.1 Experimental Setup

Image dataset: The image dataset used in the experiments was obtained

from a previous work (Osco et al., 2021a). The images were captured in an ex-
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Figure 2.7: (a) RGB image and ground truths for the three branches ((b) plant
positions, (c) lines, (d) displacement vectors) and stages using different values
for σ.
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perimental area at “Fazenda Escola” at the Federal University of Mato Grosso

do Sul, in Campo Grande, MS, Brazil. This area has approximately 7,435 m2,

with corn (Zea mays L.) plants planted at a 30×50 cm spacing, which results

in 4-to-5 plants per square meter. For two days, the images were captured

with a Phantom 4 Advanced (ADV) UAV using an RGB camera equipped with

a 1-inch 20-megapixel CMOS sensor and processed with Pix4D commercial

software. The UAV flight was approved by the Department of Airspace Control

(DECEA) responsible for Brazilian airspace. The images were labeled by an ex-

pert initially detecting the plantation-lines. Then, each line was inspected and

the plants were manually identified. The entire labeling process was carried

out in the QGIS 3.10 open-source software.

The images were split into 564 patches with 256× 256 pixels without over-

lapping. The patches were randomly divided into training, validation, and test

sets, containing 60%, 20%, and 20%, respectively. Since the patches have

no overlap, it is guaranteed that no part of the images is repeated in different

sets.

Training: The backbone weights were initialized with the VGG16 weights

pretrained on ImageNet and all other weights were started at random. The

methods were trained using stochastic gradient descent with a learning rate

of 0.001, momentum of 0.9, and batch size of 4. KEM was trained using 100

epochs while the 1D convolutional layers of ECM was trained using 50 epochs.

These parameters were defined after preliminary experiments with the valida-

tion set. The method was implemented in Python with the Keras-TensorFlow

API. The experiments were performed on a computer with Intel (R) Xeon (E)

E3-1270@3.80GHz CPU, 64 GB memory, and an NVIDIA Titan V graphics

card, that includes 5120 CUDA (Compute Unified Device Architecture) cores

and 12 GB of graphics memory.

Metrics: To assess plant detection, we use the Mean Absolute Error (MAE),

Precision, Recall and F1 (F-measure) commonly applied in the literature. These

metrics can be calculated according to Equations 2.8, 3.8, 3.9, and 3.10.

MAE =
1
N ∑

i
| ni −mi | (2.8)

Precision =
T P

T P+FP
(2.9)

Recall =
T P

T P+FN
(2.10)

F1 = 2 · Precision ·Recall
Precision+Recall

(2.11)

where N is the number of patches, ni is the number of plants labeled for patch
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i and mi is the number of plants detected by a method. To calculate preci-

sion, recall and therefore F1, we need to calculate True Positive (TP), False

Positive (FP), and False Negative (FN). For plant detection, TP corresponds to

the number of plants correctly detected, while FP corresponds to the number

of detections that are not plants and FN corresponds to the number of plants

that were not detected by the method. A detected plant is correctly assigned to

a labeled plant if the distance between them is less than 8 pixels. This distance

was estimated based on the plant canopy (see Figure 2.9 for examples).

Similarly, we use the Precision, Recall and F1 metrics to assess the detec-

tion of plantation lines. In contrast, the values of TP, FP and FN correspond to

the number of pixels in a plantation line that have been correctly or incorrectly

detected by the method compared to the labeled lines. A plantation line pixel

is correctly assigned to a labeled one if the distance is less than 5 pixels.

2.2.2 Ablation Study

In this section we individually evaluate the main modules of the proposed

method. The first module is the plant detection that has a direct result in the

construction of the graph. The next module consists of the edge classifica-

tion and, in this step, the appropriate number of sampling points L and the

influence of each knowledge learned by KEM were evaluated.

Plant Detection

An important step of the proposed method is to detect the plants in the

image that will compose the graph for later detection of the plantation lines.

Detections occur by estimating the confidence map and detecting its peaks.

The results of plant detection varying the number of KEM stages are shown in

Table 2.1.

We can see that by increasing the number of stages from 1 to 2, a significant

improvement is obtained in the plant detection(e.g., F1 from 0.843 to 0.915).

On the other hand, the results stabilize with the number of stages above 2,

showing that two stages are sufficient for this step. This is because when

using two or more stages, the proposed method is able to refine the detection

of the first stage. Figure 2.8 shows the confidence map of the first and second

KEM stages for three images of the test set. It is possible to notice that the

second stage provides a refinement in the plant detection, which reflects an

improvement since two nearby plants can be detected separately.

Examples of plant detection are shown in Figure 2.9. In these figures, a

correctly predicted plant (True Positive) is illustrated as a blue dot. The red

dots represent false positives, that is, detections that are not plants. Plants

that were labeled but were not detected by the method are shown by red circles
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Stages MAE Precision(%) Recall(%) F1(%)
1 10.221 78.9 91.0 84.3
2 3.531 92.7 90.5 91.5
4 3.478 91.0 91.4 91.0
6 3.495 91.4 90.9 91.0
8 3.885 89.5 92.0 90.6

Table 2.1: Evaluation of the number of stages in the plant detection.

(the radius of the circle corresponds to the metric threshold). The method is

able to detect the vast majority of plants, although it fails to detect some plants

very close to each other.

Despite this step, obtaining good results (Precision, Recall, and F1 score

of 92.7%, 90.5%, and 91.5%), the detection of all plants in the image is not

necessary for the correct detection of the plantation lines. However, the more

robust the plant detection is, the greater the chance that the line will be de-

tected correctly.

Edge Classification

The edge classification module extracts information from the backbone and

KEM using L equidistant points along the edge. Then the edges are classified

and the plantation lines can be detected. The quantitative assessment of the

number of sampled points is shown in Table 2.2. When few points are sampled

(e.g., L = 4), the features extracted are insufficient to describe the information,

especially when two plants are spatially distant in the image. On the other

hand, L ≥ 8 presents satisfactory results for images with a resolution of 256×
256 pixels. The best results were obtained with L = 16, reaching F1 score of

95.1%.

Number of points Precision(%) Recall(%) F1(%)
4 52.4 (±37.2) 11.2 (±9.7) 16.8 (±13.7)
8 98.5 (±1.8) 91.0 (±5.3) 94.5 (±3.6)
12 98.5 (±1.8) 91.5 (±4.8) 94.7 (±3.3)
16 98.7 (±1.6) 91.9 (±4.3) 95.1 (±2.9)
20 98.6 (±1.8) 91.9 (±4.3) 95.0 (±2.9)

Table 2.2: Evaluation of the number of sampled points L in the detection
plantation lines.

Combined Information in the Plantation Line Detection

The edge classification module considers three features to classify an edge

as a plantation line: visual, line, and displacement vector features. To as-

sess the influence of each feature, Table 2.3 presents the results considering
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(a) RGB Image (b) First stage (c) Second stage

Figure 2.8: Confidence map of the first and second stages for plant detection.

different combinations of features for the edge classification.

When using only the visual features from the backbone, the results are

satisfactory with an F1 of 90.7%. When visual features are combined with

line or displacement vector features, F1 is increased to 92.3% and 94.9%,

respectively. This shows that the features estimated by the KEM are important

and assist in the detection of plantation lines. Furthermore, by combining the

features as proposed in this work, the best result is obtained.

Examples of plantation line detection are presented in Figure 2.10. Fig-

ure 2.10(a) presents the RGB image of three examples, while Figures 2.10(b),

2.10(c), 2.10(d), and 2.10(e) present the detection using visual features, visual

+ vector displacement features, visual + line features, and all features, respec-

tively. The main challenges occur when two plantation lines are very close.

The first example shows that the visual features and the visual + displacement
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Figure 2.9: Examples of plant detection. Blue dots mean correctly predicted
plants, red dots are false positives and red circles are false negatives.

Features Precision(%) Recall(%) F1(%)
Visual Features 94.7 (±6.0) 87.5 (±9.5) 90.7 (±7.8)

Visual + Vector Features 96.3 (±4.4) 89.0 (±7.9) 92.3 (±6.2)
Visual + Line Features 98.4 (±1.9) 91.9 (±4.3) 94.9 (±2.9)

All Features 98.7 (±1.6) 91.9 (±4.3) 95.1 (±2.9)

Table 2.3: Results obtained for different combinations of the features used in
the edge classification module.

vector features joined two lines in a single one while the other combinations

of features were able to detect them independently. The second and third ex-

amples show that the visual features ended up joining two lines at the end,

which did not happen with the other combinations. This is because the visual

features do not extract structural and shape information, making two plants

close in any direction a plausible connection.

2.2.3 Comparison with State-of-the-Art Methods

The proposed method was compared with two recent state-of-the-art meth-

ods in Table 2.4. Deep Hough Transform (Lin et al., 2020) integrated the clas-

sical Hough transform into deeply learned representations, obtaining promis-

ing results in line detection using public datasets. PPGNet (Zhang et al., 2019)

is similar to the proposed method since it models the problem as a graph.

However, PPGNet uses only visual information to classify an edge, in addition

to classifying the entire adjacency matrix, which results in a high computa-

tional cost. To address this issue, PPGNet performs block prediction to classify
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(a) (b) (c) (d) (e)

Figure 2.10: Examples of plantation line detection considering different com-
binations of features in the edge classification module. (a) RGB image, (b)
Visual feature, (c) Visual + Vector displacement features, (d) Visual + line fea-
tures, (e) All features.

the whole adjacency matrix. It is important to emphasize that none of these

previous methods has been applied to detect plantation lines.

Experimental results indicate that the proposed method significantly im-

proves F1 score over the traditional approaches, from 91.0% to 95.1%. The

same occurs for precision and recall, whose best values were obtained by the

proposed method. This shows that the use of additional information (e.g., dis-

placement vectors and line pixel probability) can lead to an improvement in

the description of the problem. All methods show good results when the plan-

tation lines are well defined as in the first example of Figure 2.11. On the other

hand, Deep Hough Transform has difficulty in detecting lines in regions whose

plants are not completely visible (see the second example in Figure 2.11). In

addition, some examples have shown that state-of-the-art methods connect

different plantation lines (the last two examples in the figure). Hence, the

method described here has proven to be effective for plantation line detection.

2.2.4 Generalization in other Cultures

To assess the generalizability of the methods, we report the results in two

financially important crops: orange and eucalyptus. The orange dataset is
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(a) RGB Image (b) PPGNet (c) Deep Hough Trans-
form

(d) Proposed Method

Figure 2.11: Examples of plantation line detection obtained by the compared
methods.
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Methods Precision(%) Recall(%) F1(%)
Deep Hough Transform (Lin et al., 2020) 94.7 (±6.4) 87.5 (±9.9) 90.1 (±8.7)

PPGNet (Zhang et al., 2019) 95.0 (±3.5) 87.6 (±5.5) 91.0 (±3.5)
Proposed Method 98.7 (±1.6) 91.9 (±4.3) 95.1 (±2.9)

Table 2.4: Comparison of the proposed method with two recent state-of-the-
art methods.

composed of 635 images randomly divided into 381, 127 and 127 for training,

validation and test. For the eucalyptus dataset, 1813, 604 and 516 images

were used for training, validation and test, respectively. The methods were

trained with the same hyperparameters as before to show accuracy in crops

with different visual characteristics.

Table 2.5 presents the results of the methods in the two crops. In general,

the methods achieved adequate results in both crops, with emphasis on the

proposed method that achieved the best results. Figure 2.12 illustrates the

detection of plantation lines in orange crop. We can see that the orange grove

has consistent plantation lines and therefore the methods were successful in

detecting. Errors occurred in small disconnections of the lines (last example)

and in the detection of trees that are not of the target crop (first example).

Unlike the orange crop, eucalyptus presents a more challenging scenario as

illustrated in the examples in Figure 2.13. The presence of other trees is more

constant even between the plantation lines (first example), causing PPGNet to

make connections between the lines and DHT to leave a disconnected line.

The proposed method on the other hand was more robust to these interfer-

ences in most cases. In less challenging scenarios, the methods yield adequate

results, such as the second and third example in the figure.

Crop Methods Precision(%) Recall(%) F1(%)

Orange
Deep Hough Transform (Lin et al., 2020) 96.0 (±6.5) 91.8 (±10.7) 93.2 (±9.1)

PPGNet (Zhang et al., 2019) 95.0 (±7.1) 91.2 (±9.4) 92.7 (±8.2)
Proposed Method 98.9 (±2.0) 93.8 (±6.6) 95.9 (±4.3)

Eucalyptus
Deep Hough Transform (Lin et al., 2020) 98.4 (±2.6) 90.6 (±8.9) 93.8 (±6.3)

PPGNet (Zhang et al., 2019) 84.6 (±10.1) 81.0 (±11.2) 82.3 (±9.9)
Proposed Method 98.9 (±1.4) 94.4 (±5.4) 96.4 (±3.2)

Table 2.5: Comparison of the proposed method with state-of-the-art methods
in two crops (orange and eucalyptus).

2.3 Discussion

In this study, we investigated the performance of a deep neural network

in combination with the graph theory to extract plantation-lines in RGB im-

ages to attend agricultural farmlands. For this, we demonstrated the appli-

cation of our approach in a corn field dataset composed of corn plants at
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(a) RGB Image (b) PPGNet (c) Deep Hough Trans-
form

(d) Proposed Method

Figure 2.12: Examples of plantation line detection obtained by the compared
methods in orange.
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(a) RGB Image (b) PPGNet (c) Deep Hough Trans-
form

(d) Proposed Method

Figure 2.13: Examples of plantation line detection obtained by the compared
methods in eucalyptus.
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different growth stages and with different plantation patterns (i.e., directions,

curves, space inbetween, etc.). The results from our experiment demonstrated

that the proposed approach is feasible to detect both plant and lines posi-

tions with high accuracy. Moreover, the comparison of our method against

Lin et al. (2020) and Zhang et al. (2019) deep neural networks indicated that

our method is capable of returning accurate results, better than those of the

state-of-the-art, and, when compared against its baseline (Visual Features),

an improvement from 0.907 to 0.951 occurred. As such, we intend to discuss

here this improvement and the importance of graphs theory in conjunction

with DNN model.

In our approach, we initially identified the plants’ position in the image

through a confidence map, being this information useful for estimating the

plantation lines. Then, the probability that a pixel belongs to a crop line is

estimated and, finally, is estimated the displacement of vectors linking one

plant to another on the same plantation line. After these estimates, the prob-

lem of detecting plantation lines is modeled using a graph, in which each

plant identified in the confidence map is assumed as a vertex in the graph,

and these vertices are connected forming a complete graph. Each edge be-

tween two vertices, then, is used in the edge classification module to classify

whether the edges are a planting line. During the aforementioned process, we

verified that at the second stage of the KEM the networks’ performance works

better and that increasing this number of stages would only result in worse

results and higher processing time. After this, the plants, which are viewed

as the ”vertices” by the model, are classified using a given distance between

points, where the plantation lines are determined. This information is impor-

tant since the plantation-line is detected by considering both visual aspects

(i.e. spectral and spatial features, texture, pattern, etc.) the line shape itself,

and the displacement of the vector features. By considering this displacement

of the graph’s structure, the network is capable of improving its learning capa-

bility concerning the line pattern, especially when differences in the terrain or

the direction of the line occurs, since it accounts for the plants’ (i.e., vertices)

position to one another.

The adoption of graphs theory in deep learning-related approaches is a

relatively new concept in remote sensing and has been explored majorly in

semantic segmentation tasks (Ouyang and Li, 2021; Hong et al., 2021; Yan

et al., 2019; Cai and Wei, 2022). These studies mostly investigated graph

convolutional networks and attention-based mechanisms, which differs from

the proposal present here. Regardless, there is no denying the graph addi-

tion has the potential to assist in learning patterns and positions of most of

the surfaces’ targets. In remote sensing applied to agricultural problems, the
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integration with graphs can help ascertain a series of object detection tasks,

especially those that involve certain patterns and geometry information, as

any of other anthropic based environments. As such, this approach offers

potential not only for plantation line detection but also for other linear forms

like river and its margins, roads and side-roads, sidewalks, utility pole-lines,

among others, which were already the theme of previous deep learning ap-

proaches related to both segmentation and object detection (Weld et al., 2019;

Gomes et al., 2020; Weng et al., 2020; Yang et al., 2019)

The detection of plantation lines is not an easy task to be performed by

automatic methods, and the usage of graph is necessary to assist it. Some

challenges that occurred when considering our baseline, which only consid-

ered the visual features and the first two information branches to rely on the

plantation lines’ position, was the presence of plants outside the plantation

lines’ range (i.e. highly spaced gaps), as well as isolated plants and weeds, that

both offered a hindrance to the plantation-line detection process. Here, when

considering the third information branch with the displacement of the vector

features, most of these problems were dealt with, resulting in its better per-

formance, both visually and numerically. Regardless, previously conducted

approaches that intended to extract plantation lines from aerial RGB imagery

were also reportedly successfully, specifically to detect citrus-tress planted in

curved rows (Rosa et al., 2020), which form intricate geometric patterns in

the image, as well as in an unsupervised manner, in which the plantation line

segmentation was a complementary approach to detect weeds outside the line

(Dian Bah et al., 2018).It is also important to highlight that most of the works

for plantation line detection are based on segmentation that requires dense la-

beling (i.e., a class has to be assigned to all the pixels). Our approach requires

only one point per plant, reducing the labeling effort significantly.

Future perspectives on graph application in combination with deep con-

volutional neural networks (or any other type of network) for remote sensing

approaches should be encouraged. Deep networks are a powerful method for

extracting and learning patterns in imagery. However, they tend to ignore

the basic principles of the object pattern in the real world. Graphs, on the

other hand, can represent these features and their relationship accordingly.

As such, this combination of knowledge provided by both methods is quickly

gaining attention in remote sensing and photogrametric field, where most real-

life patterns are represented. In this regard, discovering learning patterns

related to automatic agricultural practices, such as extracting plantation-line

information, is one of the many types of geometric-related mappings that could

be potentially benefited from the addition of graphs into the DNN model. In

summary, our approach demonstrated that the network improved its perfor-
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mance when considering this novel information into its learning process by

achieving better accuracies than its previous structure and other state-of-the-

art methods, as aforementioned.

2.4 Conclusion

This paper presents a novel deep learning-based method to extract plan-

tation lines in aerial imagery of agricultural fields. Our approach extracts

knowledge from the feature map organized in three extraction and refinement

branches for plant positions, plantation lines, and for the displacement vec-

tors between the plants. A graph modeling is applied considering each plant as

a vertex, and the edges are formed between two plants. As the edge is classi-

fied as belonging to a certain plantation line based on visual learning features

extracted from the backbone, our approach enhances this since there is also

a chance that the plant pixel belongs to a line, which is extracted by the KEM

method and is refined with information from the alignment of the displace-

ment vectors with the plant/object. Based on the experiments, our approach

can be characterized as an effective strategy for dealing with hard-to-detect

lines, especially those with spaced plants. When it was compared against the

state-of-the-art deep learning methods, including Deep Hough Transform and

PPGNet, our approach demonstrated superior performance with a significant

margin considering datasets from different cultures. Therefore, it represents

an innovative strategy for extracting lines with spaced plantation patterns, and

it could be implemented in scenarios where plantation gaps occur, generating

lines with few-to-none interruptions.

32



CHAPTER

3
Convolutional neural network for

fingerlings counting using a multi-task
learning approach

Preface

Fingerling counting is an important task for decision-making in the aqua-

culture context. The counting is usually performed visually by a human,

which is time-consuming and prone to errors. Artificial intelligence methods

applied to image interpretation can be a great strategy for this task-solving,

providing as a result an automatic approach to deal with a handling task.

However, applying machine learning or even deep learning algorithms to at-

tend aquaculture issues is an underexplored field that requires novel investi-

gations. For this reason, in this study, we propose a new method to locate and

count fingerlings in sequence of images using convolutional neural networks.

This method performs the predictions of the following tasks: the probability

of a fingerling occurring in each pixel; the movement of the fingerlings from

one frame to another, and the estimation of the movement direction vector for

each pixel. The feature map given as an input to the multi-task step listed

above was extrated from two frames using a backbone. The evaluation of the

main parameters of the proposed method showed that the stages responsible

for refining the predictions reached best results to locate and count fingerlings

when two and three stages were used with F1 of 98.11 e 97.89, respectively.

The analyzes indicated that the use of temporal information considerably in-
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creases the results, reaching F1 of 97.89. The proposed method was evaluated

in frames with different numbers of fingerlings (from 0 to 10) and all obtained

relevant results, with F1 of 95.42 or higher. The study also showed that, in

most cases, the proposed method is able to detect the joining of two fingerlings

visually forming a single one, which is considered the main challenge of the

detection and counting of fingerlings.

Relation of the paper with MTL. In this second paper we extend the

method proposed in the first to process temporal information. As in the first

paper, the proposed method belongs to the hybrid strategy, as the tasks share

the same backbone (hard parameter sharing), but there is also an exchange of

information between the branches through the concatenation of feature maps

in specific layers of the method (soft parameter sharing).

3.1 Introduction

Fingerling counting is the task of estimating the number of animals in a

given area for decision making. This kind of data is important to calculate

the production potential, the necessary amount of feed and even the sale of

a specific amount of animals. Despite the importance, counting is usually

performed visually by a human. This visual count is time-consuming and

prone to errors due to tiredness and difficulties inherent to the human being.

To overcome these issues, automatic systems using images have been pro-

posed (França Albuquerque et al., 2019; Garcia et al., 2020). These systems

collect images and the counting is performed by analyzing the images, making

this task faster and less costly. Counting occurs by detecting each fingerling

(detection-based methods) or by regressing a number to the entire image or

parts of it (regression-based methods). In addition, these methods can include

temporal information from a sequence of images.

Detection-based methods consist of detecting and obtaining the position of

each fingerling in the image. Garcia et al. (2020) e França Albuquerque et al.

(2019) presented a system for counting fingerlings using background subtrac-

tion, blob detection and Kalman filter. Although relevant results have been

achieved, the system is susceptible to a large amount of parameterization (e.g.,

average fingerling size, average distance, etc.), which makes it difficult to use

on a large scale. Some studies already used neural networks in aquaculture

cases (Sveen et al., 2021; Zhao et al., 2018b; Zhou et al., 2019). Recently,

counting methods have been proposed using convolutional neural networks

(CNNs), such as R-CNN used in (Salman et al., 2019). These methods con-

sider a bounding box for each object and can provide both the position (center

of the bounding box) and the count (number of bounding boxes).
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On the other hand, regression-based methods directly estimate the number

of fingerlings establishing a correlation between the features extracted from

the image and the target number. Zhang et al. (2020a) proposed a method

that divides the image into sub-images containing one or more fish using seg-

mentation. For each subimage, regression is applied to estimate the number

of local fish and contributes to the total image count. Fan and Liu (2013) pro-

posed a method that estimates the number of fingerlings based on geometric

features (e.g., area, perimeter). The features are inputs for least squares sup-

port vector machine (LS-SVM) that performs the regression. CNNs have also

been used for regression and counting fish. Zhang et al. (2020b) proposed a

hybrid neural network model to estimate a density map and the total number

of fish in the image.

Although recent methods have obtained promising results, the high den-

sity with overlapping fingerlings is a challenge for counting. In general, object

detection methods are not suitable for dense object scenarios (Goldman et al.,

2019). In this case, the overlapping of the bounding boxes due to occlusion

makes detection and counting difficult. To assist counting in occlusion sce-

narios, counting in a sequence of images can be important. Analysis of the

movement that objects perform in frames can provide valuable information

that is not always taken into account when counting objects in an image. In

this context, studies show that the movement of objects can assist in the de-

tection and counting, as well as distinguishing them from the background (Ma

et al., 2015; Nam and Han, 2016; Danelljan et al., 2015; Wang et al., 2019;

Hou et al., 2019; Gonçalves et al., 2020b).

Unlike object tracking, the purpose of this work is to consider information

from the past to count and locate fingerlings in a current frame. This work

proposes a new method to locate and count fingerlings in sequence of im-

ages using convolutional neural networks. Given the current and the previous

frames, the proposed method performs the prediction of three tasks. The first

task is to estimate a confidence map with the probability of a fingerling occur-

ring in each pixel. The second and third tasks are related to the movement of

the fingerlings from one frame to the other, estimating a movement direction

vector for each pixel and a confidence map of the movement. Simultaneous

learning of tasks results in greater efficiency and accuracy of prediction for

each task. After the prediction of the three tasks, they are used to detect and

count the fingerlings in a current frame by means of graphs. Experimental

results show that the proposed method is able to improve the fingerling count

and location using temporal information.
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3.2 Materials and Methods

3.2.1 Proposed approach

This section describes the proposed method for detecting and counting fin-

gerlings in sequence of images. Initially, two frames are concatenated and a

feature map is extracted using a backbone. This feature map is given as an

input to the multi-task step that estimates i) the probability of a fingerling

occurring in each pixel of the image, ii) the probability of the pixels belonging

to the movement of a fingerling from a previous frame to the current one, and

iii) a movement direction vector for each pixel. This temporal information is

used together to estimate the position of fingerlings in a current frame.

Feature map extraction

Given two consecutive frames It and It−1 with w×h colored pixels each, they

are concatenated to form an input I = [It−1, It ] with dimension w×h×6. In this

way, the previous frame It−1 can add relevant information for the detection and

counting of fingerlings in frame It.

Input I is passed through a backbone to extract a feature map. The back-

bone is composed of convolutional layers similar to the VGG16 architecture

(Simonyan and Zisserman, 2015) (see Figure 3.1). The first two convolution

layers have 64 filters of size 3×3, followed by a maxpooling layer with window

2×2 and stride 2. Then, two layers with 128 filters, one of maxpooling and an-

other four convolution layers with 256 filters are used. As the estimate of the

fingerling positions is a dense map, an upsampling layer is applied followed

by two convolution layers with 256 and 128 3×3 filters, respectively. The last

convolutional layer provides the feature map with resolution w
2 × h

2 . Reducing

the feature map by half is important to extract local features while decreasing

the computational cost of the backbone.

Multi-task estimation

For the fingerling count, three tasks are estimated to include temporal in-

formation in the detection. The first task is to estimate a confidence map for

the position of the fingerlings in frame t (see Figure 3.2(c)). Thus, each pixel

represents the probability that it contains a fingerling. The second and third

tasks estimate temporal information to assist in detection and counting. The

second task (Figure 3.2(d)) is to estimate a confidence map that represents

the probability that a pixel belongs to the movement performed by a fingerling

from frame t −1 to frame t. This information is equivalent to the estimation of

the footprint left by the fingerling from one frame to another. The third task
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Figure 3.1: Extraction of the feature map from two frames using a backbone
based on the VGG architecture.

is similar to the second, but estimates for each pixel a vector that points in

the direction of the movement performed by the fingerling (Figure 3.2(e)). This

third task is related to the dense optical flow, but here estimated by a branch

of the proposed method.

Given the feature map extracted from two frames, each task is estimated

on a branch consisting of S stages (Figure 3.2). The first stage of each of the

three branches receives the feature map F and performs a series of convo-

lution layers. The first three convolution layers have 128 filters of size 3× 3
followed by a layer with 512 filters of size 1× 1, all with the ReLU activation

function. The last layer of the first and second branches has only one filter to

estimate a confidence map for the position of the fingerlings in frame t (Cp
1 ) and

a confidence map corresponding to the temporal movement of the fingerlings

(Cd
1 ). The last layer of the third branch has two filters to estimate a motion

vector on the x and y axis (Cv
1).

At the end of the first stage of each of the three branches, estimates Cp
1 ,

Cd
1 , and Cv

1 could be used to detect fingerlings. However, experimental results

have shown that they can be refined by more convolutional layers. For re-

finement, the later stage s concatenates the estimates from the previous stage

Cp
s−1,C

d
s−1,C

v
s−1 and the feature map F to estimate the refined information Cp

s ,Cd
s

and Cv
s . The final S−1 stages are composed of seven convolutional layers, five

layers with 128 7× 7 filters, one layer with 128 1× 1 filters and a final layer

with the number of filters according to the first stage.

As the information from a previous stage is concatenated, the stages assist

in collaborative learning between tasks. The task of detecting the position of

the fingerlings in the current frame can be impacted by information related

to their movement and direction. In general, the first stage provides a rough

prediction that is further refined by the other stages with the exchange of

information between tasks.
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Figure 3.2: Multi-task learning that estimates the position of fingerlings, vec-
tor and confidence map of the movement.

Modeling Fingerlings Movement

The position of the fingerlings in frame t is obtained by the peaks in the

confidence map of the last stage Cp
S . A position (x,y) is a peak if Cp

S (x,y) >

Cp
S (x + l,y + m) for a 4-pixel neighborhood given by (l ± 1,m) or (l,m ± 1). To

prevent low probability peaks from being detected as fingerlings, a position

(x,y) is considered if Cp
S (x,y)> τ.

The positions detected as fingerlings in the current frame Pt = {(xi,yi)} | i ∈
[1,nt ] and in a previous frame Pt−1 = {(x j,y j)} | j ∈ [1,nt−1] are modeled with a

complete bipartite graph. The vertices correspond to the detected fingerlings,

being a set of vertices composed of fingerlings from the current frame t and the

other set from the previous frame t −1. The vertices i of one set are connected

by means of edges ei j with all the vertices j of the other set.

To include temporal information, the weight of an edge is calculated using

estimates Cd
S and Cv

S. Given an edge ei j, equidistant points are sampled from

the line segment between (xi,yi) and (x j,y j). For each sampled point (xl,yl), we

calculate the alignment between the line segment (xi,yi)(x j,y j) and the motion

vector estimated in Cv
S(xl,yl) according to Equation 3.1 (Cao et al., 2017). Fi-

nally, the weight of the edge considering the alignment ev
i j is given by the sum

of the alignment of all the sampled points, ev
i j = ∑l ω

ei j
l .

ω
ei j
l =Cv

S(xl,yl) ·
(x j,y j)− (xi,yi)

∥(x j,y j)− (xi,yi)∥2
, (3.1)
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Figure 3.3: Example of calculating the weight of edges ev
i j and ed

i j using predic-
tions Cv

S and Cd
S .

In addition to the previous weight, we calculate a weight ed
i j based on the

probability that a pixel belongs to the movement performed by a fingerling.

Similarly, we sample points from the line segment (xi,yi)(x j,y j) in Cd
S . The

weight is given by the sum of each sampled point l:

ed
i j = ∑

l
Cd

S (xl,yl). (3.2)

Finally, the weight of an edge ei j is given by the sum of the two weights to

include information from the two tasks:

ei j = ev
i j + ed

i j (3.3)

Figures 3.3(a) and 3.3(b) illustrate the process for calculating the two weights

of an edge based on the motion vector and motion confidence map, respec-

tively. The vertices in blue and green correspond to the fingerlings detected in

the previous and current frames. We can see that the edge that connects the

vertices A and C is aligned with the motion vectors (Figure 3.3(a)) and the mo-

tion confidence map (Figure 3.3(b)), both predicted by the proposed method.

Therefore, this edge has a greater weight than the edge that connects the ver-

tices A and D or B and C, for example. A high weight is also associated with

the edge that connects vertices B and D.

Fingerlings Detection

Initially we built a complete bipartite graph, where the vertices are the fin-

gerlings detected in the previous and current frame, and the edges are all

possible connections between pairs of fingerlings in different frames. Addi-

tionally, the edges are weighted according to Equation 3.3.
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To detect the fingerlings in the frame t to compose the bipartite graph, we

use the confidence map prediction Cv
S searching for peaks even with a low

threshold τlow. Thus, the set of fingerlings detected in the frame t is generally

greater than ideal and also greater than the number of fingerlings in the pre-

vious frame. The fingerlings in frame t are associated with the fingerlings in

frame t − 1, that is, we need to find a pair of fingerlings. The fingerlings that

are not associated with any fingerling in the previous frame, but their peak is

greater than τhigh are maintained as they are probably fingerlings entering the

scene. After preliminary experiments, we used τlow = 0.005 and τhigh = 0.01.

The optimal association between fingerlings in the complete bipartite graph

is reduced to a maximum weight matching problem. Given a bipartite graph,

a maximum matching is a subset of edges whose sum of their weights is max-

imized and that any two edges do not share a vertex. To find the optimal

matching, we use the Hungarian algorithm (Kuhn, 1955).

Figure 3.4 shows an example of the detection of fingerlings by means of the

complete bipartite graph. The predictions for a frame t are shown in Figures

3.4(b), 3.4(c) and 3.4(d), corresponding respectively to the confidence map of

the fingerlings position, movement vectors and confidence movement map.

Figure 3.4(a) shows the fingerlings detected in a previous frame (red dots rep-

resented by the letters A to D) and the fingerlings detected in the current frame

(blue dots with letters from E to K). We can see that the number of fingerlings

detected in the frame t is overestimated due to the low threshold used in the

confidence map (Figure 3.4(b)). Then, the complete bipartite graph is con-

structed (Figure 3.4(e)) and the edges are weighted based on the confidence

maps illustrated in Figures 3.4(c) and 3.4(d). The optimal match is obtained

using the Hungarian algorithm as shown in Figure 3.4(f). Therefore, the fin-

gerlings associated with a previous fingerling are maintained. In addition to

these, the fingerlings not associated but with a high peak are also maintained

(see the fingerling represented by the letter F in Figure 3.4(g)).

3.2.2 Experimental Setup

Dataset

The dataset used in this work was collected from (Garcia et al., 2020). The

frame sequence was obtained with a Logitech C920 PRO WEBCAM HD camera

with full hd resolution (720× 1280 pixels) and a capture rate of 30 frames per

second. The camera was attached to a structure through which the fingerlings

slide with the aid of water. In the experiments, the frames were scaled to

512×512 pixels.

Table 3.1 shows the number of frames and the total number of fingerlings
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Figure 3.4: Steps for detecting and counting fingerlings in a current frame.
For a frame t, Figure 3.4(a) shows the fingerlings detected in the previous
frame t −1 (red dots) and in the current frame (blue dots). The confidence map
of the fingerlings position is shown in Figure 3.4(b). Figure 3.4(c) represents
the confidence map of the movement vectors and Figure 3.4(d) represents the
confidence movement map. The complete bipartite graph connecting the fin-
gerlings from the previous and current frames is shown in Figure 3.4(e). Fig-
ures 3.4(f) and 3.4(g) shows the optimal match obtained using the Hungarian
algoritm.
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Table 3.1: Description of the dataset in relation to the number of frames and
fingerlings.

Set N. of Frames N. of Fingerlings
Train 2730 4079

Validation 210 461
Test 1080 2102
Total 4020 6642

Table 3.2: Number of fingerlings per frame.
N. of Fingerlings N. of frames

per frame Train Val Test
0-2 2192 158 749
3-5 466 29 262
6-10 72 23 69

for each of the training, validation and test sets. The number of fingerlings per

frame is shown in Table 3.2. Most frames have up to two fingerlings, although

challenging scenarios with up to 10 fingerlings are present in the dataset.

Each frame was manually annotated with the center of each fingerling.

In addition, the position of each fingerling in the previous frame is available

to assist in the inclusion of temporal information, as used by the proposed

method.

Proposed Method Training

The predictions made by the proposed method using a CNN were trained

using stochastic gradient descent. The loss function is applied at the end of

each stage s according to Equations 3.4, 3.5 and 3.6 for the predictions of the

fingerlings confidence map, movement confidence map and movement vector,

respectively. Finally, the overall loss function is given by Equation 3.7.

f p
s = ∑

i
∥ Ĉp

s (i)−Cp
s (i) ∥2

2 (3.4)

f d
s = ∑

i
∥ Ĉd

s (i)−Cd
s (i) ∥2

2 (3.5)

f v
s = ∑

i
∥ Ĉv

s (i)−Cv
s (i) ∥2

2 (3.6)

f =
S

∑
s=1

f p
s + f d

s + f v
s (3.7)

where Ĉp
s ,Ĉd

s and Ĉv
s are the ground truths for fingerling positions, movements

and vectors, respectively.

Ground truths are generated as follows. Ĉp
s for a stage s is generated by

placing a Gaussian in each fingerling position (Osco et al., 2021a). To pro-
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mote refinement during the stages, the Gaussian kernel of each stage has

a standard deviation equally spaced between [σmax,σmin]. On the other hand,

Ĉd
s is generated from the movement of each fingerling. For this, a Gaussian

kernel is positioned in each pixel of the line that connects the position of a

fingerling in the previous and current frame that were previously labeled. The

parameters of the Gaussian kernel of each stage follow as the previous one.

Finally, Ĉv
s is constructed similarly to Ĉd

s , but using unit vectors. Ĉv
s is a unit

vector that points from the position of a fingerling in the previous frame to its

position in the current frame.

Figure 3.5 presents the ground truths for three stages using different val-

ues of σ. The RGB image is shown in Figure 3.5(a) while the ground truths are

shown in Figures 3.5(b), 3.5(c) and 3.5(d). We can see that the first stage (first

column of images) has more coarse ground truths while the ground truths of

the later stages are more adjusted. This allows the proposed method to learn

to refine its predictions in the later stages.

During training, the backbone was initialized with the pre-trained weights

on ImageNet. We used the stochastic gradient descent optimizer with a learn-

ing rate of 0.01, momentum of 0.9, and batch size of 2 during 100 epochs.

These parameters were defined after preliminary experiments with the valida-

tion set.

Metrics

To assess the detection of fingerlings, we use the Precision, Recall and

F1 (F-measure) commonly applied in the literature. These metrics can be

calculated according to Equations 3.8, 3.9, and 3.10.

P =
T P

T P+FP
(3.8)

R =
T P

T P+FN
(3.9)

F1 = 2 · P ·R
P+R

(3.10)

where TP, FP and FN stand for True Positive, False Positive, and False Neg-

ative, respectively. Since the labeling of each fingerling is only one point, a

prediction is correctly assigned to a labeled fingerling if the distance between

them is less than 20 pixels. This distance was estimated based on the average

size of a fingerling in the image.
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(a)

(b)

(c)

(d)

Figure 3.5: Example of the ground truths generated for frame. Each column
of images presents the ground truth for the stages.
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Table 3.3: Influence of σmax on fingerling count using σmin = 1 and number of
stages S = 2.

σmax Precision Recall F1
1 90.03 98.20 92.90
2 94.09 98.15 95.37
3 96.96 99.02 97.61
4 97.51 99.37 98.12
5 96.07 99.20 97.17

Table 3.4: Influence of σmin on fingerling count using σmax = 4 and number of
stages S = 2.

σmin Precision Recall F1
1 97.51 99.37 98.12
2 95.56 99.35 96.87
3 94.52 98.48 95.90

3.3 Experiments and Results

3.3.1 Parameter Analysis

This section assesses the influence of the main parameters of the proposed

method, which includes σmax and σmin used to generate the ground truths and

the number of stages S used to refine the predictions. The results for different

values of σmax are shown in Table 3.3. In these results, we used two stages

S = 2, the first varying σmax of the ground truths and the second with σmin set

to 1.0. The results show that F1 increases as σmax also increases. In this

way, the first stage makes a rough prediction and the second stage refines the

predictions. The best result was obtained with σmax = 4, as it adequately covers

the fingerling (see Figure 3.6(a)).

We also assessed the influence of σmin according to Table 3.4. This pa-

rameter is responsible for the confidence map of the last stage in which the

fingerlings are detected. σmax was set to 4 due to previous results and we main-

tained two stages. As we can see small values of σmin provide better results in

general. This is because the smaller spreading in the last stage allows an ac-

curate refinement of the position of the fingerlings even when they are close.

Figure 3.6 shows the prediction of multi-tasks using σ = 1 and 4. It is possible

to observe that the predictions using smaller values are more adjusted.

Finally, we evaluated the number of stages as reported in Table 3.5, which

are responsible for refining the predictions. When using only one stage, the

results are inferior to the others, which shows that refinement is an impor-

tant part of the proposed method. Using two and three stages, the proposed

method achieves its best results with F1 of 98.11 and 97.89, respectively. With
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more stages, the number of layers and consequently the number of weights

to be learned increases, which can make training difficult. With these experi-

ments, the best results of the proposed method were obtained using σmax = 4,

σmin = 1 and number of stages S = 2 or 3.

Table 3.5: Influence of the number of stages on fingerling count using σmin = 1
and σmax = 4.

Stages (S) Precision Recall F1
1 83.73 97.80 88.40
2 97.51 99.37 98.11
3 97.45 98.99 97.89
4 94.81 98.96 96.26

3.3.2 Temporal Analysis

The detection of fingerlings in the current frame occurs after association

in the complete bipartite graph. The weight of the edges is calculated based

on two predictions related to the movement of the fingerlings. This section

assesses the influence of the weight of the edges on the association and, con-

sequently, on the detection of fingerlings according to Table 3.6.

The first line of Table 3.6 presents the results by performing the detection

directly on the confidence map of the fingerlings’ positions using the best pa-

rameters found in the previous section. Thus, although this prediction may

contain temporal information due to the sharing of multi-tasks on CNN, they

are not used directly in detection. The other lines of the table show the re-

sults when the bipartite graph and temporal information are used explicitly.

The second and third lines present the results considering separately the two

predictions in the calculation of the weight of the edges. Finally, the last line

of the table presents the results of the proposed method, in which the two

predictions are used (Equation 3.3). The results show that using temporal in-

formation individually leads to overestimation of fingerlings (false positive), re-

sulting in lower precision. On the other hand, the proposed method decreases

the detection of false fingerlings improving the precision without decreasing

the recall.

Table 3.6: Comparative results using temporal information on edge weight.
Temporal Information Precision Recall F1

Confidence map 90.27 98.74 93.25
Cd

S 95.97 98.82 96.94
Cv

S 95.87 98.72 96.82
Both 97.45 98.99 97.89

The experimental results show that the detection without the use of tempo-
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(a) σ = 4 (b) σ = 1

Figure 3.6: Example of predictions made in (a) the first and (b) last stages.
Each row of images represents the predictions for the position of the finger-
lings, the confidence map of the movement and the movement vectors.
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(a) (b) (c)

Figure 3.7: Examples of detection of (a) two, (b) four and (c) five fingerlings.

ral information is not adequate, especially when the fingerlings are very close,

forming only one visually. The use of temporal information increases results

considerably (e.g., from 93.25 to 96.94 and 96.82). The combination of the

two predictions further increases the results, reaching F1 of 97.89.

3.3.3 Density Analysis

The proposed method was evaluated in frames with different numbers of

fingerlings as shown in Table 3.7. The ranges comprise frames containing

from 0 to 2 fingerlings, from 3 to 5 and from 6 onwards. As expected, the

results decrease as the number of fingerlings per frame increases. With up

to two fingerlings per frame, the proposed method reached F1 of 98.61 while

from three to five fingerlings, F1 of 97 was obtained. Figure 3.7 shows ex-

amples of detection of fingerlings in the 0-2 and 3-5 ranges. Red and blue

dots indicate the position of fingerlings detected in the previous and current

frames, respectively. The connections show the result of the association of the

bipartite graph.

Table 3.7: Results of detection and counting in frames with different amounts
of fingerlings.

N. of Fingerlings
Precision Recall F1per frame

0-2 98.01 99.81 98.61
3-5 95.94 98.87 97.00
6-10 96.81 94.41 95.42

Relevant results were also obtained in frames with a large number of fin-

gerlings (6-10) with an F1 of 95.42. Examples of detection with high density of
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(a) (b) (c)

Figure 3.8: Examples of detection of (a) six, (b) seven and (c) ten fingerlings.

(a) #159 (b) #160 (c) #161 (d) #162 (e) #163

Figure 3.9: Example of counting and detecting fingerlings in contact.

fingerlings are shown in Figure 3.8. The proposed method was able to detect

six, seven and ten fingerlings even when they are close and moving due to the

use of multi-tasks approach.

The main challenge of the detection and counting of fingerlings is the join-

ing of two fingerlings visually forming a single one. Despite the challenge,

the proposed method is able to detect the two fingerlings in most cases, as

shown in Figure 3.9. This is possible due to the association of a fingerling

detected with low probability in the current frame with a fingerling in the pre-

vious frame. Without this association and the use of multi-task, one of the

fingerlings would be discarded due to its low probability.

On the other hand, the errors of the proposed method occur mostly when

two or more fingerlings enter the scene connected. The sequence of frames in
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Figure 3.10 illustrates this situation. Although it is not possible to visually

observe, three fingerlings enter the scene, but only one fingerling is detected

initially. In the following frame, the proposed method detects two fingerlings

while the third fingerling is only detected in the seventh frame of that se-

quence.

3.4 Conclusions and future work

The proposed method showed satisfactory results to locate and count fin-

gerlings in sequence of images using convolutional neural networks. Regard-

ing the analyzed parameters, the best results of the proposed method were

obtained using σmax = 4, σmin = 1 and number of stages S = 2 or 3. Using two

and three stages, the proposed method achieves its best results with F1 of

98.11 e 97.89, respectively. The analyzes also indicated that the use of tem-

poral information increases results considerably (e.g., from 93.25 to 96.94

and 96.82), and the combination of the two predictions further increases the

results, reaching F1 of 97.89. The proposed method was evaluated in frames

with different numbers of fingerlings, the results showed that with up to two

fingerlings per frame, the proposed method reached F1 of 98.61, from three

to five fingerlings, F1 of 97, but also obtained relevant results in frames with

a large number of fingerlings (6-10) with an F1 of 95.42. These results prove

that the proposed method was able to detect six, seven and ten fingerlings

even when they are close and moving due to the use of multi-tasks. Another

advantage of this study is that, in most cases, the proposed method is able

to detect the joining of two fingerlings visually forming a single one, which

is considered the main challenge of the detection and counting of fingerlings.

For future works, we suggest applied the proposed approach in images with

an even more dense number of fingerlings. Moreover, we suggest testing the

developed method using images capture by a camera with less resolution to

verify its generalization ability to detect and count the fingerlings in a sequence

of images. Fingerling tracking is also a future work to assist the individual fin-

gerling counts.
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(a) #211 (b) #212 (c) #213

(d) #214 (e) #215 (f) #216

(g) #217 (h) #218 (i) #219

Figure 3.10: Sequence of frames illustrating one of the main challenges for the
proposed method.
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CHAPTER

4
MTLSegFormer: Multi-task learning

with Transformers for Semantic
Segmentation

Preface

Multi-task learning has proven to be effective in improving the performance

of correlated tasks, increasing generalization power. Most of the existing

methods use a backbone to extract initial features followed by independent

branches for each task, and the exchange of information between the branches

usually occurs through the concatenation or sum of the feature maps of the

branches. However, this type of information exchange does not directly con-

sider the local characteristics of the image nor the level of importance or corre-

lation between the tasks. In this paper, we propose a semantic segmentation

method, MTLSegFormer, which combines multi-task learning and attention

mechanisms. After the backbone feature extraction, two feature maps are

learned for each task. The first map is proposed to learn features related to its

task, while the second map is obtained by applying learned visual attention

to locally re-weigh the feature maps of the other tasks. In this way, weights

are assigned to local regions of the image of other tasks that have greater im-

portance for the specific task. Finally, the two maps are combined and used

to solve a task. We tested the performance in two challenging problems with

correlated tasks and observed a significant improvement in accuracy mainly

in tasks with high dependence on the others.
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Relation of the paper with MTL. In this third paper we combine the MTL

approach with transformers. Transformers learn weights that indicate the

importance of each local region of the image for a specific task, as well as

the importance of each task to the others. As in previous papers, we used

the hybrid strategy to share information between tasks. Hard parameter

sharing occurs because the tasks have the same backbone. Soft parameter

sharing also occurs because there is an exchange of information between the

branches/tasks, but in this case, each task has a weight that indicates the

level of information exchange between them. Therefore, if the learned weight

is null, the strategy becomes hard parameter sharing (only with the shared

backbone).

4.1 Introduction

Semantic segmentation is one of the fundamental tasks in computer vision,

being essential in a variety of applications such as land cover mapping (Ienco

et al., 2019; Zhang et al., 2019), autonomous cars (Siam et al., 2017), medical

applications (Liu et al., 2022), among many others. In semantic segmentation,

the objective is to assign a class to each image pixel, a task recently performed

with Convolutional Neural Networks (CNN) due to its promising results. Even

with advances in the field (Yuan et al., 2020; Chen et al., 2018, 2017; Ron-

neberger et al., 2015b), semantic segmentation remains a difficult task due

to intra-class variation, context variation among other factors (Strudel et al.,

2021).

In recent years, due to the success in natural language processing (NLP),

there is a great interest in applying Transformers in computer vision (Xie et al.,

2021). Visual Transformer (ViT), proposed by Dosovitskiy et al. (2021), was

the first Transformed-based network to achieve state-of-the-art results for vi-

sual related tasks. In ViT, the image is split into multiple linearly embed-

ded patches and used as input to a Transformer with positional embedding,

achieving outstanding results in the ImageNet dataset (Xie et al., 2021). Since

ViT, several transformer-based networks with prominent results have been

proposed for image classification (Yuan et al., 2021; Chu et al., 2021b; Chen

et al., 2021), object detection (Carion et al., 2020; Zhu et al., 2021) and image

segmentation (Strudel et al., 2021; Xie et al., 2021; Zheng et al., 2021; Ranftl

et al., 2021).

SETR, proposed by Zheng et al. (2021), was one of the first Transformer-

based network to show the potential of Transformer for semantic segmen-

tation. Further, other advances were done with recent networks such as the

pyramid vision Transformer (PVT) proposed by Wang et al. (2021), Swin Trans-
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former (Liu et al., 2021) and Twins (Chu et al., 2021a). More recently, Seg-

Former, proposed by Xie et al. (2021), redesign the encoder and the decoder

introducing a positional-encoding-free and hierarchical Transformer encoder

and a decoder based on Multi-layer perception, achieving state-of-the-art effi-

ciency, accuracy and robustness for semantic segmentation.

In addition to modeling a single task, Transformer-based methods provided

more robust solutions for Multi-task learning (MLT) compared to traditional

CNNs (Zhou et al., 2021a). In MLT, multiple tasks are trained simultaneously,

sharing representation between the tasks to learn common ideas (Crawshaw,

2020). Therefore, the goal is to improve the performance of the tasks with no

distinction between them (Zhang and Yang, 2021). For semantic segmenta-

tion, several studies have combined CNN and multi-task learning (Osco et al.,

2021a; Gonçalves et al., 2021; Zhou et al., 2021b; Ke et al., 2021). Neverthe-

less, to the best of our knowledge, no work combined MTL with Transformers

for semantic segmentation tasks, even though MLT Transformers models have

shown strong performance for other domains, such as image classification and

language tasks (Hu and Singh, 2021).

Here, we propose MTLSegFormer, which is a multi-task semantic segmen-

tation method with Transformers. MTLSegFormer is composed of two main

modules, encoder, and decoder, similar to SegFormer (Xie et al., 2021). The

encoder is composed of hierarchical Transformers that generate low and high-

resolution features to represent the input image and feed the decoder. The

original contribution is the sharing of features between the tasks in the de-

coder. For this, our decoder extracts two feature maps for each task. The

first feature map is obtained from the encoder and can be understood as fea-

tures learned specifically for a given task. The second feature map is a shared

representation whose purpose is to benefit from features extracted from other

tasks. With the use of Transformers, a given task can differentially weight the

importance of features from other tasks to compose the second feature map.

Both feature maps of a given task are summed and used for image semantic

segmentation. We compare the proposed method with the state-of-the-art in

two new datasets whose tasks/classes are complementary. Experimental re-

sults showed the superiority of the proposed method and the importance of

exchanging information between complementary tasks.

In summary, our original contributions are described as follows:

1. Development of a new MTL semantic segmentation method with sharing

of features between tasks through Transformers, an approach with global

attention that has contributed with significant advances in several areas;

2. Results superior to the state-of-the-art in the segmentation of two datasets,

showing the importance of exchanging information between tasks;
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3. Construction and labeling of two datasets, one for segmenting crop line

and gap, and another for segmenting leaf and defoliation. Both datasets

have complementary tasks and can be used to evaluate the inclusion of

context in segmentation methods.

4.2 Related Work

4.2.1 Semantic Segmentation

In the deep learning age, FCN (Shelhamer et al., 2017) is one of the first and

most important networks for image segmentation. FCN is based on purely con-

volutional layers, therefore the output of the network, the segmentation map,

has the same size as the input. Improvements have been done to the deep

learning architecture using Conditional and Markov Random Field (Zheng

et al., 2015; Liu et al., 2015). Efforts have been made to resolve some lim-

itations of the FCN, such as the lack of context and size of the receptive field.

DeepLabV3+ (Chen et al., 2018) and Dilation (Yu and Koltun, 2016) worked on

enlarging the receptive field. Other networks focus on context modeling for a

better scene comprehension (OCRNet (Yuan et al., 2020)). According to Zheng

et al. (2021), more recently, attention models, such as (Zhao et al., 2018a;

Fu et al., 2019; Huang et al., 2020), became popular for capturing long range

context information, but still based on FCNs, such as VGG (Simonyan and

Zisserman, 2015) and ResNet (He et al., 2016).

4.2.2 Transformers for Semantic Segmentation

Axial-deeplab, proposed by Wang et al. (2020), removed all convolutions

from the network and took advantage of attention for image classification, but

maintaining the FCN design. SETR (Zheng et al., 2021) used the ViT as the

backbone and a standard CNN decoder in a sequence-to-sequence model that

keeps the same image resolution. Swin Transformer (Liu et al., 2021) used

a modification of the ViT and an Upper-Net as a decoder. Segmeter (Strudel

et al., 2021) combined a ViT backbone and a mask decoder inspired by DETR

(Carion et al., 2020). SegFormer (Xie et al., 2021) used a Transformer encoder

with multiscale features and eliminated the need for positional encoding as

the decoder is an MLP that aggregates information from different layers, com-

bining local and global attention.
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4.2.3 Multi-task learning

Generally, there are two main types of multi-task learning (MLT) models,

hard (Caruana, 1993) and soft (Duong et al., 2015) parameter sharing. Hard

parameter sharing is most commonly used since there is a low risk of over-

fitting once the tasks are learned simultaneously, improving generalization

(Baxter, 1997) and working better for closely related tasks. For soft parame-

ter sharing, each task have specific hidden layers and parameters (Vafaeikia

et al., 2020), however, parameters are regularized (Ruder, 2017). Another

type of MLT model, the Multilinear Relationship Networks (MRNs) (Long et al.,

2017), uses a common CNN and a fully connected layer to features shared

between the tasks and separate stacks of fully connected layers for each in-

dividual task. Eigen and Fergus (2014), proposed a multi-scale FCN for se-

mantic labels, depth and surface normals, but trained separately. Jafari

et al. (2017) used a joint refinement network, using as input two separate

networks trained for depth and semantic prediction, to improve both results

using cross-modality influences. Maninis et al. (2019), applied a shared en-

coder along with soft attention modules to train a network for multiple tasks,

and trained each task separately. Osco et al. (2021a), proposed a multi-stage

MLT for line and point detection using a VGG19 (Simonyan and Zisserman,

2015) as the backbone and stacks of fully connected layers for each task with

shared volumes between the stacks. Related to Transformers, several studies

explored the potential of MLT. Kaiser et al. (2017), showed that a Transformer

based encoder-decoder network can be used for different input and output

domains. Khan et al. (2020), proposed a MLT Transformed-based model for

slot tagging, considering each slot type as a problem. Further, Hu and Singh

(2021) proposed the UniT (Unified Transforme model). UniT is based on an

encoder-decoder Transformer to learn tasks from different domains, such as

objective detection and natural language. Nevertheless, to the best of our

knowledge, no work applied MLT-Transformed based model for semantic seg-

mentation only.

4.3 Proposed Method

The proposed segmentation method can be divided into two main modules,

encoder and decoder, as illustrated in Figure 4.1. Given an input image with

resolution h×w× 3, the first step is to split this image into patches. The en-

coder receives patches and generates feature maps at different scales through

the self-attention mechanism. Finally, the decoder combines the feature maps

to produce the segmentation using a new multi-task block. This block is able

to exchange and learn features between tasks to generate image segmentation
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with contextual information.

Figure 4.1: Illustration of the method proposed in this work where (a) corre-
sponds to the input image, (b) Encoder, (c) Decoder, (d) segmentation result
for the crop lines and (e) for the gaps.

4.3.1 Encoder

The main idea of the encoder is to generate feature maps at hierarchical

levels of the image. Following SegFormer (Xie et al., 2021), four maps F1, . . .F4

are generated with a resolution of 1/4, 1/8, 1/16, 1/32 of the input image

resolution. For this, the input image is divided into overlapping patches of

size 7× 7 using stride s = 4 and padding p = 3 (Overlap Patch Embeddings in

Figure 4.1(b)). This process results in n= H
2 ×W

2 patches whose feature vector is
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the concatenation of raw pixel RGB values. Then, the patches are used in the

Transformer Block composed of three steps, Efficient Self-Attention, Mix-FNN

and Overlap Patch Merging, as shown in Figure 4.1(b).

Efficient Self-Attention. This block is composed of the multi-head self-

attention process. In this process, the n input patches are subjected to a linear

projection layer to obtain keys K, queries Q and values V , all with dimension

n× c. Given Q and K, the attention A with dimension n×n is obtained accord-

ing to Equation 4.1. The attention weights Ai j are calculated based on the

similarity between each pair (qi, k j).

A = so f tmax
(

QKT
√

d

)
, (4.1)

Given the attention weights A and the values V , improved features V ′ are

obtained through the weighted sum presented in Equation 4.2. These features

describe patches using global attention on the image due to the A calculation

between all patches.

V ′ = AV (4.2)

To reduce the computational complexity of this block, SegFormer uses a

reduction process (Wang et al., 2021) of the keys K by a factor r. The keys of r

neighboring patches (considering their positions in the 2D image) are concate-

nated to generate a single key with dimension rc. Thus, the resolution of K is

reshaped from n×c to n
r × rc. A linear layer projects the keys with dimension rc

back to dimension c. Therefore, the new keys K have dimension n
r ×c, which is

reduced by a factor r. As a result, the complexity of the attention mechanism

is reduced from O(n2) to O(n2

r ).

Mix-FNN. SegFormer replaced the traditional positional encoding in trans-

formers with a block called Mix-FNN. This block receives the features of the

self-attention module xin and basically applies a convolution layer with filters of

size 3×3 and activation function GELU according to Equation 4.3. SegFormer

showed that a convolution layer is sufficient to add positional information to

patches.

xout = MLP(CONV(MLP(xin)))+ xin, (4.3)

where MLP is a multilayer perceptron.

Overlap Patch Merging. The patch features learned in the previous steps

can be organized in 2D and their resolution reduced by a convolution layer.

For this, filters of size k = 3, stride s = 2 and padding p = 1 are defined in the

convolution layer to perform overlapping patch merging. Therefore, the feature

map dimension is halved, for example, from h
2 ×

w
2 ×c1 to h

4 ×
w
4 ×c2. This process
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is important for generating multi-level features such as CNNs.

In this work, two encoder configurations, called B0 and B5, were used in

the experiments to assess the representation power of the input image. The

main hyperparameter is the dimension of the channels c1, . . . ,c4, which for B0

and B5 are respectively {32,64,160,256} and {64,128,320,512}. More details can

be obtained in SegFormer (Xie et al., 2021).

4.3.2 Decoder

Unlike SegFormer, this work proposes a multi-task decoder, since the prob-

ability of occurrence of a class or task can be correlated with the existence of

another. Thus, the advantage of our decoder is to guarantee the exchange of

information to provide global features between tasks. Here, each task can be

a single class or a group of classes. As detailed below, the proposed decoder is

composed by the concatenation of the encoder features using the MLP Layer

followed by a new Multi-task Transformer Block.

MLP Layer. This block merges the four hierarchical encoder feature maps,

i.e., F1, . . .F4. Initially each map is given as input to an MLP in order to unify the

number of channels for c. Then the maps are scaled up so that their dimension

is 1/4 of the input image and then concatenated to provide a feature map F

with resolution h
4 ×

w
4 ×4c.

Multi-task Transformer Block. Given the concatenated map F, an MLP is

used to learn the initial feature maps FTt for each task, creating T branches.

Figure 4.1(c) presents the example for two tasks (T = 2) used in our applica-

tion. The feature map FTt could be used to segment each task, however, there

is no direct exchange of information between them. To include this mutual ex-

change of information, the feature maps FTt | t ∈ {1, . . . ,T} are given as input to

the Multi-task Transformer Block. In this block, Ft is used to obtain the keys

Kt, queries Qt and values Vt for each task t. Then, the information exchange

occurs by using a query Qt with keys Ku and values Vu of other tasks (u ̸= t)

through the Efficient Self-Attention block.

V u
t = so f tmax

(
QtKT

u√
d

)
Vu, for all u ∈ {1, . . . ,T},u ̸= t (4.4)

Figure 4.1(c) illustrates the ideia to obtain multi-task features. The idea

is that a task can ask “questions” for other tasks to learn the context of the

image and the correlation between them. For example, the segmentation of

a gap pixel can benefit from by knowing the direction and characteristics of

the crop lines in the image. The multi-task features and initial features Ft are

summed and used in the Mix-FNN to include positional information as well as

in the encoder.
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Ft = Ft +V u
t , for all u ∈ {1, . . . ,T},u ̸= t (4.5)

Finally, a feature map Ft for each task is provided by the block, which

is enriched with the exchange of information between tasks. Finally, each

feature map is used to predict segmentation masks through an MLP.

4.4 Experiments and Results

4.4.1 Experimental Setup

Image Datasets. In this work, we propose two datasets in which the tasks

are complementary. The first dataset aims to segment crop lines and gaps,

namely Crop Line Dataset. This dataset is relevant because gap segmentation

is a challenge due to its similarity with the background and, therefore, it is

necessary to estimate the direction of the lines for adequate gap segmentation

(see Figure 4.2). The second dataset (Defoliation Dataset) consists of segment-

ing the leaf and defoliation, a region of the leaf deteriorated by pests. Thus,

segmenting the defoliation is a challenging task due to the visual similarities

with the background. The challenge is even greater when defoliation occurs at

the edge of the leaf, as it is essential to know the leaf shape.

The crop line dataset is composed of three farms in Brazil with sugarcane

plantations. Each farm is composed of several plots and, for reasons of pro-

cessing power, the orthophotos were generated for each plot separately. The

images were captured by a UAV with an RGB camera and the orthophotos

were generated with Pix4D commercial software. Each orthophoto was man-

ually labeled by an expert with the crop lines and gaps. The labeling process

was performed in QGIS open-source software.

The three farms were used as training, validation and test sets. It is im-

portant to emphasize that the farms are in different regions to assess the

generalizability of the methods. The largest farm with 61 plots was used for

training. The farm used in the validation set has 4 plots, while the test farm is

composed of 7 plots. As the segmentation methods receives fixed-size images

as input, the training and validation orthophotos were respectively divided

into 4669 and 574 patches of 512× 512 pixels without overlapping. Figures

4.2(a) and 4.2(b) show examples of patches and their respective labeling. As

the lines and gaps are one pixel thick, during training, we dilate the labels

with a structuring element of size 6 (Figure 4.2(c)) to avoid the imbalance of

the classes with the background. The orthophotos of the seven test plots are

divided into 3824 patches of 512×512 pixels and processed as described below

to obtain a prediction for the entire plot.
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(a) RGB

(b) Labeling

(c) Dilated Labeling

Figure 4.2: Examples of patches (a) RGB, (b) labeling with crop lines in green
and gaps in red, and (c) dilated labeling.
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Figure 4.3: Examples of the dataset with leaf and defoliation classes in yellow
and red, respectively.

Defoliation dataset consists of 320 images of soybean leaves obtained through

PlantVillage (Hughes et al., 2015; da Silva et al., 2019). Photographs were

taken at different resolutions using a cell phone in the field with no bright-

ness control. Each image has a leaf in the foreground, however, they have a

missing part caused by pests. Thus, the objective of this dataset is to esti-

mate the leaf and defoliation area to obtain a percentage of deterioration. The

greater the deterioration, the greater the amount of pests that are attacking

the crop. As a result, high defoliation drastically reduces the photosynthesis

process and consequently the plant’s grain production.

Each image was manually segmented into leaf, defoliation and background

as shown in the examples in Figure 4.3. We can see that segmenting the defo-

liation area is a challenge due to its similarity to the background, especially in

leaf edge regions. In these cases, the methods need to predict the shape based

on the rest of the leaf. Due to the amount of images, the training, validation

and test sets followed the 5-fold cross-validation process. As the images have

different resolutions, they have been resized to 512×512 pixels.

Training and Testing. The encoder was initialized with the pre-trained

weights on the Imagenet-1K (Xie et al., 2021) dataset and the decoder was ini-

tialized randomly. Following SegFormer, we trained our method using the

AdamW optimizer for 80K iterations using a batch size of 2, initial learn-

ing rate of 0.00006 updated by a Poly LR schedule with a factor of 1. Our

method was implemented in Python with the mmsegmentation1 codebase.

The experiments were performed on a computer with Intel (R) Xeon (E) E3-

1270@3.80GHz CPU, 64 GB memory, and an NVIDIA Titan V graphics card,

that includes 5120 CUDA (Compute Unified Device Architecture) cores and 12

1https://github.com/open-mmlab/mmsegmentation
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(a) RGB Image (b) Prediction (c) Skeleton

Figure 4.4: Example of the (a) RGB patch, (b) prediction and (c) one-pixel thick
skeletonization used to calculate the segmentation and detection metrics, re-
spectively.

GB of graphics memory.

In the test of Crop Line Dataset, an orthophoto is split into patches of

512× 512 pixels with 50% overlap. The overlay helps in identifying the lines

present at the edge of the patch and in its continuity with neighboring patches.

The patches are given as input to the method that performs the prediction for

each pixel. Finally, the predictions are combined to obtain the full orthophoto

segmentation. Due to patch overlap or multi-task module, a pixel can have

more than one prediction and in these cases the class priority follows gap, line

and background. This priority is related to the inherent difficulty of each class.

For the line detection assessment (see section below), we apply skeletonization

(Lee et al., 1994) on the resulting orthophoto segmentation. Skeletonization

shrinks the blobs of each class to 1-pixel-thick representations. Figure 4.4

presents an RGB example, prediction and skeletonization.

Metrics. To evaluate the methods, we use two types of metrics. The first

type is composed of segmentation metrics widely used in the literature, such

as F1-score and Intersection over Union (IoU). For Crop Line Dataset, we also

used a second type of metrics, since crop lines and gaps are usually repre-

sented by a one-pixel-thick line. Thus, the segmentation metrics whose lines

and gaps were dilated do not directly evaluate the performance in the applica-

tion. Therefore, in addition to the segmentation metrics, we use the F1-score

to evaluate the detection of one-pixel thick lines in both prediction and ground

truth of the Crop Line Dataset. For this, we calculate the True Positives (TP)

as the number of pixels predicted as a line and that are within a maximum

distance d of a pixel labeled as a line. We can understand d as the maximum

error and in this work it was equal to 3, which is half the width of the plan-

tation line. False Positives (FP) correspond to the number of predicted pixels

that are not close (distance d) of any pixel labeled as a line. On the other hand,
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Table 4.1: Result for two sizes of encoders for segmentation of lines and gaps.
Encoder

Params Flops
Line Gap

Size F1-score IoU F1-score IoU
B0 2.55 M 1.8 0.8117 0.6838 0.7478 0.5978
B5 61.41 M 47.0 0.8257 0.7038 0.7857 0.6478

Table 4.2: Comparative results of the decoder channel dimension c.
Channel Line Gap

Dimension F1-score IoU F1-score IoU
128 0.7975 0.6647 0.7222 0.5659
256 0.8257 0.7038 0.7857 0.6478
512 0.8345 0.7165 0.7704 0.6278

False Negatives (FN) correspond to the number of pixels labeled as a line that

are not close to any predicted pixel. With TP, FP and FN, F1-score can be

estimated for the crop lines and similarly for the gaps.

4.4.2 Ablation Study

In this section, we compare the influence of different choices of the pro-

posed method using Crop Line Dataset, including encoder size, decoder chan-

nel dimension, and multi-task.

Encoder size. Initially, we evaluated the influence of encoder size on seg-

mentation. Table 4.1 presents the results (F1-score and IoU) for segmentation

of lines and gaps for two encoder sizes (B0 and B5). As expected, the number

of parameters and operations required by B5 encoder is higher compared to

B0 encoder. In terms of accuracy, it is possible to observe that increasing

the size of the encoder reflects an increase in both the F1-score and the IoU.

The increase is greater for gaps (e.g., F1-score from 0.7478 to 0.7857), since

this class is a minority in the dataset and, in general, a more powerful model

is needed to adequately represent it. It is also important to emphasize that

the proposed method with B0 encoder presents competitive results with the

state-of-the-art that use computationally heavier backbones (see Table 4.4).

Decoder channel dimension. We also evaluated the influence of the de-

coder channel dimension c as shown in Table 4.2. When increasing from 128

to 256, the results for both lines and gaps were superior. On the other hand,

for c = 512, the results were higher for lines, but slightly lower for gaps. Thus,

we chose to keep c = 256 due to results and computational cost.

Multi-task decoder. Finally, we compare the multi-task decoder proposed

in this work with the original SegFormer decoder as presented in Table 4.3.

The decoder parameters were the same, except that the one proposed here

uses the exchange of information between tasks through the Multi-task Trans-
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Table 4.3: Comparative results between the decoder of our method and the
SegFormer.

Decoder
Line Gap

F1-score IoU F1-score IoU
SegFormer 0.8074 0.6778 0.7115 0.5525

Our 0.8117 0.6838 0.7478 0.5978

former Block. For the encoder of both, we use the B0 version.

The results show that the multi-task decoder proposed here was superior

to the SegFormer decoder both in segmentation of lines and gaps for both

metrics. When analyzing the results by task, we can see that there is a greater

gain in the gap results (e.g., F1-score from 0.7115 obtained by SegFormer to

0.7478 obtained by ours). In general, segmenting gaps is a more complex task

because their visual characteristics are similar to those of the background. In

fact, a gap can only be segmented properly if the method is able to understand

the crop lines in the image. When predicting gaps, the results suggest that our

decoder is able to benefit from the lines because of the exchange of information

between tasks.

To corroborate our decoder, we plotted attention weights in the Multi-task

Transformer Block (see softmax in Equation 4.4). Figure 4.5(a) presents the

RGB image while Figures 4.5(b) and 4.5(c) present the attention weights on

gap and plantation line branches, respectively. To facilitate visualization, at-

tention weights were calculated for a given pixel demarcated with a black cir-

cle. We can observe that, when considering a gap pixel (figures on the left),

the attention weight of the other pixels was adequate for both tasks. For ex-

ample, Figure 4.5(b) on the left shows that attention is highest on pixels that

are likely to be gap, even though this region is similar to the background.

The same pixel in the crop line branch has attention with plant pixels (Figure

4.5(c) on the left). It is also interesting to note, according to the figures in the

center, that a background pixel with features similar to gap pixels, presents a

completely different attention weights. Finally, the figures on the right show a

crop line pixel and the attention weights on the two tasks.

4.4.3 Crop Line Dataset

The results of the proposed method were compared with the state-of-the-art

in Table 4.4 for segmentation metrics and in Table 4.5 for line detection met-

rics. For segmentation metrics (Table 4.4), the proposed method outperformed

other methods, including SegFormer, DeepLabV3+ and OCRNet. Considering

the crop lines, our method reached F1-score and IoU of 0.8257 and 0.7038

against 0.8192 and 0.6950 from OCRNet. Our method also obtained the best
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(a) RGB Image

(b) Gap Task

(c) crop Line Task

Figure 4.5: Example of our decoder’s attention weight on important regions of
the image. The first, second and third columns of images present the weights
related to a gap, background and line pixel, respectively.
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results for the gaps, and DeepLabV3+ obtained the second best result for this

task.

Table 4.4: Comparison with state-of-the-art methods using segmentation met-
rics.

Method
Line Gap

F1-score IoU F1-score IoU
SegFormer (Xie et al., 2021) 0.7793 0.6409 0.7331 0.5790
FCN (Shelhamer et al., 2017) 0.8044 0.6739 0.7363 0.5831
OCRNet (Yuan et al., 2020) 0.8193 0.6950 0.7649 0.6199

DeepLabV3+ (Chen et al., 2018) 0.8168 0.6926 0.7846 0.6468
Proposed method 0.8257 0.7038 0.7857 0.6478

Although the results with segmentation metrics are important, it is also

important to compare the methods considering line and gap detection metrics

(Table 4.5). The methods are able to detect most of the crop lines (second col-

umn of the table), with SegFormer, the proposed method and OCRNet present-

ing the best results. On the other hand, for gap detection, SegFormer reduces

the result with F1-score below the proposed method and DeepLabV3+. In the

average of the two tasks, the proposed method presents the best results fol-

lowed by OCRNet, DeepLabV3+ and SegFormer. These results corroborate the

accuracy of the proposed method compared to the state-of-the-art, presenting

superior results in both segmentation and detection metrics.

Table 4.5: Comparison with state-of-the-art methods using line detection met-
rics.

Method
F1-score F1-score Average

(Line) (Gap) (Line/Gap)
SegFormer (Xie et al., 2021) 0.9804 0.8673 0.9239
FCN (Shelhamer et al., 2017) 0.9668 0.8686 0.9177
OCRNet (Yuan et al., 2020) 0.9746 0.8948 0.9347

DeepLabV3+ (Chen et al., 2018) 0.9581 0.9049 0.9315
Proposed method 0.9793 0.9064 0.9429

Figure 4.6 shows the qualitative results of the methods for segmenting crop

lines and gaps. Each row of figures presents (a) RGB, (b) ground truth, and the

results of (c) FCN, (d) SegFormer, (e) OCRNet, (f) DeepLabV3+, and (g) MTLSeg-

Former. In general, the methods present robust results for crop lines and gaps

even in curves, as shown in the first column of examples in Figure 4.6. On

the other hand, the proposed method stands out in regions without sufficient

visual information for segmentation and, therefore, it would be necessary to

estimate the direction of the lines, as evidenced in the second column of ex-

amples. We can see that the shade makes it difficult to identify the plants and

the continuity of the crop line for most methods. The same problem occurs

for large regions with gaps due to their visual similarity to the background, as
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shown in the third column of examples. Also in this example, some methods

have difficulty in identifying isolated plants, such as SegFormer.

4.4.4 Defoliation Dataset

The comparative results for leaf and defoliation segmentation are presented

in Table 4.6. The leaf segmentation in the image is a simpler task than the de-

foliation, therefore, the methods present consistent results in this task. From

the first two columns, we can see that the methods present results above 0.97

for F1-score and IoU, except for OCRNet. On the other hand, defoliation seg-

mentation is a challenging task as the visual characteristics are identical to

the background. Also, when there is defoliation at the leaf edge, the methods

need to estimate the shape properly. These challenges corroborate the ad-

vantage of the proposed method, which is able to exchange information with

the leaf to estimate its shape and then segment the internal defoliation and

especially the defoliation at the edge. The proposed method achieved the best

results for defoliation, followed by SegFormer, which also provides global at-

tention, although there is no direct exchange of information between tasks.

The other traditional methods, even with object-contextual representations

such as OCRNet, presented inferior results, which demonstrates the effective-

ness of the proposed method.

Table 4.6: Comparison with state-of-the-art methods for defoliation segmen-
tation.

Method
Leaf Defoliation

F1-score IoU F1-score IoU
SegFormer (Xie et al., 2021) 0.9850 0.9706 0.8779 0.7898
FCN (Shelhamer et al., 2017) 0.9847 0.9701 0.8447 0.7411
OCRNet (Yuan et al., 2020) 0.9310 0.9040 0.7259 0.6127

DeepLabV3+ (Chen et al., 2018) 0.9837 0.9702 0.8475 0.7507
Proposed method 0.9869 0.9743 0.8877 0.8048

Qualitative examples of leaf and defoliation segmentation are presented in

Figure 4.7, with each row presenting respectively (a) RGB, (b) ground truth,

and the results of (c) FCN, (d) SegFormer , (e) OCRNet, (f) DeepLabV3+, and

(g) MTLSegFormer. The first and second examples (first two columns) show

severe and mild defoliation, mostly in inner regions of the leaf. In this case,

the methods present satisfactory results, although the proposed method was

able to segment small defoliation regions as in the second example. The main

challenge occurs in edge defoliation, as in the third and fourth examples. The

proposed method was able to segment the defoliation by following the leaf

shape properly, while the other methods presented some difficulty in one or

the other example. It is also important to emphasize that the methods were
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.6: Examples of crop line dataset. (a) RGB, (b) ground truth, (c) FCN,
(d) SegFormer, (e) OCRNet, (f) DeepLabV3+, and (g) MTLSegFormer.
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effective in segmenting the foreground leaf, although other leaves are in the

background.

4.5 Conclusion

In this work we propose a new semantic segmentation method, MTLSeg-

Former, which performs the exchange of information to increase the accuracy

in the segmentation of correlated tasks/classes. For this, multi-scale features

are extracted by an encoder. Then, a decoder was proposed to learn new fea-

ture maps extracted from other tasks based on attention from Transformers.

This attention proved to be effective in determining relevant regions for related

tasks.

Experiments were carried out on two new datasets whose tasks/classes

are correlated and the results showed the superiority of the proposed method

compared to the state-of-the-art in semantic segmentation, including Seg-

Former. The proposed method excelled in the segmentation of tasks/classes

that strongly depend on others, such as defoliation in edge regions that de-

pends on the leaf shape. As future work, we intend to evaluate traditional

datasets by defining a set of related classes and using other recently pub-

lished Transformers.
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Figure 4.7: Examples of leaf segmentation and defoliation. (a) RGB, (b) ground
truth, (c) FCN, (d) SegFormer , (e) OCRNet, (f) DeepLabV3+, and (g) MTLSeg-
Former.
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CHAPTER

5
Conclusion

Deep learning and multi-task have gained great attention in computer vi-

sion, mainly due to the results obtained in the literature. Currently, the com-

bination of these two techniques has improved the performance of several real

computer vision problems. In this work, the use of CNNs, transformers and

Multi-task learning with several tasks was evaluated in three problems: plan-

tation line detection, fingerling detection and segmentation of crop lines and

gaps.

In these applications we propose methods in which each task has a branch

in the CNNs and the learning of these tasks occurs simultaneously through

MTL characteristics. We also studied ways to extend this learning to temporal

information through image sequences. Finally, based on the promising results

of attention mechanisms in images, we presented a new semantic segmenta-

tion method using MTL and Transformers that allows each task to learn a

weight for regions of the image of the other tasks. Thus, high weights indicate

that that region is important and should be shared with other tasks.

For the experiments, several image datasets of plantations with different

crops were built, including maize, orange, eucalyptus and sugarcane. In addi-

tion, an image dataset for fingerling detection was used to assess the learning

of temporal tasks. According to the results, it was observed that the use of

CNN with MTL is promising in computer vision problems, especially in image

detection and segmentation. The results showed that complementary tasks

were learned properly and the exchange of information between them im-

proved their individual results. In addition, simultaneous learning tasks was

adequate in temporal problems. The results with transformers showed that

this sharing is beneficial for tasks, especially those with a strong dependence
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on others, achieving results that are superior to the state-of-the-art.

5.1 Contributions

This thesis contributed to the area of multi-task and deep learning applied

to images. Specifically, it introduced three methods for sharing information

between tasks and their applications to relevant problems. The principal con-

tributions of this thesis are:

• Construction and labeling of image datasets;

• Proposal of multi-task learning methods;

• Extension of the method to temporal problems;

• Inclusion of local sharing between tasks through attention mechanisms;

• Applications of the methods in real and relevant problems;

• Authorship and co-authorship on several papers published or submit-

ted during the doctorate (Gonçalves et al., 2022b; Gonçalves et al., 2021;

Gonçalves et al., 2022a; Gonçalves et al., 2020a; Osco et al., 2021a; Bres-

san et al., 2021; dos Santos de Arruda et al., 2021; Gomes et al., 2020;

Miyoshi et al., 2020; Cantero et al., 2020; da Silva et al., 2019; Ribas

et al., 2019).

5.2 Future Works

As future works, we suggest the evaluation of the methods in other image

datasets with a greater amount of tasks. With the rapid development of CNNs,

there have been many well-designed CNN backbones that can replace and im-

prove the initial feature extraction of the proposed methods. Another sugges-

tion for future work is to evaluate the results through a cross-validation and

hypothesis testing. Finally, the loss function considers the error of all tasks

with the same weight. An alternative to be evaluated is to weigh each task in

terms of its importance and difficulty, since some tasks are more difficult to

learn than others.
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